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Nations of the world are in the process of negotiating the post-
2020 Global Biodiversity Framework under the Convention 
on Biological Diversity. One of the ambitions of the post-

2020 framework is ‘bending the curve of biodiversity loss’ by first 
slowing down declines by 2030 and then improving the state of 
biodiversity by mid-century1–3. Reliable biodiversity indicators are 
essential for tracking progress towards global biodiversity targets4. 
A prominent indicator of species abundance over time is the Living 
Planet Index (LPI)5–7. The LPI aggregates population time series for 
vertebrates from terrestrial, freshwater and marine systems into a 
relative index (where the baseline is scaled according to population 
levels in 1970), which is reported biennially as part of the Living 
Planet Report8.

In addition to being widely reported by the popular press, the 
LPI has developed a notable policy footprint. Global declines, as 
measured by the LPI, were reported in the global assessment of 
the Intergovernmental Science-Policy Platform for Biodiversity 
and Ecosystem Services9, the most authoritative synthesis of 
policy-relevant biodiversity science. Similarly, the index was also 
used in the Global Biodiversity Outlook Report 5 (ref. 10) to moni-
tor progress toward Aichi Target 12 (reducing risk of extinction) 
for the period 2010–2020. Recently, the LPI was a central feature in 
pioneering efforts to model adaptation and mitigation pathways for 
biodiversity in the upcoming century2. There is, therefore, consider-
able policy inertia behind the LPI.

Despite the LPI’s broad influence, it has several known cave-
ats11,12. First, since each time series is standardized as a relative rate 
of change, declines in small populations are viewed as equivalent 
to similar proportional declines in large populations, even though 
the absolute declines are much larger in the latter6,11. Second, popu-
lation trends are summarized using the geometric mean, which is 
always lower than the arithmetic mean, resulting in an index that is 
sensitive to a small minority of extremely declining populations12. 

Third, the LPI weighs time series before averaging to account for 
imperfect regional and taxonomic sampling, essentially giving 
greater weight to time series from poorly studied geographic areas 
or taxonomic groups.

Each of these caveats is the result of a deliberate trade-off in the 
design of the LPI. Standardization is necessary because abundance is 
often estimated from indices of varying units (for example, densities 
or breeding pairs) and because populations may be naturally com-
mon or rare (although it has been shown that weighing subpopula-
tions in proportion to their contribution to the global population of 
a species does not affect the LPI qualitatively6). The geometric mean 
accommodates multiplicative population dynamics, where averages 
may be distorted by exponentially increasing populations13. Finally, 
weighting is necessary to account for misleading estimates caused 
by incomplete data coverage7 because populations from certain taxa 
or regions are more likely to be represented in monitoring databases.

It seems impractical to redesign the LPI to address caveats that 
were introduced due to deliberative trade-offs, especially consider-
ing how the index is already embedded in global conservation mon-
itoring frameworks. The usefulness of the LPI should be evaluated 
by distinguishing between inconvenient drawbacks that require 
more careful interpretation and fundamental flaws that may ren-
der the index uninformative. Population time series (the input data 
for the LPI) combine two components: deterministic increasing or 
decreasing tendencies and the stochastic fluctuations around these 
tendencies14,15. The three known caveats of the LPI (standardization, 
geometric mean and weightings) affect estimates of the determin-
istic tendencies of the LPI. While this can be seen as an inconve-
nient drawback, it can be addressed by explaining carefully how to 
interpret the LPI. For example, the technical supplement to the lat-
est Living Planet Report16 describes clearly how the LPI should be 
interpreted as the average trend in population change, rather than 
the average loss in the absolute number of animals or species.
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The other, previously ignored, point of concern is the potential 
effect of random population fluctuations on the LPI. If the LPI is 
disproportionately affected by random population fluctuations 
relative to deterministic tendencies, then any meaningful associa-
tion between the index and underlying populations breaks down. 
If this is the case, careful interpretation of the LPI will be insuf-
ficient. Random population fluctuations might be caused by eco-
logical drift17,18, environmental or demographic stochasticity19,20 
or random observational error21,22. Ecological drift, demographic 
stochasticity and observational error tend to cause symmetrical  
positive or negative population fluctuations because randomness 
affects individual births, deaths or detections (note that demo-
graphic stochasticity is often treated as a synonym for ecological 
drift18). By contrast, environmental stochasticity leads to asym-
metrical positive and negative population fluctuations because ran-
domness causes variability in multiplicative birth or death rates20.  
The LPI is formulated to consider exponential population dynam-
ics, so it should also accommodate asymmetrical environmental 
stochasticity. In their analysis of time series in the Living Planet 
Database, Daskalova and colleagues15 used state–space models 
to distinguish between population tendencies, process noise and 
observational error. They used Gaussian distributions to model pro-
cess noise and observational error additively and found that popu-
lation fluctuations in time series from the Living Planet Database 
are relatively small (~2.2% per year on average for terrestrial time 
series and 2.8% per year for freshwater and marine populations) but 
were greater in rare and threatened species15. The consequences of 

these symmetrical population fluctuations for the LPI have yet to 
be investigated.

Here, we quantified the effect of random population fluctuations 
on the magnitude of the LPI by answering two questions. First, what 
is the effect of random population fluctuations on the LPI assum-
ing that populations are stable on average (that is, no deterministic 
directional tendencies)? Answering this question identifies a more 
accurate counterfactual for the LPI, which is currently assumed 
to be static in the absence of general positive or negative trends. 
Second, what is the effect of random population fluctuations on the 
LPI when populations do show increasing or decreasing tenden-
cies? This identifies whether stochasticity overestimates or underes-
timates the LPI. To answer each of these two questions, we began by 
illustrating general principles using simple simulation models and 
then combined empirical data with null models to estimate the con-
tribution of random population fluctuations to the LPI.

Results
The effect of random fluctuations on the LPI for stable popula-
tions. The formulation of the LPI means that the index can decline, 
even when populations are stable on average (Fig. 1). The LPI was 
designed for multiplicative population dynamics, so additive popu-
lation fluctuations mean that random increases cannot compensate 
for random declines even when of equal magnitude. We demon-
strated this effect by simulating sets of 500 populations that fluc-
tuate along a random walk (Fig. 1a) and subsequently calculating 
the LPI for each of these sets (Fig. 1b). The LPI declined in these 
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Fig. 1 | Fluctuating, but otherwise stable, populations lead to a declining LPI. a, Three sets of 500 populations each (fine lines) that fluctuate randomly 
by two individuals on average each year but which are stable on average (thick lines). The sets are identical except for their starting populations (N = 50, 
100, 150). b,c, The LPI declines for these sets of populations even when they are stable on average (b) because fluctuations upwards or downwards cause 
asymmetrical estimates of λ, which are exaggerated in smaller populations (c). d, The effect of fluctuations on the LPI is greatest in small populations that 
experience large fluctuations (here, the diagonal lines represent the magnitude of the fluctuations as relative percentages of the starting population).
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simulations by as much as 8% over 50 yr (Fig. 1b), even when the 
average population sizes remained unchanged. The LPI is based 
on annual changes in populations, λ = log10(Nt+1/Nt), where N is 
the time-dependent population size (Methods and Extended Data 
Fig. 1). The log10-transformation used to calculate λ means that the 
relative effects of positive or negative fluctuations are asymmetri-
cal (Fig. 1c) and this asymmetry is exaggerated in small starting 
populations due to smaller denominators (Nt) when calculating λ. 
We then investigated different starting population sizes and annual 
fluctuations and found that the LPI in otherwise stable populations 
was mostly unaffected when annual fluctuations were <1% per year 
but declined by as much as 40% once annual fluctuations exceeded 
4% (Fig. 1d).

We simulated how random population fluctuations might affect 
the empirical LPI by iterating three separate null models with start-
ing populations identical to those in the Living Planet Database. For 
each null model, we simulated random positive or negative fluctua-
tions of 1, 3 and 5% annually (Methods). This represented how the 
LPI would be affected by population fluctuations in otherwise stable 
populations. Empirical declines in the global LPI were much greater 
than could be attributed to random fluctuations in stable popula-
tions (Fig. 2a). Here, the LPI declined by 64%, which differed from 
the 68% reported in the Living Planet Report8 but this is because we 

used the public dataset, which excludes several private time series 
(Methods).

A null model with 1% annual random fluctuations resulted in 
a global LPI decline by 2016 of only 0.2% (s.d. = 0.3%) (Fig. 2b). 
When fluctuations increased to 3% in the null model, the LPI in an 
otherwise stable populations declined by 1.5% (s.d. = 0.8%), while 
annual fluctuations of 5% reduced the LPI by 4.9% (s.d. = 1.7%)  
(Fig. 2b). These patterns were consistent for LPIs calculated for 
terrestrial, freshwater and marine realms separately, as well as for 
different biogeographical regions (Extended Data Fig. 2). Although 
LPI declines attributable solely to population fluctuations are small, 
they do suggest that the null expectation of the LPI should be a 
declining counterfactual rather than a static baseline set at 1970. 
This is likely to become more important in upcoming years because 
the effects of random fluctuations are exacerbated in small popula-
tions (Fig. 1d) and the starting populations of newly added time 
series in the Living Planet Database have declined exponentially 
between 1950 and 2015 (ln-transformed starting populations have 
declined by 6.4 ± 0.2% annually; Extended Data Fig. 3).

The effect of random fluctuations on the final LPI for increasing 
or decreasing populations. The extent of declines in the empirical 
LPI cannot be ascribed to random population fluctuations (Fig. 2), 
so we explored whether fluctuations affect the quantitative preci-
sion of LPI estimates for populations with increasing or decreas-
ing tendencies. For this, we simulated sets of populations that 
declined along concave-up, linear and concave-down trajectories23 
and showed how random annual population fluctuations can lead 
to biased estimates of the final LPI in declining populations (Fig. 3;  
comparable simulations for increasing populations are shown in 
Extended Data Fig. 4). Although the final LPI estimates at the end 
of the time interval are relatively robust for both linear and non-
linear declines when population fluctuations are small (Fig. 3a,c), 
large fluctuations biased final LPI estimates by more than 10% for 
nonlinear trajectories (Fig. 3b,d). This is probably an artefact intro-
duced by the Generalized Additive Models (GAM) used to smooth 
population trends and interpolate missing data when calculating 
the LPI (Methods, Supplementary Appendix and Extended Data 
Figs. 5 and 6). Random population fluctuations cause the GAM to 
underestimate the curvature of nonlinear trajectories, which under-
estimates the magnitude of population losses for declining trajec-
tories (Extended Data Fig. 5) and population gains for increasing 
populations (Extended Data Fig. 6).

We were able to correct for the effect of random fluctuations on 
the LPI using a null model that maintained the starting and ending 
populations in time series but which randomized the order of incre-
mental changes to the population (Methods and Extended Data  
Fig. 7). By iterating this null model 100 times, we were able to gener-
ate a distribution of LPI estimates at the end of the time series. Each 
estimate in the distribution represents a possible population trajec-
tory to the same end-state and thus averages out any artefacts intro-
duced when fitting the GAM to nonlinear trajectories. Although 
this approach cannot be used to approximate the whole trajectory 
of the LPI across the entire time series, it provides a more accurate 
estimate of the true final state in our simulated populations (Fig. 3e,f 
and Extended Data Fig. 4e,f) because it calculates the same cumu-
lative population changes across 100 possible trajectories that are 
approximately linear on average (Extended Data Fig. 7).

We applied this null model to empirical population time series in 
the Living Planet (Fig. 4) and found that random fluctuations exag-
gerated declines in the global LPI in 2016 (empirical LPI = 0.36; null 
model LPI = 0.46 ± 0.03) (Fig. 4a). This demonstrates how declines 
in the LPI can differ by 9.6% even when all the time series start 
and end at exactly the same population sizes. Empirical declines 
in the LPIs were also overestimated by 23.2% in terrestrial systems 
and by 8.1% in freshwaters systems compared to the null model 
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but were underestimated by 19.6% in marine systems (Fig. 4b). 
Similarly, declines in empirical LPI for biogeographical realms 
were overestimated in the Neotropics (by 14.2%), Palaeartic (by 
5.9%) and Indo-Pacific (by 6.9%) realms but were slightly under-
estimated in the Nearctic (by 2.8%) and Afrotropical (by 11.6%)  
realms (Fig. 4c).

Discussion
Precise quantitative targets are essential for meeting international 
biodiversity commitments24–26 and so are reliable indicators to track 
progress towards these targets1,4. The zero draft of the Convention 
on Biological Diversity’s post-2020 Global Biodiversity Framework3 
lists as one of the milestones for 2030 (Goal A.2) that ‘the abundance 
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of species has increased on average by [X%]’. The LPI is proposed 
as an indicator towards this goal but our findings demonstrate that 
random population fluctuations can compromise the accuracy of 
the LPI for tracking progress towards international biodiversity 
commitments.

Our results do not detract from the main message of the LPI, 
which is one of dramatic declines in populations since 19708,9. Even 
though random fluctuations caused declines in the LPI for oth-
erwise stable populations, these effects were too small to explain 
empirical declines. Recent evidence suggests that the declining LPI 
may be caused by major declines in relatively few population time 
series, rather than consistent decline across most species12. This is 
supported by other studies that do not corroborate wholesale popu-
lation declines15,27. These studies show that while many populations 
have declined, an equivalent number of populations have increased. 
Thus, on average, monitored populations seem to be quite stable. 
Such observations are consistent with the technical supplement to 
Living Planet Report, which also showed that the frequencies of 
increasing and decreasing populations were approximately equal16.

This raises the question: why does the LPI show dramatic declines 
while other studies do not? We offer two reasons, neither of which 
invalidates the use of the LPI. First, the LPI assumes that population 
dynamics are exponential, so doubling a population is the positive 
equivalent of halving the same population even though the absolute 
change in the populations is twice as much. By contrast, other stud-
ies of global population change do not always assume exponential 
growth, favouring instead population data standardized between 0 
and 1 (ref. 15) or square-root transformed population data (ref. 27). 
These transformations imply that population increases could more 
easily compensate for population declines mathematically.

The second reason for the disparity between declines in the LPI 
and related studies is that the LPI measures cumulative popula-
tion changes since 1970 rather than average population changes 
(Extended Data Fig. 8). Declines tend to be greater when population 
sizes in the first year of monitoring are larger than the long-term 
average population28, so selecting a fixed starting year standardizes 
this potential sampling artefact. More importantly, setting a fixed 
baseline has the important advantage of avoiding shifting-baseline 
syndromes29,30. This is illustrated using a hypothetical population 
that declined rapidly from 100 individuals in 1970 to 60 individuals 
in 1980 due to habitat loss and then approached a new equilibrium 

of 40 individuals by 2020 (Extended Data Fig. 9a). In this example, 
the LPI approaches 0.4 as new data are collected (Extended Data 
Fig. 9d), while the mean rate of decline becomes smaller as new sur-
vey data are added and the large initial declines are averaged out 
by subsequent smaller declines. Perversely, mean rates of decline 
in this hypothetical scenario tend to zero as the length of the time 
series grows (Extended Data Fig. 9b,c) because average declines 
become smaller as populations settle in alternative equilibria and 
newly collected data are added to time series. Maintaining consis-
tent baselines is essential when populations settle into alternative 
stable equilibria; something that is likely to become more prevalent 
in the upcoming decades31. Hence, the LPI is superior when the aim 
is quantifying cumulative population change over a time-period, 
rather than estimating mean annual rates of change.

Even though the LPI represents cumulative population change, 
we have shown that we must be cognizant of the effect of random 
fluctuations on the LPI (Figs. 1 and 2). We suggest that the LPI 
should be interpreted against declining counterfactuals, similar 
to the way economists interpret investments relative to inflation. 
The appropriate counterfactual for population fluctuations is still 
unclear because estimates from the Living Planet Database sug-
gest that the median population fluctuations for vertebrate species 
is probably around 2.2–2.8% (ref. 15). However, these estimates are 
strongly right-skewed across populations and may be higher for 
smaller populations and for threatened species15. Moreover, popula-
tion fluctuations estimated retrospectively from empirical data do 
not necessarily reflect future fluctuations, so we should be cautious 
of using these to estimate the potential effect on the LPI by 2050 
(the year of the Conventional on Biological Diversity’s mid-century 
goals). Instead, we recommend using a range of fluctuations to sim-
ulate multiple scenarios of stable, but fluctuating, populations (for 
example, Fig. 2), which can be used as alternative frames of refer-
ence against which real declines can be interpreted32,33.

Alternative frames of reference will be particularly important if 
the LPI is calculated using data containing many small populations 
because the effect of fluctuations is particularly strong in smaller 
populations (Fig. 1d). Such effects of small populations could be 
exacerbated by (1) incrementally adding new time series of rare 
populations to the Living Planet Database (Extended Data Fig. 3);  
(2) real population declines caused by human pressures; or (3) 
smaller population sizes used for national or subregional LPI  
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calculations (for example, ref. 34). This last point will become 
increasingly important if countries must calculate national LPIs as 
part of their reporting on the Convention on Biological Diversity. 
Therefore, regional assessment could be improved by following 
standard criteria for including time series when calculating the LPI, 
such as minimum sampling frequencies or time-series length35,36.

Even with realistic frames of reference, it is still necessary that 
the LPI reported at any given point in time should not be an arte-
fact of the population trajectories at preceding time points. Our 
results suggest that this is not the case because declines in a reshuf-
fled LPI may be 9.6% less severe than the empirical LPI reported 
in the most recent Living Planet Report8, even though starting and 
ending population sizes were identical. This bias is introduced by 
the way the LPI smooths and interpolates time series using GAM, 
which misidentifies starting and ending populations in noisy time 
series (Extended Data Figs. 5 and 6). Nevertheless, interpolation 
and smoothing are necessary features of the LPI because it allows 
messy data with sampling gaps to be aggregated in a uniform index. 
Therefore, rather than redesigning the LPI by changing the GAM, 
our results support efforts to account for biases using randomized 
null models (for example, Fig. 4). These null models can be iterated 
to generate a distribution of final LPI values, which more accurately 
represent the uncertainty inherent in single composite metrics of 
biodiversity11,12.

Efforts to bend the curve of biodiversity loss will require con-
siderable transformation of all sectors of society2. Science should 
ensure that the indicators that guide these actions are as accurate 
as possible. Therefore, we need to explore and understand sources 
of bias and uncertainty in global biodiversity indicators such as the 
LPI. Our study confirms substantial population declines reported 
in global syntheses of policy-relevant biodiversity science9,10,16 but 
highlights how random fluctuations affect quantitative estimates. 
Reshuffling null models can account for the mathematical artefacts 
introduced when calculating the LPI. These null models not only 
provide more accurate estimates of population declines but can also 
be iterated to assess uncertainty around these estimates. Therefore, 
we recommend using null models to improve the accuracy of and 
uncertainty around global biodiversity indicators when measuring 
progress towards international biodiversity targets.

Methods
A brief overview to calculating the LPI. While others have explained the details of 
the LPI5–7, it is necessary to give a short overview of the method to understand how 
random fluctuations could affect the LPI (Extended Data Fig. 1). For all subsequent 
calculations, we used the purpose-built rlpi (v.0.1.0) package in R v.3.6.2 (ref. 37) 
to ensure that our methods were identical to those used to generate the LPI. We 
also used the public data released with the 2020 Living Planet Report8. This dataset 
includes 15,348 population time series between 1950 and 2016, apart from 5,463 
confidential time series that are not publicly available.

Calculating the LPI requires nine steps (Extended Data Fig. 1). The first step is 
obtaining a time series for each population. Not all the time series in the dataset are 
integer counts of abundance but also include measurements of density, biomass or 
proxies of abundance (for example, number of breeding pairs). These time series 
also have different start and end dates and irregular sampling frequencies. The 
second step is, therefore, fitting a GAM to each log10-transformed population time 
series with at least six population measurements. This smooths the population time 
series and interpolates missing data. Time series with fewer than six measurements 
are interpolated using a chain rule, which assumes that populations changed 
linearly between each pair of subsequent measurements. The smoothed predictions 
from the GAM model are used to estimate sequential changes in population sizes 
over successive years (step 3), which is calculated as λ = log10(Nt+1/Nt) (step 4). The 
fifth step for calculating the LPI is standardizing population trends by setting the 
value in 1970 to one and calculating subsequent trends using the annual changes,  
λ, through time. Annual changes are summarized across all populations of the 
same species using the geometric mean (step 6). These standardized species-level 
time series are then aggregated across vertebrate classes (step 7) using a weighted 
mean relative to the total number of species in the taxonomic group and then 
aggregated into composite indices for terrestrial, freshwater and marine ecosystems 
(step 8) after weighting averages on the basis of the total number of species of  
each vertebrate class per biogeographical realm7. These weighing processes account 
for geographic and taxonomic sampling biases in the population time series.  

The final step is aggregating terrestrial, freshwater and marine indices into a global 
LPI, assigning equal weights to each system.

Mathematical asymmetries when calculating the LPI. A limitation inherent to 
the LPI is that a population declining by a fixed value, Δ, has an asymmetrical 
negative effect on λ, compared to an equivalent increase by Δ. When fluctuations 
are truly stochastic and additive (that is, due to ecological drift17,18, demographic 
stochasticity19,20 or random observational error21,22) then positive and negative 
changes by Δ should be equally probable. For fluctuations to have no effect on the 
LPI, it is necessary that an increase of Δ should have a positive λ, which is the same 
magnitude as the negative λ caused by a decrease in Δ:

λincrease = −λdecrease

log10[(N + Δ)/N] = −log10[(N − Δ) /N]

(N + Δ)/N = N/(N − Δ)

(N + Δ)(N − Δ) = N2

N2
− Δ2 = N2

Clearly, this is only true when Δ = 0 and false otherwise. The term –Δ2 also 
shows that the relationship between λ and the size of the fluctuation, Δ, is a 
quadratic concave-down function indicative of an asymmetrical effect of positive 
and negative fluctuations (Fig. 1c). Another truism of this equation is that the 
inequality is proportionally smaller when the size of the fluctuation, Δ, is small 
relative to the starting population size, N, which also scales quadratically. Thus, 
a population fluctuating randomly around equilibrium conditions can result in a 
declining LPI because random increases cannot compensate fully for equivalent 
random declines but this effect is less prevalent in large populations.

The effect of random fluctuations on the LPI for stable populations. To illustrate 
how randomly fluctuating populations can result in a declining LPI, we simulated a 
set of 500 populations, which fluctuated randomly through time. Each population 
in the simulation was from a unique species and each had the same starting 
population, N. We allowed the populations to fluctuate for each year between 
1970 and 2020 by randomly selecting the annual fluctuation, Δ, from a Poisson 
distribution and varying the sign of the fluctuation (that is, positive or negative) 
with equal probability. After allowing all the populations to fluctuate for the 
duration of the simulation, we calculated the LPI for each set of populations. We 
simulated three sets of 500 populations for illustrative purposes (N = 50, 100 and 
150; mean Δ = 2; Fig. 1a–c) but then also iterated the entire process 25 times for 
combinations of N (between 50 and 300 in increments of 10) and mean Δ (between 
0.5 and 5 in increments of 0.1) (Fig. 1d).

We then examined the potential effect of random fluctuations on the empirical 
data used in the LPI. To do this, we first identified the starting population size for 
each time series. We then allowed each population to fluctuate randomly in three 
separate simulations by 1, 3 and 5% each year. This range of fluctuations includes 
the mean fluctuations for terrestrial (2.2%), freshwater and marine (both 2.8%) 
populations15. For each simulation, the annual direction of the fluctuation was 
selected randomly so that positive and negative fluctuations were equiprobable. 
We allowed the simulated populations to fluctuate annually for the whole 
period between the first measurement in the time series (which differed among 
populations) and 2016 (the final year of the publicly available LPI data). The 
empirical data had gaps in the time series, so we removed the simulated time-series 
measurement that coincided with the gaps in the empirical dataset to ensure that 
the simulated and empirical data had identical sample completeness. After allowing 
all 15,348 populations to fluctuate randomly, we calculated the LPI using the same 
weightings as the empirical data to account for geographic and taxonomic biases7. 
This entire stochastic process was iterated 100 times for each of the three levels of 
fluctuation (1, 3 and 5%).

The effect of random fluctuations on the final LPI for increasing or decreasing 
populations. To be a reliable indicator of biodiversity trends, the LPI for any given 
year should reflect the state of populations at that specific point in time, rather than 
the population state at an earlier time. In other words, the LPI at time t should be 
independent of the population trajectories at preceding time points. This is not the 
case for the LPI when populations fluctuate randomly because fluctuations affect 
the accuracy of GAM models fitted to population time series (Extended Data  
Figs. 5 and 6). We explored the consequences of imprecise GAM estimates by 
simulating sets of species that all declined from a starting population size of 
N0 = 100 in the year 1970, to a final population of NF = 40 in 2020 (a 60% decline, 
consistent with the findings of the global LPI). We simulated these populations 
along varying trajectories as:

Nt = NF + (N0 − NF)

[

1 −

(

t − min (t)
max (t) − min (t)

)d
]

In this equation, time is standardized so that the first year in the times series is 
0 and the final year is 1; and parameter d controls the shape of the trajectory, which 
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is concave-up for d < 1, linear for d = 1 and concave-down for d > 1 (ref. 38).  
We simulated three general shapes by setting d to 0.2, 1 and 5 for concave-up, 
linear and concave-down trajectories respectively. We simulated 500 populations 
of unique species and added random noise to each annual population estimate, 
with the exceptions of the first and last values in the time series to ensure that all 
time series started and ended at the same population values. We simulated two 
fluctuation scenarios for each trajectory shape: a low fluctuation scenario, where 
error was randomly drawn from a normal distribution with a mean = 0 and a 
s.d. = 1; and a high fluctuation scenario where the random normal variable was 
from a distribution with mean = 0 and s.d. = 7. These standard deviation values 
represent the lowest (for example, temperate grassland populations, where lower 
95% confidence interval = 1%) and highest (for example, montane freshwater 
populations, where upper 95% confidence interval = 7.5%) estimates of empirical 
fluctuations in the Living Planet Database15. We calculated the LPI for all six sets of 
500 populations (three trajectory shapes and two levels of random noise), which all 
had identical starting and ending populations and should, therefore, have identical 
ending LPI. This entire process was also replicated for populations that increased 
from a starting population size of N0 = 100 in the year 1970, to a final population of 
NF = 160 in 2020 (results shown in Extended Data Fig. 4).

Reshuffling null model to account for the effects of random population 
fluctuations. We developed a reshuffling null model to account for the effect 
of random fluctuations on declining populations (Extended Data Fig. 7). The 
rationale for this null model was that maintaining the starting and ending 
populations while rearranging the trajectories of population time series would 
average out the effects of imprecise GAM estimates across multiple iterations. 
Moreover, reshuffling population time series would result in declines that, on 
average, approximated linear trajectories (Extended Data Fig. 7d), which were less 
sensitive to the effects of random fluctuations (Extended Data Figs. 5 and 6).

In the null model we calculated the incremental differences between 
subsequent population measures (that is, Δ1 = N2 – N1; Δ2 = N3 – N2…) (Extended 
Data Fig. 7a), which represented a distribution of incremental population changes 
(Extended Data Fig. 7b). We then randomly sampled this distribution of Δ, 
without replacement, to simulate a time series with identical starting and ending 
populations but with a randomized trajectory (Extended Data Fig. 7c). For time 
series with non-monotonic trajectories, reshuffling could lead to temporary 
negative population sizes (that is, if the order of a large increase and subsequent 
decline was reversed in a small population). In these rare instances, we completed 
the simulation, after which we removed the years with negative populations 
because λ cannot be calculated for negative populations. We repeated this for 
each population and calculated the LPI in the final year. By iterating the process 
100 times, we generated a distribution of final LPI values that were approximately 
linear (Extended Data Fig. 7d).

We first tested this reshuffling null model on the six sets of simulated 
population time series (Fig. 3e,f for six sets of decreasing populations and Extended 
Data Fig. 4e,f for six sets of increasing populations), which confirmed that the null 
model produced more accurate estimates of the LPI for time series that changed 
nonlinearly with large annual population fluctuations. We then applied this null 
model to the empirical LPI by reshuffling the trajectories of all 15,348 time series 
in the Living Planet Database and calculating the final LPI in 2016 for the global 
dataset, three planetary systems (terrestrial, freshwater and marine), as well as the 
five biogeographical realms for the terrestrial and freshwater systems (Nearctic, 
Neotropics, Palaearctic, Afrotropics and Indo-Pacific). This entire process was 
iterated 100 times to produce a distribution of final LPI values, all of which had 
identical starting and ending population sizes as the empirical LPI but population 
trajectories that approximated a linear decline over the 100 iterations.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Empirical data of population time series in the Living Planet database are available 
from the dedicated website maintained by the Zoological Society of London (ZSL) 
(http://stats.livingplanetindex.org/) and are subject to the Data Use Policy by the 
Indicators & Assessments Unit at the ZSL and WWF International. Simulated data 
to replicate the results are available from https://doi.org/10.5281/zenodo.4744533.

Code availability
All simulation outputs and code (R scripts) to reproduce the results in this 
manuscript are available from https://doi.org/10.5281/zenodo.4744533.
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Extended Data Fig. 1 | The nine steps to calculating the Living Planet Index (LPI). Calculating the LPI begins with individual population time series 
(step 1), which are smoothed and interpolated using a Generalized Additive Model (GAM) on log10-transformed population measures (step 2). Annual 
changes are quantified from the GAM prediction (step 3) and summarized as λ, the log10-transformed ratio of population sizes in subsequent years 
(step 4). The population trends are standardized, by setting the population size in 1970 as 1 (step 5), and these standardized trends are averaged across 
populations of the same species using the geometric mean (step 6). Averaged species trends are aggregated across vertebrate classes (step 7) and 
biogeographical regions (step 8), using weightings that account for taxonomic and geographical differences in species richness7. Finally, the global LPI is 
the equal-weighted average of the LPIs from terrestrial, freshwater and marine systems (step 9).
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Extended Data Fig. 2 | The Living Planet Index (LPI) for randomly fluctuating populations that are stable on average. Empirical estimates of the LPI are 
consistently lower than stable time series with the same starting population, but which fluctuate by 1% (a), 3% (b) and 5% (c) each year. Violin plots 
show the distribution of LPI values from 100 iterations, with white circles representing mean LPI across all iterations of the null model and white diamonds 
showing the empirical LPI. Data are for the global, terrestrial, freshwater and marine LPI, as well as the LPI for each biogeographical realm.
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Extended Data Fig. 3 | Starting population sizes of time series added to the Living Planet Index have declined between 1950 and 2015. Each point is the 
initial population size of a time series for the first year in which it was monitored. The red line is the linear regression of the natural logarithm of population 
sizes through time. The vertical axis is ln-scaled.
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Extended Data Fig. 4 | Larger population fluctuations cause less precise estimates of the Living Planet Index (LPI) in nonlinear population trajectories. 
a and b, Simulated sets of populations each with 500 species that increase from 100 to 160 individuals along concave-up, linear and concave-down 
trajectories with low (a) and high (b) population fluctuations. c and d, The accompanying trends in LPI for increasing populations with low (c) and high (d) 
fluctuations; the confidence intervals around the LPI are negligible because the starting (solid horizontal grey lines) and ending (dashed horizontal grey 
lines) populations are identical in all sets. e and f, The LPI in the final year of the simulation, 2020. Here, coloured vertical lines correspond to the LPI from 
the simulated data (c and d) and the dashed black line is the true value based on the actual final populations. The distribution is the density of LPI values 
from a null model that approximated linear declines by randomly reshuffling the order of population changes (100 times), while keeping the starting and 
end values constant.
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Extended Data Fig. 5 | Population fluctuations cause generalised additive models (GaM) to misestimate starting and ending populations when 
populations decrease from 100 to 40 individuals. GAM models fit to populations declining along concave-up (a–c), linear (d-f) and concave-down (g-i) 
trajectories and low (sd = 1: a,d,g), medium (sd = 4: b,e,h), and high (sd = 7: c,f,i) levels of population fluctuations. In all panels, the horizontal dashed lines 
show the actual starting and ending populations, while the solid red lines denote the starting and ending populations estimated from the GAM.
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Extended Data Fig. 6 | Population fluctuations cause generalised additive models (GaM) to misestimate starting and ending populations when 
populations increase from 100 to 160 individuals. GAM models fit to populations declining along concave-up (a–c), linear (d-f) and concave-down (g-i) 
trajectories and low (sd = 1: a,d,g), medium (sd = 4: b,e,h), and high (sd = 7: c,f,i) levels of population fluctuations. In all panels, the horizontal dashed lines 
show the actual starting and ending populations, while the solid red lines denote the starting and ending populations estimated from the GAM.
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Extended Data Fig. 7 | The reshuffling null model used to account for random population fluctuations. a, The incremental changes in an empirical time 
series (Δ) were used to identify, b, a distribution of Δ values. c, The reshuffled trajectory was simulated by sampling from the distribution of Δ, without 
replacement, to simulate a time series with identical starting and ending populations as the empirical time series (horizontal grey lines). d, Iterating this 
100 times generated a series of trajectories (light green lines), which have a mean trajectory that approximates a linear decline (dashed green line).
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Extended Data Fig. 8 | Cumulative population declines can occur in the Living Planet Index even when average population declines are zero. a, Fitting 
linear regressions to log10-transformed population time series in the Living Planet Database produces a normal distribution of regression slopes centred 
on zero, where increases and decreases are equally likely across the 15,348 time series. b, Similarly, calculating population changes as the mean of 
year-on-year changes, λ = log10 (Nt+1/Nt), also produces a normal distribution centred on zero, with increases and decreases equally likely. c, However, 
calculating cumulative population changes as the sum of year-on-year changes, λ = log10 (Nt+1/Nt), produces a right-skewed distribution (here populations 
are scaled as in the Living Planet Index, so that starting values are 1). This is because the sum and mean of population changes do not scale proportionally 
when population trajectories are nonlinear (see discussion in main text).
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Extended Data Fig. 9 | Cumulative population changes represent empirical trajectories more accurately than average changes as time series lengths 
increase. a, The trajectory of a hypothetical population that decreases nonlinearly from 100 individuals in 1970 to 60 individuals by 1980 and steadily 
settles to a new equilibrium of 40 individuals by 2020. b, If population changes were quantified as the slope of a linear regression on log10-transformed 
population data, declines are high when the time series is short, but tend to zero as new data is added to the time series. c, The same observation holds 
for mean year-on-year population changes, λ = log10 (Nt+1/Nt), where declines are dramatic at first and steadily tend to zero as the length of the time 
series increases. d, By contrast, cumulative year-on-year population changes, λ = log10 (Nt+1/Nt), accurately capture the hypothetical population trajectory 
because the population change in each subsequent year is added to the change from preceding years. Thus, measuring cumulative population change is 
more representative when population trajectories settle into alternative equilibria nonlinearly.
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Simulated data were generated using R version 3.6.2. Empirical population time-series data (in .csv format) were manually downloaded from 
the dedicated website maintained by the Zoological Society of London:  http://stats.livingplanetindex.org/.  
 
Empirical data were filtered into subsets for planetary systems (terrestrial, freshwater and marine), taxonomic classes, and biogeographical 
realm using R version 3.6.2. All R-scripts are open and freely available on a dedicated Zenodo repository: http://doi.org/10.5281/
zenodo.4744533 
 
The data in the public version of the Living Planet Database contains population information aggregated from 3,146 independent studies 
(cited in the database under the column titled 'Citation'). Data includes total population counts, abundance estimates, population densities, 
population indices, proxies of abundance (e.g. breeding pairs, tracks, nests, burrows), measures per unit effort, biomass. More information on 
the data collection is available from: http://stats.livingplanetindex.org/
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Data analysis All data analysis was carried out in R version 3.6.2 and all code is available from the dedicated Zenodo repository: http://doi.org/10.5281/
zenodo.4744533 
 
To calculate the Living Planet Index, we used the dedicated package 'rlpi' (v. 0.1.0), which was developed and maintained by the Zoological 
Society of London. This package is not available on the official CRAN repository, but can be accessed from the Github repository: https://
github.com/Zoological-Society-of-London/rlpi 
 
Other data analysis included linear regression ('lm' function in 'stats' package v. 4.0.4) and Generalized Additive Models, GAM ('gam' function 
in 'mgcv' package v 1.8.33). All code is fully annotated on the dedicated Zenodo repository (http://doi.org/10.5281/zenodo.4744533). Besides 
these, other analyses did not use inferential statistics, relying on descriptive statistics instead.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Simulation outputs and code to reproduce the figures in this manuscript are available at: https://github.com/falko-buschke/LPI. These data will be deposited to a 
permanent repository (Figshare) once all changes have been made after peer-review.  
 
Empirical data of population time-series in the Living Planet database are available from the dedicated website maintained by the Zoological Society of London (ZSL) 
(http://stats.livingplanetindex.org/) as outlined by the Data Use Policy by the Indicators & Assessments Unit at the ZSL and WWF International. 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study combines simulations, empirical population time-series, and null models to examine how random population fluctuations 
affect the calculation of the Living Planet Index. 
 
QUESTION 1: EFFECT OF FLUCTUATIONS ON OTHERWISE STABLE POPULATIONS 
For simulated data, we simulated the time-series of sets of 500 different species using R version 3.6.2. These simulations assumed 
that populations were stable on average but fluctuated along a random walk. In these simulations, populations fluctuated randomly 
between 0.5 and 5 individuals on average at intervals of 0.1 (magnitudes of fluctuations were based on previous published data, cited 
in the manuscript) and starting populations were arbitrarily selected from 50 to 300 individuals in intervals of 10 intervals. The Living 
Planet Index was calculated for each set of simulated time-series. 
 
For empirical data, population time-series data were from the publicly available Living Planet Database (http://
stats.livingplanetindex.org/). Starting population sizes and starting year of monitoring were extracted from the empirical data, but 
random fluctuations in these populations were randomly simulated across separate simulations where fluctuations were 1%, 3% or 
5% per year (100 iterations each) using R version 3.6.2. The Living Planet Index was calculated for each set of simulated time-series. 
 
QUESTION 2: EFFECT OF FLUCTUATIONS IN INCREASING OR DECREASING TIME-SERIES 
For simulated data, we simulated the time-series of sets of 500 different species using R version 3.6.2. These simulations assumed 
that populations either increased from 100 to 160 individuals or decreased from 100 to 40 individuals. These times series were 
varied to change along concave-up, linear, or concave-down trajectories. Sets of simulations were replicated for two levels of 
fluctuations: either 1 individual per year on average (low fluctuation) or 7 individuals per year on average (high fluctuations). The 
Living Planet Index was calculated for each set of simulated time-series. 
 
We simulated a null model that reshuffled the sequences of population changes in time-series. Thus, the cumulative change was 
unchanged, but the order of incremental changes was reshuffled. After iterating this reshuffling model 100 times, the time-series 
approximated linear trajectories. The Living Planet Index was calculated for each iteration of reshuffled time-series. For simulated 
data, the Living Planet Index from reshuffled null models quantified overall population changes more accurately than the simulated 
data with random fluctuations. 
 
The same reshuffling null model was applied to empirical data on population time-series from the publicly available Living Planet 
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Database (http://stats.livingplanetindex.org/).  

Research sample The Living Planet Database includes 15,348 population time-series. The completeness of this sample, the inclusion criteria and the 
geographic and taxonomic bias of this database are described on the dedicated website maintained by the Zoological Society of 
London: http://stats.livingplanetindex.org/ 
 
The data have taxonomic and geographic biases as outlined in: "WWF. Living Planet Report 2020. Bending the curve of biodiversity 
loss: a deep dive into the Living Planet Index. (World Wide Fund for Nature, 2020)".

Sampling strategy We used all 15,348 time-series in the Living Planet Database from 4,182 different species.  
 
For parts of the manuscript, we calculated the Living Planet Index for separate subsets of the data. These subsets were for three 
planetary systems (Terrestrial, Freshwater, Marine) and five biogeographical realms (Nearctic, Neotropics, Palearctic, Afrotropics, 
Indo-Pacific). These samples were non-random, and were based on the characteristics of the sample time-series (i.e. system and 
geographic location). 
 
For planetary systems, we considered the following sub-samples: 
- Terrestrial: 4,862 time-series from 1,953 species   
- Freshwater: 3,408 time-series from 918 species   
- Marine: 7,078 time-series from 1,531 species   
 
For biogeographical realms (terrestrial and freshwater only), we considered the following sub-samples (values in parentheses are for 
terrestrial and freshwater systems, respectively): 
- Nearctic: 2,119 (1,174 & 945) time-series from 815 (530 & 285) species   
- Neotropics: 1,223 (802 & 421) time-series from 804 (542 & 262) species   
- Palearctic: 2,691 (1,286 & 1,405) time-series from 656 (400 & 256) species   
- Afrotropical: 1,060 (825 & 235) time-series from 348 (227 & 127) species   
- Indo-Pacific: 1,174(772 & 402)  time-series from 542(384 & 158)  species  

Data collection Simulated data were generated using the scripts available on a dedicated Zendo repository: http://doi.org/10.5281/zenodo.4744533 
 
Empirical population time-series were manually downloaded in .csv format from the dedicated website in accordance to the Terms of 
Use:  http://stats.livingplanetindex.org/ Simulated data were generated using R version 3.6.2. Empirical population time-series data 
(in .csv format) were manually downloaded from the dedicated website maintained by the Zoological Society of London:  http://
stats.livingplanetindex.org/.  
 
The version of the Living Planet Database used in this study was downloaded from the dedicated website on 09 September 2021, 
after the global publication of the 2020 Living Planet Report. 
 
Empirical data were filtered into subsets for planetary systems (terrestrial, freshwater and marine), taxonomic classes, and 
biogeographical realm using R version 3.6.2. All R-scripts are open and freely available from the dedicated Zenodo repository http://
doi.org/10.5281/zenodo.4744533  
 
The data in the public version of the Living Planet Database contains population information aggregated from 3,146 independent 
studies (cited in the database under the column titled 'Citation'). Data includes total population counts, abundance estimates, 
population densities, population indices, proxies of abundance (e.g. breeding pairs, tracks, nests, burrows), measures per unit effort, 
biomass. More information on the data collection is available from: http://stats.livingplanetindex.org/ 

Timing and spatial scale The spatial scale of this study is global in scope, including terrestrial, freshwater and marine systems. Global coverage is, however, 
incomplete due to imperfect sampling. Spatial distribution of population time-series are described on the dedicated website: http://
stats.livingplanetindex.org/ 
 
Spatial biases in time-series can be examined by plotting the geographic localities of sample using the "Latitude" and "Longitude" 
coordinates in the Living Planet Database. 
 
The temporal scale of this study was between 1970-2020 for simulated data and 1970-2016 for empirical data, in accordance to the 
sample completeness in the Living Planet Database. Some empirical time-series started prior to 1970 (but all post-1950) as is shown 
in Figure S3.

Data exclusions We excluded no data from the publicly available Living Planet Index. However, this public datatset excludes 5,463 confidential time-
series, which cannot be openly shared (presumedly due to the preference of the data owners, or due to the sensitivity of the data 
e.g. critically endangered or illegally traded species) 
 
For simulated data, negative population values were excluded because these are not realistic (can't have negative number of 
animals) and did not allow for the calculation of the Living Planet Index (because negative numbers cannot be log-transformed). 
These exclusions are described in the methods section of the manuscript.

Reproducibility All these analyses are reproducible given that the same version of the Living Planet Database is used (this database is constantly 
upgraded by the Zoological Society of London as new data is available, so it is outside the control of the authors). All code for 
analyses are available on Zenodo (http://doi.org/10.5281/zenodo.4744533) 
 
The random seed for stochastic processes are stated explicitly, so even stochastic simulations should be reproducible if the same 
seed is used.
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Randomization There was no randomization in this study besides the stochastic simulations. The empirical population time-series are as 
comprehensive as is possible given the logistical constrains of collecting long-term global data. Spatial and taxonomic biases are 
explained on the dedicated website (http://stats.livingplanetindex.org/) and these sampling biases are controlled for by weighing 
samples prior to calculating the Living Planet Index (as explained in the methods of the manuscript, especially Figure S1)

Blinding Blinding was not relevant to our study as their were no observers and, therefore, no observational biases. We used all the publicly 
available population time-series in the Living Planet Database, which are open, transparent and published previously, so all authors 
were already aware of the characteristics of these data prior to this study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms
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Clinical data

Dual use research of concern

Methods
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