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Abstract: Long-distance dispersal is one of the main drivers structuring the distribution of marine
biodiversity. This study reports the first occurrence of Macrocystis pyrifera and Durvillaea antarctica rafts
on the southwestern warm temperate coast of the Atlantic Ocean. Our results indicate that an extreme
meteo-oceanographic event, characterized by a northward, displacement of cold sub-Antarctic
oceanic waters driven by an extratropical cyclone, could account for these unusual occurrences.
A niche model based on known current distribution and maximum entropy principle (MAXENT),
revealed the availability of suitable habitats at lower latitudes, outside their actual distribution edges.
The distributional boundaries, mainly driven by temperature and irradiance, suggest the existence
of environmental suitability in warm temperate areas, as well as in the Northern Hemisphere off
Atlantic and Asian coasts. These theoretical edges and respective environmental drivers agree with
the physiological affinities of both species, supporting the hypothesis that these variables act as
limiting factors for their occurrences in tropical or warmer areas. Emerging regions can function as
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refuges and stepping-stones, providing substrate with adequate habitat conditions for recruitment of
propagules, allowing eventual colonization. Long dispersal events reinforce the need for an extensive
discussion on selective management of natural dispersion, biological invasions, refuge mapping and
conservation initiatives in a transnational perspective.

Keywords: Kelp rafts; marine migration; niche model; biogeography; upwelling; extratropical cyclone

1. Introduction

The dispersal of marine organisms is one of the main ecological and evolutionary drivers of
marine biodiversity composition and structure, with currents representing one of the principal
players in these processes [1–3]. Currents can influence the range of dispersal of migrant populations,
promote connectivity, and assist in the process of finding suitable habitats [4–7]. Besides providing
transport, currents also play a role in determining niche characteristics, limiting physiological and
developmental processes, that require specific abiotic conditions such as temperatures, salinity,
and nutrient concentrations [8,9]. Such aspects have been receiving more attention in recent years due
to climate change. Global warming is producing critical changes in ocean circulation patterns, niche
availability and characteristics, and biodiversity redistribution [10,11]. At the same time, changes
in global ocean circulation patterns can interact locally with specific regional climatic conditions.
In the South Atlantic more frequent and intense storms have been observed in recent decades,
which compromise oceanic circulation and migration processes [12–14]. Currents acting together with
storm-winds are efficient dispersal mechanisms for floating strategists and associated communities.
One such community affected by storms is kelp forests [1,15].

During storms, kelps get detached from the substrate. Many of the detached plants become
entangled in other detached kelp plants and eventually form what are called kelp rafts [16].
These floating masses, sometimes abundant and with a diversified fauna and flora, can be transported
rapidly and beyond their distributional boundaries [1,15,16]. Oceanographic/climatic events can work
together to transport an entire specimen, or kelp rafts, with potentially viable propagules, to suitable
far-off niches. However, effective species establishment will depend on a combination of abiotic and
biotic conditions, which will be influenced by the settlement of the juveniles and the development of
the propagules [17–19].

Density dependent mechanisms, such as competition, predation, and herbivory, represent
additional dispersal and developmental barriers in marine environments [1,20,21]. However, specific
benthic organisms or community structure can change micro niche conditions, facilitating settlement
and development of invertebrates and primary producers [22,23].

The combination of all these physico-chemical and biological processes will produce the realized
niche, which can be recognized as the space currently occupied by a species, after the migratory and
selective pressures imposed by positive and negative biological interactions. This is distinct from
the fundamental niche [8,19,24–27], where the range of environmental conditions within which a
species has a suitable habitat (i.e., can in theory survive and persist), but might not occur there due to
biological interactions or processes such as competitive exclusion or limited migration. These concepts
were refined by Hutchinson (1957), who hypothesized that the fundamental niche could be mapped
in physical space, thus predicting where species should be able to live. The effectiveness of niche
modeling tools provides support to Hutchinson’s assumptions [28,29]. Nowadays, species distribution
models are recognized as an important tool to determine niche suitability for marine organisms,
particularly macroalgae, in contemporary climatic and oceanographic spaces [30–33].

Macroalgae play a key role in different marine environments, sometimes building biogenic reefs
or underwater forests. These organisms influence and create niches, which represent, food, shelter and
substrate for a high diversity of marine organisms, especially in temperate environments [34,35].
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Kelp forest ecosystems are among the largest biogenic structures found in the benthic marine
system [36]. Primary producers were recognized even by ancient naturalists like Charles Darwin,
who emphasized the fundamental ecological importance of these subtidal forests in high latitudes of
South America [37]. These environments are considered common and abundant in temperate and
sub-Antarctic regions [38,39].

One of the dominant species of kelp forests is Macrocystis pyrifera (Linnaeus) C. Agardh, commonly
known as giant kelp. It occurs in both the Northern Hemisphere (western coast of North America)
and the Southern Hemisphere (i.e., Australia, New Zealand, South Africa, sub-Antarctic islands,
and the western and eastern coasts of South America) [31]. In the Southern Atlantic, along the east
coast of South America, its northernmost boundary is the northern region of Argentinean Patagonia,
Craker Bay (42◦56′ S 64◦27′ W) [40,41]. Molecular and fossil characterization indicates that this taxon
originates in the North American Pacific Coast, migrating to the Southern Hemisphere 10,000 years
ago, during a colder period. Similar North to South migrations have been hypothesized in the Atlantic
Ocean [42]. The ancestor of both Laminaria abyssalis A.B. Joly & E.C. Oliveira and L. pallida Greville,
originated in the Northern Hemisphere and migrated south during cold periods.

Kelps have a biphasic life cycle. Ladah & Zertuche-Gonzales (2007) showed that Macrocystis can
survive long periods in its microscopic forms (gametophytes), which would enable it to survive under
warmer conditions in a seed bank analogue turf environment. Interestingly, it has been suggested that
vegetative propagation of these undifferentiated filamentous haploid forms can have contributed to
antitropical east Pacific distribution [43]. Once the conditions become favorable, the gametophytes
would continue its life cycle to form the macroscopic thallus (sporophytes) [44]. The sporophytes of
Macrocystis pyrifera can grow up to 30 m in length, on a hard substrate, while it is kept erect in the
water column by aerenchyma or floater vesicles, which also facilitate dispersal [45,46]. They form
large floating patches or “rafts” that can travel long distances for a long period of time (i.e., over three
months), with their reproductive capacity still viable [45].

The distribution of Durvillea antarctica (Chamisso) Hariot is limited to the Southern
Hemisphere [31,47]. It has a diplontic life cycle. Despite the absence of an alternate phase in the life
cycle, this species can remain afloat for more than one month (because of the presence of aerenchyma)
in cool water and low irradiance, typical conditions for winter and part of spring or fall. Temperatures
of up to 17 ◦C, combined with higher irradiance during summer (maximal values 16.1–21.8 W m−2)
were correlated with significant biomass losses and rapid destruction of Durvillea rafts [44]. However,
some kelp populations have colonized habitats with higher temperatures and irradiances, at lower
latitudes, such as those that were observed at the western shores of southern California to Mexico,
northern Chile to Peru, south-western South Africa and western Australia [48]. In such cases, despite
the relatively lower latitude, environments are influenced by nutrient-rich upwelled waters or cold
eastern boundary currents that flow towards the Equator [35,48]. The few kelp species that occur
in tropical environments have their distributions restricted to deeper zones within the photic zone,
where light and nutrients are sufficient for their growth [31]. Laminaria abyssalis, an endemic to the
Brazilian coast, is an example of a tropical kelp. This species occurs at depths of between 40–115 m,
and uses rhodolith beds as a substrate [49].

Tropical kelp forests are considered relict species from an immigration of shallow water
populations. During the Pleistocene some populations expanded their distributional boundaries
to lower latitudes due to the lower Atlantic temperatures, that in these equatorial regions were up
to 5 ◦C below the mean values observed in the surface during the last decade [50,51]. Presently,
climatic projections suggest potential changes in species distribution [52], especially for subtidal
kelps, which are vulnerable to sea surface temperature (SST) changes, due to their affinities with
cold water [51]. Losses of kelp forests’ distributional ranges are reported in various regions of the
world [33,53,54]. The reduction of Saccorhiza polyschides (Lightfoot) Batters and Laminaria hyperborea
(Gunnerus) Foslie populations on the northern coast of Spain was related to the increase in SST and
the reduction of upwelling intensity in the region [54]. However, regional cooling has been observed
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in coastal areas of South America [55] and South Africa [56]. In South Africa, this resulted in the
extension of the known distribution limits of Ecklonia maxima (Osbeck) Papenfuss. Some studies
suggest that kelp may find refuge in deeper environments, far from the general warming tendency
of oceanic surface waters [31,33]. Thus, the existence of temperate algae refuges, even in tropical or
warm temperate environments, is of extreme relevance, not only for understanding biogeographic
patterns, but for conservation purposes also. Graham et al. (2007) modeled deep-water kelp refugia,
and with the use of the model’s predictions they have discovered dense and extensive populations
of Eisenia galapagensis in deep waters of the Galapagos archipelago. Although modeling constitutes
an essential tool for the discussion of marine macroecological processes [57], there are no published
articles with models predicting niche habitat suitability for M. pyrifera and D. antarctica, two of the
most important kelp species.

Therefore, better understandings of ecological and evolutionary mechanisms would contribute
to the comprehension of key population dynamic and resilience. The definition of target foundation
species or groups and mapping niche suitability may improve management, when considering
future needs for biodiversity management or conservation [58,59]. Differentiating natural drift-refuge
colonization process from anthropogenic transport-bioinvasion process is a crucial task [60]. This aspect
reinforces discussion about large scale dispersal in an eco-evolutionary framework [61] and should
influence stakeholder decision regarding the necessity of conservationist intervention or complete
eradication of a migrant target population [60,61].

Here we report (1) the first observation of rafts of two kelp species (M. pyrifera and D. Antarctica)
on the Brazilian and Uruguayan coasts; (2) provides the general physiological state of immigrant
specimens; (3) discusses the possible origin of these rafts; (4) and model both species habitat suitability
considering dispersion routs, potential settlement and colonization on a global scale. Moreover,
we characterize the oceanographic processes that caused this dispersal event and discuss implications
of these dispersal events considering coastal management and conservation.

2. Materials and Methods

2.1. Study Area

The kelp rafts were found along the beach of Campeche in Florianópolis (27◦39′23.21” S;
48◦28′13.13” W), Santa Catarina State, southern Brazil, and the beaches of La Paloma, Punta del Diablo,
Santa Teresa, La Coronilla and Barra del Chuy, Uruguay (between 33◦38′58.58” S; 53◦27′58.03” W and
34◦39′52.5” S; 54◦10′0” W). The continental shelf off this region is located near the Brazil-Malvinas
Confluence (BMC) region, located at 38◦ S ± 2◦ [59,62]. The Falkland Current (Malvinas Current) acts
as a branch of the sub-Antarctic Front, which is the northernmost oceanographic process associated
with the Antarctic Circumpolar Current in the Drake Passage [63]. These cold, sub-Antarctic water
masses flow from the south northwards and meet the warmer and more saline waters from the Brazil
Current, between latitudes 36◦ and 39◦ S giving rise to the Subtropical Convergence [64]. This is
also where the South Atlantic Central Water (SACW) current is formed (Figure 1). The nutrient rich,
low temperature current intrudes the shallower strata near the continental shelf and is responsible for
the common upwelling phenomena, over a 27 km section of the coast [65], from the southern region
of Santa Catarina Island (27◦35′ S) to the Cape Santa Marta (28◦37′ S) [62,66]. During austral winters,
this area is influenced by the La Plata river plume, which increases nutrients, and the Sub-Antarctic
currents, which reduce the temperatures [67,68].

The southwestern Atlantic biogeographic ecocline described above is also known as the “Arc of
Capricorn”, representing the southernmost limit of distribution of many tropical organisms [62,69],
a warm temperate biogeographic province [70] or general perspective [71]. This region presents a
clear seasonal pattern with lowest surface temperatures around 16 ◦C observed during winter, and the
highest temperatures up to 28 ◦C observed during summer [62,72]. However, a more stable colder
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condition is observed in its deeper areas as a consequence of the more frequent influence of the
SACW [73].
Diversity 2018, 9, x FOR PEER REVIEW  5 of 23 

 

 

Figure 1. Sampling sites (black points) and main marine currents observed in the drifting region. 

2.2. Collection and Characterization 

The rafted kelp individuals of Macrocystis pyrifera and Durvillaea antarctica were collected on the 
Uruguayan site between 22 July and 3 August and on the Brazilian site between 26 and 29 September 
2016, washed-up on the sand strip and drifting in the region of burst. All the individuals were 
collected and stored in thermal boxes for transport to the Laboratory of Phycology (Federal 
University of Santa Catarina, Florianópolis, Santa Catarina, Brazil); due to the massive wash-ups on 
the Uruguayan coast, only some specimens were collected for transport to the Centro Universitario 
Regional del Este (CURE, UdelaR, Rocha, Uruguay). 

To analyze the physiological conditions, of the washed-up specimens, optimum quantum yield 
was evaluated in three random benthic Macrocystis specimens. These specimens were from Punta 
Arenas, Chile (from different periods, to represent periods of before and after the dispersion event), 
and they were compared to washed-up plants that were collected in Brazil. Thalli were dark 
acclimated for 15 min using leaf clips (Diving-LC, Walz) that were placed ~10 cm from the base of 
each blade, following procedures applied by Edwards and Kim (2010) with North American 
populations. Maximum (Fm) and the minimum (Fo) fluorescence, and the PSII optimum quantum 
yield (Fv/Fm) were determined for all three specimens. Relative electron transport rates (rETRs) were 
calculated as rETR = Φ PSII × PPFD; where Φ PSII is the quantum efficiency of PSII and PPFD is the 
photosynthetic photon flux density of photosynthetically active radiation (PAR). Rapid light curves 
(RLCs) were generated using Walz pre-installed routine. Evaluation of α, Ek and rETRmax, (where 
α = photosynthetic efficiency under non-saturating irradiances, Ek = saturation irradiance, and 
rETRmax = the relative maximum rate of electron transfer to photosystem II under saturation 
irradiances) was accomplished using Platt et al., (1980) equation. RLCs were not evaluated in the 
Chilean populations. 

Samples of M. pyrifera were identified based on its external morphology [38], while for D. 
antarctica transverse sections were cut to identify it anatomically [74] (Appendix A). To evaluate the 
presence of reproductive structures, all morphoanatomical characters, as described by [75], were 
considered. Fragments from each individual were collected, cleaned and stored in silica gel, for future 
molecular analyses. Specimens were deposited at the Herbarium FLOR, Federal University of Santa 
Catarina, Brazil (FLOR 63005, FLOR 63006, FLOR 63007, FLOR 63008, FLOR 63009 and FLOR 630010). 
  

0°15°W30°W45°W60°W75°W

30°S

45°S

South Georgia Island

Brazil Current

Antartic Circumpolar Current

Malvinas Current

Falkland Islands

Figure 1. Sampling sites (black points) and main marine currents observed in the drifting region.

2.2. Collection and Characterization

The rafted kelp individuals of Macrocystis pyrifera and Durvillaea antarctica were collected on the
Uruguayan site between 22 July and 3 August and on the Brazilian site between 26 and 29 September
2016, washed-up on the sand strip and drifting in the region of burst. All the individuals were collected
and stored in thermal boxes for transport to the Laboratory of Phycology (Federal University of Santa
Catarina, Florianópolis, Santa Catarina, Brazil); due to the massive wash-ups on the Uruguayan coast,
only some specimens were collected for transport to the Centro Universitario Regional del Este (CURE,
UdelaR, Rocha, Uruguay).

To analyze the physiological conditions, of the washed-up specimens, optimum quantum yield
was evaluated in three random benthic Macrocystis specimens. These specimens were from Punta
Arenas, Chile (from different periods, to represent periods of before and after the dispersion event),
and they were compared to washed-up plants that were collected in Brazil. Thalli were dark
acclimated for 15 min using leaf clips (Diving-LC, Walz) that were placed ~10 cm from the base
of each blade, following procedures applied by Edwards and Kim (2010) with North American
populations. Maximum (Fm) and the minimum (Fo) fluorescence, and the PSII optimum quantum
yield (Fv/Fm) were determined for all three specimens. Relative electron transport rates (rETRs)
were calculated as rETR = Φ PSII × PPFD; where Φ PSII is the quantum efficiency of PSII and PPFD
is the photosynthetic photon flux density of photosynthetically active radiation (PAR). Rapid light
curves (RLCs) were generated using Walz pre-installed routine. Evaluation of α, Ek and rETRmax,
(where α = photosynthetic efficiency under non-saturating irradiances, Ek = saturation irradiance,
and rETRmax = the relative maximum rate of electron transfer to photosystem II under saturation
irradiances) was accomplished using Platt et al. (1980) equation. RLCs were not evaluated in the
Chilean populations.

Samples of M. pyrifera were identified based on its external morphology [38], while for D. antarctica
transverse sections were cut to identify it anatomically [74] (Appendix A). To evaluate the presence
of reproductive structures, all morphoanatomical characters, as described by [75], were considered.
Fragments from each individual were collected, cleaned and stored in silica gel, for future molecular
analyses. Specimens were deposited at the Herbarium FLOR, Federal University of Santa Catarina,
Brazil (FLOR 63005, FLOR 63006, FLOR 63007, FLOR 63008, FLOR 63009 and FLOR 630010).
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2.3. Niche Modeling Procedures

Macroecological niches of M. pyrifera and D. antarctica were modeled globally using MaxEnt,
a robust method, to predict species distributions with presence-only data [76]. This uses the principle
of maximum entropy [77], that compares the occurrence records with pseudo-absences generated
from background locations, i.e., possible occurrence areas where the presence/absence of species
is unknown [78]. The algorithm used in the program was extensively tested in several previous
studies [27,77,79] and proved to be a reliable tool to be applied in this context. This method provides a
suitable technique, as only data collected from the literature is applied to feed the model [57].

2.4. Environmental Variables and Occurrence Data

The environmental variables used to generate niche models were downloaded from
Bio-Oracle [29] for the global ocean, under the Behrmann equal-area projection. The selection of
variables considered the biology and ecology of kelp forest species (e.g., [80,81]), as well as their
degree of collinearity inferred with Variance Inflation Factor (VIF) [82]. Environmental variables with
VIF scores above 10 were not considered for modelling purposes [82]. This procedure resulted in
9 variables used as input for models.

Georeferenced occurrence data for the whole distribution of species were compiled from the
Australian Virtual Database, Global Biodiversity Information Facility (GBIF, www.gbif.org, accessed
on 10 December 2016), and scientific journal articles (Table A1). These data were gridded to the
spatial resolution of environmental data, and surplus overlapped entries were discarded to eliminate
replication. To further reduce the effect of spatial autocorrelation in the models (see [83], the correlation
of environmental variables within the range of occurrence records was determined as a function of
geographic distance with Mantel tests under 1 × 104 permutations (e.g., [83]). The records were
trimmed by randomly selecting one record only, within the radius of the minimum non-significant
(α = 0.05) spatially correlated distance. This resulted in 224 records for M. pyrifera and 112 for
D. antarctica as input for the models (from a total of 889 records originally compiled for M. pyrifera and
616 for D. Antarctica) (Table S1).

To reduce estimation bias introduced by the likely unbalanced distribution of data, background
information (i.e., “pseudo-absences”) were randomly selected per species from a kernel density
estimation surface developed with the occurrence records and a spatial grid conformal in resolution
with the environmental data (e.g., [81,84,85]). This procedure also restricted the extent of models to the
actual distribution of species, a crucial step while modelling ecological niches [81,86].

Over-fitting was controlled by tuning the optimal parameters of models from a range of MaxEnt
regularization multipliers (from 0.5 to 5; 0.5 step) and feature classes (i.e., linear, quadratic, hinge,
product and threshold) (see [87] for details). A cross-validation framework was implemented in this
process to evaluate the performance of models. Statistically independent datasets were produced by
partitioning the occurrence records (both presences and pseudo-absences) into 10 distinct latitudinal
bands [88]. Models testing different parameters interactively fitted data with one band withheld at a
time, where performance was evaluated with the area under the curve (AUC) [57,89] and sensitivity
(true positive rate; [89]). Final maps were developed with the combination of parameters retrieving
higher average AUC values (identified in cross-validation). These were reclassified to represent
suitable/unsuitable areas with the minimum training presence threshold [87,90]. All niche modelling
analyses were performed with R (R Development Core Team, 2017) using the packages dismo, ecospat,
parallel, raster and SDMTool.

2.5. Oceanographic Characterization before and during Dispersion Event

The Southwest Atlantic surface temperature data, before and during the dispersion event,
were obtained from the NOAA database. To evaluate the influence of a specific extreme
climate episode on the flux of cold water masses from the South Atlantic towards North,

www.gbif.org
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we verified the sea surface temperature (SST) from 1 January to 10 October 2016. To exclude the
possibility of annual recurrence of the phenomenon, we also verified the flux of water masses
during the same period for 2013, 2014 and 2015. SST-anomalies between 2013 and 2016 were
evaluated (https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php). The Group for
High-Resolution Sea Surface Temperature (GHRSST) global Level 4 data was obtained from the
Physical Oceanography Distributed Active Archive Center (PODAAC), at the NOAA National Centers
for Environmental Information, by the satellite AVHRR-ONLY (AVHRR-OI).

3. Results

Entire plants of M. pyrifera and D. antarctica were collected at La Paloma, Punta del Diablo, Santa
Teresa, La Coronilla and Barra del Chuy, east of Uruguay, on 3 August and successive days. A total
of 4 m3 of M. pyrifera and 1.3 m3 of D. antarctica were collected from a 2.3 km stretch of beach at
Corumbá beach in La Paloma. During the following month, fragments of both species were collected
on Campeche beach, along the eastern portion of Santa Catarina Island, southern Brazil. Algae
reached Campeche beach on four consecutive days. We collected a total of 1158 g of M. pyrifera and
3083 g of D. antarctica, their largest recorded sizes were 180 cm and 151 cm, respectively (Figure A1).
The M. pyrifera rafts that washed-up in Brazil had similar optimum quantum yield variability as
compared to plants from natural populations from Chile and North America (Table 1). Reproductive
structures were only present in M. pyrifera plants from the Uruguayan rafts but absent in both species
from the Brazilian rafts.

Table 1. Comparison of the fluorescence parameters from samples of M. pyrifera from the Brazilian rafts,
natural populations from the Chilean plants and from natural populations from the North American
plants (* = Edwards & Kim 2010; where: Alpha = photosynthetic efficiency; EK = saturated irradiance;
rETRmax = relative maximum electron transport rates; and Fv/Fm = maximum quantum yield).

Samples Alpha EK rETRmax Fv/Fm

Rafts 0.183–0.302 212.54–304.00 50.16–88.07 0.559–0.661
Chilean population/January - - - 0.584–0.611

Chilean population/July - - - 0.711–0.722
Chilean population/August - - - 0.656–0.681

American Population * 0.3–0.926 34.4–178.5 14.7–147.4 0.4–0.75

Figure 2 shows four sea surface temperature (SST) maps, one per year, and an intrusion of colder
waters flowing along the Patagonia shelf, following the Malvinas current (MC) towards the southern
coast of Brazil. The lower temperatures recorded were approximately 15 ◦C in 2013, 2014 and 2015.
However, for the same period in 2016, these water masses were colder than compared to 2013, 2014
and 2015, and reached lower latitudes closer to the coast. Figure 2 characterizes a strong advection of
cold waters (8–12 ◦C) from the MC along the Uruguayan and Brazilian shelves. The SST-Anomaly
evaluation corroborates previous analyses in the sense that they show a significant inter-annual
variability of this cold intrusion.

The SST anomaly, with respect to the long term mean, is presented in Figure 3. In the four maps,
warm colors are predominant and this is an indication of the warming of the surface waters of the
region. The thermal anomaly along the southernmost third of the South American continental shelf
reached 4 ◦C in 2016. The cold incursion reaches as far north as the southern tip of the South Brazil
Bight (SC, Brazil). Animation of daily maps similar to those in Figure 2 clearly shows the northward
evolution of the plume. The continuity of the cold anomaly along the coast shown in Figure 3 for
2016-09 suggests northward advection of MC waters- and its contents.

https://coralreefwatch.noaa.gov/satellite/bleaching5km/index.php
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Figure 3. SST anomaly means (◦C) images of locations between 40◦ S to 0◦ S and 60◦ W to 0◦ W,
September, 2013, 2014, 2015 and 2016.

Niche Models at the Global Scale

The niche models developed for M. pyrifera and D. Antarctica presented a near-perfect prediction,
with mean AUC and mean sensitivity scores inferred in cross-validation >0.9 and >0.95, respectively.
The predicted niche suitability in the Southwestern Atlantic Ocean was broader than the known
distribution for both species, where the nearest known occurrence distant hundreds of kilometers
from the predicted range margin (Figure 4). Among the environmental predictors analyzed, primary
productivity (PP), temperatures and phosphates presented the highest contribution to the performance
of model for both species. Bottom light also showed to be important restricting vertical distributions,
and for M. pyrifera, ice thickness (Figure 5).
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Figure 4. Niche suitability of Macrocystis pyrifera (a) and Durvillaea antarctica (b) predicted in Global
coastal areas (left) and with highlight to the Southwestern Atlantic Ocean (high) with maximum entropy
(models run globally but predicted to the study region). Points depict known records of occurrence.
Mean area under the curve (AUC) and mean sensitivity inferred in cross-validation also shown.Diversity 2018, 9, x FOR PEER REVIEW  9 of 23 
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4. Discussion

The arrival of M. pyrifera and D. antarctica on the Uruguay and southwestern coast of Brazil
represented an intriguing phenomenon that has impressed researchers in physiology and even algae
experts around the world (B.M.B. personal communication). The potential origin of these kelp rafts is
more than 2000 km away, because the most likely and nearest well-documented occurrence, of both
species, is the Falkland Islands [91]. The washed up plants, observed on the Uruguayan and Brazilian
coasts showed that they have the physiological tools to acclimatize to the floating conditions in this
area, during this period [92]. Despite a long drift process, the oceanographic and climatic conditions
(cold water and reduced winter irradiance), observed during the end of the 2016 winter, could be
responsible for the good physiological health of the M. pyrifera and D. antarctica rafts that washed up
in Brazil [93]. Mature sporophylls from the Macrocystis rafts that washed up in Uruguay revealed the
mechanism that promote connectivity among populations in the Southern Hemisphere and represent
a source for colonization of the mapped suitable niches. The niche suitability, which was detected
in all the regions that are subject to the Antarctic Circumpolar current, corroborated statements
that indicated high connectivity among southern populations. Suitable temperature, irradiance and
nutrient conditions, especially during the summer, enabled long-distance dispersion at this latitudinal
range, as was hypothesized by Tala et al. [87] and reinforced here by our modeling evaluation.

It is essential to recognize that these species are known for their ability to travel long distances
due to morphological structures, such as aerocysts, which provide buoyancy [39,45,94,95]. Studies
involving passive dispersion of these species recorded distances of tens of kilometers [46,96]. Our data
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indicate that M. pyrifera and D. antarctica potentially traveled a distance of at least 2700 km, reaching the
Brazilian coast, still alive. Such evidence confirms that Macrocystis can grow and keep its reproductive
viability while drifting for long periods at latitudes around 27◦ S during winter [92]. This high
immigration capacity was shown by our physiological data, which demonstrated that raft chlorophyll
a fluorescence descriptors were similar to the sessile Chilean and North American populations [97].
An experiment by Hernández-Carmona et al. [46] showed M. pyrifera still had viable zoospores after
being adrift for 125 days and drifting for a distance of 890 km. This ability is sufficient to connect
populations throughout a hemisphere, on a generational time scale, and may even facilitate gene flow
between hemispheres under specific meteo-oceanographic conditions.

The floating specimens were found along the Brazilian coast during the last week of September
2016 (late Austral winter), approximately 13 days after the registration of a polar mesocyclone that
reached the Argentinean, Uruguayan and Southern Brazilian coasts (Figure 6). Winds of up to
130 km/h were recorded in the coastal region of these countries and a sea level variation of up to
8 m high was recorded in Mar del Plata, Argentina (NOAA 2016). Considering the magnitude
of this event and the relationship between extreme events and erosion of kelp forest structure,
it is plausible that this storm produced the rafts and promoted the dispersal event. Storms and
strong-wind events, such as extratropical cyclones, can detach canopy-forming kelps, transporting the
rafts and immigrants, facilitating long-distance dispersal and transport of their propagules to suitable
niches [25]. Furthermore, these storm and strong wind conditions can provide a pick-up/drop off
process, and enhance the along-shelf current towards lower latitudes. This period of ideal conditions,
with low temperatures and an enhanced northward current is observed at the end of Winter and late
Spring in this region [98,99].
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GOES-16 (NOAA); (b) Confluence region (BMC) the Brazil (BC)—Malvinas Currents (MC) (Falklands).
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They represent the major geostrophic current systems such as the BC, MC and NBC (North Brazilian
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the left height. The intensity of the current is inversely proportional to the spacing between lines.
(MDT_CNES-CLS13 was produced by CLS Space Oceanography Division and distributed by Aviso,
with support from Cnes (http://www.aviso.altimetry.fr/).

The CBM has an annual latitudinal dynamic, oscillating to the north during the Austral summer
and to the south during the Austral winter [63]. Such variations can be attributed to the large scale
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variability in the atmospheric forcing, mostly winds of the southern quadrant originating from the
Austral Winter [63]. There is an intensification of the Malvinas Current (CM), which carries Sub
Antarctic waters and brings energy to smaller latitudes of the Southern Atlantic [100]. Such patterns
can be verified in the SST satellite images of 2013, 2014 and 2015, the three years preceding the event
(Figure 2). Therefore, the intrusion of cold waters on the southwestern coast of Brazil can be considered
a common phenomenon during the Austral winter. However, in 2016, SST maps (Figure 2) showed
that, in addition to this cold-water intrusion, that reached lower latitudes, there were intrusions of
approximately 8 ◦C as well as one of approximately 12 ◦C. During the same period, and in the same
region, surface temperature anomalies were captured by the GOES-16 satellite (Figure 3).

Considering the floating and rafting nature of these species, they probably reached the coast
of Brazil driven by strong extratropical cyclone winds, and changes in the velocity and SST on the
surface coastal currents [64]. Moreover, the plume of the La Plata River (35◦58′ S; 55◦18′ W) along with
the south-northward coastal circulation, may have contributed to the dispersal of the individuals of
D. antarctica and M. pyrifera to the coastal region of southwestern Brazil. Nutrient enrichment from
rivers and upwelling feed the high demand of kelp species for nitrogen and phosphate [93], helping in
the resilience of rafts during the long drift.

The destination of floating algae, in medium and lower latitudes, is mainly determined by
the combination of abiotic and biotic factors (e.g., temperature currents, irradiation, and suitable
habitats) [45,101,102]. Rothäusler et al. (2011) showed that floating Macrocystis, at mid-latitudes,
(25◦ S–40◦ S) have a higher physiological adaptability and consequent ability to float for long periods
of time, and over long distances, surviving at temperatures ranging between 12 ◦C and 20 ◦C [45].
Experimentally they also showed that M. pyrifera could not withstand temperatures higher than 24 ◦C,
and specimens perished after 5 days. Nevertheless, in northern Baja California M. pyrifera populations
are exposed to SST variations of between 12.7 ◦C to 22.5 ◦C, while the southernmost subtropical
populations show warmer temperature tolerances varying between 15.6 ◦C to 25.5 ◦C [103]. It is
already well established that climate changes can affect substantially species distribution and, more
particularly, alter the rafts’ trajectory, which will influence the dispersal and distribution of marine
organisms [46,96,104]. Therefore, this aspect should be considered with particular attention.

Along the Brazilian coast, the algae were washed up at the beach and drifted in the breakwater
zone, which does not allow one to confirm whether these species inhabited the region. However,
the near-perfect prediction, indicating that at the spatial scale of our study, the environmental variables
used, explained the actual species distributions, and pose the discussion regarding distribution
extension [57]. The main predictors which influenced the models were variables related to PP,
temperature and, nutrient availability and light. Due to the physiological requirements and affinities
of the species known for low temperatures [45], we can confirm that maximum SST and bottom light
were the limiting factors for latitudinal and vertical distribution. Such a conclusion is evident when
we observe the georeferenced distribution of species restricted to environments in high and medium
latitudes in shallow areas, where the temperature and radiation were lower. The partial dependency
function shows that primary PP limits the distribution of Macrocystis and Durvillaea on its very
low levels, commonly observed in lower latitudes and deeper ocean regions. PP combines in a
single predictor the resource availability, involving irradiance, CO2, temperatures and nutrients [105].
This shows the negative effect of oligotrophic regions and positive effect that upwelling and medium
latitudes regions have globally (e.g., [105]). The model (Figures 4 and 5) reinforces the sensitivity of
these species to changes in temperature, radiation and water quality (i.e., especially turbidity), because
these are the factors that delimit their geographical distribution [31,36]. However, it points towards
probable refuge regions, interestingly, in lower latitudes, far from regions previously recognized with
“optimum” environmental conditions, extrapolating their suitable habitats also to other temperate
regions in the Northern Hemisphere. The regional cooling of coastal environments observed in the
southwestern Atlantic warm temperate province southern edge [55,65] corroborate the niche suitability
described for the south of Brazil and Uruguay. The range extension of the South African kelp,
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Ecklonia maxima, was also ascribed to a regional cooling process [56]. Therefore, kelps are ecosystem
engineers, responsible for most of the primary production where they occur. This would mean that the
spread or dispersal of kelps could have ecological, economical and sociological consequences.

In addition, it is likely that the ideal habitats for these species are located at deeper strata of
the region. Studies report that some kelp species move to deeper water in a response to warming
trends [33,106,107]. Species occurring in the tropics with high temperate affinities tend to occupy
deeper niches [31], as is the case of Laminaria abyssalis, the only kelp-forming species ever recorded
on the Brazilian coast [49]. Laminaria abyssalis is endemic to the Brazilian coast and has a specific
biotope. It occurs on rhodolith beds (21◦ S and 40◦ W) at depths between 40 to 120 m, at temperatures
of between 15–19 ◦C, and at low light intensity [108,109]. Due to the influence of SACW, deeper waters
in southern Brazil are colder and is less variable when compared to surface [73] conditions, most of the
time, optimal or tolerated for both kelp species.

Therefore, it is important to note that environmental variables used in the model are collected
from the ocean surface. Considering deeper environments in the continental platform, it would be
reasonable to assume that the probability of finding suitable habitats for these species would be even
greater. Many suitable deeper refuges for these species can be identified, such as the Rio Grande
rocky parcels at Rio Grande Sul State, southern Brazil, or Vitória Trindade seamounts, Espírito Santo
State, southwestern Brazil. In these environments the topography of the seamounts can promote the
upwelling of the cold nutrient rich waters, cooling and fertilizing the warmer, oligotrophic shallow
waters [110], and in turn provide potentially ecophysiological conditions for the development of kelp
spores or germlings [93]. We reinforce that the apparent absence of both species in areas with high
habitat suitability is probably a consequence of absence or scarcity of sampling efforts. Therefore,
suitability maps can be utilized in the definition of target areas for further surveys regarding kelp
presence and kelp forest composition, diversity and connectivity.

However, populations of M. pyrifera may be limited not only by physical factors such as
temperature, light and nutrients, but also by the type of substrate and the presence of herbivores
(e.g., sea urchin species such as Loxechinus albus) [36]. Due to a lack of available herbivore data, on a
global scale, among other important biological interactions, these biotic factors were not considered in
our evaluations.

The introduction of benthic macroalgae is a frequent phenomenon in coastal regions [41,111].
Recently, the occurrence of Grateloupia turuturu Yamada was documented in the south-western
Atlantic, more specifically on the coast of the state of Santa Catarina, in Brazil [112]. Despite its
high potential as an invasive algae species in the world, G. turuturu has a higher affinity for temperate
environments [112]. The species, which was first detected in the Southwestern Atlantic in 2011,
can easily be found on the rocky shores near the point where the washed-up kelp rafts were found.

The effects of the arrival of kelp species such as M. pyrifera and D. antarctica in a new ern pacific
populations have varied, over hundreds of kilometers along the Baja Califunexpected environment
is still not documented, although the southern limit of the northeastornia peninsula, during the
past 20 years [113]. Migration is a fundamental process to increase resilience of populations,
a natural part of an eco-evolutionary framework [61], where selective pressure variability meet
phenotypic plasticity of the respective immigrant population. Therefore, if they are part of a natural
dynamic equilibrium of marine environments these events should be better understood and preserved.
Alternatively, if anthropogenic vectors promote it, these events must be evaluated under the usual
bioinvasion perspective, and the management of this process should consider eradication. The kelp
Undaria pinnatifida, also a canopy-forming kelp, is rated as the fifth most successful invasive species
in the world [41,114]. However, studies have shown that where U. pinnatifida invaded there was no
evidence of interspecific competition, except for small effects on the abundance of some species of
intertidal communities [41,115]. Therefore, healthy forests of fucoids tend to resist invasions, unless the
canopy is disturbed [116,117]. So far, there are no records on the effects of kelp-forming algae invading
regions where no large algae forests occur.
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The niche model results reinforce the need for transnational discussions regarding
habitats, considered refuges for conservation initiatives in a global context of climate change
intensification [118,119]. Such an environmental change could produce meteo-oceanographic events
which could displace large amount of kelp rafts over long distances. In addition to these events,
ocean acidification could cause disturbances in underwater autochthone communities, producing
opportunities for kelp immigration that could change the resilience of eventual host communities [120].
Considering the importance of these organisms to coastal ecology (e.g., carbon fixation from the
atmosphere, increasing habitat complexity and diversity) [31,121], these questions should be discussed
at international forums and monitoring programs should be planned to consider possible origins and
dispersal routes. These discussions should influence planning and the design, size and position of
marine protected areas (MPA) that should add as potential services the preservation of species with
this ability to survive long periods drifting.

5. Conclusions

The occurrence of these kelp rafts in the Brazilian and Uruguayan coast does not characterize
the expansion of their limits of occurrence because settled populations were not found. However,
such events could be regarded as an indication of change in climatic/oceanographic processes.
Our results indicate that viable rafts can travel long distances, which demand a further discussion about
long-term management of these immigration events. Therefore, changes in current temperatures and
patterns may alter kelps raft routes and potential colonization areas. Considering the remarkable role
that these rafts play in facilitating the dispersal and connectivity between coastal faunal and floristic
communities, events such as this require greater attention regarding invasive species monitoring
programs, niche conservation policies and climatic changes.

Supplementary Materials: The following are available online at www.mdpi.com/1424-2818/10/1/11/s1, Table
S1: Georeferenced Occurrences Macrocystis pyrifera and Durvillaea antartica used to generate the model and video
S1: Images of sea surface temperature (SST) for locations between 60 ◦ S at 20 ◦ S and 45 ◦ W at 70 ◦ W between
the months of January and September 2016.
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