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Thesis abstract 

 
This thesis explores how short- and long-term thermal variability affects ecologically important 

performance traits and links how developmental traits alter juvenile acute thermal performance. 

Temperature is the most important abiotic factor that affects the functioning of ectothermic 

organism physiology and performance. Organisms experience variation in temperature at 

multiple time scales, from daily and seasonal fluctuations to among generation thermal 

changes. It is important to understand how thermal variability and developmental traits alter 

performance traits that are directly linked to survival and fitness. I aimed to assess if an 

organism can acclimate and maintain wide thermal performance curves in an environment that 

experiences equal daily and seasonal thermal variability; to assess if rate of luminance change 

for camouflage can acclimate with temperature; and to assess how larval traits such as growth 

rate and size affect juvenile acute thermal performance. 

Daily and seasonal thermal variability plays an important role in the evolution of both 

the shape of thermal performance curves (TPC) and acclimation capacity. Acclimation occurs 

when an ectotherm changes their underlying physiology to maintain performance under 

changed environmental conditions. In theory, ectotherms in environments that experience 

small daily thermal fluctuations and large seasonal variation are predicted to have narrow TPCs 

and the capacity to acclimate. When daily thermal fluctuations are as great as seasonal thermal 

variability, however, ectotherms are expected to have wide TPCs and a limited capacity to 

acclimate. Few studies have assessed how the combination of daily and seasonal thermal 

variation affects the shape of TPCs and acclimation capacity in subtropical environments where 

there is relatively equal daily and seasonal thermal variability. I aimed to assess if an intertidal 

goby (Bathygobius cocosensis) that experiences equal magnitudes of daily and seasonal 

thermal variation has the capacity to acclimate. I found that although B. cocosensis experience 

large amounts of daily variability and have wide TPCs, B. cocosensis possess the ability to 

acclimate to seasonal conditions.  

The responses of animals to temperature change have typically been explored in the 

context of energetics and locomotor performance, and these types of traits are likely to be 

important for individual fitness. The effect of temperature on physiological processes, 

however, can have broad reaching implications for other aspects of organismal behaviour and 

predator avoidance other than locomotion and energy expenditure. For example, intertidal 

environments are heterogeneous not only in terms of temperature but also substrate and 
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background type/colour. Gobies have the ability to change luminance (perceived brightness) 

to match their backgrounds as a predator and prey avoidance mechanism. The rate at which 

animals can change luminance is acutely affected by temperature, and the rate of background 

matching may therefore be affected by climate change. No previous studies, however, have 

examined if rate of luminance change has the potential to acclimate to different longer-term 

thermal conditions. In this thesis, I demonstrate that rate of luminance change can acclimate 

with thermal change. 

Many organisms, including marine fish, have complex life-cycles with distinct larval 

and post-metamorphic phases. Larval traits, such as size and growth rate, have the potential to 

affect juvenile thermal performance.  Bathygobius cocosensis have a planktonic larval stage 

meaning that larvae are swept out to sea for 15-30 days. Both genetic and environmental 

sources of variation mean that individual larvae can grow at different rates and reach different 

settlement sizes for juvenile metamorphosis. No previous studies have assessed how wild larval 

growth rates and settlement sizes are correlated with post-metamorphic performance across a 

range of temperatures. While I found no effect of larval trait variation on the thermal sensitivity 

of post-metamorphic traits, I did find that larval growth rate and settlement size were negatively 

correlated with routine metabolic rate and burst swimming speed overall across test 

temperature. Therefore, slow growing larvae had faster post-metamorphic metabolic rates and 

burst swimming speeds than fast growing larvae, independently of the effect of temperature on 

those traits. I also found that juvenile body mass was positively correlated with their critical 

thermal maximum, but no larval traits were correlated with critical thermal tolerance.  

I have explored how organisms in thermally variable environments respond to short- 

and long-term thermal change and have linked how developmental traits effect juvenile thermal 

performance. Interestingly, across studies, I found that thermal performance curve shape was 

not altered by thermal acclimation, or variation in larval growth rates. These results suggest 

that although performance is variable among individuals, and individuals can shift their thermal 

optimums with longer-term thermal change, it appears that the way that performance varies 

with short-term thermal variation may be constrained in B. cocosensis. These findings are 

important for improving the understanding of the co-evolution of thermal performance curve 

shape and acclimation capacity, and how ectotherms will respond to future changes in climate.  

 

 



 IV 

Declaration by author 
 

This thesis is composed of my original work, and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution by others to jointly-authored works that I have included in my thesis. 

 

I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, financial support and any other original research work used or reported in my thesis. 

The content of my thesis is the result of work I have carried out since the commencement of 

my higher degree by research candidature and does not include a substantial part of work that 

has been submitted to qualify for the award of any other degree or diploma in any university 

or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been 

submitted to qualify for another award. 

 

I acknowledge that an electronic copy of my thesis must be lodged with the University Library 

and, subject to the policy and procedures of The University of Queensland, the thesis be made 

available for research and study in accordance with the Copyright Act 1968 unless a period of 

embargo has been approved by the Dean of the Graduate School.  

 

I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis and have sought permission from co-

authors for any jointly authored works included in the thesis. 

 



 V 

Publications included in this thesis 
 

Chapter 2: da Silva CRB, Riginos C, Wilson RS (2019) An intertidal fish shows thermal 

acclimation despite living in a rapidly fluctuating environment. Journal of Comparative 

Physiology B. DOI: 10.1007/s00360-019-01212-0 

 

Chapter 4: da Silva CRB, Wilson RS, Riginos C (2019) Rapid larval growth is costly for post-

metamorphic thermal performance in a Great Barrier Reef fish. Coral Reefs. DOI: 

10.1007/s00338-019-01815-7 

 

Submitted manuscripts included in this thesis 
 

None 

Other publications during candidature 
 

da Silva CRB, Groom SVC, Stevens MI, Schwarz MP (2016) Current status of the introduced 

allodapine bee Branusapis puangensis (Hymenoptera: Apidae) in Fiji. Austral Entomology, 

55:43-48 

 

da Silva CRB, Stevens MI, Schwarz (2016) Casteless sociality in an allodapine bee and 

evolutionary losses of social hierarchies. Insectes sociaux, 1: 67-78 

 

Silva DP, Groom SVC, da Silva CRB, Stevens MI, Schwarz MP (2017) Potential pollination 

maintenance by an exotic allodapine bee under climate change scenarios in the Indo-Pacific 

region. Journal of Applied Entomology, 141: 122-132 

 

Bousjein NS Stains M, Vo C, Puiu N, da Silva CRB, Harrington J, Wilkinson S, Pratt K, 

Schwarz MP (2017) Sex ratios in a socially parasitic bee and implications for host-parasite 

interactions. Journal of Insect Behaviour, 30: 130-137 

 

 



 VI 

Contribution by others to the thesis 

 

 

 

 

 

 

 

 

 

Statement of parts of the thesis submitted to qualify for the award 

of another degree 
None 

 

 

 

 

 

 

 

 

 Contribution  Data Chapters  

Robbie Wilson  Concept, design, funding, interpretation, 

review 

2,3,4 

Cynthia Riginos  Concept, design, funding, interpretation, 

review 

2,3,4 

Karen Cheney Concept, design 3 

Cedric Van den Burg Piolet investigation, interpretation 3 

Nicolas Condon Wrote ImageJ script for photograph 

analysis 

3 

Nuria Raventos Larval trait data extraction from otoliths 4 



 VII 

Research involving human or animal subjects 

 
For the purpose of this thesis individuals of the fish Bathygobius cocosensis were used. 

Collection of B. cocosensis were conducted at Point Lookout North Stradbroke Island, Point 

Cartwright North Stradbroke Island and in the scientific research zone of the intertidal area of 

Heron Island. Animal ethics was approved by The University of Queensland (SBS/425/15). 

Collection of B. cocosensis in Moreton Bay Marine Park (Point lookout North Stradbroke 

Island) was approved by the Queensland government Marine Parks Permits QS2015/MAN340. 

Approval for collecting B. cocosensis at Heron Island was given by The University of 

Queensland Limited Impact Research Accreditation UQ006/2015. Animal ethics permit is 

displayed in Appendix 1. 

 



 VIII 

Acknowledgements 
What an experience this has been. Four years of intense learning, field work, applying for ethics 

and permits, exciting findings, experimental hiccups, literature exploring, R coding, tears, 

friendships and travel. It’s been great. I have so many wonderful people to thank for their help 

on this journey.  

First of all, I have to thank my supervisors, Professor Robbie Wilson and Associate 

Professor Cynthia Riginos. You have both been inspirational, great role models, and 

supportive. Robbie, you have helped me develop into an independent researcher where you 

have taught me how to pursue my own questions and you pushed me whenever I got stuck. 

You have taught me the beauty of writing simply, but clearly, and the importance of 

experimental design. You have also taught me the importance of finding fun in your research 

and collaborating widely. Cynthia, I really look up to you as a female scientist and a person. 

You produce great work, you find time for all of your students, spend time with your family, 

you are a nice person, and you have time left over to help run a brewery. You’re amazing! Your 

support has been instrumental in getting me through this thesis and I really appreciate that you 

have involved me in many of your lab activities. It has helped me to develop a strong network 

and support group at UQ.  

Thank you to my UQ readers Dr. Katrina McGuigan and Associate Professor Ian 

Tibbetts for your encouragement and for providing advice and support throughout my thesis. 

Thank you to all of the Wilsonites for your support, help and good times! Skye, your 

organisational prowess and knowhow of UQ procedures has been invaluable! Gwen, thank you 

for helping make my larval trait figures beautiful. Bec, you have been a wonderful friend and 

have provided me with great emotional support and help with statistics. Thank you for helping 

me with drafts Amanda, I hope I can write as beautifully as you one day! Chopper, thank you 

for showing me the 1970s disco championships and for so many fun times playing volleyball 

on the CAN CRUSHERS! Thank you for all the fun times Nat, it’s been great to have a fellow 

Canadian in the lab and I really appreciated it when you helped me collect fish at Point 

Cartwright for a few days. Thanks for being awesome office mates Kaylah, Miranda, Hannah, 

Ellie and Natalia.    

I must also thank Dr. Karen Cheney and Cedric Van den Berg. You have been 

extraordinarily helpful in bringing me up to speed in the visual ecology world and helping me 

design and execute our rate of luminance change study. Thank you Nicolas Condon for writing 



 IX 

the ImageJ based script to partially automate the photograph analysis. Thank you Nuria 

Raventos for extracting larval traits from teeny tiny Bathygobius cocosensis otoliths!  

Thank you to Professor Michael Angilletta for letting me visit your lab at ASU for a 

couple of months. It was great to pick your brain about thermal physiology and statistics. Thank 

you Jacob Youngblood, for helping me learn how to run species distribution models, being a 

great backup singer and making my trip to hot, dry Phoenix really fun.  

Thank you to everyone who helped me collect fish in the field! That’s you Josh Thia, 

Iva Popovic, Georgie Custance, Julian Beaman, Andrew Hunter, Natalie Freeman, Maya Mia, 

Owen Coffee and Ben Speers-Roesch.  

Now to my friends who have made this experience so enjoyable. Iva Popovic, my 

sheyoncé, hopefully one day we can start up our transcriptomics – physiology lab! Josh Thia, 

my goby bro and hilarious housemate. Aren Yazmaciyan the third musketeer, Hugh Winwood-

Smith, Stephanie Avery-Gomm, Cedric Van den Burg, Sinan Kassam, Cara Conradsen, Jessa 

Thurman, Andrew Maynard, Leah Daw, Lily Upton, Georgie Custance, Belle King-Jones, 

Christie Brook, Josh Iggy, Ambrose Hone, Sam Mosely, Serge Grosman, and Jen Horn.  

Thank you Robyn and Kevin Wheldall, you have both been so supportive throughout 

tough times and you have also been so kind and welcoming to me.  

 To my family, Karen, Jack, Robyn, Anthony, Chris, Bec and Maddie, you have all been 

so supportive. I am very lucky to have parents that understand what it’s like to do a PhD. Thank 

you for helping me with all of my drafts, your support in the tough times, for pushing me when 

I need to go further and thank you for always believing in me. Your love and support has been 

invaluable in getting me to the PhD finish line! Thank you for being a great little sister Robyn 

and for always looking up to me and believing in me. I am inspired by your steadiness and 

light-hearted nature. It has been great to welcome you into the family Chris, Bec and Maddie! 

I miss you all and I look forward to a time when we can all live in the same city again.  

 Now finally to Jules. What an insane rollercoaster we have had. You have been a 

wonderful distraction, but even more of an inspiration. You helped me become fascinated on 

the evolution of plasticity when I wasn’t sure what I wanted to work on. You have been very 

generous with your time in helping me with numerous drafts and discussing ideas with me. 

Your curiosity and attention to detail is impressive. Thank you for being so supportive, 

relentless, introducing me to new ways of thinking and being kind in tough times. It has been 

an absolute blast travelling for conferences and fun through North America, Europe, India and 

Australia with you. I can’t wait for our next research and life adventures.  



 X 

Financial support 
Table of funding bodies. 

Organisation Grant title Awardee(s) 

Australian government  Australian Postgraduate 

Award 

Carmen da Silva 

The University of 

Queensland 

 

Heron Island Research 

Station Award 

Carmen da Silva 

The University of 

Queensland  

 

School of Biological 

Sciences Travel Award 

Carmen da Silva 

The Hermon Slade 

Foundation  

Survival after arrival: How-

post-settlement mortality 

shapes population 

connectivity and climate 

change resilience in a 

coastal marine fish 

Cynthia Riginos 

Libby Liggins 

 

 

 

Keywords 

thermal performance, acclimation, phenotypic plasticity, thermal 

fluctuations, climate change, developmental traits, camouflage, 

intertidal, behaviour, evolution 



 XI 

Australian and New Zealand Standard Research Classifications 

(ANZSRC) 

 
ANZSRC code: 060205, Marine and Estuarine Ecology, 40% 

ANZSRC code: 060604, Comparative Physiology, 60% 

 

 

Fields of Research (FoR) Classification 

 
FoR code: 0602, Ecology, 40% 

FoR code: 0606, Physiology, 60% 

 

 

 

 

 

 

 

 

  

 

 

 



 XII 

Table of Contents 
Thesis abstract ..................................................................................................................... II 

Declaration by author ......................................................................................................... IV 

Publications included in this thesis ........................................................................................V 

Submitted manuscripts included in this thesis ........................................................................V 

Other publications during candidature ..................................................................................V 

Contribution by others to the thesis ..................................................................................... VI 

Statement of parts of the thesis submitted to qualify for the award of another degree........... VI 

Research involving human or animal subjects .................................................................... VII 

Acknowledgements ............................................................................................................ VIII 

Financial support .............................................................................................................. VIII 

Keywords ..............................................................................................................................X 

Australian and New Zealand Standard Research Classifications (ANZSRC) ........................ XI 

Fields of Research (FoR) Classification .............................................................................. XI 

List of Figures & Tables ..................................................................................................... XV 

List of Abbreviations Used in the Thesis ............................................................................ XVI 

Chapter 1: General introduction ........................................................................................... 1 

1.2 Thermal performance .................................................................................................. 2 

1.3 Thermal acclimation .................................................................................................... 3 

1.4 Time scales and constraints ......................................................................................... 9 

1.5 Thermal performance knowledge gaps ....................................................................... 10 

1.6 Colour change plasticity ............................................................................................ 10 

1.7 Rate of camouflage performance knowledge gaps ...................................................... 12 

1.8 Developmental experience and acute thermal performance ........................................ 13 

1.9 Larval traits and post-metamorphic thermal performance knowledge gaps ................ 15 

1.10 Study system: the intertidal zone and Bathygobius cocosensis .................................. 16 



 XIII 

1.11 Climate change ........................................................................................................ 19 

Chapter 2: An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating 

environment ........................................................................................................................ 21 

2.1 Abstract ..................................................................................................................... 22 

2.2 Introduction ............................................................................................................... 23 

2.3 Methods ..................................................................................................................... 28 

2.4 Results ....................................................................................................................... 31 

2.5 Discussion ................................................................................................................. 40 

2.6 Supplementary material ............................................................................................. 45 

Chapter 3: Intertidal gobies acclimate rate of luminance change with changes in long-term 

temperature to remain cryptic ............................................................................................. 46 

3.1 Abstract ..................................................................................................................... 46 

3.2 Introduction ............................................................................................................... 46 

3.3 Methods ..................................................................................................................... 49 

3.4 Results ....................................................................................................................... 54 

3.5 Discussion ................................................................................................................. 63 

3.6 Supplementary material ............................................................................................. 68 

3.7 Image J Code: Multi-photograph luminance extraction code for MicaToolBox Plugin

 ........................................................................................................................................ 69 

Chapter 4: Rapid larval growth is costly for post-metamorphic thermal performance in a 

Great Barrier Reef fish ........................................................................................................ 70 

4.1 Abstract ..................................................................................................................... 71 

4.2 Introduction ............................................................................................................... 72 

4.3 Methods ..................................................................................................................... 76 

4.4 Results ....................................................................................................................... 80 

4.5 Discussion ................................................................................................................. 88 

Chapter 5: General discussion ............................................................................................ 93 



 XIV 

5.1 Overview ................................................................................................................... 93 

5.2 Thermal acclimation and performance curve shape ................................................... 93 

5.3 Acclimation of luminance change .............................................................................. 98 

5.4 Developmental traits and post-metamorphic thermal performance .......................... 100 

5.5 Concluding remarks ................................................................................................ 102 

Appendix: Animal ethics approval ..................................................................................... 104 

References ......................................................................................................................... 105 

 

 

 

 

 

 

 

 

 

  



 XV 

List of Figures & Tables 
 

Table of figures and tables throughout the thesis. Figures and Tables are labelled by chapter 

number (e.g. 1.1 Chapter 1, Figure 1).  
Figure Page Table Page 

1.1 3 2.0 32 

1.2 4 2.1 32 

1.3 7 2.2 33 

1.4 15 2.3 34 

1.5 17 2.4 36 

1.6 18 2.5 37 

2.1 25 2.6 38 

2.2 27 2.7 38 

2.3 35 2.8 39 

2.S1 45 2.9 39 

2.S2 45 3.0 55 

3.1 51 3.1 56 

3.2 52 3.2 56 

3.3 58 3.3 57 

3.4 59 3.4 57 

3.5 62 3.5 60 

3.6 65 3.6 61 

3.S1 68 3.7 62 

4.1 75 4.0 83 

4.2 81 4.1 83 

4.3 82 4.2 85 

4.4 84 4.3 85 

4.5 86 4.4 87 

4.6 88 4.5 87 

5.1 96   

5.2 97   



 XVI 

List of Abbreviations Used in the Thesis 
 

1. TPC – Thermal performance curve 

2. ROI – Region of interest 

3. SS – Settlement size  

4. GR – Growth rate  

5. HS – Hatch size 

6. PLD – Pelagic larval duration  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

Chapter 1 

General introduction 

 
1.1 Overview 

 

Two central goals in biology are to understand how organismal performance and fitness are 

influenced by environmental variation and to be able to predict how organisms will respond to 

contemporary environmental change. In particular, it is important to understand how traits that 

are directly linked with survival, fitness, and interspecies behavioural interactions will be 

affected by climate change. In this thesis, I explore how short- and longer-term thermal change 

and developmental traits such as growth rate affect performance traits such as locomotion, 

metabolism and rate of camouflage. For example, the way different combinations of daily and 

seasonal thermal variation affect the capacity ectotherms have to acclimate (shift the thermal 

optima of performance traits with changes in temperature), and how thermal performance curve 

shape is altered by thermal variation remains a heavily debated topic in ecological physiology 

(Janzen 1967; Gilchrist 1995; Gabriel 1999; Wilson and Franklin 2000; Wilson and Franklin 

2002; Gabriel 2005; Gabriel et al. 2005; Seebacher et al. 2005; Ghalambor et al. 2007; 

Angilletta 2009; Murren et al. 2015; Beaman et al. 2016; da Silva et al. 2019a).  It is also 

important to determine how developmental traits that are linked with environmental 

temperature alter later life-stage thermal performance and fitness. By tying together how 

developmental traits alter performance and how magnitude of daily and seasonal thermal 

variation affect adult performance, we can gain an understanding of the multiple complex 

drivers of variation in organismal performance and begin to predict how ectothermic animals 

will respond to climate change. 

Throughout this thesis, I explore these themes using an intertidal marine goby, 

Bathygobius cocosensis, as my study system. First, I will introduce temperature and plasticity 

as they are the running themes throughout my PhD. Then I will introduce my three main 

research questions: 1) can ectotherms maintain the capacity to acclimate while also exhibiting 

wide thermal performance curves in an environment that experiences equal daily and seasonal 

thermal variation? 2) Can rate of luminance change for camouflage acclimate to thermal 

conditions? And 3) how do larval traits such as growth rate and settlement size affect post-
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metamorphic thermal performance? Lastly, I will discuss why the intertidal zone and B. 

cocosensis provide a great opportunity to test these questions.  

 

1.2 Thermal performance 

Temperature is the most important environmental variable that affects every component of 

ectotherm function (Angilletta 2009). Temperature affects the rate of physiological reactions 

from the level of the enzyme to the whole organism level (locomotion, metabolism, growth, 

etc.) (Somero and Hochachka 1971; Hazel 1995; Somero 1995; Wilson and Franklin 1999; 

Angilletta 2009; Niehaus et al. 2012). Rates of physiological reactions underlying performance 

are dependent on temperature, and performance often increases with temperature until a 

thermal optimum is reached and then rapidly declines with further warming (Somero and 

Hochachka 1971; Huey and Kingsolver 1989; Kingsolver and Huey 2008; Angilletta 2009). 

The way in which performance is altered by acute changes in temperature is known as a thermal 

performance curve (Huey and Stevenson 1979; Huey and Kingsolver 1989; Gilchrist 1996; 

Angilletta Jr et al. 2002; Angilletta Jr 2006; Schulte et al. 2011) (Fig 1). The thermal 

performance curve depicts an organism’s thermal minimuma, optimumb, maximumc (superscript 

letters correspond with annotations in Fig 1), and thermal breadth, which indicates the range 

of temperatures an organism can perform well in (Tattersall et al. 2012) (Fig 1.1). Thermal 

specialists are organisms that perform well over a narrow range of temperatures, and thermal 

generalists are organisms that can perform across a wide range of temperatures, but usually at 

a lower or reduced rate than thermal specialists (Angilletta 2009c; Tattersall et al. 2012) (Fig 

1.1). Thermal specialists are thought to evolve in stable thermal conditions (e.g. tropical or 

polar locations) and thermal generalists are thought to evolve in variable thermal conditions 

(e.g. temperate regions) (Janzen 1967; Deutsch et al. 2008; Tewksbury et al. 2008).  
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Figure 1.1. Thermal performance curves of low- and high-temperature specialists and thermal 

generalists (Adapted from Tattersall et al. (2012)). 

 

1.3 Thermal acclimation 

When environmental temperature changes, animals can respond by behaviourally 

thermoregulating (including migration, seeking shade or panting) (Walther et al. 2002; Sunday 

et al. 2010; Campbell et al. 2018), they can adapt over many generations (Fields et al. 1993; 

Hendry and Kinnison 1999; Kinnison and Hendry 2001; Parmesan and Yohe 2003; Root et al. 

2003; Charmantier et al. 2004; Gienapp et al. 2008), or they can acclimate, by shifting their 

thermal performance curves to better match environmental temperatures (Wilson and Franklin 

2002; Riddell et al. 2018; Rohr et al. 2018). Thermal acclimation, a form of reversible 

plasticity, occurs when an organism shifts their underlying physiology in response to a change 

in environmental temperature to maintain physiological function (Wilson and Franklin 2002; 

Beaman et al. 2016) (Fig 1.2). An example of thermal acclimation is shown by Hammill et al. 

(2004), where adult mosquito fish were exposed to cold or warm conditions for a period of 

many weeks. Post-thermal exposure, the warm-exposed fish showed longer sustained 

a 

b 

c 
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swimming at warm test temperatures compared to the cold-exposed fish, and the cold-exposed 

fish had longer sustained swimming at cold test temperatures compared to the warm-exposed 

fish (Hammill et al. 2004). This example shows how changes in long-term temperature alter 

underlying physiology and allow organisms to maintain optimal performance with changed 

conditions.  

 
Figure 1.2. Example of thermal acclimation of a physiological trait to cold (blue) and warm 

(red) thermal conditions (adapted from Seebacher et al. 2014). 

 

Thermal acclimation to seasonal conditions takes place within an individual’s life time 

and is reversible with seasonal change (Angilletta 2009). The capacity to acclimate is 

hypothesised to evolve when environmental changes are predictable (e.g. seasonal change), 

enabling organisms to better match shifts in mean temperature (DeWitt et al. 1998). The 

capacity to acclimate is also hypothesised to evolve when short-term (daily) thermal 

fluctuations are smaller than long-term (seasonal) thermal variability (Gabriel 2005). This is 

because when daily thermal fluctuations are equal to or greater than seasonal thermal variation, 

large daily fluctuations are expected to mask seasonal thermal trends, making seasonal thermal 

change unpredictable (DeWitt et al. 1998). When thermal change is unpredictable, maintaining 
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the ability to acclimate is predicted to become energetically costly (DeWitt et al. 1998). Species 

may not retain their capacity to acclimate in conditions that vary too rapidly for an effective 

acclimation response or in stable environmental conditions (DeWitt et al. 1998). Plasticity costs 

include those for: maintenance (energetic costs for sensory and regulatory mechanisms); 

production (having the correct machinery for acclimation to occur); information acquisition 

costs (energy invested in determining information about the environment and how it might 

shift); and genetic costs (pleiotropic and epistatic costs) (DeWitt et al. 1998). In addition, if an 

organism’s phenotype is unable to change at the same rate as the environment, there is likely 

to be a lag between an organism’s phenotype and the changed environmental conditions, which 

can be costly for fitness, especially if environments change rapidly and frequently (Murren et 

al. 2015). When these costs outweigh potential benefits of acclimation (maintaining thermal 

performance with changed thermal conditions), the capacity to acclimate may be lost (DeWitt 

et al. 1998; Gabriel 2005). For example, while some stenothermal Antarctic fish can adjust 

cardiac function to cope with warmer temperatures (Franklin et al. 2007), other species have 

lost the capacity to acclimate to increased temperatures (Somero 2005).   

The magnitude of seasonal thermal variation a population experiences over 

evolutionary time is thought to influence the capacity individuals have to acclimate (how far 

they can shift their thermal optima with thermal change) (DeWitt et al. 1998; Wilson and 

Franklin 2000; Gabriel 2005). Generally, increases in the magnitude of thermal variability are 

thought to be positively correlated with the evolution of acclimation capacity (Janzen 1967; 

Johnson and Bennett 1995; Rohr et al. 2018). For example, organisms that inhabit higher 

latitudes and experience greater thermal variability have greater acclimation capacities than 

animals that live at low tropical latitudes (Rohr et al. 2018). In addition, experimental studies 

have shown that populations that have experienced greater thermal variability in past 

generations are likely to be more plastic than populations that experienced less thermal 

variability in past generations (Hallsson and Björklund 2012). The magnitude of daily thermal 

variability that organisms experience within their life-time may also influence acclimation 

capacity (Wilson and Franklin 2000; Scott and Johnston 2012; Beaman et al. 2016). For 

example, the conditions organisms experience during early development are hypothesised to 

affect the thermal acclimation capacity of juveniles and adults (Scott and Johnston 2012; 

Beaman et al. 2016).  

Thermal variability not only influences the evolution of acclimation capacity but is also 

predicted to shape thermal performance breadth across acute temperature exposures (Janzen 
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1967; Gilchrist 1995; Wilson and Franklin 1999; Angilletta 2006; Healy and Schulte 2012). 

Importantly, it has been hypothesised that acute thermal performance breadth, in turn, 

influences whether acclimation to changed thermal conditions will be of benefit to organisms 

(Janzen 1967; Johnson and Bennett 1995; Wilson and Franklin 1999; Šamajová and Gvoždík 

2010; Rohr et al. 2018). For example, individuals with narrow thermal performance breadths 

are thought to have greater acclimation capacities than individual with wide thermal 

performance curves (Wilson and Franklin 2000). This hypothesis was proposed because 

individuals with narrow thermal performance curves are likely to have very low performance 

when temperatures shift outside of their breadth, thus the costs (lowered performance and/or 

fitness) of not acclimating with environmental change is very high. Organisms with wide 

thermal performance curves have the ability to perform well over a wide range of temperature, 

and consequently are likely to perform adequately when the temperature changes without the 

need to invest energy in acclimation (Wilson and Franklin 2000). Since the benefit of 

maintaining the capacity to acclimate is likely to be low for organisms with wide performance 

curves (since they can already perform across a wide range of temperatures), the costs of 

maintaining the capacity to acclimate are likely to outweigh the benefits, and the capacity to 

acclimate may be lost (Huey and Slatkin 1976; Wilson and Franklin 2002). For example, 

terrestrial Antarctic mites experience greater daily thermal variability than marine mites and 

have wide thermal performance curves with no capacity to acclimate (Deere and Chown 2006). 

Marine mites that experience less daily thermal variability were found to have narrower thermal 

performance curves and had the capacity to acclimate (Deere and Chown 2006). These 

examples suggest that there might be feedback between thermal performance breadth and 

acclimation capacity and that this feedback is important for the co-evolution of phenotypic 

responses to short- and longer-term temperature change. 

The way thermal variability is thought to affect the shape of the thermal performance 

curve and acclimation capacity has been debated. In contrast to the studies mentioned above, 

other studies suggest that animals with narrow thermal performance curves are unlikely to have 

the capacity to acclimate (Janzen 1967; Deutsch et al. 2008; Tewksbury et al. 2008). This is 

because animals with narrow thermal performance curves are thought to evolve in stable 

thermal conditions, where the capacity to acclimate is not required (Janzen 1967; Deutsch et 

al. 2008; Tewksbury et al. 2008). Thus, the costs of maintaining the capacity to acclimate when 

thermal change is rare is likely to outweigh the benefits of maintaining the capacity to acclimate 

(DeWitt et al. 1998). In addition, further studies suggest that animals that inhabit variable 
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thermal conditions, such as those found in temperate regions, should have wide thermal 

performance curves and/or the capacity to acclimate to enable survival in a variable thermal 

environment (Janzen 1967; Huey and Kingsolver 1989; Gabriel 2005). The thermal conditions 

that promote the evolution of acclimation capacity and performance curve shape have been 

debated throughout the past half century, and many different hypotheses exist (Fig 1.3; Box 1). 

There is limited information, however, on how different combinations of daily and seasonal 

thermal variability affect the co-evolution of thermal performance curve shape and acclimation 

capacity in different taxa. It is also unclear whether thermal performance curve breadth is likely 

to alter acclimation capacity, whether acclimation capacity is likely to alter performance curve 

breath, whether the two traits are entirely co-dependent, or whether they evolve independently.   

 

 

Figure 1.3. Network of competing findings on how thermal variability and predictability 

affects thermal performance breadth, acclimation capacity and the interaction between 

performance breadth width and acclimation capacity. The numbers along the arrowed lines 

correspond to the list of studies in Box 1. Studies are a subset of data and theory papers over 

the past 50 years that show the variation in findings on how thermal variability alters 

performance.  
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Box 1. Sample of studies through time that have conclusions regarding the effect thermal variation 
has on thermal performance breadth, acclimation capacity or both. 

Studies with asterisks* are hypothesises and findings from model simulations. All other studies are based on experimental or 
meta-analysis findings. 

1. (Janzen 1967)* – Animals in stable thermal environments should evolve narrow breadths and have no 
capacity to acclimate. Animals in variable environments should have wide breadths and the capacity to 
acclimate.  

2. (Levins 1968)* – Diurnal and seasonal variation in temperate environments promotes wide tolerance 
breadths.  

3. (Brown and Feldmeth 1971) – Capacity to acclimate can be conserved over generations and species even 
if populations do not experience thermal variability.  

4. (Huey and Slatkin 1976) – Animals with narrow thermal breadths will thermoregulate more carefully than 
animals with wide thermal breadths. Environmental thermal variation affects thermal breadth.  

5. (Lynch and Gabriel 1987)* – Great thermal variation within generations favours wide thermal breadths.  
6. (Huey and Kingsolver 1993)* – Animals in variable environments should evolve wide thermal breadths.  
7. (Gilchrist 1995)* – Narrow thermal breadths are favoured when within generation thermal variation 

increases, wide thermal breadths are favoured when among generation variation increases and within 
generation variation decreases.    

8. (Johnson and Bennett 1995) – Temperate intertidal (large daily and seasonal thermal variation) animals 
have the capacity to acclimate burst swimming speed and have wide thermal performance curves.  

9. (Kingsolver and Huey 1998)* – Acclimation depends on predictability of diel, daily and seasonal 
variations in temperature. 

10. (DeWitt et al. 1998)* – Acclimation is beneficial when thermal variation is predictable.  
11. (Bennett and Lenski 1999) – Daily and seasonal thermal variation promotes wide thermal breadths.  
12. (Wilson and Franklin 2000) – Animals in environments where daily thermal fluctuation is small and 

seasonal thermal variations are large should evolve narrow thermal breadths and have the capacity to 
acclimate. Animals in environments with large daily variation and little seasonal variation should evolve 
wide thermal breadths and have no capacity to acclimate.  

13. (Cunningham and Read 2002) – Tropical (stable condition) species had the capacity to acclimate.  
14. (Gabriel 2005)* – Thermal acclimation should occur when thermal variation is predictable and experience 

“stress” periods that are shorter than the animal’s life span. As stochasticity increases, thermal breadth 
increases and acclimation becomes unlikely.  

15. (Glanville and Seebacher 2006) – Found that a tropical (stable thermal environment) animal had the 
capacity to acclimate.  

16. (Sinclair et al. 2006) – Neither wide or narrow thermal breadths are favoured in thermally variable 
environments, instead increased phenotypic plasticity and capacity to respond to environmental cues is 
favoured. 

17. (Deere and Chown 2006) – Terrestrial (more variable environment and less predictable) animals did not 
show evidence of acclimation. Thermal acclimation had little effect on the shape of thermal performance 
curves within species. 

18. (Fangue et al. 2006) – Latitude affects the critical thermal maximum of temperate intertidal fish and these 
species have the capacity to acclimate their upper thermal tolerance. 

19. (Franklin et al. 2007) – Antarctic (stable environment) animals have the capacity to acclimate.  
20. (Deutsch et al. 2008) – Tropical animals have narrow thermal breadths, live in environments close to their 

thermal maximum and have limited acclimation capacities.  
21. (Fangue et al. 2008) – Temperate intertidal species have wide thermal performance curves for Ucrit. 
22. (Tewksbury et al. 2008)* – Tropical animals have narrow thermal breadths (stable thermal environment), 

temperate animals have wide thermal breadths (variable thermal environment). 
23. (Asbury and Angilletta Jr 2010)* – When body temperature varies little within generations performance 

breadth should be proportional to among generation variation in body temperatures  
24. (Šamajová and Gvoždík 2010) – Amphibians acclimate to mean thermal conditions in more stable thermal 

environments and acclimate to diel temperature fluctuations in variable thermal environments.  
25. (Niehaus et al. 2011) – Thermal variability did not affect acclimation capacity. 
26. (Schuler et al. 2011) – Thermal variation did not affect acclimation capacity. 
27. (Healy and Schulte 2012) – Temperate intertidal fish have the capacity to acclimate aerobic scope and 

have wide thermal performance curves. Thermal acclimation had little effect on altering the shape of the 
acute thermal performance curve.  

28. (Pereira et al. 2017) – Thermal variability (with latitude) did not correlate with plastic response.  
29. (Rohr et al. 2018) – Acclimation capacity increases with latitude, body size and seasonality. Acclimated 

thermal performance breadth width increases with latitude and decreases with body size. 
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Assessment of the cross-over in findings and hypotheses in Figure 1.3 and Box 1 indicates that 

there is no definitive rule on how thermal variability or stochasticity alters thermal performance 

curve shape, acclimation capacity or both. Variables such as evolutionary history, organism 

size, life span and micro-habitat are all likely to influence organisms’ responses to short and 

long-term changes in climate (Box 1). Future studies that test how the magnitude of daily and 

seasonal thermal variability alter species acclimation capacities and thermal performance curve 

shape across a range of microhabitats will improve our understanding of how reversible 

plasticity and performance breadth co-evolve. 

 

1.4 Time scales and constraints 

The time scales at which animals have to respond to changes in temperature are also important 

for understanding and predicting how species respond to variations in climate within 

generations and among generations. Slow thermal changes that occur over many generations 

often result in the evolution of differing thermal tolerances and acclimation capacities in 

populations that inhabit different thermal environments (Huey and Kingsolver 1989; Angilletta 

et al. 2002), where local adaptation allows animals to maintain performance and fitness within 

a particular environment. For example, populations of toad-headed lizards that evolve at 

different altitudes have different thermal tolerances and acclimation capacities based on the 

degree of thermal variability they are exposed to (Wu et al. 2018). The evolution of thermal 

specialisation (to stable or variable environments), however, is only likely to occur if the rate 

of evolutionary adaptation is greater than the rate of environmental change (Seebacher et al. 

2005). This is because if the rate of environmental change is faster than the rate of evolutionary 

change, animals are unlikely to maintain function and survive with large shifts in temperature 

(depending on their performance curve breadth and acclimation capacity) and therefore will be 

unable to adapt to different thermal conditions. When the rate of evolutionary change is greater 

than rate of environmental change, populations and/or species at different latitudes or altitudes 

often have different thermal breadths and/or acclimation capacities (Rohr et al. 2018; Wu et al. 

2018).  

In contrast, other studies have found that latitude (or long-term exposure to certain 

environmental conditions, i.e. between generation thermal variability for low mobility species) 

does not correlate with acclimation capacity (van Heerwaarden et al. 2014; Gunderson and 

Stillman 2015; Pereira et al. 2017). In some cases, a lack of correlation between thermal 

variability (latitude or altitude) and plasticity can be a result of evolutionary constraints (e.g. 
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lack of genetic variation) (Brown and Feldmeth 1971). For example, some species have been 

observed to retain their capacity to acclimate even if their environment has become more stable 

over time (Brown and Feldmeth 1971; Feldmeth et al. 1974). In these cases, the capacity to 

acclimate is conserved even when thermal variability is minimal between generations, as the 

benefits of maintaining acclimation capacity could outweigh the costs if environments change 

in future generations (potential safety net mechanism) (Seebacher et al. 2005; Franklin et al. 

2007). For example, desert pupfish found in variable ancestral freshwater streams have 

maintained their capacity to thermally acclimate despite living in stable freshwater streams for 

many generations (Brown and Feldmeth 1971). Species can also respond to very rapid thermal 

change (hours or days) by rapid acclimating, behaviourally thermoregulating, or by having 

wide thermal performance curves (Angilletta 2009). The rate at which different species can 

acclimate is variable, where smaller bodied organisms acclimate faster than larger bodied 

organisms on average with latitude and therefore increased thermal variability (Rohr et al. 

2018). Yet, while smaller organisms acclimate faster, larger bodied organisms have greater 

overall capacities to acclimate than smaller bodied organisms (Rohr et al. 2018). Larger 

animals may have greater acclimation capacities because they are longer lived and therefore 

are likely to experience repeated seasonal variability, whereas smaller and shorter-lived species 

may not experience seasonal fluctuations or are likely to experience less annual thermal 

variability. If the rate of thermal change is faster than an organism’s capacity to acclimate, 

reduced performance is likely to ensue, resulting in lower survival probabilities and fitness, 

and thus the costs of plasticity are likely to be higher than the benefits (DeWitt 1998; DeWitt 

et al. 1998) (Murren et al. 2015). Wide thermal performance curves can buffer the effects of 

rapid thermal change on organisms, as wide thermal performance curves allow organisms to 

maintain performance across a wide range of environmental temperatures (Janzen 1967; Levins 

1968; Huey and Slatkin 1976; Lynch and Gabriel 1987; Healy and Schulte 2012). A model by 

Gilchrist (1995) provides an alternative explanation, suggesting that wide thermal performance 

curves evolve when among-generation thermal variation increases and within-generation 

thermal variation decreases. In this case, a wide thermal performance curve maintains fitness 

and survival in stochastic environments over generations.   

 

1.5 Thermal performance knowledge gaps  

How daily and seasonal thermal variability affect the co-evolution of the shape of thermal 

performance curves and acclimation capacity remains debated. The studies presented in Figure 
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3 highlight a range of hypotheses for the effect of thermal variability on performance curve 

shape, acclimation capacity, or both. Many of these studies do not discuss how the magnitude 

of daily and seasonal thermal variability together affect the co-evolution of performance 

breadth and acclimation capacity, or if thermal acclimation alters the shape of thermal 

performance curves. Many combinations of daily and seasonal thermal variability exist in 

nature. Therefore, studies that are more representative of natural thermal variability that assess 

acclimation capacity and performance breadth across a wide range of taxa at varying locations 

are needed.  

Models predicting how short- and long-term thermal variability alter performance curve 

shape and acclimation capacity exist, but they often focus on organisms with short life spans 

(days to weeks), for which experience with repeated seasonal fluctuations are unlikely 

(Gilchrist 1995; Gabriel 1999; Gabriel 2005). Findings from these models suggest that 

organisms in environments with short-term thermal fluctuations that are equal to or greater than 

long-term variability are unlikely to have the capacity to acclimate. Testing these models with 

longer-lived species (that live in a variety of environments) will enable us to better understand 

how longer-lived organisms respond to thermal change.   

 In Chapter 2 of my thesis I investigate whether the capacity to acclimate can be retained 

in an intertidal goby (Bathygobius cocosensis) that experiences equal daily and seasonal 

thermal fluctuations (subtropical intertidal zone), and how thermal performance curves are 

altered with thermal acclimation to seasonal conditions. Previous studies have investigated 

whether temperate intertidal fish have the capacity to acclimate and maintain wide thermal 

performance curves despite living in a rapidly fluctuating environment (Fangue et al. 2006; 

Fangue et al. 2008; Healy and Schulte 2012). Temperate intertidal environments experience 

greater seasonal thermal variability than daily thermal variability, with seasonal thermal 

variability remaining predictable, thus the evolution of thermal acclimation is likely to occur 

(Fangue et al. 2006; Fangue et al. 2008; Healy and Schulte 2012). No previous studies have 

investigated whether organisms can maintain their capacity to acclimate when daily and 

seasonal thermal variability is equal, and how thermal acclimation to seasonal thermal 

conditions alters the shape of their thermal performance curves under these conditions. In an 

environment that experiences equal daily and seasonal thermal variability, I predict that 

organisms will have wide thermal performance curves and the capacity to acclimate if seasonal 

thermal trends remain predictable.  
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1.6 Colour change plasticity 

The effects of temperature on physiological rate processes has implications not only for 

physiological performance, but also for traits such as colour change for camouflage, which 

influence behaviourally mediated species interactions (Cole 1939; King et al. 1994; Camargo 

et al. 1999; Lin et al. 2009). Changing colour to evade predation or to avoid being seen by prey 

is common across the animal kingdom (Sumner 1940; Stuart-Fox and Moussalli 2008; Sköld 

et al. 2013; Stevens 2016; Duarte et al. 2017). Colouration can be adjusted through 

morphological colour change (where the number and structure of chromatophores, or pigment 

cells, is altered), or physiological colour change, where pigment granules within 

chromatophores move (e.g. disperse or aggregate) through neuromuscular contraction or 

relaxation, which is fast acting. Animals can also change colour via hormonal signalling, which 

takes longer to occur (Sköld et al. 2013; Stevens 2016; Duarte et al. 2017). Due to the range of 

mechanisms used to change colour and among-species differences in physiology, the rate at 

which different species can change colour is quite variable. For example, cephalopods are 

known to change colour very quickly (in a matter of seconds), whereas Arctic hare can take 

months to change their colour phenotype (Caro et al. 2016; Stevens 2016; Duarte et al. 2017). 

Studies on rock-pool gobies in the United Kingdom show that they can change colour to match 

their backgrounds within one minute (Stevens et al. 2014; Smithers et al. 2017; Smithers et al. 

2018). These rapid rates of colour change are often due to neuromuscular aggregation or 

dispersion of pigment granules within chromatophores (Duarte et al. 2017). Colour change has 

important implications for individual survival and reproduction (Sköld et al. 2013; Duarte et 

al. 2017b; Ruxton et al. 2018), and while many studies have focused on the mechanistic basis 

of colour change, relatively little is understood about the environmental drivers of variation in 

rate of colour change. 

 

1.7 Rate of camouflage performance knowledge gaps 

Metabolic rate, growth rate, locomotion and reproduction are commonly assessed in functional 

physiology (Angilletta 2009). While these traits are linked with survival and fitness, it is 

important to pair them with other ecologically relevant traits for a more holistic understanding 

of species responses to changes in climate. For example, rate of luminance change for 

background matching is an unexplored thermal performance trait, but it is likely to be important 

in defining predator-prey interactions. Rate of colour change is influenced by temperature, with 
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acute test temperature being positively correlated with rate of colour change in fish and frogs 

(Cole 1939; King et al. 1994b; Camargo et al. 1999; Lin et al. 2009). However, no previous 

studies have assessed whether rate of colour change has the capacity to acclimate to long-term 

thermal change. The rate at which an animal can camouflage itself provides an ecologically 

relevant indicator of survival because it is a mediator of predator-prey interactions. In Chapter 

3, I explore whether rate of luminance change (perceived brightness) for camouflage has the 

potential to acclimate to long-term seasonal change against black and white backgrounds. 

Luminance is an important component of colour change and camouflage ability because many 

animals use contrasts in luminance to detect motion, shape of objects and texture (Cronin et al. 

2014; Ruxton et al. 2018). Therefore, the better an organism can match the luminance of its 

visual background, the better camouflaged it is likely to be to potential predators and prey. In 

this instance, I assessed rate of luminance change in B. cocosensis through the eye of a 

predatory fish, the coral trout (Plectropmus leopardus), known to prey upon benthic fish such 

as gobies and blennies. To do this, it is possible to model changing luminance (in goby skin) 

over time against different background colours through the eye of a coral trout. Modelling of 

predatory vision will be discussed in detail within Chapter 3.  

  

1.8 Developmental experience and acute thermal performance 

Many species with complex life-cycles disperse during their developmental phase where 

individuals develop in different locations to where they settle as adults (Emlet and Hoegh-

Guldberg 1997; Marshall et al. 2003; Macpherson and Raventós 2005; Cowen and Sponaugle 

2009; Gimenez 2010; Crean et al. 2011; Grorud-Colvert and Sponaugle 2011). For example, 

many marine fish species have a pelagic larval phase where oceanic currents determine the 

environmental conditions larvae experience as well as their settlement location (Campana et 

al. 1992; McCormick and Hoey 2004; Macpherson and Raventós 2005; Shima and Swearer 

2010; Grorud-Colvert and Sponaugle 2011; Moody et al. 2015). During this period, larvae 

experience extreme predation pressure and a variety of environmental conditions (Meekan and 

Fortier 1996; Wilson and Meekan 2002; Cowen and Sponaugle 2009; Shima and Swearer 2009; 

Gimenez 2010). The conditions organisms experience during larval development likely 

influence thermal tolerance as juveniles and adults as well as thermal acclimation capacities 

(Scott and Johnston 2012). Very little is known about how wild marine developmental 

conditions affect post-metamorphic thermal performance as it is extraordinarily difficult to 

track the environmental conditions that individual larvae experienced throughout their pelagic 
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dispersal. Therefore, it is important to assess how pelagic larval traits, which are influenced by 

both genetic and environmental factors (Thia et al. 2018), affect post-metamorphic 

performance and fitness.  

Larval traits, such a pelagic larval duration (how long individuals spend in the pelagic 

phase), larval growth rate, hatch size and settlement size are measurable using otolith increment 

analysis (Campana et al. 1992; Jones 1992) (Fig 1.4). Otoliths are fish ear bones, and rings 

within otolith cross sections can infer information about larval traits. Hatch marks (transition 

from egg to larvae) and settlement marks (when the individual settled at an intertidal location) 

(Campana et al. 1992) can provide information on larval size and developmental strategy (fast 

or slow growth). Daily growth can also be measured by examining the distance between each 

otolith ring (Brothers et al. 1976; Swearer et al. 1999). Larval growth rate is influenced by 

environmental temperatures (Seikai et al. 1986; Green and Fisher 2004), where higher 

environmental temperatures are associated with faster growth rates (Seikai et al. 1986; Green 

and Fisher 2004). Larval traits are not always directly indicative of the environmental 

conditions larvae experienced, but traits such as growth rate can provide interesting information 

on larval survival strategies and energy partitioning for metabolism, development, locomotion 

and other energetically demanding activities. For example, as the pelagic larval stage is known 

to be an extremely risky period in the life-cycle, fast larval growth rates and short pelagic larval 

durations are predicted to minimise time spent in the pelagic zone to increase survival 

likelihood (Meekan and Fortier 1996; Wilson and Meekan 2002; Cowen and Sponaugle 2009; 

Shima and Swearer 2009; Gimenez 2010). Other individuals may have slower growth and 

longer pelagic larval duration to increase the size at which they settle in order to increase their 

competitive advantage for resources such as food and shelter at settlement (Carr and Hixon 

1995; Gagliano and McCormick 2007). It is possible to assess how these developmental traits 

and strategies are linked with post-metamorphic (juvenile or adult) traits and performance. 

Often studies assess the traits and performance of juveniles and then they back calculate larval 

traits using their otoliths (Penney and Evans 1985; Meekan and Fortier 1996; Macpherson and 

Raventós 2005; Grorud-Colvert and Sponaugle 2011).  
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Figure 1.4 Cross section of an intertidal fish (Bathygobius cocosensis) otolith. The hatch mark 

(HATCH-1), settlement ring (SET SZ-1) and daily growth increments can be identified. 

Photograph taken by Nuria Raventos at the Spanish National Research Council, Advanced 

Research Centre of Blanes, Blanes, Spain.  

 

1.9 Larval traits and post-metamorphic thermal performance knowledge gaps 

How larval traits affect post-metamorphic traits and fitness has been a topic of debate over the 

past 50 years. Some studies suggest that larval traits are de-coupled with post-metamorphic 

traits because animals with complex life cycles inhabit different environments at each life stage 

and therefore need different phenotypic traits for survival in distinct habitats (Ebenman 1992; 

Moran 1994; Parichy 1998). Other studies argue that larval traits have significant links with 

post-metamorphic traits, known as carry-over effects (Pechenik et al. 1998; Marshall et al. 

2003; Crean et al. 2011). Larval trait carry-over effects have been observed to have positive 

and negative implications for juvenile and adult performance or fitness. For example, large egg 

sizes are known to be linked with greater reproductive success and survival in marine 

invertebrates (positive carry-over effect) (Marshall et al. 2003). In contrast, fast larval growth 

rates in tadpoles are correlated with reduced jumping performance as adult frogs (negative 

carry-over effect) (Ficetola and De Bernardi 2006). No previous studies have assessed how 
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wild marine fish larval traits are correlated with acute juvenile thermal performance. I 

hypothesise that fast larval growth rates (to avoid time spent in the dangerous pelagic phase) 

will be costly for post-metamorphic performance due to energetic trade-offs. Chapter 4 

examines the correlations between larval traits and juvenile acute thermal performance in B. 

cocosensis.  

 

1.10 Study system: the intertidal zone and Bathygobius cocosensis  

The intertidal environment is thermally variable and thus provides an ideal system with which 

to address how thermal fluctuations on a short- and long-term basis alter the shape of 

organisms’ thermal performance curves and acclimation capacities (da Silva et al. 2019a). I 

assess the acclimation capacity of B. cocosensis that experiences equal daily thermal 

fluctuations (~ 6°C) and changes in seasonal means (~ 6°C) in the subtropical intertidal system 

and how thermal acclimation alters their thermal performance curve shape in Chapter 2. 

Intertidal environments are not only heterogeneous in their thermal profiles, they also vary 

considerably in other abiotic variables such as salinity, oxygenation, nitrogen and the range of 

background colours that animals within rock-pools experience (Johnson 1975; Helmuth 1999; 

Helmuth et al. 2006). Therefore, a majority of the species that are residents within rock-pools 

must not only tolerate a range of environmental fluctuations but also have the capacity to 

maintain crypsis from predators or prey against a range of background types such as sand, rock 

or algae (Stevens et al. 2014b; Smithers et al. 2017; Smithers et al. 2018). Thus, the intertidal 

environment provides an excellent system to address how short- and long-term changes in 

temperature affect rate of background matching for crypsis. My study sites are located at 

intertidal environments in Queensland, Australia: Point Lookout on North Stradbroke Island, 

Point Cartwright on the Sunshine Coast, and Heron Island, in the southern Great Barrier Reef 

(Fig 1.5). All of these locations are characterised as subtropical; however, the Heron Island 

location is located at a lower latitude than the other study sites and is located further offshore. 

The Point Lookout and Point Cartwright study sites are rocky with distinct rock-pools, while 

the Heron Island site has some rock flat regions with a distinct lack of pools. 
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Figure 1.5 Map of study site locations along the east coast of Australia.  

 

Bathygobius cocosensis (Fig 1.6) is the most common intertidal fish species off the east 

coast of Australia (Griffiths 2003). Bathygobius cocosensis have strong homing behaviour as 

adults (Griffiths 2003; White and Brown 2013; Malard et al. 2016), and studies have shown 

that individual gobies remain within the same rock-pools for many months (if not their entire 

adult lives) once they settle at a particular intertidal location (after their planktonic pelagic 

larval phase) (Griffiths 2003; White and Brown 2013; Malard et al. 2016). This strong homing 

behaviour is thought to facilitate rapid escape to known hiding places when a predator enters 

the pool. Their homing behaviour also means that once B. cocosensis settle at a particular 

intertidal location, they will experience thermal conditions in that location for the rest of their 

life (~ 3 years). Bathygobius cocosensis vary in their morphology depending on whether they 

inhabit the low-tide or high-tide zone, with those from high-tide rock-pools being smaller on 

average and with eyes further up their heads (potentially for better vision of avian predators) 

(Malard et al. 2016). Bathygobius cocosensis is an aggressive and territorial species (Paijmans 

and Wong 2017), and competition for food and habitat is intense particularly in the low-tide 

zone where there is better access to food and refuges.  
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Figure 1.6 Bathygobius cocosensis in a rock-pool eating a polychaete worm. Photographed by 

Carmen da Silva.  

 

Bathygobius cocosensis morphology is also dependent on habitat background colour as 

they possess the ability to change their luminance to match background habitat. For example, 

B. cocosensis are often darker in colouration when observed against dark rocks or algae and 

conversely light and speckled in colouration when observed basking on sandy patches (see Fig 

1.6). My preliminary observations suggest that individuals can rapidly change their luminance 

to match the background colour. Therefore, as B. cocosensis have the ability to change 

luminance and inhabit the thermally variable intertidal zone, they are an ideal species to assess 

if they can acclimate rate of luminance change to different thermal conditions. Rate of 

luminance change for background matching is a trait that is directly linked with survival and 

therefore fitness (Duarte et al. 2017; Ruxton et al. 2018). Hence, rate of luminance change is a 

good proxy with which to assess how well camouflage is maintained with long-term changes 

in temperature. I assess if B. cocosensis can acclimate their rate of background matching to 

different thermal conditions in Chapter 3. 

Similar to other marine fish species, B. cocosensis have a planktonic pelagic larval 

phase and are carried by ocean currents for the first ~ 20 days of their life (Thia et al. 2018). 

Thus, the conditions that B. cocosensis experience during development are unlikely to be the 

same as the conditions they experience in later life stages. In addition, the thermal conditions 
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that each generation experiences are likely to be different and potentially unpredictable. 

Therefore, B. cocosensis are unlikely to be highly adapted to the environment in which they 

settle. Currently, very little is understood about how wild larval traits and experience alter post-

metamorphic thermal performance. Bathygobius cocosensis provide an excellent opportunity 

to assess how larval traits such as growth rate, hatch size and settlement size are linked with 

juvenile burst swimming speed, routine metabolic rate and critical thermal maximum. Changes 

in climate are likely to influence development, performance and fitness at all life stages and it 

is important to determine the knock-on effects that developmental traits may have on later life 

stages. I assess how larval traits are correlated with post-metamorphic thermal performance in 

Chapter 4.  

 

1.11 Climate change 

The unifying theme of this thesis is temperature and the effects of short- and long-term 

temperature variation on performance. Temperatures across the globe are changing at 

unprecedented rates, where thermal change is becoming more stochastic and thermal means 

are rising (Pachauri et al. 2014). Rapid changes in climate are likely to increase selection 

pressure on populations, especially those close to upper thermal maxima, such as tropically 

distributed ectotherms (Somero 2010; Hoffmann and Sgro 2011). Tropical ectotherms are 

predicted to be among the most sensitive species to climate change (Deutsch et al. 2008; 

Tewksbury et al. 2008; Somero 2010), as they experience relatively low thermal variation 

compared to temperate regions, and are likely to have limited capabilities to respond to thermal 

variation (Deutsch et al. 2008; Tewksbury et al. 2008; Kellermann et al. 2009; Somero 2010). 

In contrast, other studies suggest that temperate species are more likely to be negatively 

affected by climate change than tropical species as they experience greater thermal fluctuations 

and stochasticity compared to tropical species and thus are likely to experience local population 

extinctions when unable to respond to rapid thermal change (Helmuth et al. 2002).  

A majority of studies that investigate how global warming will impact species focus on 

tropical species that experience warm temperatures on a regular basis or temperate species that 

experience larger seasonal and daily thermal fluctuations (Helmuth et al. 2002; Deutsch et al. 

2008; Tewksbury et al. 2008; Somero 2010; Sheldon et al. 2011; Gunderson and Stillman 

2015). Very few studies have investigated how subtropical species that experience moderate 

daily and seasonal thermal variability that are relatively equal in magnitude will respond to 

thermal change. In addition, few studies have assessed how thermal generalists will respond to 
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climate change, as they are likely to be more robust than thermal specialists. Many thermal 

generalists, however, are keystone species for particular environments and loss of these species 

can have negative knock-on effects for whole ecosystems (Ellison et al. 2005).  There is 

currently a great lack of sampling of species responses to climate change from different 

habitats, making predicting how a variety of species will cope to climate change difficult 

(Seebacher et al. 2015). For this reason, it is important for future studies to assess how a range 

of species (and traits) will respond to short- and long-term change in many different 

environments. I have made a contribution to progress in this field by addressing three important 

problems; how daily and seasonal thermal variability affect the acclimation capacity of a 

subtropical intertidal fish; whether colour change has the capacity to acclimate; and how 

developmental traits affect post-metamorphic thermal performance. 
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Chapter 2 
 

An intertidal fish shows thermal acclimation despite living in a 

rapidly fluctuating environment 
 

This thesis chapter has been published in the Journal of Comparative Physiology B. The full 

reference for this publication is: da Silva CRB, Riginos C, Wilson RS (2019) An intertidal fish 

shows thermal acclimation despite living in a rapidly fluctuating environment. Journal of 

Comparative Physiology B.  

 

I contributed significantly to this publication. Robbie Wilson and I generated the initial 

research questions and experimental design and it was then refined by Cynthia Riginos. I 

collected the fish used for this project, conducted the thermal performance experiments, 

statistical analysis and manuscript writing. Both Robbie and Cynthia provided editorial advice.  

 

Percentage of contribution towards da Silva et al. (2019a) 

 

 

 

 da Silva Wilson  Riginos 

Concept and design  50 40 10 

Field collection 100 0 0 

Experiments 100 0 0 

Statistical analysis 100 0 0 

Writing of manuscript 80 15 5 

Editing of manuscript 70 15 15 
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2.1 Abstract 

The co-evolution of acclimation capacity and thermal performance breadth has been a 

contentious issue for decades, and little is known regarding the extent to which acclimation 

alters the shape of acute thermal performance curves. Current acclimation theory suggests that 

when daily variation is large and unpredictable ectotherms should not acclimate but should 

evolve wide performance breadths, allowing maintenance of performance across a wide 

thermal range. The subtropical intertidal zone, however, experiences a large amount of daily 

thermal variation, but daily means and ranges shift in predictable ways with season, where 

daily and seasonal variation is roughly equal. I predicted that animals in this habitat would 

maintain their capacity to acclimate, and that performance breadth would not be altered by 

acclimation to maintain function with rapidly fluctuating daily temperatures. I tested this 

prediction using a subtropical goby, Bathygobius cocosensis, which lives in tide pools that vary 

widely, over days and seasons. I exposed B. cocosensis to winter (12°C - 17°C) and summer 

(30°C - 35°C) thermal conditions for six weeks and then measured the thermal dependence of 

burst swimming speed, routine and maximum metabolic rate, and ventilation rate between 

12°C - 36°C. Bathygobius cocosensis exhibited an acclimation response for burst swimming 

speed, maximum metabolic rate and metabolic scope, but acclimation did not alter the shape 

of acute thermal performance curves. These results indicate that thermal acclimation can occur 

when short-term thermal variability is large and equal to seasonal variation, and wide 

performance breadths can be maintained with acclimation in heterogeneous environments.   
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2.2 Introduction  

Global climate change is increasing environmental thermal means, variability and stochasticity 

(IPCC 2014). Animals can respond to thermal change within their lifetime by moving to 

environments with more suitable temperatures (behavioural thermoregulation) (Walther et al. 

2002; Sunday et al. 2011; Campbell et al. 2018) or they can acclimate (Wilson and Franklin 

2002; Angilletta 2009; Riddell et al. 2018). Thermal acclimation, a form of reversible plasticity, 

is the modification of an organism’s underlying physiology to allow maintenance of 

performance in changed environmental conditions (Huey et al. 1999; Wilson and Franklin 

2002; Angilletta 2009; Beaman et al. 2016). Acclimation to changed thermal conditions has 

the potential to result in fitness benefits (Wilson and Franklin 2002; Ghalambor et al. 2007), 

because performance traits such as metabolism and locomotion affect growth, behaviour and 

development (Le Galliard et al. 2004; Wilson et al. 2007; Seebacher 2009). Fitness benefits 

associated with acclimation have the potential to occur when changes in environmental 

conditions are predictable and there are adequate environmental cues for future thermal 

conditions (Levins 1968; DeWitt 1998; Kingsolver and Huey 1998; Johnston and Temple 

2002; Gabriel 2005). The environmental conditions that promote the evolution of thermal 

acclimation and thermal performance curve shape, however, has remained a controversial topic 

over the past 50 years (Janzen 1967; Lynch and Gabriel 1987; Huey and Kingsolver 1989, 

DeWitt 1998; Wilson and Franklin 2000; Gabriel 2005; Deere and Chown 2006; Ghalambor 

et al. 2007; Tewksbury et al. 2008; Deutsch et al. 2008; Healy and Schulte 2012; Rohr et al. 

2018).  

Thermal performance curves describe the way temperature affects animal performance, 

with the peak of the curve representing an organism’s thermal performance optimum and the 

breadth of the curve representing the range of temperatures for adequate performance (Huey 

and Stevenson 1979; Huey and Kingsolver 1989; Gilchrist 1996; Angilletta et al. 2002; 

Angilletta 2006; Schulte et al. 2011). Thermal variability is believed to play an important role 

in shaping an organism’s capacity to acclimate and the breadth of their thermal performance 

curve (Levins 1968; Huey and Kingsolver 1989; Wilson and Franklin 2000; Huey et al. 2012; 

Dillon et al. 2016). Many studies suggest that organisms in variable environments should 

evolve wide thermal performance breadths and the capacity to acclimate; conversely, animals 

in stable thermal environments should evolve narrow performance curves and little or no 

capacity to acclimate (Janzen 1967; Lynch and Gabriel 1987; Huey and Kingsolver 1993; 

Gilchrist 1995; Stillman 2003; Tewksbury et al. 2008; Deutsch et al. 2008; Rohr et al. 2018). 
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Many exceptions exist, however, including examples of animals in stable environments that 

have the capacity to acclimate (e.g. Brown and Feldmeth 1971; Cunningham and Read 2002; 

Glanville and Seebacher 2006; Franklin et al. 2007; Bilyk and DeVries 2011); organisms in 

thermally variable conditions with no capacity to acclimate (e.g. Wilson and Franklin 2000; 

Deere and Chown 2006); and organisms in variable environments having both the capacity to 

acclimate and having wide thermal performance curves (e.g. Johnson and Bennett 1995; Healy 

and Schulte 2012). 

The way ‘thermal variability’ is defined is important as magnitude of daily and seasonal 

thermal variability together are likely to affect the co-evolution of thermal performance curve 

breadth and acclimation capacity, which often leads to different combinations of acclimation 

capacity and thermal performance curve shape (Wilson and Franklin 2000; Gabriel 2005; 

Healy and Schulte 2012; Dillon et al. 2016; Pörtner and Gutt 2016). In addition, many 

combinations of daily and seasonal thermal variability and predictability exist in nature, but we 

still have a limited understanding of how acclimation capacity and thermal performance 

breadth co-evolve in different environments, and how thermal acclimation might alter the shape 

of thermal performance curves. Gaining a deeper understanding of the relationships between 

thermal variability, acclimation capacity and performance curve shape will allow predictions 

of species responses to changing climates to be improved and for more specific and targeted 

conservation approaches to be implemented.  

Some studies have investigated how both daily and seasonal thermal variability 

correlate with the shape of species thermal performance curves and their capacity to acclimate 

(Johnson and Bennett 1995; Wilson and Franklin 2000; Deere and Chown 2006; Niehaus et al. 

2011; Schuler et al. 2011; Healy and Schulte 2012; Pereira et al. 2017; Rohr et al. 2018). 

Generally, most recent theory suggests that when seasonal thermal variation is predictable and 

greater than daily thermal fluctuations, animals should evolve the capacity to acclimate and 

have narrow thermal performance curves (Fig 2.1a) (Wilson and Franklin 2002; Gabriel 2005; 

Gabriel et al. 2005; Sinclair et al. 2006). For example, larval amphibians that inhabit aquatic 

environments where seasonal thermal variation is greater than daily thermal fluctuations often 

have capacity to acclimate to seasonal conditions and have narrow thermal performance curves 

(Wilson and Franklin 1999; 2000). When larval amphibians develop into adult frogs they 

transition into a predominantly terrestrial habitat where daily thermal fluctuations are greater 

than in aquatic environments, and these animals often have no capacity to acclimate but have 

wide thermal performance curves (Fig 2.1b) (Wilson and Franklin 2000). Large daily thermal 



 25 

fluctuations are often perceived to mask seasonal thermal change, making seasonal change 

unpredictable and costly, and therefore thermal acclimation unlikely to occur (DeWitt 1998; 

Gabriel 2005; Gabriel et al. 2005). Here I examine these expectations in the context of the 

marine intertidal zone where large daily thermal fluctuations occur but predictable seasonal 

variation is also present.  

 
 

Figure 2.1. Conceptual illustration on how magnitude of daily thermal fluctuations and 

seasonal thermal variations affect thermal performance breadth and capacity for reversible 
	

a.)

b.)

c.)
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acclimation. Part a.) illustrates environments with small daily and large seasonal thermal 

variations: animals in those environments are predicted to have narrow thermal breadths and 

the capacity to acclimate. Part b.) illustrates an environment with large daily thermal 

fluctuations and little seasonal variation: animals in those environments are expected to have 

wide thermal performance curves and no capacity to acclimate. Part c.) illustrates an 

environment where magnitude of daily thermal fluctuations and mean seasonal thermal 

variation is equal but there is predictable seasonal change, animals in these environments are 

expected to have wide thermal performance curves and the capacity to acclimate. 

 

The intertidal zone is known to experience extensive daily thermal fluctuations with 

changing tides, solar radiation and wind (Johnson 1975; Helmuth 1999; Helmuth et al. 2006), 

but the mean, maximum and minimum daily temperatures gradually shift with season, allowing 

seasonal changes to be predictable despite large daily fluctuations. Previous studies have found 

that temperate intertidal fish species, such as killifish (Fundulus heteroclitus) and sculpins 

(Oligocottus maculosus and Myoxocephalus scorpius), that experience large fluctuations in 

daily and seasonal temperature have the capacity to thermally acclimate to seasonal 

temperatures and have wide thermal performance curves (Johnson & Bennett 1995; Temple 

and Johnston 1998; Fangue et al. 2006; Fangue et al. 2008; Fangue et al. 2011; Healy & Schulte 

2012). In these conditions, thermal acclimation has little effect on the performance breadth of 

aerobic scope in killifish, where wide performance breadths are hypothesised to be required to 

maintain physiological function with rapid short-term thermal fluctuations (Healy and Schulte 

2012). These temperate intertidal species, however, experience greater seasonal thermal 

variation (approx. 15-20°C) (Fangue et al. 2008) than daily thermal fluctuations (approx. 5-

10°C) (Sidell et al. 1983; Fangue et al. 2008). Few studies have assessed the extent to which 

acclimation alters the shape of the acute thermal performance curves in organisms that 

experience roughly equal daily and seasonal thermal variation, such as subtropical ectotherms. 

I expect that acclimation capacity and performance breadth will be maintained in organisms 

that experience equal daily and seasonal thermal variation when seasonal variation remains 

predictable (Fig 2.1c), and that acclimation will have little effect on altering the shape of 

thermal performance curves. 

I had two key aims. Firstly, I aimed to assess if an organism that experiences large but 

roughly equal daily and seasonal variation with predictable seasonal fluctuations had the 

capacity to acclimate to seasonal conditions; and finally, I aimed to assess the extent to which 
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acclimation to seasonal conditions altered the shape of thermal performance curves. I used 

Bathygobius cocosensis (Bleeker 1854) (Fig 2.2), an intertidal fish commonly known as Cocos 

Frillgoby as my study organism. They are the most common intertidal fish on the east coast of 

Australia (Griffiths 2000) and have a widespread geographic distribution. The study site in 

south-east Queensland, Point Lookout North Stradbroke Island, experiences 6°C of thermal 

variation between seasonal high tide means (Supplementary Fig 1 & 2; and seasonal high tide 

(sea surface temerature) data collected by the navy meteorological and oceanography 

(METOC) harvester). Specifically, high tide rock pool temperatures are 26°C in the summer 

(January) and 20°C in the winter (July). On a daily basis, rock-pools fluctuate with diurnal 

tides, solar radiation and wind, where they have been observed to fluctuate by about 6°C daily 

(Supplementary Fig 2.S1 & 2.S2). Therefore, both daily fluctuations and seasonal means vary 

by about 6°C. As B. cocosensis experiences large daily thermal fluctuations and predictable 

seasonal changes, I hypothesised that B. cocosensis would possess the capacity to acclimate, 

have wide thermal performance breadths, and that thermal acclimation would have little effect 

on the shape of their thermal performance curve. 

 
Figure 2.2 Bathygobius cocosensis in a rock-pool in south-east Queensland. Photographed by 

CRB da Silva.  
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2.3 Methods  

Bathygobius cocosensis were collected from rock-pools at Point Lookout, North Stradbroke 

Island in southeast Queensland, Australia (GPS coordinates 27.4347°S, 153.5305°E). Fish 

were collected using a battery-operated bilge-pump and hand nets at low tide in April 2016. 

Fish were transported to the University of Queensland by vehicle in oxygen-saturated bags 

within insulated containers. Fish were anesthetized (0.3 x 10-3 mg L-1 of Aqui-S®) (Griffiths 

2000; Malard et al. 2016) and tagged with Visible Implant Elastomer (VIE) florescent 

subdermal tags (Northwest Marine Technologies®, Inc.). Individual tags allowed unique 

recognition during experiments. VIE tags do not impact mortality or growth rates (FitzGerald 

et al. 2004). The sample sizes reported below were determined prior to field collection by using 

a power analysis for consideration of pre-specified effect sizes. Animal ethics was approved 

by The University of Queensland’s Animal Ethics committee: Permit: SBS/425/2015. 

Collection in Moreton Bay was approved by the Fisheries Permit: QS2015/MAN340, and 

National Parks Permit: 18241. 

I assessed if B. cocosensis had the capacity to acclimate to seasonal conditions by 

exposing them to extreme winter and summer thermal conditions that they experience at their 

thermal range limits. Cold treatment conditions mimicked winter (July) sea surface 

temperatures in (temperate) southern New South Wales (southern species range limit) and 

warm treatment conditions mimicked summer (January) sea surface temperatures in the 

(tropical) Northern Territory (northern Australian range limit) (Royal Australian Navy - sea 

surface temperature data base 2017). Fish were eased into thermal exposure conditions at a rate 

of 5°C per day from a starting temperature of 25°C. Warm fish (n = 32) were separated into 

six tanks (about five fish per tank) in a controlled temperature room set at 30°C, during the day 

aquarium heaters increased tank temperature to 35°C (heating started at 6am and stopped at 

6pm). This daily variation in temperature mimicked changes in tide-pools with solar radiation, 

where the upper thermal experimental temperature was around 3°C above average summer 

rock-pool temperatures at Point Lookout QLD. Cold fish (n = 33) were separated into 6 tanks 

(about 5 fish per tank) in a controlled temperature room set at 12°C. Timed heaters increased 

tank temperature to 17°C between 6am and 6pm. Fish were exposed to the warm and cold 

thermal treatments for six weeks prior to testing. Both warm and cold treatment temperatures 

varied by 5°C on a daily basis so that magnitude of temperature fluctuation between treatments 

was identical. Both warm and cold treatments were set on a 12:12hr light-dark cycle, where 
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6am-6pm was light. Individuals were tested at random between the warm and cold treatments 

to account for any changes in metabolic rate based on circadian rhythm. 

Fish were brought to acute testing temperatures at a rate of 3°C per hour (an appropriate 

rate to test the acute thermal performance of an intertidal fish (Schulte et al. 2011)). Only one 

performance trait (except maximum ventilation rate which was tested with maximum metabolic 

rate) was tested at one acute test temperature per day across all individuals. Test temperature 

and individual fish order was randomised for each performance measure. 

 

Performance testing  

Burst swimming speed was assessed at the test temperatures of 15°C, 22°C, 28°C and 33°C in 

a randomized order. Burst swimming responses were assessed in a 35 x 24 x 4 cm aquarium 

with a 20 cm measuring tape placed in the field of view for calibration. The aquarium was 

secured inside an arena made of plywood and a mirror angled at 45°. A Panasonic Lumix DMC-

TZ40 camera recorded the image at 100 frames per second off the mirror. Burst swimming 

responses were elicited by gently tapping the fish’s tail using a metal rod when fish were 

motionless on the bottom of the tank. Instantaneous swimming speed was extracted from 

videos using KINOVEA© (experimental version 0.8.25-x64 (www.kinovea.org)). Only 

swimming responses where the fish exhibited a C-start escape response were analysed. The 

point between the eyes of each fish was digitised to ensure a consistent point was tracked. A 

minimum of three burst responses was recorded for each fish and the maximum instantaneous 

speed for each escape response was determined. The maximum instantaneous speeds for each 

fish were averaged at each test temperature and used in statistical analysis. 

I quantified the maximum ventilation and metabolic rate of each individual fish at 15°C, 

22°C, 28°C, 33°C, and 36°C (and 12°C for ventilation rate only) in a randomized order. I tested 

maximum ventilation rate by chasing a fish (with a hand net) for a minute to elicit a sustained 

escape response. Fish were then immediately placed into a transparent petri dish and filmed 

ventrally for 60 seconds using a Panasonic Lumix DMC-TZ40 camera at a rate of 100 frames 

per second. Ventilation rate was then determined by visually counting the number of operculum 

ventilations over 60 seconds. Immediately after ventilation rate was filmed, fish were placed 

in a 133mL respirometer with a magnetic stirrer that produced a current within the respirometer 

for the fish to swim against (the current was turned up until fish could just maintain forward 

movement within the water column) to assess maximum metabolic rate. A PreSens Fibox 4 

(POF-L2.5-1) with a polymer optical fiber and oxygen minisensor spots (batch ID – 140117-
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001) was used to measure percentage air saturation (% a.s.) (one measurement/second) within 

the respirometer over five minutes of testing. After individual fish were tested they were then 

placed in an oxygen-saturated recovery bucket where the water temperature changed at a rate 

of 3°C per hour to bring the fish back to their treatment conditions. Three control (no fish) 

water samples were taken at each test temperature over five minutes to assess for any oxygen 

consumption or production within the bottle during testing. Metabolic rate (VO2) was calculated 

using the following formula:  

 

𝑉𝑂$ = 	−1	 ×	*(𝑚𝑓 −𝑚𝑐) ÷ 1002	× 	𝑉	 ×	𝐵𝑂$, 

 

where mf was the slope of the percent air saturation consumed over time by B. cocosensis and 

mc was the slope of the percent air saturation consumed over time within the control 

respirometer (no fish). V was the volume of water within the respirometer and BO2 represented 

the oxygen solubility of seawater at 35 ppt at each test temperature.  

Routine metabolic rate of each fish was assessed at 15°C, 22°C, 28°C, 33°C and 36°C 

(in a randomised order) in darkened (black plastic covered) respirometers in a darkened 

laboratory. Fish were placed in 350 mL respirometers with open tops (covered with mesh to 

avoid fish escape) for one hour within a water bath prior to testing to allow oxygenated water 

flow to circulate the respirometers while the fish adjusted to test conditions and allowed 

metabolic rates to stabilize. Respirometer chambers were then sealed and placed on the 

magnetic stirrer at 100 rpm to create a weak current to ensure homogeneous oxygen saturation 

within the respirometer. Stirrers were necessary because bottom dwelling fish like gobies often 

sit still at the bottom of the respirometer and oxygen concentrations can become inconsistent 

throughout the respirometer. Oxygen consumption was measured every 15 minutes over one 

hour of testing using the PreSens Fibox 4. Aerobic scope was calculated by subtracting routine 

metabolic rate from maximum metabolic rate for each fish at each test temperature. I measured 

the mass (g) and standard length (mm) of each fish post thermal performance testing.  

 

Statistics 

I fitted linear mixed effect models using the nmle library (Pinheiro et al. 2018) in the R 

statistical package (R Core Team 2013) to assess if long-term warm or cold exposure had an 

effect on performance across a range of test temperatures. The acute effect of test temperature 

was modelled as a second-degree polynomial and set as a continuous variable (except for 
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ventilation rate where it was set as a fixed factor due to the large amount of variance in the data 

set). The effect of acclimation was tested by assessing the interaction between test temperature 

and treatment. Fish length (burst swim speed only) or mass were set as covariates. Individual 

fish number was nested within tank number and these were set as random factors. Global model 

parameters were estimated according to Grueber et al. (2011). The library MuMIn (Bartoń 

2013) was used to create a set of models from the global model using the dredge function. 

Akaike information criterion and the Akaike weight of each model was estimated to assess 

model fit probability. Multimodel averaging (Burnham and Anderson 2002) was used to 

calculate parameter averages from all models with Akaike weights above zero. Parameter 

values from the averaged models were used to calculate the most likely performance means for 

each treatment group across all test temperatures. I assessed the effect treatment (warm or cold-

exposure) had across test temperatures on performance. 

 

Individual thermal performance curve breadths were calculated using Gilchrist (1996) formula: 

𝐵 = 456
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where N is the number of test temperatures, Ti is temperature i, Pi is performance at a certain 

test temperature, Topt is the temperature at which performance is optimal, and Pmax is the 

maximum performance rate. I compared average performance curve breadths between 

treatments for each performance measure using independent t-tests.  

  

2.4 Results 

Burst swimming speed 

I found that long-term exposure to cold or warm thermal environments (treatment) affected the 

thermal sensitivity of burst swimming speed (Fig. 2.3a; Table 2.0 & 2.1) (test temperature ×  

treatment (slope): estimate = -0.448 ± SE = 0.069, Z = 6.428, P < 0.001). The shape of the 

warm and cold exposed fish thermal performance curves, however, was not altered by thermal 

acclimation (test temperature × treatment (quadratic curvature): estimate = -0.018 ± SE = 

0.073, Z = 0.236, P = 0.814). The cold-exposed fish swam 15% faster than warm-exposed fish 

when tested at 15°C on average, and warm-exposed fish swam 24% faster than cold-exposed 

fish when tested at 33°C on average. Differences in burst swimming speed were not apparent 
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at test temperatures 22°C or 28°C (Fig 2.3a). Warm-exposed fish had thermal performance 

breadths of 11.63°C ± 0.55 and the cold-exposed fish had a mean thermal performance breadth 

of 12.43°C ± 0.76, differences in thermal performance breadth were not statistically significant 

(t40 = -0.870, P = 0.389). These results suggest that B. cocosensis have the capacity to acclimate 

burst swimming speed to extreme seasonal thermal conditions, however, the shape of their 

thermal performance curves is not altered by thermal acclimation.  

 

Table 2.0. Top models of B. cocosensis burst swimming speed with fish length, treatment 

(thermal exposure) and test temperature. 

All models include fish number nested within tank number as random factors. Models are ranked according to 
AICc, and only models with wi values greater than 0 are presented.  
 

 

Table 2.1. Averaged linear mixed effect model summary of the response of burst swimming 

speed to fish length, treatment and test temperature.  

Coefficients Estimate ± SE Z P 

Intercept 
 

0.138 ± 0.036 3.837 < 0.001 

Fish length 
 

0.002 ± 0.0008 2.158 0.031 

Poly(test temperature, 2) 1 (slope) 0.544 ± 0.055 9.872 < 0.001 

Poly(test temperature, 2) 2 
(quadratic curvature) 

 

-0.176 ± 0.056 0.0568 0.0019 

Treatment 2 
 

-0.006 ± 0.017 0.290 0.772 

Poly(test temperature, 2)1  • 
treatment (slope) 

-0.448 ± 0.069 6.428 < 0.001 

 
Poly(test temperature, 2)2  • 

treatment (quadratic curvature) 

 
-0.018 ± 0.073 

 
0.236 

 
0.814 

 

Terms in the Model df LogLik AICc ΔAICc wi 

Length + poly(test temperature, 

2) + treatment + poly(test 

temperature, 2) • treatment) 

 

14 298.289 -565.8 0.00 0.923 

Poly(test temperature, 2) + 

treatment + poly(test 

temperature, 2) • treatment) 

13 294.616 -560.9 4.96 0.077 
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Maximum metabolic rate 

Long-term exposure to cold or warm thermal conditions affected the thermal sensitivity of 

maximum metabolic rate (Fig 2.3b; Table 2.2 & 2.3) (test temperature × treatment (slope): 

estimate = -1.64 ± SE = 0.429, Z = 3.804, P < 0.001).  Like burst swimming speed, the shape 

of the acute thermal performance curves for the warm and cold exposed fish was not altered by 

thermal acclimation (test temperature × treatment (quadratic curvature): estimate = -0.396 ± 

SE = 0.394, Z = 0.997, P = 0.319). At the test temperature 15°C cold-exposed fish had average 

maximum metabolic rates that were 33% greater than the average maximum metabolic rate of 

warm-exposed fish. At the test temperatures 33°C and 36°C the warm-exposed fish had average 

maximum metabolic rates that were 67% and 27% greater than the average cold-exposed fish 

maximum metabolic rates, respectively. There were no observable differences in maximum 

metabolic rate at 22°C or 28°C (Fig 2.3b). Cold-exposed fish had predicted (as we did not 

sample full performance curve) thermal performance breadths of 11.72°C ± 1.65, which was 

greater than the predicted thermal performance breadths of warm-exposed fish which was 

6.95°C ± 0.8 (t38 = -2.6, P = 0.013).  

 

Table 2.2. Top models of B. cocosensis maximum metabolic rate (VO2) with fish mass, 

treatment (thermal exposure) and test temperature. 

Terms in the Model df LogLik AICc ΔAICc wi 

Mass + treatment + test 

temperature + poly(test 

temperature, 2) • treatment) 

 

15 47.167 -62.1 0.00 0.996 

Mass + poly(test temperature, 2) 

 

13 39.28 -50.9 11.22 0.004 

Mass + treatment + poly(test 

temperature, 2) 

12 36.69 -47.9 14.15 0.001 

All models include fish number nested within tank number as random factors. Models are ranked according to 
AICc, and only models with wi values greater than 0 are presented.  
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Table 2.3. Averaged linear mixed effect model summary of the response of maximum 

metabolic rate (VO2) to fish mass, treatment and test temperature. 

Coefficients Estimate ± SE Z P 

Intercept 

 

0.168 ± 0.030 5.524 < 0.001 

Mass 

 

0.316 ± 0.026 11.686 < 0.001 

Treatment 2 

 

-0.026 ± 0.027 0.974 0.330 

Poly(test temperature, 2)1 

(slope) 

 

2.75 ± 0.320 8.512 < 0.001 

Poly(test temperature, 2)2 

(quadratic curvature) 

 

0.572 ± 0.299 1.961 0.049 

Treatment • poly(test 

temperature, 2)1 (slope) 

 

-1.64 ± 0.429 3.804 < 0.001 

Treatment • poly(test 

temperature, 2) 2 (quadratic 

curvature) 

-0.396 ± 0.394 0.997 0.319 
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Figure 2.3 Thermal dependence of warm and cold-exposed Bathygobius cocosensis. Part a.) 

Thermal dependence of burst swimming speed (warm exposed fish n = 25, cold exposed fish 

n = 20). Part b.) Thermal dependence of maximum metabolic rate (warm exposed fish n = 27, 

cold exposed fish n = 29). Part c.) Thermal dependence of routine metabolic rate (warm 

exposed fish n = 20, cold exposed fish n = 17). Part d.) Thermal dependence of metabolic scope 

 
 
 
 
 
 
 

Legend: Blue points illustrate cold exposed fish 
performance and red points display warm exposed fish 
performance. Small outline points indicate raw 
performance values for each individual at each acute 
test temperature.  

Larger filled circles represent model mean performance 
values at acute test temperature. Second degree 
polynomial linear mixed effect model curves are 
displayed for warm and cool exposed fish.  

Standard error bars are shown for all performance traits 
at each test temperature except maximum ventilation 
where 95% confidence intervals are shown. No curve is 
shown for maximum ventilation due to temperature 
being treated as a categorical factor instead of 
continuous in model.  
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(maximum-routine) (warm exposed fish n = 16, cold exposed fish n = 13). Part e.) Thermal 

dependence of maximum ventilation rate (warm exposed fish n = 23, cold exposed fish n = 28). 

Standard error bars are shown in black for each performance trait graph. 

 

Routine metabolic rate 

Long-term exposure to cold and warm thermal conditions did not affect the thermal sensitivity 

of routine metabolic rate (test temperature × treatment (slope): estimate = -0.082 ± 0.133, Z = 

0.608, P = 0.543) (Fig 2.3c, Table 2.4 & 2.5). Thermal acclimation did not alter the shape of 

the acute thermal performance curve (test temperature × treatment (quadratic curvature): 

estimate = -0.338 ± 0.193, Z = 1.742, P = 0.081). At the test temperatures 15°C and 36°C, the 

warm-exposed fish had routine metabolic rates that were 704% and 65% greater than the 

average cold exposed fish routine metabolic rates, respectively.  Routine metabolic rate did not 

differ between warm and cold-exposed fish at 22°C, 28°C, or 33°C. Warm-exposed fish had 

predicted thermal performance breadths of 11.35°C ± 1.0, which was greater than the predicted 

breadths of cold-exposed fish which was 7.39°C ± 0.53 (t40 = 3.363, P = 0.002).  

 

Table 2.4. Top models of B. cocosensis routine metabolic rate (VO2) with fish mass, treatment 

(thermal exposure) and test temperature. 

Terms in the Model df LogLik AICc ΔAICc wi 

 

Mass + treatment + 

temperature + poly(test 

temperature, 2) • treatment 

10 216.602 -411.9 0.00 0.846 

Mass + treatment + 

poly(test temperature, 2) 

 

8 212.218 -407.6 4.29 0.099 

Mass + poly(test 

temperature, 2) 

7 210.537 -406.4 5.46 0.055 

All models include fish number nested within tank number as random factors. Models are ranked according to 
AICc, and only models with wi values greater than 0 are presented.  
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Table 2.5. Averaged linear mixed effect model summary of the response of routine metabolic 

rate (VO2) to fish mass, treatment and test temperature. 

 

 

Aerobic Scope 

Exposure to warm or cold thermal conditions affected the thermal sensitivity of aerobic scope 

(Fig 2.3d, Table 2.6 & 2.7) (test temperature × treatment (slope): estimate = -1.84 ± SE = 

0.347, Z = 5.228, P < 0.001). Again, thermal acclimation did not alter the shape of the acute 

thermal performance curve (test temperature × treatment (quadratic curvature): estimate = 

0.065 ± 0.314, Z = 0.205, P = 0.837).  On average, at 15°C the cold-exposed fish had aerobic 

scopes that were 416% greater than the warm-exposed fish, and at 33°C and 36°C the warm-

exposed fish had aerobic scopes that were 90% and 39% greater than the cold exposed fish, 

respectively. At 28°C there was no difference in aerobic scope between warm and cold-exposed 

fish. Cold-exposed fish had predicted thermal performance breadths of 9.83°C ± 1.46, which 

was greater than the predicted breadth of warm-exposed fish (6.26°C ± 0.9) (t25 = -2.119, P = 

0.268).  

  

 

 

Coefficients Estimate ± SE Z P 
 

Intercept 
 

0.056 ± 0.016 3.542 0.0004 

Mass 
 

0.125 ± 0.0104 11.919 < 0.001 

Treatment 2 
 

-0.029 ± 0.015 1.697 0.089 

Poly(test temperature, 2)1 
(slope) 

 

0.87 ± 0.093 9.226 < 0.001 

Poly(test temperature, 2)2 
(quadratic curvature) 

 

-0.252 ± 0.114 2.19 0.028 

Treatment • poly(test 
temperature, 2)1 (slope) 

-0.082 ± 0.133 0.608 0.543 

 
Treatment • poly(test 

temperature, 2) 2 (quadratic 
curvature) 

 
-0.338 ± 0.193 

 
1.742 

 
0.081 
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Table 2.6. Top model of B. cocosensis metabolic scope (VO2) with fish mass, treatment 

(thermal exposure) and test temperature. 

All models include fish number nested within tank number as random factors. Models are ranked according to 
AICc, and only models with wi values greater than 0 are presented.  
 

 

Table 2.7. Linear mixed effect model summary of the response of metabolic scope (VO2) to 

fish mass, treatment and test temperature. 

 

 

Maximum ventilation rate 

Exposure to warm or cold thermal conditions did not affect the thermal sensitivity of maximum 

ventilation rate (Fig 2.3e) (Table 2.8 & 2.9). Warm and cold-exposed fish had maximum 

ventilation rates that were significantly different from each other at 12°C (F1,6 = 8.105, P = 

0.0293), 22°C (F1,9 = 8.44, P = 0.0174), 28°C (F1,8 = 8.824, P = 0.0179) and 36°C (F1,9 = 5.3703, p 

= 0.0457), however, there was no effect on the thermal sensitivity of performance as both warm 

and cold-exposed fish ventilations rates increased linearly at similar rates as temperature 

increased. There was no difference in maximum ventilation rate between warm and cold-

exposed fish at 15°C (F1,5 = 3.507, P = 0.12) and 33°C (F1,6 = 0.3476, P = 0.577). There was no 

Terms in the Model df LogLik AICc ΔAICc wi 

 

Mass + treatment + poly(test temperature, 2) 

+ poly(test temperature, 2) • treatment) 

14 52.339 -73.4 0.00 1 

Coefficients Estimate ± SE Z P 
 

Intercept 
 

0.162 ± 0.037 4.33 <0.001 

Mass 
 

0.186 ± 0.022 8.346 < 0.001 

Treatment 2 
 

- 0.006 ± 0.039 0.145 0.885 

Poly(test temperature, 2)1 (slope) 
 

2.28 ± 0.237 9.523 < 0.001 

Poly(test temperature, 2)2 
(quadratic curvature) 

-0.45 ± 0.215 2.07 0.0385 

 
Treatment • poly(test temperature, 

2)1 (slope) 

 
-1.84 ± 0.347 

 
5.228 

 
< 0.001 

 
Treatment • poly(test temperature, 

2) 2 (quadratic curvature) 

 
0.065 ± 0.314 

 
0.205 

 
 0.837 
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difference in the predicted thermal performance breadth for maximum ventilation rate between 

warm-exposed fish (10.62°C ± 0.5) and cold-exposed fish (11.49°C ± 0.56) (t27 = -1.132, P = 

0.268).  

 

Table 2.8. Top models of B. cocosensis maximum ventilation rate (vents/min) with fish mass, 

treatment (thermal exposure) and test temperature. 

Terms in the Model df LogLik AICc ΔAICc wi 

Mass + test temperature + 

treatment + poly(test 

temperature, 2) • treatment 

 

8 22 -206.7 0 0.743 

Test temperature + treatment + 

poly(test temperature, 2) • 

treatment 

7 21 -204.6 2.13 0.257 

All models include fish number nested within tank number as random factors. Models are ranked according to 
AICc, and only models with wi values greater than 0 are presented.  
 

 

Table 2.9. Averaged linear mixed effect model summary of the response of metabolic scope 

(VO2) to fish mass, treatment and test temperature. 

Coefficients Estimate ± SE Z P 
 

Intercept 
 

3.485 ± 3.486 36.913 < 0.001 

Mass 
 

-0.046 ± 0.017 2.640 0.008 

Test temperature 15°C 
 

0.763 ± 0.010 7.513 < 0.001 

Test temperature 22°C 
 

1.257 ± 0.095 13.06 < 0.001 

Test temperature 28°C 
 

1.462 ± 0.092 15.801 < 0.001 

Test temperature 33°C 
 

1.667 ± 0.094 17.564 < 0.001 

Test temperature 36°C 
 

1.616 ± 0.103 15.575 < 0.001 

Treatment 
 

0.437 ± 0.096 3.962 < 0.001 

Test temperature 15°C • 
treatment  

 

-0.314 ± 0.110 2.827 0.005 

Test temperature 22°C • 
treatment 

 

- 0.269 ± 0.103 2.585 0.0097 
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2.5 Discussion  

Theory predicts that acclimation should not occur when daily thermal fluctuations are large or 

unpredictable and when animals have wide thermal performance curves (Tomanek and Somero 

1999; Wilson and Franklin 2000; Gabriel 2005; Gabriel et al. 2005). Wide thermal performance 

curves, however, are likely to evolve when short-term thermal variability is large (Lynch and 

Gabriel 1987; Gabriel 2005; Wilson and Franklin 2000). Therefore, if long-term thermal 

varability remains predictable and short-term thermal fluctuations remain large, thermal 

performance curve shape should not be altered with thermal acclimation to seasonal change 

(see Healy and Schulte 2012). Thus, I predicted that B. cocosensis would possess the ability to 

thermally acclimate with seasonal change, despite inhabiting the thermally variable intertidal 

zone, and would have wide thermal breadths that would not be altered by thermal acclimation.  

I found that B. cocosensis had the capacity to acclimate burst swimming speed, 

maximum metabolic rate and aerobic scope to seasonal thermal conditions and had wide 

thermal performance breadths for all performance traits, supporting my hypotheses. In 

addition, thermal acclimation did not alter the shape of thermal performance curves for any 

performance traits. These findings support the idea that animals are likely to evolve the capacity 

to acclimate when long-term (seasonal) variation is large but predictable, and maintain wide 

thermal breadths when short-term (daily) variation exists. Similar patterns have been observed 

in temperate intertidal fish such as killifish and sculpins, where they have the capacity to 

acclimate and possess wide thermal performance curves in variable daily and seasonal thermal 

conditions (Johnson & Bennett 1995; Temple and Johnston 1998; Fangue et al. 2006; Fangue 

et al. 2008; Fangue et al. 2011; Healy and Schulte 2012). Here I discuss the capacity B. 

cocosensis has to acclimate despite living in a rapidly fluctuating subtropical environment, and 

how thermal acclimation had little effect on altering the shape of thermal performance curves.    

Bathygobius cocosensis possessed the ability to acclimate their burst swimming 

response to cold and warm thermal environments and had thermal breadths over a range of 

Test temperature 28°C • 
treatment 

 

-0.354 ± 0.099 3.549 < 0.001 

Test temperature 33°C • 
treatment 

 

-0.469 ± 0.105 4.427 < 0.001 

Test temperature 36°C • 
treatment 

-0.314 ± 0.116 2.685 0.00758 
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11°C (exceeding the magnitude of average daily thermal variation they experience in nature). 

Maintenance of burst swimming speed with changing temperature is important for survival, as 

slower escape speeds can decrease the probability of escape from predators (Husak 2006a, b; 

Walker et al. 2005). Maintenance of broad thermal performance curves across acclimation 

treatments indicates that when organisms from variable thermal environments acclimate, their 

thermal optima and the location of thermal breadth may shift along the x-axis, but the curve 

itself is likely to retain its shape (also observed by Healy and Schulte (2012) in killifish aerobic 

scope). Again, these results are similar to those on other intertidal fish such as killifish and 

sculpins (Johnson and Bennett 1995; Temple and Johnston 1998), where they have the capacity 

to acclimate burst swimming speed and have relatively wide thermal performance curves. My 

findings support the idea that in B. cocosensis acclimation will occur even if both daily and 

seasonal thermal variations are large. 

Bathygobius cocosensis also possessed the capacity to acclimate maximum metabolic 

rate to seasonal thermal conditions, where thermal performance curve shape remained wide 

and was not affected by seasonal acclimation. Acclimation of maximum metabolic rate allows 

physiological traits that are oxygen demanding (like sustained swimming and aerobic and 

anaerobic recovery) to be maintained under variable thermal conditions (Brett 1964). Although 

we found an acclimation response for maximum metabolic rate, routine metabolic rate did not 

show complete acclimation; the warm-exposed fish had higher metabolic rates on average than 

the cold-exposed fish at both warm and cold test temperatures. Aerobic scope, however, 

showed a similar acclimation response to maximum metabolic rate; this was not surprising 

because routine metabolic rate values were proportionally small compared to maximum 

metabolic rate values across all test temperatures. Like burst swimming speed and maximum 

metabolic rate, acclimation of aerobic scope also did not affect the shape of the thermal 

performance curve, like intertidal temperate killifish (Healy and Schulte 2012). The large 

aerobic scope observed shows that B. cocosensis have a large capacity to raise their metabolic 

rate for ecologically important activities (such as growth, maintaining body condition, escaping 

from predators and catching prey) aiding survival and reproduction. In addition, low aerobic 

scope at species thermal limits are known to constrict their geographical ranges (Wang & 

Overgaard 2007; Farrell 2009), hence, the maintenance of high aerobic scope across wide 

thermal breadths may facilitate the large geographic distribution observed in B. cocosensis. In 

contrast, we found no evidence of seasonal acclimation for maximum ventilation rate. 
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Potentially maximum metabolic rate and ventilation rate are not linked as tightly as one would 

expect with acclimation in B. cocosensis.  

It was interesting that B. cocosensis had the capacity to acclimate to seasonal thermal 

conditions at the maximum and minimum of their thermal range (northern Northern Territory 

and southern New South Wales), which are likely to be outside of the usual thermal conditions 

that the Point Lookout population experiences in nature. As their thermal performance breadths 

were wide enough to encompass most of the seasonal thermal variation they experience in the 

subtropics, and curve shape did not change with long-term extreme thermal exposure, perhaps 

the Point Lookout population does not require acclimation to function and survive at Point 

Lookout. They may have retained their capacity to acclimate to seasonal species range 

extremes as an ancestral artefact, or perhaps it is a survival strategy for organisms with pelagic 

larval dispersal stages. Bathygobius cocosensis have a pelagic planktonic larval phase and have 

the potential to travel great distances from where they were hatched (Thia et al. 2018; da Silva 

et al. 2019b). Potentially organisms with dispersing larval phases are likely to maintain high 

levels of plasticity as their settlement location and therefore their juvenile and adult life stage 

thermal environment is unpredictable prior to settlement. In addition, the capacity to acclimate 

has also been observed, B. fuscus, a close relative of B. cocosensis in the tropical location of 

Sulawesi Indonesia, which would likely experience less daily and seasonal thermal variability 

than subtropical B. cocosensis populations (Eme and Bennett 2009). The ability B. fuscus had 

to acclimate was simultaneously surprising and intuitive, as small tropical species often have a 

limited capacity to acclimate (Rohr et al. 2018), but, B. fuscus inhabit the tidal flat region which 

experiences thermal variability despite being close to the equator. In addition, B. fuscus have 

species ranges that extend into the subtropics and have a planktonic pelagic larval phase. It 

would be interesting to compare the acclimation capacity between organisms with larval 

dispersal phases and organisms with limited dispersal in future studies.  

The existing controversy on how thermal variability affects the co-evolution of thermal 

performance breadth and acclimation capacity has led us to ponder if thermal acclimation alters 

thermal performance curve shape; if thermal performance curve shape alters capacity to 

acclimate; or if once plasticity evolves it is retained (despite thermal performance curve shape). 

Our findings show that acclimation did not affect shape of thermal performance curve across 

many performance traits in a subtropical intertidal fish. Indeed, other studies have also shown 

evidence for thermal acclimation having little or no effect on altering the shape of thermal 

performance curves (i.e. Deere and Chown 2006; Healy and Schulte 2012; Pereira et al. 2017). 
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In addition, further studies have assessed if degree of thermal variability or stochasticity alters 

the shape of thermal performance curves in aquatic vertebrates or terrestrial isopods, however, 

thermal performance curve shape was not altered by increased thermal variability or 

stochasticity (Niehaus et al. 2011; Schuler et al. 2011). Perhaps thermal performance curve 

breadth determines the degree at which thermal optima can be shifted with thermal acclimation, 

rather than thermal acclimation shaping the acute thermal performance curve. Or maybe once 

thermal acclimation evolves (despite performance breadth) it is retained over many generations 

even if it is not required in a stable environment (see Brown and Feldmeth 1971). Sinclair et 

al. (2006) suggest an interesting alternative perspective that organisms in highly variable 

thermal environments are unlikely to favour a particular strategy of wide or narrow thermal 

breadths depending on thermal variability, but are more likely to evolve increased plasticity to 

allow efficient physiological responses to changes in environmental temperature. 

The ability B. cocosensis has to acclimate may buffer them from increased temperatures 

associated with climate change, and some studies suggest that plasticity is already protecting 

some species from climate warming (Rohr et al. 2018; Riddell et al. 2018). Extreme heat 

events, however, are predicted to result in local population extinctions (Helmuth et al. 2006), 

as rate of thermal change is likely to be faster than rates of physiological change/acclimation 

(Peck et al. 2009). A meta-analysis that investigated the correlation between plasticity of upper 

thermal limits and latitude in terrestrial, aquatic and marine species, however, suggests that 

plasticity is unlikely to protect species from climate change as thermal plasticity in upper 

thermal limits is not correlated with latitude or seasonal variation across taxa (Gunderson and 

Stillman 2015). While upper thermal limits are important, many of the effects of climate change 

will occur through reductions in performance at sub-critical temperatures (Kingsolver et al. 

2015). Interactions between acclimation capacity and thermal performance breadth will also 

be important in animal responses to climate change. For example, species that experience great 

thermal variation may not consistently have great acclimation capacities, but they might have 

wide thermal performance breadths (Wilson and Franklin 2000; Deere and Chown 2006), and 

thus may be buffered from climate warming through wide breadths rather than capacity to 

acclimate. Future climate change scenarios predict environments to become more thermally 

variable and stochastic (IPCC 2014; Vasseur et al. 2014), but predictions of species responses 

remain limited due to under sampling of physiological capabilities across taxa (Seebacher et 

al. 2015). The lack of understanding regarding the relationships between climatic variability 

and performance breadth and acclimation capacity will prove problematic when attempting to 
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predict how different species and populations will respond with climatic change. Gaining a 

more comprehensive understanding of the interactions between fine-scale environmental 

variation, thermal breadths and acclimation capacities will help improve predictability of 

species responses to climate change. In addition, this knowledge will aid conservation 

biologists to determine which animals are likely to acclimate or adapt in a changing 

environment and which species should be the focus of conservation effort. Future studies 

should empirically test and model how the magnitude of thermal variability and predictability 

directly affects the co-evolution of thermal breadth, acclimation capacity, and fitness in 

changing environments through time. 
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2.6 Supplementary material  

 
Figure 2.S1. Example of winter rock-pool temperature data from July to September 2018 at 

Point Lookout Queensland Australia (latitude = 27.43 ºS). Data logged in one hour intervals 

on 1-wire Thermochron iButtons®.  

 

 
Figure 2.S2. Example of summer rock-pool temperature data from January to February 

(collected by L. Malard in 2015) one degree south of Point Lookout (latitude = 28.36 ºS). Data 

logged in 30 minute intervals on 1-wire Thermochron iButtons®.  
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Chapter 3 
 

Intertidal gobies acclimate rate of luminance change with changes 

in long-term temperature to remain cryptic 
 

 

3.1 Abstract  

Many ectotherms have the ability to acclimate performance traits such as locomotion, 

metabolic rate and growth rate with changes in temperature. However, there is a need to 

understand how functional traits that are directly linked to survival, such as rate of colour 

change, respond to long-term changes in temperature. For example, acute changes in 

environmental temperature impact an animal’s ability to change body colouration, affecting 

whether they are detected by predators when viewed against their background habitat. In this 

study, I assessed whether the rate of colour change is altered by long-term changes in 

temperature (such as seasonal variation) and whether rate of colour change can acclimate to 

seasonal thermal conditions. I used an intertidal rock-pool goby, Bathygobius cocosensis, to 

test this and exposed individuals to representative seasonal mean temperatures (16ºC or 31ºC, 

herein referred to cold and warm exposed fish, respectively) for nine weeks and then tested 

their rate of luminance change when placed on white and black backgrounds at acute test 

temperatures of 16ºC and 31ºC. When tested at 16ºC, the cold exposed fish changed luminance 

at faster rates than the warm exposed fish (against both black and white backgrounds), 

demonstrating that rate of luminance change can be adjusted to match long-term temperature 

exposure typical of seasonal temperature change. Similarly, when tested at 31ºC, the warm 

exposed fish changed luminance faster than the cold exposed fish when tested against the white 

background. Contrary to my predictions, warm exposed fish changed luminance at the same 

rate as cold exposed fish when placed against a black background at 31ºC, which was likely 

due to a stress darkening response in the cold exposed fish. I also found that B. cocosensis were 

able to match the black background better than the white background, which may be a stress 

response to quickly match crevices within rock-pools. I believe this is the first study to show 

that rate of colour change can acclimate to seasonal thermal conditions. 
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3.2 Introduction     

Fluctuations in environmental temperatures impact the physiology of ectotherms and predicted 

changes in climate are likely to affect ectotherm survival, fitness and range distributions 

(Deutsch et al. 2008; Tewksbury et al. 2008; Peck et al. 2009; Hoffmann and Sgro 2011; 

Seebacher et al. 2015; Sinclair et al. 2016). Animals can respond to changing thermal 

environments within their lifetime by relocating (shifting their distribution or hiding in a cooler 

location) or by acclimating to the changed thermal conditions (Wilson and Franklin 2002; 

Angilletta 2009; Beaman et al. 2016). Acclimation, also known as reversible plasticity, occurs 

when an individual changes its underlying physiology to maintain its rate of performance in 

changed environmental conditions (Wilson and Franklin 2002; Beaman et al. 2016). We know 

that ectotherms can modify their physiological function in response to long-term changes in 

their thermal environment, including traits like metabolic rate, growth and locomotor 

performance, which allows maintenance of performance with changed thermal conditions 

(Angilletta 2009). For example, Gambusia holbrooki (mosquito fish) have the capacity to 

acclimate their muscle structure, swimming speeds, and mating success to seasonal thermal 

change (Hammill et al. 2004; Wilson et al. 2007). Although many studies have assessed thermal 

performance of locomotion and metabolism, we are yet to understand how long-term changes 

in temperature will affect behaviours such as physiologically-based anti-predator defences. For 

example, many animals use colour change to match the background against which it is viewed 

to prevent detection from predators or prey (camouflage), for thermoregulation and/or for 

communication (Cheney et al. 2017; Kodric-Brown 1998; Leclercq et al. 2010; Skold et al. 

2013). The rate at which animals change colour can directly impact survival, as slow colour 

change may significantly increase the chance of being detected by predators (Stevens 2016; 

Duarte et al. 2017). 

 The rate at which animals change their body colouration is dependent on the mechanism 

used for colour change. Morphological colour change occurs over days or weeks during which 

the composition and number of chromatophores (skin pigment cells) is altered (Auerswald et 

al. 2008; Duarte et al. 2017). Physiological colour change occurs at a rapid rate 

(seconds/minutes) as pigment granules within chromatophores disperse or aggregate using 

neuromuscular movement, or more slowly via changes in hormone concentrations, such as 

melatonin (Skold et al. 2013; Caro et al. 2016; Stevens 2016; Duarte et al. 2017). Rapid changes 

in colour (hue and saturation), luminance (perceived brightness) or pattern can allow animals 

to match fine scale environmental heterogeneity, permitting animals to move more freely 
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without suffering a mismatch with visual backgrounds (Duarte et al. 2017). Rates of 

physiological colour change in amphibians and fish are dependent on temperature, thus an 

animal’s ability to match their background may be hindered by acute fluctuations in 

environmental temperature (Cole 1939; King et al. 1994; Camargo et al. 1999; Lin et al. 2009). 

It is unclear, however, how responses to longer-term temperature change might modulate the 

effects of acute temperature variation on the rate of colour change. For example, the depressive 

effects of cold temperature on the rate of colour change might be compensated for by 

phenotypic responses to longer-term exposure to cold temperatures (i.e. acclimation).  

 I tested these ideas by investigating an intertidal rock-pool fish, Bathygobius 

cocosensis, to assess whether they have the capacity to acclimate rate of luminance change to 

long-term seasonal change. Bathygobius cocosensis was chosen as my study organism because 

they are known to have the capacity to acclimate other physiological characteristics such as 

burst swimming speed, maximum metabolic rate, and metabolic scope, to seasonal thermal 

conditions (da Silva et al. 2019a). In addition, some goby species can alter their body 

colouration in terms of colour, luminance and pattern, to match their visual backgrounds and 

remain cryptic from predators within rock-pools (Stevens et al. 2014; Smithers et al. 2017). 

The capacity to rapidly alter colour and luminance in rock-pool fish is most likely mediated by 

physiological movement of pigment granules within melanophores (brown pigment cell) 

(Stevens et al. 2014; Smithers et al. 2017). Matching body luminance to that of the background 

luminance for camouflage is particularly important because motion, texture and shape of 

objects is largely conveyed by an animal’s ability to perceive luminance contrast (Cronin et al. 

2014; Ruxton et al. 2018). 

 Animals that live within the rocky-intertidal zone are ideal to assess how temperature 

alters short- and long-term thermal performance as they are exposed to diurnal tidal thermal 

fluctuations as well as seasonal thermal variation (Helmuth 1999; Helmuth and Hofmann 2001; 

Somero 2002). Intertidal organisms are often known as thermal generalists as they can 

withstand large fluctuations in temperature at rapid rates (Helmuth 1999; Helmuth and 

Hofmann 2001; Somero 2002; Griffiths 2003). For example, as the tide re-enters rock-pools 

after low-tide, rock-pools in temperate regions can change up to 10ºC within a few minutes 

(Sidell et al. 1983; Fangue et al. 2008). In addition, rock-pools are comprised of many different 

background types (e.g. rock, sand or algae), where animals must change colour rapidly if they 

are to move and maintain crypsis in their environment (Stevens et al. 2014; Stevens 2016; 

Smithers et al. 2017). Rock-pool fish are exposed to a range of predator types; at low-tide fish 
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in shallow pools are under predation pressure from birds whereas at high-tide fish are under 

predation pressure from larger teleost and cephalopods (Marsh 1986; Ellis et al. 2007; Stevens 

et al. 2014; Smithers et al. 2017).  

 I investigated whether B. cocosensis has the capacity to acclimate rate of luminance 

change to seasonal thermal conditions. I exposed half of the study population to warm 

conditions (31ºC) and the other half to cold (16ºC) conditions for nine weeks and then assessed 

rate of luminance change with each fish being tested against white and black backgrounds at 

both 16ºC and 31ºC acute test temperatures. To investigate how well B. cocosensis matched 

their background, I modelled how luminance changes might be perceived by a potential 

predatory fish using the visual sensitivities of the coral trout (Plectropmus leopardus) (Cortesi 

et al. 2016). I hypothesised that long-term exposure to different seasonal temperatures would 

enable B. cocosensis to acclimate rate of luminance change to different seasonal temperatures, 

when matching both darker and lighter background habitats colours. I predicted that fish 

exposed to warmer long-term temperatures would have a faster rate of change in warmer test 

temperatures compared to fish exposed to colder temperatures, and vice versa.    

 

3.3 Methods  

Bathygobius cocosensis (n = 80) were collected from the rocky inter-tidal zone at Point 

Cartwright, SE Queensland, Australia (26.6804°S, 153.1390°E) in November 2016. All fish 

were collected using a battery-operated bilge-pump and hand nets. Fish (22 – 47 mm standard 

length) were transported to The University of Queensland by vehicle in oxygen-saturated bags 

within an insulated container. Fish were anesthetized (0.3 x 10-3 mg L-1 of Aqui-S®) (Griffiths 

2003b; Malard et al. 2016) and tagged dorsally between their head and first dorsal fin, with 

unique Visible Implant Elastomer (VIE) florescent subdermal tags (Northwest Marine 

Technologies®, Inc.) for individual recognition. VIE tags do not affect growth rates or survival 

in fish (FitzGerald et al. 2004). Fish were split into two treatments: warm fish (n = 40) were 

randomly allocated to 6 tanks (~ 7 fish per tank) set at 31°C and cold fish (n = 40) were 

randomly allocated to 6 tanks (~ 7 fish per tank) set at 16°C. Fish were held for nine weeks in 

treatment conditions before the start of luminance change testing, as it usually takes several 

weeks to acclimate to changed thermal conditions (Seebacher et al. 2005). 

 Before testing, fish were brought to test temperature at a rate of 5°C per hour, as deemed 

an appropriate rate for intertidal fish exposed to rapid fluctuations in temperature change 

(Schulte et al. 2011). Rate of change in dorsal body luminance was measured in a full factorial 
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design where individuals from both warm and cold exposed treatment groups were tested 

against white and black backgrounds at both 16°C and 31°C. This resulted in four test groups: 

16°C test temperature white background; 31°C test temperature white background; 16°C test 

temperature black background; 31°C test temperature black background. Fish from each 

treatment group were randomly assigned to test conditions (by temperature and colour) so order 

of test temperature or colour would not affect results (a fully crossed experimental design). 

Fish were tested in a controlled temperature room (16°C or 31°C) at The University of 

Queensland. Fish were tested under LED lights (Arlec 9 Watt Slim Bar Lights) to ensure 

environmental lighting conditions were consistent across trials. 

 

Experimental preparation 

Black and white containers were created by spray-painting matt black or white (MMP industrial 

Pty Ltd, Mulgrave, NSW, AUS) onto PVC plastic sheets to line the inside of testing containers. 

Once dry, the reflectance of the paint colour was measured using a spectrophotometer 

(USB2000 Ocean Optics©, Largo, FL USA) (https://oceanoptics.com/) with a 400µm 

bifurcated optical fiber cable and a PX-2 light source and calculated the average luminance of 

the white and black background. An intermediate grey background was produced by printing 

a grey 40% luminance background onto Kodak printing paper using an HP laser jet (HP 

LaserJet Pro 400 colour M451dn) printer and laminated it for waterproofing. 

 

Experimental protocol  

Fish were first placed into an 8cm x 15cm container with the intermediate grey background 

prior to testing for 10 min to ensure that all fish were exposed to the same conditions before 

testing. The fish were photographed with a calibrated Samsung NX1000 with Nikkor EL 80mm 

lens camera, with a fixed aperture, manual white balance settings, and with a colour standard 

(using Kodak colour squares) for image calibration within the photo frame. Photographs were 

taken in RAW format. Fish were swiftly (< 5 seconds) transferred with a small dip net into 

either the white or the black background container at either 16°C or 31°C and photographed 

immediately and once every 15 seconds for 10 minutes with the colour standard for image 

calibration within each photo. Each fish was tested separately to avoid stimulating a 

behavioural change in luminance. On the last day of testing, mass (g) and standard length (mm) 

of each fish was measured.  
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Image Analysis 

I quantified body luminance of gobies through the eye of a potential predatory coral trout 

(Plectropmus leopardus). To do this, I used the Multispectral Image Analysis and Calibration 

(MICA) Toolbox plugin (Troscianko and Stevens 2015) in the program ImageJ 

(https://imagej.nih.gov/ij/). Images were calibrated and turned into 16-bit multispectral images 

using a grey standard with 73.3% and 5.1% reflectance (Fig. 3.1 & 3.2). Visual modelling using 

calibrated digital photography relies on detailed knowledge about the spectral sensitivities of 

both the potential animal viewer, the camera settings and the illumination within the image. 

Coral trout have single cones that contain a short wavelength sensitive pigment (λmax = 455nm); 

and twin cones that exhibit broad absorbance spectra ranging from 507 to 532 nm (mean λmax 

= 522 nm (Cortesi et al. 2016) so a mean λmax = 522 nm for luminance perception was used. 

Although coral trout are unlikely to be the main predator of B. cocosensis along Australia’s 

East coast, very few predatory fish spectral sensitivities are known, and their visual capacity is 

likely to be similar to other predatory teleosts (Losey et al. 2003).  

 

 
Figure 3.1 Panel A shows a modelled image of a goby from the cold exposure treatment at 

16ºC immediately after it was placed in the testing chamber through the eye of a coral trout. 

Panel B shows how the goby has become slightly lighter over 7 minutes through the eye of a 

 

A
 

B
 

C
 

D
 

0 min (coral trout vision) 7 min (coral trout vision) 

0 min (human vision) 7 min (human vision) 



 52 

coral trout (reconstructed RGB image). Panel C shows the same starting image but through the 

eye of a human and Panel D shows the goby after 7 minutes through the eye of a human.  

 

 
Figure 3.2 Panel A shows a modelled image of a goby from the warm exposure treatment at 

31ºC immediately after it has been placed in the testing chamber through the eye of a coral 

trout (reconstructed RGB image). Panel B shows how the goby has darkened itself over 7 

minutes through the eye of a coral trout. Panel C shows the same starting image but through 

the eye of a human and Panel D shows the darkened goby after 7 minutes through the eye of a 

human.  

 

Within the MICA toolbox I modelled photoreceptor stimulation. The visual model 

included information on the type of camera and lens we used to take the photos, the artificial 

lighting used to take the photographs, the coral trout visual sensitives, and the model illuminant 

(400-700nm daylight) (gobies are found in very shallow water so we modelled them being in 

a clear-sky daylight spectrum). Examples of modelled images of gobies against white and black 

backgrounds through coral trout vision in comparison to human vision are shown in Figures 

3.1 and 3.2. 

 Using the visual models for each photograph, I assessed the luminance of each goby at 

each time point as the average coral trout double cone stimulation across our region of interest 
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C 0 min (human vision) 

0 min (coral trout vision) 7 min (coral trout vision) 

7 min (human vision) D 
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(ROI). I drew an ROI around the inside edge of each goby (a triangle from their pectoral fins 

down their body and tail to avoid the elastomer tag) and calculated the median luminance. As 

thousands of photos were generated for this experiment (n > 6000), I used an ImageJ based 

script to partially automate this process for each photograph (ImageJ script in supplementary 

data). 

 I calculated the achromatic perceptual distance (∆S) (how closely the goby matches its 

background through the eye of a coral trout), between each goby and its visual background 

using the receptor noise limited model (Vorobyev and Osorio 1998). The receptor noise limited 

model assumes the inherent noise in photoreceptors ultimately limits contrast perception. 

Animal-background contrast was measured at each time point and against white and black 

backgrounds to assess the achromatic contrast between the goby and its background throughout 

the duration of testing. Calculations of achromatic contrast (∆𝑆) are routinely conducted using 

equation 7 from Siddiqi et al. (2004) and dividing it by the noise to signal ratio (weber fraction 

(𝜔𝑖 = 0.05)) (Stuart-Fox et al. 2003; Stevens et al. 2015) (eq. 1)    

 

∆𝑆 = (ln(𝑙1) − ln(𝑙2)) ÷ 		𝜔𝑖) (equation 1) 

 

where, l1 is the background luminance (white or black background) and l2 is the luminance of 

the goby polygon (ROI). The difference in achromatic perceptual distance was calculated at 

the start and the end of each rate of luminance test to assess if the total change in luminance 

over time would be noticeable to a coral trout. Threshold values that determine if a change in 

perceived achromatic distance are distinguishable (i.e. whether goby be distinguished from its 

background) have been argued, with studies suggesting values below 1∆S  are indistinguishable 

(Siddiqi et al. 2004) and other studies suggesting values below 3∆S as indistinguishable 

(Stournaras et al. 2015; Abernathy et al. 2017). The higher the change in achromatic perceptual 

distance the more obvious the goby is against its background, increasing the likelihood of 

detection by a coral trout.  

 

Statistical analysis 

To assess whether long-term exposure to warm or cold thermal conditions altered the rate at 

which gobies changed their luminance against white and black backgrounds, I ran a linear 

mixed effect model using the nmle package (Pinherio et al. 2018) in the statistical program R 

version 1.1453 (R Core Team 2013). Long-term exposure treatment, background colour (white 
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or black), and test temperature (16ºC or 31ºC) were set as fixed factors. Fish mass, body length 

and test time were included as covariates. Test time was also set as a random variable (slope) 

to identify variation in colour change rates, and fish number was set as a random variable. 

These random factors were generated for the slope and intercept to be correlated in the model, 

as the correlated random factor model had a better model fit than the model without a slope 

and intercept correlation (determined through AIC (Akaike information comparison)). I also 

tested interactions between treatment and test time, test temperature and background colour 

and treatment, test temperature and background temperature. All variables were left within the 

model as I believe that they are all ecologically and experimentally important.  

 The data was subdivided into four groups (Black 16ºC, White 16 ºC, Black 31 ºC, White 

31ºC) and a slope was generated (rate of luminance change over time) for each warm and cold 

exposed fish in each of the experimental groups. The slopes from the first four minutes of 

testing were used (rather than the full ten minutes of testing) as the slopes were steepest over 

this time and then stabilized over the rest of the testing period. Linear models were used to 

assess the effect treatment and fish mass had on rate of luminance change against each 

background at each test temperature. Positive slopes indicate a brightening in fish skin pigment 

and negative slopes indicate darkening.  

 Mean change in achromatic perceptual distance values were calculated at the start and 

end of each luminance change trial, where the total change in mean change in achromatic 

distance over time was then calculated. I used a linear mixed effect model to assess if 

acclimation treatment altered total change in achromatic perceptual distance in each 

background colour and test temperature treatment.  

 

3.4 Results  

Long-term thermal exposure (warm or cold exposure) significantly impacted the rate of 

luminance change in B. cocosensis against white and black backgrounds (Fig 3.3 & 3.4) (Table 

3.0) (Estimate = 0.027 ± 0.0035, df = 5652, t = 7.942, P < 0.001). Specifically, the warm 

exposed fish had faster rates of luminance change (within the first four minutes of testing) than 

the cold exposed fish when tested at 31ºC, and the cold exposed fish had faster rates of 

luminance change than the warm exposed fish when tested at 16ºC. These findings indicate 

that B. cocosensis acclimated rate of luminance change to their long-term thermal exposure 

conditions. I now explore each experimental group (test temperature and background colour) 

separately.  
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Table 3.0. Linear mixed effect model summary of the response luminance (% lumins) to the 

experimental coefficients (full model before post-hoc sub-setting to individual experimental 

groups).   

 

 

16ºC test temperature 

The long-term cold (16ºC) exposed fish turned lighter (against a white background) at a faster 

rate than the warm exposed fish when tested at the 16ºC test temperature (over the first four 

minutes of testing) (F1 = 5.143, P = 0.029) (Fig 3.3a & 3.4a) (Table 3.1). Fish mass had no 

effect on rate of luminance change (Table 3.1). Fish length was omitted from the model because 

it was correlated with fish mass. After four minutes of testing the cold exposed fish had 

luminance values of 33.3 ± 0.014% on average and the warm exposed fish had luminance 

values of 29.5 ± 0.017% on average, meaning the cold exposed fish became lighter than the 

warm exposed fish on average (when tested at 16ºC against a white background).  

 
 

Coefficients Estimate ± SE df t P 

Intercept 0.098 ± 0.006 5652 17.12 0.000 

Mass -0.0004 ± 0.005 5652 -0.07877 0.937 

Test time -0.0018 ± 0.0003 5652 -6.228 < 0.000 

Treatment (long-term 

exposure) 

-0.0052 ± 0.0059 50 -0.8668 0.3902 

Test temperature -0.0197 ± 0.0009 5652 -20.535 < 0.000 

Background colour 0.214 ± 0.0019 5652 109.60 < 0.000 

Treatment * Test 

temperature 

0.0116 ± 0.0014 5652 8.31445 < 0.000 

Test temperature * 

background colour 

0.0083 ± 0.0027 5652 3.07763 0.0021 

Treatment * 

background colour 

0.0165 ± 0.0025 5652 6.375 < 0.000 

Treatment * test 

temperature * 

background colour 

0.027 ± 0.0035 5652 7.942 < 0.000 
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Table 3.1. Linear model summary of the response of rate of luminance change to long-term 

thermal exposure and fish mass when tested at 16ºC against a white background.  

Coefficients df F P 

Mass 1 0.63 0.431 

Exposure group 1 5.14 0.029 

Residuals 37   

 

The cold exposed fish were also able to turn darker (against a black background) at a faster rate 

than the warm exposed fish when tested at the 16ºC test temperature (F1 = 10.74, P = 0.002) 

(Figure 3.3c & 3.4c) (Table 3.2). Fish mass had no effect on rate of luminance change (Table 

3.2). Here, both warm and cold exposed fish showed a reduction in luminance over the first 

four minutes of testing. The cold exposed fish had luminance values of 7.6 ± 0.006% on 

average and the warm exposed fish had luminance values of 8.9 ± 0.006% on average, meaning 

the cold exposed fish were slightly darker after four minutes than the warm exposed fish.  

 

Table 3.2. Linear model summary of the response of rate of luminance change to long-term 

thermal exposure and fish mass when tested at 16ºC against a black background.  

Coefficients df F P 

Mass 1 0.15 0.701 

Exposure group 1 10.74 0.002 

Residuals 35   

 

31ºC test temperature 

Long-term warm (31ºC) exposed fish were able to turn lighter at a faster rate than the cold 

exposed fish against a white background when tested at 31ºC, during the first four minutes of 

testing (F1 = 4.19, P = 0.047) (Table 3.3) (Figure 3.3b & 3.4b). Although the warm exposed 

fish changed luminance at a faster rate than the cold exposed fish, the cold exposed fish had 

higher luminance values 33.6 ± 0.02% than the warm exposed fish, 32.0 ± 0.02%, after four 

minutes of testing. Again, fish mass had no effect on rate of luminance change (Table 3.3).  
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Table 3.3. Linear model summary of the response of rate of luminance change to long-term 

thermal exposure and fish mass when tested at 31ºC against a white background.  

Coefficients df F P 

Mass 1 0.15 0.699 

Exposure group 1 4.19 0.047 

Residuals 40   

 

The long-term warm exposed fish were able to turn darker at a slightly faster rate than the cold 

exposed fish when tested against a black background at 31ºC (Figure 3.3d & 3.4d), however 

the difference was not statistically significant (F1 = 1.75, P = 0.193) (Table 3.4). After the first 

four minutes of testing the warm exposed fish became darker than the cold exposed fish (Fig 

3.4d) Mass had no effect on rate of luminance change (Table 3.4). On average, the warm 

exposed group was 6.6 ± 0.005% bright and the cold exposed group was 6.9 ± 0.007% bright 

after four minutes of testing, indicating that the warm exposed group was slightly darker than 

the cold exposed group.  

 
Table 3.4. Linear model summary of the response of rate of luminance change to long-term 

thermal exposure and fish mass when tested at 31ºC against a black background.  

Coefficients df F P 

Mass 1 0.97 0.331 

Exposure group 1 1.75 0.193 

Residuals 40   
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Figure 3.3 Rate of change in luminance for warm and cold exposed fish in A) against a white 

background in 16ºC; B) against a white background in 31ºC; C) against a black background in 

16ºC; D) against a black background in 31ºC. Rates below zero indicate a darkening response 

and rates above zero indicate a pigment brightening. Arrows indicate if a positive or negative 

slope would be required for B. cocosensis to more closely match their background in terms of 

luminance. 
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Figure 3.4 Average change in luminance (with standard error in grey) over 10 minutes for the 

long-term warm and cold exposed fish. A) against a white background in 16ºC; B) against a 

white background in 31ºC; C) against a black background in 16ºC; D) against a black 

background in 31ºC. Increases in luminance indicate a lightening in pigment and decreases in 

luminance indicate a darkening in pigment.  

 

On average gobies were able to turn darker faster than lighter (Figure 3.4) (Table 3.5). In 

addition, gobies were able to change luminance (in the direction of the background luminance) 

faster at 31ºC than 16ºC (Fig 3.3 & 3.4) (Table 3.5). 

 

 

 
 
 
 
 
 

 

 

A B 

C D 
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Table 3.5. Average rates of colour change (lumins per minute) for each exposure group in each 

test treatment during the first four minutes of testing. * indicates correct colour change direction 

for background matching. 

Test temperature Colour Warm exposed average 
rate of luminance 

change (lumins/min) ± 
SE 

Cold exposed average 
rate of luminance change 

(lumins/min) ± SE 

16ºC White -0.0066 ± 0.003 0.0035* ± 0.003 

31ºC  White -0.0033 ± 0.002 -0.0081 ± 0.003 

16ºC Black -0.0004* ± 0.001 -0.0068* ± 0.002 

31ºC  Black -0.0084* ± 0.001 -0.0084* ± 0.002 

 

Starting luminance  

As the fish are partially translucent, their luminance was affected by the background colour 

(white or black) that they were tested on (Fig. 3.4). When placed on the white background, at 

the start of the 10 minute test period, the fish were 32.3 ± 0.006% luminance on average and 

when placed against a black background, fish were 9.9 ± 0.004% luminance on average and 

got darker over time (Fig. 3.4). The variance in starting luminance (time = 0 mins) against the 

white background (variance = 0.006) was greater than the starting luminance when tested 

against the black background (variance = 0.0009) irrespective of treatment. To assess if warm 

or cold exposure influenced starting luminance, we ran a linear model and found that exposure 

group (warm or cold) altered starting luminance when placed against a white background 

(Estimate = 0.04 ± 0.12, t = 3.34, P = 0.001), and had a small, but significant effect on starting 

luminance against black backgrounds (Estimate = 0.009 ± 0.005, t = 2.04, P = 0.043). We 

quantified the luminance of each fish when they were placed against the grey background prior 

to testing, here we found that the cold exposed fish had slightly higher luminance values on 

average, however, the difference between treatment groups was not quite statistically 

significant (Estimate = - 0.015 ± 0.008, t = -1.884, P = 0.063) (Supplementary Figure 3.S1).  

 

Coral trout visual perception 

The long-term exposure group (warm or cold) altered the total change in achromatic perceptual 

distance over time against white and black backgrounds (ΔS at 0 mins – ΔS time at 10mins) 

(Figure 3.5; Table 3.6). When tested against the black background, all experimental groups,  
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except the warm exposed fish at 16ºC, showed an ecologically significant change in luminance 

through the eye of a coral trout (ΔS > 3) (Table 3.6). These results indicate that B. cocosensis 

are undergoing ecologically significant dark background matching in terms of decreasing 

luminance, which would likely make them less obvious to a coral trout. Their end change in 

achromatic perceptual distance values, however, remain greater than 3, meaning that they are 

still distinguishable from their background. An example of B. cocosensis showing very little 

change of luminance is shown in Figure 3.1 and an example of noticeable luminance change is 

shown in Figure 3.2. 

 

Table 3.6. Average achromatic perceptual difference (ΔS, difference between goby luminance 

and background luminance) at the start, end, and total change in achromatic perceptual distance 

over test time against a black background over testing through the eye of a coral trout. ΔS 

above 3 indicate that a noticeable change in goby appearance would have occurred to the coral 

trout.  

 

 

When tested against white backgrounds, B. cocosensis have less significant changes in 

achromatic perceptual distance between the start and end of testing than when tested against 

black backgrounds (Table 3.7). All of the total changes in achromatic perceptual distance 

against white backgrounds were less than one ΔS with no distinguishable change in luminance 

of the gobies against white backgrounds over the 10 minute testing period through the eye of 

the coral trout. Animal-background contrast in all treatments remained above 3 ΔS at all times.  

 

 

 

 

Treatment Start µ DS ± 

SE 

End µ DS ± 

SE 

Total D S 

Warm exposed 31ºC test temperature 31.80 ± 0.83 20.99 ± 1.45 10.81* 

Cold exposed 31ºC test temperature 32.23 ± 1.23 25.46 ± 1.29 6.77* 

Warm exposed 16ºC test temperature 30.9 ± 0.95 31.3 ± 0.82 -0.4 

Cold exposed 16ºC test temperature 34.1 ± 0.93 26.40 ± 1.15 7.7* 
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Table 3.7. Average change in achromatic perceptual distance at the start and end of testing, 

and the total change in achromatic perceptual distance over test time against a white 

background through the eye of a coral trout.  

 

 

 

Figure 3.5 Change in achromatic perceptual distance over test time in the warm and cold 

exposed fish in each test treatment. Decreases in perceptual distance indicates improved 

background matching. Changes over ΔS 3 indicate that a change in luminance would be 

noticeable to the coral trout.  

Treatment Start µ DS  

± SE 

End µ DS  ± 

SE 

Total DS 

Warm exposed 31ºC test temperature 17.05 ± 0.68 17.57 ± 0.55 -0.52 

Cold exposed 31ºC test temperature 14.08 ± 0.73 14.36 ± 0.60 -0.28 

Warm exposed 16ºC test temperature 17.01 ± 0.73 16.34 ± 0.47 0.67 

Cold exposed 16ºC test temperature 15.36 ± 0.99 14.93 ± 0.67 0.43 

W
hite
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3.5 Discussion   

Intertidal gobies can change luminance to match dark or light backgrounds, and here we have 

shown that the rate of luminance change can acclimate to long-term temperature change typical 

of that experienced across seasons. At 16ºC, cold exposed fish: 1) became lighter at a faster 

rate on a white background than warm exposed fish and 2) became darker at a faster rate when 

placed against a black background than the warm exposed fish (Fig 3.3a & c). Similarly, when 

tested at 31ºC, warm exposed fish: 3) became lighter at a faster rate than the cold exposed fish, 

and 4) became darker at a slightly faster rate than the cold exposed fish when tested against a 

black background (Fig 3.3b & d). In addition, total change in achromatic distance between the 

goby and the black background acclimated to seasonal temperatures, where the warm exposed 

fish better matched the black background when tested at 31ºC and the cold exposed fish better 

matched the black background when tested at 16ºC. Overall, these findings support the 

hypothesis that B. cocosensis have the capacity to acclimate rate of luminance change to 

seasonal temperatures, which was predicted based on their ability to acclimate other 

ecologically important traits such as burst swimming speed and maximum metabolic rate (da 

Silva et al. 2019). 

 This is the first study to examine if long-term thermal change (nine weeks) can alter the 

rate at which an animal is able to change its luminance. The phenotypic responses to longer-

term temperature at least partly compensate for the potentially negative effects of short-term 

(acute) temperature change on the ability to change luminance for background matching. In 

other words, the capacity B. cocosensis have to acclimate rate of luminance change to seasonal 

temperatures is likely to be an adaptive response to remain inconspicuous against different 

background in heterogeneous rock-pools. Changes in seasonal thermal means in south-east 

Queensland are predictable (da Silva et al. 2019a), and these predictable shifts in seasonal 

temperature are likely to enable thermal acclimation of rate of luminance change for 

background matching to be beneficial to survival in this context. Short-term thermal 

fluctuations in rock-pool temperature, however, are likely to alter capacity to change luminance 

rapidly to match their visual background. For example, fish tested in temperatures they were 

not long-term exposed to had reduced background matching capabilities. On average, rate of 

background matching was more rapid in warm test temperatures than cold test temperatures. 

Thus, as the tide ebbs up the intertidal zone and rapidly fills warmed rock-pools with cool water 

with the rising tide, the capacity individuals have to match their background may be reduced. 

Therefore, the ability individuals have to respond to rapid thermal changes (short-term) is 
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limited, but their capacity to shift their physiology to better perform with seasonal means (long-

term) is likely to be beneficial to survival in the intertidal zone.  

 Interestingly, I found potentially maladaptive pigment darkening responses when fish 

were placed into test temperatures that they were not acclimated to (see Figs 3.3 & 3.4). The 

observed darkening responses (when an increase in luminance rather than decrease would 

improve background matching) may be explained by malfunctioning of chromatophore 

physiology at non-optimal temperatures. Aggregation of chromatophores through 

neuromuscular activity (rapid physiological colour change mechanism) requires ATP (Sköld 

et al. 2016) and is hypothesized to be more energetically taxing than dispersing them, as the 

contraction/aggregation of muscles requires more energy than relaxing/dispersing them (Curtin 

and Woledge 1974; Barclay 1994). This suggests that chromatophores are unable to aggregate 

their pigments optimally in temperatures that they have not thermally acclimated to, and as a 

result, lose control and disperse their pigments resulting in a darker phenotype.  

 I also found that B. cocosensis turn darker at a faster rate on average than brighter. 

These results are consistent with other studies on another goby species, Gobius paganellus, and 

a species of bullfrog, Rana catesbeina, where they also turn darker faster than lighter when 

placed against different background colours (Camargo et al. 1999; Smithers et al. 2018). The 

quick darkening response in bullfrogs is hypothesized to be due to increases in melanophore 

stimulating hormone (a darkening agonist), which induces chromatophore dispersion, whereas 

skin lightening is likely to result in reductions in the hormone concentration (Camargo et al. 

1999). Rapid changes in colour (seconds), are more likely to occur from neuromuscular 

contraction or relaxation, or by a combination of both neural and hormonal signals in fish 

(Sköld et al. 2016; Duarte et al. 2017). Therefore, rapid darkening in B. cocosensis, may be due 

to chromatophores dispersing more rapidly than aggregating, especially if chromatophore 

dispersion is less energetically costly than aggregation. In addition, as rock-pool fish are likely 

to escape to rocky-crevices when threatened by predators, rapid darkening could be an adaptive 

response enabling rock-pool fish to become indistinguishable from rocky-hiding spots. 

Conversely, a study on Fundulus (killifish), a temperate intertidal fish, had a higher capacity 

to turn lighter at a faster rate than darker (Cole 1939). Perhaps killifish have evolved the 

capacity to turn light quickly in white sandy areas, to be less conspicuous to predators and prey 

while basking in the sun and hunting for small invertebrates. Bathygobius cocosensis have been 

observed to match sandy and pebbly rock-pool habitats well during field surveys, however, B. 

cocosensis are rarely exposed to very bright white backgrounds in their natural habitat. Mottled 
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sandy coloured habitats are more common “light” habitats in the wild. Rock-pool gobies have 

been found to use behavioural preferences to choose backgrounds that they are better for 

camouflage (Smithers et al. 2018), suggesting that perhaps B. cocosensis avoid very light white 

backgrounds in nature as they have a limited capacity to turn light. In addition, B. cocosensis 

have been observed to take on a banded phenotype, which might help them camouflage in 

sandy or pebbly environments (Fig 3.6). The darkened band may also explain the average slight 

darkening response that some of the warm exposed gobies show when placed against white 

backgrounds in 31ºC. A light “sand coloured” or “mottled pattered” background, could be used 

instead of a white background to better simulate a natural “light” luminance change response 

in B. cocosensis in future experiments. It would also be beneficial to assess skin patterning in 

future studies to determine how patterning helps maintain crypsis within mottled patterned 

environments. 

 

 
Figure 3.6 Example of a goby taking on a banded pattern. This image was taken of a warm 

exposed goby at 31ºC. 

 

Overall, cold exposed fish were found to have higher luminance values at the end of 

the grey standardization period and start of testing when placed on both white and black 

backgrounds. This may be a result of long-term exposure to different seasonal thermal 

conditions and may be been driven by increase concentration of melatonin. The effect 

melatonin has on melanophore aggregation or dispersion has been shown to be seasonally 
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dependent in a tropical reef fish Rasbora daniconius (Ovais et al. 2015). During summer 

months, increased concentrations of melatonin have an inverse aggregation response, whereas 

higher concentrations of melatonin correlates with lower melanophore aggregation and 

phenotype darkening. During winter months, however, increases in melatonin concentrations 

are positively correlated with melanophore aggregation, and therefore, phenotype brightening 

(Ovais et al. 2015). The average higher luminance values observed in the cold exposed fish 

may be explained by melatonin induced melanophore aggregation in cold temperatures, 

simulating winter. The effect melatonin has on the aggregation or dispersal of melanosomes 

however, is highly species dependent (Nishi and Fujii 1992; Ovais et al. 2015). 

 The capacity B. cocosensis has to acclimate rate of luminance change to seasonal 

thermal conditions may be a buffer from increasing temperatures associated with climate 

change. Thermal stochasticity and variability is increasing with climate change and these rapid 

changes are likely to have negative consequences on B. cocosensis thermal performance as 

thermal acclimation to changed temperatures usually occurs over a time scale of weeks in fish 

(Seebacher 2005); and B. cocosensis were observed to have reduced background matching 

responses when exposed to acute thermal conditions they were not acclimated to. Reduced 

capacity to background match for camouflage may result in fish being detected more easily by 

predators, resulting in reduced survival. This study provides a stepping stone to understanding 

a mechanistic basis for how climate change may alter behaviourally mediated species 

interactions. Malfunctioning of prey species chromatophore pigment aggregation is likely to 

increase the frequency of predator-prey interactions as prey species will be more obvious 

against their backgrounds to potential predators. Therefore, climate change may cause 

predator-prey interactions to more frequently favour predators than prey if prey species are 

unable to remain cryptic to predators when temperatures change quickly. Conversely, climate 

change might also make predators more conspicuous to prey species, meaning that the direction 

of the effect of thermal change on predator-prey interactions might be highly contingent of 

species differences and ecological context. 

 This is the first study to show that long-term exposure to different thermal conditions 

can affect rate of background matching, and that it is possible for rate of luminance change to 

thermally acclimate to seasonal conditions. Rate of luminance change for camouflage is an 

important ecological trait that affects survival and fitness, and it should be taken into account 

when modelling species responses to climate change, along with other traits such as 

metabolism and locomotion. In conclusion, I propose that gaining a more comprehensive 
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understanding of how different functional traits, such as rate of background matching, have 

evolved to respond to short- and long-term temperature variation is important for understanding 

how changes in climate will affect species fitness and survival, as well as for understanding the 

physiological and behavioural basis of ecological interactions in variable environments more 

generally.   

 

Note: This study provides an ImageJ based script (Supplementary material ImageJ code) to 

extract luminance values from the MicaToolbox plugin for future studies that wish to assess 

rate of luminance change.   
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3.6 Supplementary material 

 

 
 

Supplementary figure 3.S1 Differences in warm and cold exposed fish luminance (%) after 

exposure to a grey background for 10 minutes.   
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3.7 Multi-photograph luminance extraction code for MicaToolBox Plugin  

ImageJ Macro code written by Dr. Nicholas Condon 

Note: Running this macro in ImageJ will prompt you to select a folder of RAW format 
photographs. The script will execute the “Generate multispectral images” plugin for each 
photograph in the directory. The user is then prompted to select the light and dark colour 
standards to calibrate the photographs with the grey standards reflectance values (green 
highlight). It will then generate a visual model (factors can be altered – add customized factors 
into yellow highlighted region of code) of the photograph. Factor names can be found within 
“MICA Toolbox > Cone Mapping > Generate cone mapping model”. The double wave channel 
of the modelled image will be selected to measure luminance. Drawing around your region of 
interest (ROI) will allow you to calculate the luminance of the ROI. This data will then be 
automatically added to a “results” csv file.  The macro will then loop for each photograph 
within the chosen directory.  
 
ImageJ code 
 
run("Clear Results"); 
 
path = getDirectory("Choose Source Directory "); 
list = getFileList(path); 
 
run("Set Measurements...", "area mean standard modal min centroid perimeter median display 
redirect=None decimal=3"); 
 
for (i=0; i<list.length; i++) { 
if (endsWith(list[i],".SRW")){ 
 //setTool("roundrect"); 
   
   run(" Generate Multispectral Image", "settings=Visible grey=[Same photo] 
standard=5.06,73.31 alignment=None offset=16 scaling=5 scale_step_size=0.005 
image=[Aligned Normalised 32-bit] image_0="+i+" select="+path+list[i]); 
 name=getTitle;  
print(name); 
print(list[i]); 
 run("Convert to Cone Catch", "model=[Samsung NX1000 Novoflex 35mm 
Carmenlights to Coral Trout D65]"); 
 setSlice(4); 
 //run("Wand Tool...", "tolerance=4650 mode=Legacy"); 
 waitForUser("Draw around fish"); 
 rename(list[i]); 
 run("Measure"); 
 roiManager("reset"); 
 close(); 
 close(); 
   
}} 
 
saveAs("Results", path+"Results.csv"); 
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Chapter 4 
 

Rapid larval growth is costly for post-metamorphic thermal 

performance in a Great Barrier Reef fish 

 

This thesis chapter is published in the journal Coral Reefs: da Silva CRB, Wilson RS, Riginos 

C (2019) Rapid larval growth is costly for post-metamorphic thermal performance in a Great 

Barrier Reef fish. Coral Reefs. DOI: 10.1007/s00338-019-01815-7 

 

I contributed significantly to this manuscript. I generated the initial project question and design 

and it was then refined by Cynthia Riginos and Robbie Wilson. I collected the fish used for 

this project, conducted the thermal performance experiments, statistical analysis and 

manuscript writing. Both Cynthia and Robbie provided editorial advice.  

 

Percentage of contribution towards da Silva et al. (2019b) 

 

 

 

 

 da Silva Wilson Riginos 

Concept and design  70 10 20 

Field collection 100 0 0 

Experiments 100 0 0 

Statistical analysis 100 0 0 

Writing of manuscript 80 10 10 

Editing of manuscript 60 10 30 
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4.1 Abstract  

Most marine fish species disperse during a planktonic larval stage where individuals exhibit 

variation in pelagic duration, growth rate and settlement size. Extreme predation risk is 

predicted to select for rapid growth rates and decreased pelagic duration as a strategy for 

increasing survival to settlement. How larval traits affect post-metamorphic performance, 

however, has been a contentious topic over the past 50 years. Some studies suggest that larval 

traits have carry-over effects to later life stages, where larval traits can be positively or 

negatively correlated with post-metamorphic performance. For example, individuals with rapid 

larval growth rates may settle at larger sizes and have faster post-metamorphic locomotion than 

slow growing individuals. Alternatively, trade-offs between life stages might exist, where rapid 

larval growth rate may be negatively correlated with post-metamorphic locomotion, potentially 

due to energetic resource allocation trade-offs. In addition, other studies suggest that larval 

traits are de-coupled from later life stages to allow for a transition in morphology and habitat. 

I tested how Bathygobius cocosensis hatch size, larval growth rates, settlement size, and pelagic 

duration correlated with post-metamorphic thermal performance of burst swimming speed, 

routine metabolic rate and critical thermal maximum. I found that larval growth rate was 

negatively correlated with juvenile routine metabolic rate and burst swimming speed across a 

range of test temperatures. That is, fast growing larvae had slower burst swimming speeds and 

lower routine metabolic rates across temperature as juveniles compared to slower growing 

larvae. I also found that hatch size and pelagic larval duration were not correlated with post-

metamorphic performance. Thus, I provide evidence both for larval traits having carry-over 

effects on later life stages and also for larval traits being de-coupled with thermal performance 

post-metamorphosis. This is the first study to show that rapid larval growth rate is costly for 

post-metamorphic thermal performance in a wild marine fish.  
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4.2 Introduction 

Dispersal is one of the most important mechanisms for maintaining population connectivity, 

genetic diversity, and survival in changing environmental conditions (Lande 1988; 

Trakhtenbrot et al. 2005; Cowen and Sponaugle 2009). Many marine fish species disperse 

during their pelagic planktonic larval stage where they traverse the water column for many 

days and are exposed to varying environmental conditions (Meekan and Fortier 1996; Wilson 

and Meekan 2002; Shima and Swearer 2009; Gimenez 2010). Environmental conditions and 

variation in genotypes affect larval traits such as pelagic duration, growth rates, and settlement 

size (Gimenez 2010; Grorud-Colvert and Sponaugle 2011); the effect these traits have on later 

life stages has been a contentious issue for the past 50 years.  

There is considerable debate as to whether larval traits (in any species with complex 

life-cycles) have carry-over effects to later life stages, or if larval traits are de-coupled from 

post-metamorphic traits (Wilbur 1980; Moran 1994; Meekan and Fortier 1996; Pechenik et al. 

1998; Arendt 2003; Marshall et al. 2003; Crean et al. 2011). Some studies suggest that 

metamorphosis allows a de-coupling of traits for adaptation to particular environments for each 

life stage (Ebenman 1992; Moran 1994; Parichy 1998). This de-coupling hypothesis suggests 

that traits expressed during the larval stage are not correlated with traits in juvenile or adult life 

stages and that metamorphosis allows individuals to re-form for increased survivability in a 

new environment (Ebenman 1992; Moran 1994; Parichy 1998; Johansson et al. 2010).  

In contrast, other empirical studies show that larval traits have significant effects (carry-

over) on post-metamorphic performance (Pechenik et al. 1998; Crean et al. 2011). Larval traits 

that are carried over to later life stages can have either positive or negative effects on post-

metamorphic traits. For example, larval size has been shown to have a positive effect on post-

metamorphic growth in marine invertebrates (Marshall and Keough 2004), and larval frogs 

(tadpoles) reared with predatory pressure have longer hind limbs post metamorphosis than 

individuals reared without predators, showing that larval experience can affect later life stage 

performance (Relyea 2001). Rapid development, however, can also incur costs that have 

negative effects on post-metamorphic traits and performance (Arnold and Wassersug 1978; 

Wilbur 1980; Alvarez and Nicieza 2002). For example, some frogs with rapid larval growth 

have decreased jumping performance as juveniles (Ficetola and De Bernardi 2006). 

Physiological costs associated with fast growth rates (developmental or post metamorphic) can 

arise from allocating energetic resources to growth that could otherwise be used for cell 

maintenance or locomotion (Stevens et al. 1998; McCarthy 2000; Arendt et al. 2001). These 
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physiological costs have the potential to transcend to later life stages once larvae settle as 

adults. Traits that are energetically demanding (such as rapid growth) during the larval phase 

are more likely to be associated with energy partitioning trade-offs and potentially costs for 

post-metamorphic traits. Larval traits such as size, however, are often shown to have positive 

cumulative positive knock-on effects to later life stages, where larger individuals have 

increased survivability and fitness (Vigliola and Meekan 2002; Marshall and Keough 2004).  

Although the aforementioned examples and many other studies document all three possible 

relationships between larval and post-metamorphic traits, most studies have assessed 

relationships between larval traits and post-metamorphic performance on laboratory reared 

animals (see review by Pechenik (2006)). There is, however, a need for research on how wild 

caught larval traits affect post-metamorphic performance to better understand wild population 

dynamics and survival strategies. 

Another limitation of many empirical studies that assess trait correlations between wild 

larval and post-metamorphic life stages is that they compare traits such as growth rate, 

morphology or performance in a single environmental condition (Meekan and Fortier 1996; 

Pechenik et al. 1996; Alvarez and Nicieza 2002; Marshall et al. 2003; Fischer et al. 2004; Shima 

and Swearer 2010; Crean et al. 2011). What is missing is an understanding of how early life 

environmental variability (reflected in wild larval traits) affects thermal performance of traits 

such as metabolic rate and burst swimming speed, which are directly indicative of fitness and 

survival in dynamic natural environments. For example, maintenance of burst swimming speed 

across temperature aids escape from predation in variable thermal environments (Walker et al. 

2005; Husak 2006a,b). Maintenance of metabolic rates is important for oxygen demanding 

activities such as sustained swimming, anaerobic recovery, digestion and growth (Brett 1964). 

In addition, critical thermal maximum can be indicative of geographic distribution and barriers 

to thermal limits. Here, I aim to examine correlations between larval traits and post-

metamorphic thermal performance of routine metabolic rate, burst swimming speed and critical 

thermal maximum to gain an understanding of how wild larval traits affect juvenile thermal 

performance thereby gaining insight into how larval traits affect fitness and survival in a natural 

environment. Whereas such a correlative approach lacks the precision of controlled 

experiments, it allows me to examine fish whose prior experiences span a range of ecologically 

relevant environmental conditions.  

I used wild juvenile Bathygobois cocosensis (Cocos Frillgoby) (Bleeker 1854) from 

Heron Island in the southern Great Barrier Reef as my study species. By assessing acute 
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juvenile thermal performance and testing for correlations with larval traits (using otoliths to 

back calculate age, hatch size, growth rate and settlement size (Victor 1984; Wellington and 

Victor 1985,1992)), I can make insights on how larval traits and experience might affect post-

metamorphic whole organism performance and fitness. By testing performance across a range 

of acute test temperatures I can also gain an understanding of how larval traits might influence 

adult performance across a range of environmental conditions.  

Bathygobious cocosensis experience about 20 days as larvae in the pelagic zone, before 

settling at an intertidal location (this study; Thia et al. 2018). During this stage, larvae are 

exposed to extreme predation pressure and high mortality due to inability to find food or 

survive in physical environmental conditions (Meekan and Fortier 1996; Wilson and Meekan 

2002; Cowen and Sponaugle 2009; Shima and Swearer 2009; Gimenez 2010; Shima and 

Swearer 2010). Rapid growth can reduce mortality rates, by reducing time spent in the pelagic 

larval phase, and large settlement sizes often increase post-metamorphic survival (Marshall et 

al. 2003) and potentially competitive ability. Bathygobius cocosensis are an aggressive species, 

and larger individuals have been observed to inhabit rock-pools in the low-tide region of the 

intertidal zone (Malard et al. 2016; Paijmans and Wong 2017), which generally provide greater 

access to food and refuges. Thia et al. (2018) found that individuals of B. cocosensis that settle 

at a small size remain small for at least four days post-settlement, and larger B. cocosensis 

adults have also been observed to have higher routine metabolic rates than smaller individuals 

and faster burst swimming speeds (da Silva et al. 2019a). Therefore, if individuals settle as 

large larvae, they are likely to benefit by gaining better access to high quality habitat, enabling 

larger growth as juveniles and adults, consequently having positive correlations with post-

metamorphic performance beyond the immediate four days post settlement that are identifiable 

through otolith increment analysis.  

Specifically, I tested whether pelagic larval duration, hatch size, larval growth rates, 

and settlement size correlated with juvenile thermal performance of routine metabolic rate and 

burst swimming speed across temperature and critical thermal maximum in juvenile B. 

cocosensis. I propose three sets of expectations based on competing hypotheses on how larval 

traits will be correlated with acute thermal performance: 1) Life stage de-coupling hypothesis: 

Some evidence suggests that larval traits are de-coupled with post-metamorphic traits as a 

method of life-stage partition for improved adaptation to each life stages habitat, under this 

scenario I predict that there will be no correlations between larval traits and post-metamorphic 

performance (Fig 1A). 2) Bigger is better hypothesis: Under the hypothesis that individuals 



 75 

that settle large stay large and have greater post-metamorphic performance, I predict that 

individuals with fast growth rates or long pelagic larval durations will have higher routine 

metabolic rates and burst swimming speeds across temperature than individuals with slow 

larval growth rates or short pelagic larval durations (Fig 1B). 3) Life stage trade-off 

hypothesis: Under the hypothesis that fast larval growth occurs to avoid predation during the 

pelagic stage but is negatively associated with post-metamorphic energetic trade-offs, I expect 

that individuals with short pelagic larval durations and fast growth rates will have lower 

metabolic rates and slower burst swimming speeds across acute test temperatures than 

individuals with longer pelagic larval durations and slow growth rates (Fig 1C). These 

competing hypotheses were evaluated in the context of whole organism performance across a 

range of temperatures.  

 
Figure 4.1. Conceptual illustration of three competing hypotheses for how larval traits (such 

as growth rate, as shown in the example) might correlate with post-metamorphic performance 

across acute test temperatures. A) The life stage de-coupling hypothesis predicts no 

 



 76 

correlation between larval growth rate and post-metamorphic performance. B)  The bigger is 

better hypothesis predicts that larval with fast larval growth rates will have the highest post-

metamorphic thermal performance. C)  The life stage trade-off hypothesis predicts that 

individuals with slow larval growth rates have the highest post-metamorphic performance. 

 

4.3 Methods 

 

Fish collection 

Bathygobius cocosensis were collected in late March 2017 to allow for larval settlement, 

metamorphosis and some juvenile development (fish were aged 37 to 117 days old post 

hatching) (Griffiths 2003; Thia et al. 2018). Fish were collected from the intertidal area of the 

scientific research zone on Heron Island (23.4438°S, 151.9151°E) located in the Southern 

Great Barrier Reef, where ambient water temperatures were 27°C on average. Fish were 

collected by scraping dip-nets along the rocky intertidal flats. Only fish up to 3 cm in length 

were collected to ensure otolith readings for planktonic life history analysis could be accurately 

analysed (fish greater than 3 cm in length are usually too old for accurate daily larval otolith 

reading).  

Bathygobius cocosensis (N = 96) were independently housed within numbered closed 

containers (15 x 8 x 7 cm) to allow for individual identification. Fish were kept in 27°C aerated 

seawater (35 ppt) at The University of Queensland’s Heron Island Research Station facility on 

a 12:12 light-dark regime with daily water changes. Fish were left to rest in laboratory 

conditions for two days prior to the start of thermal performance testing and fish were fed three 

flakes of Sera marine GVG-Mix (Marine Treat Mix) per day (post performance testing). 

Thermal performance of routine metabolic rate and burst swimming speed was tested 

over the course of 10 days (tank water was changed post performance testing each day). I tested 

routine metabolic rate during the first five days of testing where each fish was tested at acute 

test temperatures in the following randomised order to avoid effects of acclimation: 28°C, 

15°C, 33°C, 22°C and 37°C (one test temperature per day). Individuals were tested in a 

randomised order. During the following five days burst swimming speed was tested at 28°C, 

15°C, 33°C, 22°C and 37°C respectively. Fish were brought to test temperature at a rate of 3°C 

per hour (appropriate for intertidal organisms that experience rapid thermal fluctuations to test 

acute thermal performance (Schulte et al. 2011)).  
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Performance testing 

Routine metabolic rate was assessed prior to burst swimming speed to minimise stress and to 

reduce error in metabolic rate samples. Fish were placed in darkened (black plastic covered) 

350 mL respirometers for one hour within a water bath set at the daily test temperature prior to 

the start of testing to allow the fish’s metabolic rates to stabilize. Oxygen consumption was 

then measured in the following hour using a PreSens Fibox 4 (POF-L2.5-1). A polymer optical 

fiber and oxygen minisensor spots (batch ID – 140117-001) were used to measure the decrease 

in percent air saturation within the respirometer. Control measures were taken from 

respirometers full of sea water (no fish) to detect for any microorganism metabolic activity or 

oxygen production occurring within the testing water that may affect results. A control water 

sample was taken during each batch of metabolic testing within the temperature-controlled 

water bath (therefore 18 fish respirometers + 1 control respirometer were tested per batch). 

Metabolic rate (VO2) was calculated using the following formula:  

 

𝑉𝑂$ = 	−1	 ×	*(𝑚𝑓 −𝑚𝑐) ÷ 1002	× 	𝑉	 ×	𝐵𝑂$, 

 

where mf was the slope of the percent air saturation consumed over an hour and mc is the slope 

of the percent air saturation consumed over an hour within the control respirometer (no fish). 

V was the respirometer water volume and BO2 was the oxygen solubility of ocean water at 35 

ppt with test temperature.  

Burst swimming speed was assessed to gain a whole organism measure of performance 

capacity at all test temperatures (see detailed methods in Seebacher et al. 2014). Fish were 

placed in an 8 cm x 10 cm testing aquarium with a fixed 10 cm measuring tape placed in the 

field of view for calibration. A high-speed camera (Panasonic Lumix DMC-TZ40) was set up 

directly above the middle of the testing aquarium and recorded the image. Burst swimming 

responses were promoted by tapping next to the fish’s tail using a thin metal rod when fish 

were stationary. A minimum of three burst responses was recorded for each fish, and the 

maximum instantaneous speed for each escape response was determined and extracted from 

videos using the program KINOVEA© (experimental version 0.8.25-x64). Only swimming 

responses where the fish exhibited a C-start escape response (powerful escape response where 

fish bends body into C shape to flick tail for rapid burst movement) were analysed. I digitised 

the point between the eyes of each fish to ensure consistent tracking. Maximum instantaneous 

speeds for individual fish were averaged at each acute test temperature. 
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Critical thermal maximum was measured two days after burst swimming trials were 

complete. Each fish’s critical thermal maximum was determined by placing each fish in a water 

bath at 27°C and ramping the water temperature up by 0.5°C every two minutes, an appropriate 

ramping speed for ectotherms that experience diurnal temperature fluctuations (Lutterschmidt 

and Hutchison 1997). The temperature at which B. cocosensis became unresponsive to a light 

touch with a thin metal rod was recorded as their critical thermal maximum. Fish were then 

euthanized with 0.3 x 10-3 mg L-1 of Aqui-S® and the standard length (mm) and wet mass of each 

fish (g) was measured.   

 

Otolith analysis 

As otoliths (fish ear bones) develop, growth increments form each day and are indicative of 

individual age, daily growth and settlement size and age (Sponaugle and Cowen 1997; Shima 

and Swearer 2010). Fish heads were removed and placed in 100% ethanol. Fish heads were 

sent to the Advanced Research Centre of Blanes in the Spanish National Research Council for 

otolith extraction and reading. They collected four larval life history traits: hatch size, pelagic 

larval duration, total pelagic growth and settlement size. Hatch size is the distance from the 

otolith nucleus to the hatch mark, pelagic larval duration is the number of days (rings) between 

hatching and settlement, pelagic growth is the distance between hatch and settlement otolith 

marks (total growth during the larval stage), and settlement size is the distance between the 

otolith nucleus and settlement mark (Thia et al. 2018). Growth rate was calculated by dividing 

total planktonic growth by number of days spent in the pelagic larval stage. Variance in daily 

larval growth was also determined by calculating the distance between each daily growth ring 

during the pelagic larval phase and then calculating variance in growth during the entire larval 

phase. 

 

Statistical analysis 

I assessed for pair-wise correlations between larval traits (hatch size, pelagic larval duration, 

growth rate, total growth, and settlement size) using type II linear regression models in the 

lmodel2 library (Legendre 2018) in the R statistical program (R Core Team 2013). I tested for 

correlations between planktonic life history traits and post metamorphic juvenile thermal 

sensitivity by fitting linear mixed effect models using the lme4 library (Bates et al. 2015). 

Routine metabolic rate and burst swimming speed data was log10 transformed to satisfy the 

conditions required for linear mixed effect models. The final models for routine metabolic rate 
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and critical thermal maximum included the factors juvenile fish mass, test temperature and the 

larval traits: hatch size, pelagic larval duration and settlement size OR hatch size and growth 

rate. The fixed effect of temperature was modelled as a second-degree polynomial as this 

structure fitted the data more closely (shape of a thermal performance curve). The burst 

swimming speed models incorporated juvenile fish length instead of juvenile mass as fish 

length has been shown to be more important for estimating swimming speed than mass 

(Domenici and Blake 1997) but included the same predictive larval traits as the routine 

metabolic rate and critical thermal maximum models. I accounted for repeated measures (each 

fish tested at each test temperature) by modelling a separate random intercept and random slope 

across test temperature for each fish (Hickey et al. 2018). Here I take into account that 

performance within individual fish across test temperature is more correlated than between 

different fish (Hickey et al. 2018). The fixed effect of temperature gives the mean slope over 

temperature and the random intercept shows individual deviations from the mean slope. Models 

were produced using maximum likelihood. The linear mixed effect model formula with the 

random intercept and slope for each fish is shown below,  

𝑦8P = 𝛽R + 𝛽C𝑥8PC+	𝛽$𝑥8P$ + 𝛽𝑥8PU+	𝛽U𝑥8PU$ +	𝛽V𝑥8PV	+	𝛽W𝑥8PW +	𝑏8R + 𝑏8C𝑥8P + 𝑒8P 

where, yij is the performance of each individual fish (i = 1,….96) at each test temperature j. b0 

is the fixed intercept and 𝛽1 is the fixed slope for the regression model of y on x1, where other 

fixed factors (x’s) are held constant (repeated for each fixed factor). xij is the predictor variable 

for each fish at each test temperature, where, x1 = juvenile fish mass, x2 = hatch size, x3 = test 

temperature (second degree polynomial), x4 = settlement size, x5 = pelagic larval duration. bi0 is 

the random intercept for each fish and bi1 is the random slope across test temperature for each 

fish, and eij is the residual error term for each fish across test temperature.  

Two separate models were made for each post-metamorphic performance trait, where 

one model incorporated pelagic larval duration and settlement size and the other model 

assessed correlations of larval growth rates on performance. The formula for the model that 

includes growth rate, therefore, would only have four fixed terms (x’s), instead of five, like in 

the example model equation above. The two models for each performance trait could not be 

combined because growth rate is correlated with settlement size. Growth rate and settlement 

size, however, have different life strategy implications (explained in discussion), which is why 

it is important to assess for correlations of each on post-metamorphic performance. 

I selected the final models for each performance measure by reducing factors within the 

model and comparing Akaike Information Criterion (AIC) values. Daily growth variance and 
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the interaction term between growth rate and test temperature had no significant effect on 

performance (routine metabolic rate, burst swimming speed or critical thermal maximum), and 

inclusion of these factors increased model AIC values, meaning that model fit was reduced. 

Total larval growth was highly correlated with settlement size, so it was not included in the 

models as it would break assumptions required to run linear mixed effect models. Therefore, 

daily growth variance, total larval growth and the interaction terms were removed from the 

final models. I was only able to obtain fish ages for a subset of fish and therefore fish age was 

not included in the analyses, however, fish mass and length can also be indicative of age. 

Figures were produced in R library ggplot2 (Wickham 2016).  

 

4.4 Results  

Larval trait summary 

Juvenile B. cocosensis (N = 96) collected at Heron Island had an average pelagic larval duration 

of 18.5 days (SE =  ± 0.08), where pelagic larval durations ranged from 15 to 25 days. On 

average, hatch size was 6.13µm (SE = ± 0.094) and ranged from 4.39 to 9.49 µm. Otoliths had 

an average total pelagic growth of 50.02 µm (SE =  ± 0.29) prior to settlement. Fish had an 

average larval otolith growth rate of 2.73 µm per day (SE = ±  0.01) with a range of growth 

rates between 2.2-3.4 µm per day and a variance of 0.052. Pelagic larval duration was 

correlated with larval settlement size (R2 = 0.419) (Estimate = 0.19 ± 0.025, t = 7.592, P < 

0.000), therefore, individuals that had short pelagic durations had somewhat smaller settlement 

sizes on average, and larval growth rate was weakly correlated with settlement size (R2 = 0.37) 

(Estimate = 0.025 ± 0.004, t = 6.873, P < 0.000) (Fig 4.2). Interestingly, pelagic larval duration, 

was not correlated with larval growth rate (R2 = 0.0326) (Estimate = -1.31 ± 0.798, t = -1.64, P 

= 0.105), but total larval growth was correlated with larval growth rate (R2 = 0.385) (Estimate 

= 15.127 ± 2.135, t = 7.084, P < 0.000) (Fig 4.2). Total larval growth was strongly correlated 

with settlement size (R2 = 0.968) (Estimate = 0.995 ± 0.02, t = 49.257, P < 0.000), which is 

intuitive because settlement size is determined by total larval growth, but total larval growth 

was not correlated with juvenile mass (R2 = 0.012) (Estimate = -0.003 ± 0.003, t = -0.998, P = 

0.321). In addition, hatch size was not correlated with settlement size (R2 = 0.0124) (Estimate 

= -0.0014 ± 0.016, t = -0.085, P = 0.932), pelagic growth rate (R2 = 0.00083) (Estimate = -

0.416 ± 0.403, t = -1.033, P = 0.305), or total pelagic growth (R2 = 0.0132) (Estimate = -0.024 

± 0.016, t = -1.44, P = 0.153). Therefore, individuals with small hatch size did not exhibit 
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compensatory growth rates to reach the same settlement sizes as individuals with large hatch 

sizes. Juvenile fish had an average mass of 0.21g (SE = ± 0.01) and an average length of 

20.56mm (SE = ± 0.24).  

 
Figure 4.2. Type II regression between pelagic larval duration and settlement size (R2 = 0. 419). 

Coloured dots indicate growth rate (µm/day). The red line shows the correlation and grey lines 

show the error confidence limits.  

 

Larval traits and juvenile thermal performance  

I found that settlement size (SS) and larval growth rate (GR) was inversely correlated with 

post-metamorphic routine metabolic rate (SS: Estimate = -0.026 ± 0.010, t77.12 = -2.48, P = 0.015; 

GR: Estimate = -0.444 ± 0.195, t75.52 = -2.27, P = 0.026) (Fig 4.3) (Table 4.0 & 4.1). These data 

(Fig 4.3) show how larval growth rate correlates with juvenile routine metabolic rate when 

mass and test temperature are taken into consideration. Although fish mass surprisingly had no 

effect on routine metabolic rate (Estimate = 0.041 ± 0.32, t172.27= 1.273, P = 0.204) it was kept in 

the models as mass is a well-known ecologically relevant trait to metabolic rate (White and 

Kearney 2014). Perhaps mass had no significant effect because fish were sampled within a 

relatively small mass range (variance = 0.017) and often the effect body mass has on 

metabolism is more obvious over larger mass changes (White and Kearney 2014). As juvenile 
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fish mass was not correlated with routine metabolic rate, I also tested if juvenile fish length 

was correlated with routine metabolic rate, and found that it also had no correlation with routine 

metabolic rate (Estimate = -0.015 ± 0.009, t160.5 = 1.694, P= 0.0922).  

 
Figure 4.3. Bathygobius cocosensis routine metabolic rate across acute test temperature with 

individual larval otolith growth rate shown in coloured points (µm/day), when juvenile fish 

body mass, test temperature and hatch size are taken into consideration. Mean predicted routine 

metabolic rate and standard error bars are shown in black for each test temperature.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 



 83 

Table 4.0 Final model summary of the effects of hatch size, pelagic larval duration and 

settlement size on juvenile Bathygobius cocosensis routine metabolic rate.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Final model 4.1 = log10(VO2) ~ juvenile mass + poly(test temperature, 2) + hatch size + PLD +  
settlement size + (1+test temperature|fish ID) 
 

Table 4.1 Final model summary of the effect of hatch size and larval growth rate on juvenile 

Bathygobius cocosensis routine metabolic rate. 

Final model 4.2 = log10(VO2) ~ juvenile mass + poly(test temperature, 2) + hatch size + growth rate + (1+test 
temperature|fish ID) 
 

Settlement size was not correlated with juvenile burst swimming speed (SS: Estimate = -0.005 

± 0.0029, t85.88= -1.74, P = 0.085) (Table 4.2), however larval growth rate was negatively 

correlated with burst swimming speed across test temperature (GR: Estimate = -0.12 ± 0.053, 

t84.22 = -2.24, P = 0.028) (Fig 4.4) (Table 4.3). Again, this data illustrates the negative correlation 

growth rate has with burst swimming speed when the effects of fish length and test temperature 

are taken into consideration. Fish length was positively correlated burst swimming speed 

(Estimate = 0.007 ± 0.0023, t164.65= 3.397, P < 0.0008). These data show that larvae with faster 

growth rates had lower routine metabolic rates and burst swimming speeds across increasing 

Fixed effects Estimate ± SE df t P 

Intercept -2.22 ± 0.63 73.14 -3.53 0.0007 

Juvenile fish mass 0.41± 0.32 172.27 1.273 0.204 

Poly(test temperature)1 7.10 ± 0.76 276.43 9.36 <0.000 

Poly(test temperature)2 1.01 ± 0.76 293.85 1.33 0.185 

Hatch size -0.007 ± 0.052 68.33 -0.134 0.894 

PLD 0.036 ± 0.036 76.35 0.996 0.322 

Settlement size -0.026 ± 0.010 77.12 -2.48 0.015 

Fixed effects Estimate ± SE df t P 

Intercept -1.66 ± 0.67 76.71 -2.45 0.0152 

Juvenile fish mass 0.379 ± 0.32 177.95 1.785 0.237 

Poly(test temperature)1 7.10 ± 0.76 272.92 9.37 <0.000 

Poly(test temperature)2 0.999 ± 0.76 292.95 1.318 0.189 

Hatch size -0.03 ± 0.053 70.94 -0.524 0.602 

Larval growth rate -0.444 ± 0.195 75.52 -2.27 0.026 
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temperature compared to fish with slower larval growth rates. Settlement size and growth rate, 

however, were not correlated with critical thermal maximum (SS: Estimate = -0.009 ± 0.013, 

t89.73 = -0.77, P = 0.44; GR: Estimate = -0.039 ± 0.246, t85.88 = -0.161, P = 0.873) (Tables 4.4 & 

4.5). Bathygobius cocosensis had an average critical thermal maximum of 39.7°C (SE = ± 0.03) 

and juvenile fish mass was positively correlated with critical thermal maxima (Estimate = 2.08 

± 0.22, t416.9 = 9.44, P < 0.000, R2 = 0.178) (Fig 4.5). 

 

 
Figure 4.4. Bathygobius cocosensis burst swimming speed across acute test temperature with 

individual larval otolith growth rate shown in coloured points (µm/day), when juvenile fish 

length, test temperature and hatch size are taken into consideration. Mean predicted routine 

metabolic rate and standard error bars are shown in black for each test temperature.  
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Table 4.2 Final model summary of the effects of hatch size, pelagic larval duration and 

settlement size on juvenile Bathygobius cocosensis burst swimming speed. 

Final model 4.3 = log10(Burst swimming speed) ~ juvenile length + poly(test temperature, 2) + hatch size + PLD 
+ settlement size + (1+test temperature|fish ID) 

 
 

Table 4.3 Final model summary of the effect of hatch size and larval growth rate on juvenile 

Bathygobius cocosensis burst swimming speed. 

Final model 4.4 = log10(Burst swimming speed) ~ juvenile length + poly(test temperature, 2) + hatch size + 
growth rate + (1+test temperature|fish ID) 
 

 

Fixed effects Estimate ± SE df t P 

Intercept -1.91 ± 0.18 86.78 -10.47 <0.000 

Juvenile fish length 0.0076 ± 0.0024 164.35 3.301 0.0011 

Poly(test temperature)1 2.00 ± 0.22 83.74 9.13 <0.000 

Poly(test temperature)2 -0.88 ± 0.19 260.10 -4.73 <0.000 

Hatch size 0.014 ± 0.015 82.47 0.918 0.362 

Settlement size -0.005 ± 0.0029 85.88 -1.74 0.085 

PLD 0.013 ± 0.010 86.89 1.34 0.184 

Fixed effects Estimate ± SE df t P 

Intercept -1.58 ± 0.19 91.14 -8.20 <0.000 

Juvenile fish length 0.007 ± 0.0023 164.65 3.397 0.0008 

Poly(test temperature, 2)1 2.00 ± 0.22 83.69 9.129 <0.000 

Poly(test temperature, 2)2 -0.87 ± 0.19 260.32 -4.72 <0.000 

Hatch size 0.007 ± 0.015 83.69 0.52 0.599 

Larval growth rate -0.12 ± 0.053 84.22 -2.24 0.028 
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Figure 4.5. Bathygobius cocosensis critical thermal maximum and juvenile mass (g) (mass is 

positively correlated with critical thermal maximum (CT max). Coloured points indicate 

average daily larval otolith growth rate which has no correlation with body mass or CT max).  

 

Hatch size (HS) and pelagic larval duration (PLD) were not correlated with post metamorphic 

routine metabolic rate (HS: Estimate = -0.007 ± 0.052, t68.33 = -0.134, P = 0.894; PLD: Estimate 

= -0.036 ± 0.036, t76.35 = 0.996, P = 0.322) (Table 4.0), burst swimming speed (HS: Estimate = -

0.014 ± 0.015, t82.47= 0.918, P = 0.362; PLD: Estimate = 0.013 ± 0.010, t86.89 = 1.34, P = 0.184) 

(Table 4.2), or critical thermal maximum (HS: Estimate = 0.065 ± 0.067, t84.02= 0.963, P = 0.338; 

PLD: Estimate = -0.042 ± 0.044, t89.15= -0.95, P = 0.342) (Table 4.4).  
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Table 4.4 Final model summary of the effects of hatch size, pelagic larval duration and 

settlement size on juvenile Bathygobius cocosensis critical thermal maximum. 

Final model 4.5 = CTmax ~ juvenile mass + hatch size + PLD + settlement size + (1|fish ID) 
 

 

Table 4.5. Final model summary of the effect of hatch size and larval growth rate on juvenile 

Bathygobius cocosensis critical thermal maximum. 

Final model 4.6 = CTmax ~ juvenile mass + hatch size + growth rate + (1|fish ID) 
 

I removed factors that were less likely to be ecologically significant if they had no significant 

effect on performance, and models that excluded these factors had lower AIC values and 

therefor better fit. Average daily larval growth variance was removed from the final models as 

it had no effect on routine metabolic rate (Estimate = 0.002 ± 0.05, t64.8 = 0.039, P = 0.969), burst 

swimming speed (Estimate = 0.0098 ± 0.0055, t77.08 = 1.786, P = 0.078) or critical thermal 

maximum (Estimate = -0.0009 ± 0.079, t83.8 = -0.012, P = 0.991). Similarly, the interaction 

between test temperature and growth rate had no effect on routine metabolic rate (Estimate = -

0.024 ± 0.023, t300.58= -1.073, P = 0.284) or burst swimming speed (Estimate = -0.00005 ± 0.0009, 

t82.1 = -0.586, P = 0.560) and lowered model AIC values. 

Figure 4.6 summarises the findings across the aforementioned multiple regression 

models. These results indicate that larval growth rate and settlement size are likely to be 

important traits for post-metamorphic thermal performance and that effects of larval growth 

Fixed effects Estimate ± SE df t P 

Intercept 40.255 ± 0.79 84.64 51.364 <0.000 

Juvenile fish mass 2.09 ± 0.22 415.88 9.494 <0.000 

Hatch size 0.065 ± 0.067 84.02 0.963 0.338 

PLD -0.042 ± 0.044 89.15 -0.95 0.342 

Settlement size -0.009 ± 0.013 89.73 -0.77 0.440 

Fixed effects Estimate ± SE df t P 

Intercept 38.97 ± 0.84 86.43 46.3 <0.000 

Juvenile fish mass 2.08 ± 0.22 416.9 9.44 <0.000 

Hatch size 0.07 ± 0.0.069 84.11 1.01 0.314 

Larval growth rate -0.039 ± 0.246 85.88 -0.161 0.873 
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rate are likely to be carried-over through metamorphosis, but pelagic larval duration may be 

de-coupled with post-metamorphic performance at metamorphosis.  

 
Figure 4.6. Results summary of correlations between larval traits and post-metamorphic traits. 

Thick lines indicate a significant negative effect (P £ 0.05) of the larval trait on post-

metamorphic performance and dashed lines indicate no correlation (P > 0.05) between larval 

traits and post-metamorphic performance 

 

4.5 Discussion  

To my knowledge, this is the first study to show that marine fish with fast larval growth rates 

are likely to have reduced post-metamorphic performance across temperature. Specifically, I 

found that fast larval growth rates correlate with slower burst swimming speeds and lower 

routine metabolic rates across temperature in a wild marine fish, supporting the life stage 

trade-off hypothesis. Larger settlement sizes also correlated with lower routine metabolic 

rates among individuals across test temperatures, but was not correlated with burst swimming 
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speed. Thus, these results support the idea that settling large does not have a lasting advantage 

on juvenile performance and is costly for some post-settlement performance traits, rejecting 

the bigger is better hypothesis. In addition, hatch size and pelagic larval duration were not 

correlated with any post-metamorphic performance traits I assessed, and larval growth rate and 

settlement size were not correlated with critical thermal maximum suggesting that some larval 

traits may be de-coupled with post-metamorphic traits, supporting the life stage de-coupling 

hypothesis. These results are summarised in Figure 4.6.  

I found that larval growth rate and settlement size were negatively correlated with post-

metamorphic routine metabolic rate; and larval growth rate, but not settlement size, was 

negatively correlated with burst swimming speed. The rates at which larvae grow and the size 

individuals settle at, however, have different life strategy implications for individuals. For 

example, as growth rate was only weakly correlated with pelagic larval duration, an individual 

could grow slowly for a long period of time and reach the same settlement size as an individual 

that grew quickly over a short amount of time. Therefore, if settlement size was positively 

correlated with performance it would suggest that settlement size has long-lasting positive 

effects on fitness and survival, where individuals that settle large stay large post-

metamorphosis and have better performance than smaller individuals. Larval growth rate, 

however, is linked with investment of energetic resources into different metabolic activities 

such as growth, locomotor function, and cell and body condition maintenance (Schluter 1995; 

Billerbeck et al. 2001; Arnott et al. 2006). Here, fast larval growth can either help individuals 

settle large and potentially stay large, or fast growth might be costly for other metabolically 

demanding activities post-metamorphosis. Since both larval growth rate and settlement size 

were correlated with each other, but were significantly negatively correlated with juvenile 

routine metabolic rate, I suggest that settlement size, larval growth rate and therefore metabolic 

investment, are likely to play a role in post-metamorphic performance and survival. In this 

case, larvae with slower growth rates have higher metabolic rates and faster burst swimming 

speeds, and larvae with smaller settlement sizes are likely to have higher post-metamorphic 

metabolic rates.  

I found no evidence suggesting that settling large has any long term positive effects on 

performance or survival. This is surprising given that several other have studies found that 

large settlement size is advantageous to many invertebrate species (Marshall et al. 2003; 

Marshall and Keough 2004; Marshall et al. 2006). Many of these previous studies, however, 

were on non-feeding larvae, whereas B. cocosensis feeds during their larval stage. Feeding 
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during development is likely to affect growth rates (Strathmann 1985), and therefore is likely 

to increase the amount of variation in larval growth rate within a population depending on 

feeding success. I found that variance in larval growth rates were limited within the sample 

population, however, where otoliths only grew 2.2 – 3.4 µm on average per day. This could be 

due to larval growth rates being evolutionarily constrained, or the lack of variance could be 

explained by sampling bias of collecting individuals that survived past larval settlement. 

Greater larval growth variation may have existed prior to settlement at Heron Island, but only 

individuals that made it past juvenile metamorphosis were able to be collected for this study, 

and of that sample group phenotypic variance was limited.  

Interestingly, hatch size was not correlated with larval growth rates or settlement size, 

but larval growth rates and total larval growth were correlated with settlement size. I expected 

to observe compensatory growth in individuals that hatched small, however, other variables, 

such as predation pressure, water temperature, food availability or genetics may have 

influenced variation in larval growth rate, rather than hatch size. My findings, however, are 

consistent with another study on temperate Australian B. cocosensis that assessed how larval 

traits correlate with post-settlement traits across three cohorts, and indicates that hatch size 

does not predict settlement size (Thia et al. 2018). As rapid larval growth rates were negatively 

associated with post-metamorphic thermal performance of burst swimming speed and routine 

metabolic rate, perhaps B. cocosensis have evolved to avoid compensatory growth for small 

hatching individuals to evade post-metamorphic performance costs that may be associated with 

fast larval growth rates.    

This study shows that individuals with slow larval growth rates have faster burst 

swimming speeds and higher metabolic rates than individuals with fast larval growth rates. It 

is likely that fast larval growth is a strategy to avoid mortality associated with the dangerous 

pelagic larval phase, but rapid growth during this stage is costly and trade-offs between growth 

rate and post-metamorphic performance are likely to exist. Fast larval growth rates have been 

observed in other species as a survival strategy such as larval frogs, where fast growth can 

allow improved escape from predators in drying ponds (Travis et al. 1985; Banks and Beebee 

1988; Newman 1988) but has also been observed to have negative effects on post-metamorphic 

locomotion (Ficetola and De Bernardi 2006). Hatch date has also been shown to effect growth 

rate in male common triplefins (Forsterygion lapillum), where individuals that hatched later 

had greater compensatory growth rates, and individuals that had earlier hatch dates had greater 

reproductive success (Moginie and Shima 2018). Trade-offs between rapid growth and 
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performance/fitness may allow population wide genetic variation for growth rate to be 

maintained, for example, the fitness of individuals with slow larval growth rates and fast post-

metamorphic swimming speeds may be similar to fast larval growth rates and slow post-

metamorphic swimming speeds (Mangel and Stamps 2001; Arendt 2003). Thus, individuals 

with both strategies could be equally likely to be found in nature.  

I found no relationship between hatch size and pelagic larval duration and post-

metamorphic performance. I suspect that this lack of correlation may be an example of trait 

decoupling with metamorphosis. As metamorphosis from larval to juvenile life stages is usually 

accompanied with a shift in habitat niche, it is intuitive that some larval traits would change 

with metamorphosis to allow for adjustment to a new habitat. Considering B. cocosensis, 

developmental traits such as settlement size and growth rate were correlated with post-

metamorphic performance across temperature and are therefore likely to have carry-over 

effects to later life stages. Therefore, I believe that some larval traits are likely to transcend to 

later life stages while other traits may be de-coupled.  

In addition, it was interesting that acute thermal performance curve shape was not 

altered by larval growth rate or settlement size (as there was no significant interaction between 

growth rate and test temperature or settlement size and test temperature on post-metamorphic 

thermal performance). In other words, the shape of their thermal performance curve was not 

correlated with either larval growth rate or settlement size. In another study, adult B. cocosensis 

did not alter the shape of acute thermal performance curves with acclimation to seasonal 

thermal temperatures (da Silva et al. 2019). Therefore, perhaps thermal performance curve 

shape is constrained in B. cocosensis. I hypothesise that wide thermal performance curves are 

maintained in both populations of B. cocosensis as a mechanism to survive in the thermally 

variable intertidal zone.  

I also investigated effects of juvenile morphology on critical thermal maxima and found 

that juvenile individuals with greater body masses had higher critical thermal maxima 

(regardless of larval experiences). This result is interesting because it indicates that individuals 

with lower body masses are more prone to negative effects of extreme heat days, which are 

becoming more frequent with global climate change. Individuals with shorter standard lengths 

also had slower burst swimming speeds, therefore, if temperatures throughout the Great Barrier 

Reef continue to rise smaller fish may have slower escape speeds from predators and have 

lower maximum temperature thresholds. These small individuals will therefore be under the 

most physiological thermal stress and are likely to have higher mortality rates due to predation 
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(as a result of slow swimming speeds) prior to reproductive age. Other studies, however, have 

found that reef fish and rainbow trout body mass and critical thermal maximum either have no 

significant relationship or an inverse relationship (Ospina and Mora 2004; Recsetar et al. 2012; 

Messmer et al. 2017), rather than a positive relationship as observed in our data. Therefore, 

future experiments on more species are required to understand the relationship between mass 

and critical thermal maximum in marine fish.  

In conclusion, this study is the first to show that developmental traits can affect post-

metamorphic performance across temperature in a marine fish with a planktonic larval stage. 

In addition, I provide evidence both for larval traits having carry-over effects on later life stages 

and also for larval traits being de-coupled with thermal performance post-metamorphosis. 

Larval traits such as growth are important for individual body condition and energy portioning 

in later life stages and are consistently found to play an important role in post-metamorphic 

performance and fitness across many different taxa with complex life-stages (Pechenik et al. 

1996; Marshall et al. 2003; Ficetola and De Bernardi 2006; Careau et al. 2008; Grorud-Colvert 

and Sponaugle 2011). Rapid growth during the larval phase is likely to be a strategy to avoid 

predation during the risky planktonic stage to survive to settlement but appears to be associated 

with negative performance trade-offs post-metamorphosis for B. cocosensis. Thermal 

performance is an important indicator of organismal fitness, however, there is a need for future 

studies to test the direct effects of larval traits and environmental variation on life-time fitness. 
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Chapter 5 
 

General discussion 
 

5.1 Overview 

Organisms living in intertidal environments offer the opportunity to address how short- and 

longer-term thermal fluctuations affect ectotherm thermal performance. In variable thermal 

environments, selection is likely to favour individuals with wide thermal breadths, the capacity 

to acclimate, or both (Gilchrist 1995; Gabriel 2005; Gabriel et al. 2005; Angilletta 2009c; 

Lande 2009; Healy and Schulte 2012). The way in which daily and seasonal thermal variability 

affect the co-evolution of thermal performance curve shape and acclimation capacity and how 

larval traits affect post-metamorphic thermal performance remain relatively unknown.  I used 

marine gobies in intertidal environments to assess how a variety of performance traits are 

altered by short- and long-term thermal change. In addition, I used the complex life-cycle of 

Bathygobius cocosensis to assess how larval traits and survival strategies are likely to be linked 

with post-metamorphic performance. In this thesis, I show that: 1) thermal acclimation and 

wide thermal performance curves can be maintained when equal daily and seasonal thermal 

fluctuations are experienced; 2) the rate of luminance change (for camouflage) can acclimate 

with thermal change on a scale of weeks; and 3) fast larval growth rates are costly in that they 

are negatively correlated with post-metamorphic thermal performance, but larval traits do not 

alter thermal performance curve shape.  

 

5.2 Thermal acclimation and performance curve shape   

In Chapter 2, I show that subtropical intertidal fish have the capacity to acclimate despite 

experiencing equal daily and seasonal thermal fluctuations and possess wide thermal 

performance breadths. Thermal acclimation is predicted to be costly and unlikely to evolve 

when daily thermal variability is equal to or greater than seasonal thermal variability, or when 

thermal performance curves are wide (Gabriel 1999; Wilson and Franklin 2000; Gabriel 2005). 

This is because large daily thermal fluctuations are predicted to mask small changes in seasonal 

thermal variation, making seasonal thermal change unpredictable, and therefore costly (Gabriel 

2005; DeWitt et al. 1998). In addition, the costs of maintaining the ability to acclimate are 
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likely to outweigh the benefits of thermal acclimation when performance curves are wide as 

performance improvements with acclimation are likely to be minimal (Wilson and Franklin 

2000; Angilletta 2009). I suggest that B. cocosensis maintain their ability to acclimate in the 

subtropical intertidal environment because gradual changes in daily thermal means and range 

with season allow seasonal thermal variation to remain predictable, and therefore thermal 

acclimation is likely to be beneficial despite large daily thermal fluctuations, hence favouring 

the evolution or retention of acclimation capacity within a population (DeWitt et al. 1998; 

Gabriel et al. 2005). It is also likely that B. cocosensis maintains wide thermal performance 

curves as an adaptation to an environment with rapid diurnal change (Healy and Schulte 2012). 

Wide thermal performance curves allow ectotherms to maintain performance across a wide 

range of temperatures and permit organisms to survive in environments that fluctuate too 

quickly for thermal acclimation to occur (i.e. on a scale of hours) (Angilletta et al. 2002; 

Angilletta 2006; Angilletta 2009; Asbury and Angilletta 2010).  

Although seasonal thermal change remains predictable in the subtropical intertidal 

environment, it is surprising that B. cocosensis have the capacity to acclimate to extreme 

seasonal thermal conditions (I exposed them to their thermal range extremes: tropical summer 

conditions that occur in the Northern Territory, and temperate winter thermal conditions that 

occur in southern New South Wales) that they are unlikely to experience at subtropical Point 

Lookout. It is likely that intertidal fish with planktonic pelagic larval phases maintain high 

degrees of plasticity throughout their life-time and between generations because their parent’s 

thermal environment, their larval environment, and the environment that they settle at are all 

likely to be different. Therefore, animals that experience high thermal uncertainty within and 

among life-stages may retain high degrees of plasticity to avoid phenotype-environment 

mismatches and decreases in thermal performance and fitness throughout their lifetime and 

between generations. For example, a model by Scheiner and Holt (2012) shows that increases 

in dispersal rates select for increased plasticity when spatial and temporal environmental 

variation is high to increase the likelihood of offspring survival in changed environmental 

conditions. 

It is commonly argued that the frequency and predictability of temperature change 

imposes selection pressure on acclimation capacity (Wilson and Franklin 2000; Gabriel 2005; 

Angilletta 2009). These processes are likely to be important for organisms that experience 

temporal variation, however, they may not explain how species that experience a large range 

of temporal and spatial thermal variation develop responses to thermal change (Chevin and 
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Lande 2011). For example, a model by de Jong (1999) shows that variation in population 

phenotypes (such as performance) among habitats are caused by a combination of phenotypic 

plasticity and local adaptation in an organism that has a life-cycle with unpredictable selection 

and spatial variation. High degrees of plasticity are likely to occur due to the low predictability 

of future selective environments, especially when dispersal occurs between development and 

selection (de Jong 1999; de Jong and Behera 2002). The high degree of thermal variability and 

unpredictability that B. cocosensis experience between their larval and adult life stages and 

between generations may explain their ability to acclimate to seasonal temperatures that they 

have not previously experienced in their juvenile and adult life stages. This suggests that 

thermal acclimation can remain beneficial when environmental change is not predictable. 

Gilchrist (1995) suggests that wide performance curves are more likely to evolve (than narrow 

thermal performance curves) when between generation thermal variation is greater than within 

generation thermal variation, because wide performance breadths act as a safety net for future 

thermal change. A similar hypothesis can be posed for organisms, such as those with dispersing 

larval phases, that are likely to experience different generational thermal means and increases 

in thermal variability. Previous studies have shown that plasticity is dependent on the degree 

of thermal variability a population has experienced in past generations, where populations that 

experience more past thermal variability are likely to be more plastic (Hallsson and Björklund 

2012). Therefore, perhaps a large degree of plasticity evolves or is retained when among-

generation thermal variation is greater than within-generation thermal variation. The ability to 

acclimate to seasonal change and survive in different thermal environments each generation 

may therefore be governed by a combination of within- and among-generation thermal 

variability. 

The dispersal patterns of larval B. cocosensis remain unclear, but it is likely that each 

generation moves in a relatively southerly direction with currents off Australia’s east coast (Fig 

5.1 & Fig 5.2). Direction of larval flow is complex and not well understood, and small 

nearshore counter currents along Australia’s east coast are likely to increase larval retention at 

lower latitudes. However, it is likely that a large proportion of the larvae are pushed south along 

Australia’s east coast (Figure 5.2) (Hock et al. 2017).  Each generation is then likely to 

experience a decrease in mean temperature and increased daily and seasonal thermal variability 

with dispersal to higher latitudes (Fig 5.1). Along Australia’s east coast each generation is 

likely to experience predictable seasonal thermal change (as seasonal thermal fluctuations are 

greater than daily thermal fluctuations in the tropics and temperate regions, and I show that 
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seasonal thermal change remains predictable in the subtropical intertidal zone). Therefore, if 

the capacity to acclimate is driven by within-generation daily and seasonal thermal variability 

alone, then each generation would not have the ability to survive in average cooler and more 

variable thermal conditions. An explanation that that involves how unpredictable spatial and 

temporal thermal variation between generations alters acclimation responses may be more 

conducive to explaining how organisms with high dispersal maintain plasticity (de Jong 1999; 

de Jong and Behera 2002; Chevin and Lande 2011). Previous studies have argued that 

developmental conditions can influence post-metamorphic acclimation capacities (Scott and 

Johnston 2012; Seebacher et al. 2014; Beaman et al. 2016). I believe that B. cocosensis are 

likely to retain their capacity to acclimate irrespective of the conditions they experience during 

development. Maintaining a high level of plasticity will allow individuals to respond to a large 

degree of among generation and between life-cycle thermal variability and unpredictability. In 

addition, if developmental conditions dictate post-metamorphic acclimation capacity, adult 

individual are likely to experience a phenotype-environment mismatch if their settlement 

location experience different thermal regimes to their early developmental conditions.  

 
Figure 5.1. Conceptual illustration showing how each generation of Bathygobius cocosensis is 

likely to experience increased thermal variability and decreased generational thermal means. 

Seasonal thermal change is likely to remain predictable along all of these locations, despite the 

magnitude of thermal change becoming greater with latitude. Between generation thermal 

variation is likely to be greater than within generation thermal variation. Temperature 

information was collected from the Australian Governments Bureau of Meteorology. 
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Figure 5.2. Main oceanic currents around Australia, both the East Australian Current and the 

Leeuwin current move in a southerly direction down Australia’s coastlines. The blue dots 

indicate Bathygobius cocosensis locality points collected from the Global Biodiversity 

Information System (https://www.gbif.org/).  

 

It would be interesting to assess differences in acclimation capacities among populations of B. 

cocosensis along Australia’s east coast in the future. If all populations of B. cocosensis have 

the same capacity to shift their thermal sensitivity (despite inhabiting environments that 

experience different degrees of daily and seasonal thermal variability) perhaps their ability to 

acclimate is driven by between-generation changes in thermal environment rather than within-

generation thermal variability. If acclimation capacity is driven only by within-generation 

thermal variability, then populations at higher latitudes that experience greater thermal 

variability would be expected to have greater acclimation capacities (if there was local 

adaptation). It would also be interesting to compare the acclimation capacities of species with 

and without larval dispersal. Data from these studies could be used to develop a model to assess 

how within-generation (daily and seasonal thermal variability) and between-generation thermal 

variability drive the co-evolution of thermal performance curve shape.  

Predicting how thermal generalists, like B. cocosensis and other intertidal species, will 

respond to future climate change scenarios is an under-studied area of thermal biology. Most 

studies that predict organism’s responses to climate change are conducted on thermal 
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specialists (organisms with narrow thermal performance curves) as they are likely to be the 

most sensitive to thermal change (Deutsch et al. 2008; Tewksbury et al. 2008; Somero 2010). 

Thermal generalists (organisms with wide thermal performance curves), however, are 

extraordinarily important in ecosystem processes (Richmond et al. 2005), and are often very 

abundant within their ecosystem. Loss of thermal generalists, and potentially key-stone species, 

may lead to ecosystem collapses (Ellison et al. 2005). It would be interesting to assess how a 

range of thermal generalist species respond to future climate change scenarios in a future study.  

For example, assessment of whether range size correlates with percent range change under 

predicted future environmental conditions in thermal generalists would be interesting. Species 

with greater thermal performance breadths and latitudinal ranges would be predicted to be more 

robust than species with more narrow curves and smaller geographical ranges. This has yet to 

be explicitly shown in previous studies.  

 

5.3 Acclimation of luminance change 

Camouflage is a fascinating predator avoidance mechanism that is used among many cryptic 

animals (Stuart-Fox et al. 2003; Stuart-Fox and Moussalli 2008; Sköld et al. 2013; Sköld et al. 

2016; Stevens 2016; Cheney et al. 2017; Duarte et al. 2017b). The rate at which animals can 

change colour for background matching is affected by environmental temperature, however, 

no previous studies have assessed how long-term changes in temperature affect rate of 

background matching. Most previous studies that have assessed how performance is altered by 

long-term temperature have assessed physiological traits such as metabolism, locomotion or 

growth rate (Wilson and Franklin 1999,2000; Hammill et al. 2004; Fangue et al. 2008; 

Angilletta 2009c; Healy and Schulte 2012). However, it is important to determine how traits 

that influence predator-prey dynamics and other behavioural interactions will be impacted by 

changes in environmental temperature. In Chapter 3, I show for the first time, that rate of 

luminance change, for background matching can acclimate to different thermal conditions. 

Thermal acclimation was observed when warm-exposed fish showed faster rates of luminance 

change than the cold-exposed fish when tested at 31ºC, and the cold exposed-fish had faster 

rates of luminance change than the warm-exposed fish when tested at 16ºC. The ability to 

acclimate rate of camouflage is a highly adaptive trait, as the ability to remain cryptic from 

prey and predators in shifting climates will improve survival probabilities and fitness. As this 

was the first study to investigate how long-term changes in temperature alter rate of luminance 
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change, no previous studies have assessed the physiological mechanism that allows 

chromatophore function to acclimate or the energetic costs involved in changing colour.  

The energetic demands of luminance change, or the effect rate of colour change has on 

metabolism is still not well understood, however, faster rates of colour change are hypothesized 

to be more metabolically demanding than slower rates of colour change (Duarte et al. 2017). I 

found that on average rate of luminance change was faster in the warm acute test temperature 

than the cold acute test temperature, and that routine metabolic rate increases with test 

temperature in Chapter 2. Both rate of luminance change and metabolism are likely to increase 

with temperature because biochemical reactions proceed more quickly at higher temperatures 

(Angilletta 2009). However, I did not test how rate of luminance change affects metabolism 

directly, and there may be an additional cost of rapid luminance change in addition to the 

thermodynamic effects of temperature on metabolism. One study has shown that guppies 

increase their food consumption when they change colour to match their visual backgrounds 

(Rodgers et al. 2013), suggesting an increase in metabolic demand. Rapid changes in colour 

often occur through neuro-muscular action (Duarte et al. 2017), and rate of muscular 

movement, which has significant metabolic demands, is known to be directly related to 

temperature (Racinais and Oksa 2010). Therefore, it is likely that faster rates of luminance 

change are positively correlated with higher metabolic rates and test temperature. However, 

experimental tests that assess metabolic rate before and while an animal is conforming to its 

background at different test temperatures are required to understand the energetic demands of 

colour or luminance change. 

 Bathygobius cocosensis altered their phenotypes to become darker over time to match 

the black background they were tested against, however, they remained distinguishable from 

the background to the coral trout. Birds are the other largest predators of B. cocosensis, 

especially to individuals that inhabit shallow high tide pools. Birds are tetrachromates, rather 

than trichromates like fish, meaning that birds can see wavelengths in the UV spectrum (Endler 

and Mielke 2005). Therefore, the capacity B. cocosensis have to background match may be 

perceived differently to an avian predator. It is important to understand how changes in 

phenotype will influence predator-prey dynamics among many species in an ecosystem to gain 

a more holistic view on how changes in temperature will alter survival and fitness. By assessing 

the affect temperature has on prey background matching ability we can begin to understand 

how climate change will affect a physiological mechanism that influences predator-prey 

behavioural interactions. Rapid stochastic changes in temperature are likely to affect how 
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quickly cryptic species can match their backgrounds, where decreases in rate of camouflage 

are likely to result in detection by a predator which is likely to reduce survival and fitness. 

Therefore, climate change is likely to directly increase the frequency of predator-prey 

interactions, by reducing prey species background matching abilities. Future studies are 

required to understand how climate change is altering predator avoidance mechanisms in other 

taxa that use camouflage as an anti-predator mechanism.    

  

5.4 Developmental traits and post-metamorphic thermal performance    

In my fourth chapter, I investigated how larval traits are linked with juvenile thermal 

performance. I found fast larval growth rates are correlated with slower burst swimming speeds 

and lower routine metabolic rates. This finding is interesting because it shines light on how 

different larval survival strategies can have knock-on effects for juvenile thermal performance. 

No previous studies have identified how wild marine larval traits are linked with the thermal 

performance of post-metamorphic fish.   

Fast larval growth rates are predicted to be a strategy to reduce the time spent in the 

dangerous pelagic zone where mortality rates are extraordinarily high (Meekan and Fortier 

1996; Wilson and Meekan 2002; Cowen and Sponaugle 2009; Shima and Swearer 2009; 

Gimenez 2010). Temperature is also known to affect larval growth rates, where increases in 

temperature are often correlated with increased larval growth rates (Green and Fisher 2004). In 

line with my findings, rapid larval growth rates have been shown to be costly for post-

metamorphic performance in amphibians (Ficetola and De Bernardi 2006), and it is predicted 

that energetic costs involved with rapid larval growth are likely to be costly for other 

metabolically demanding activities such as muscular development and locomotion (Stevens et 

al. 1998; McCarthy 2000; Arendt et al. 2001). If increases in developmental temperature are 

driving rapid larval growth rates, then warmer oceanic temperatures associated with climate 

change are likely to have serious implications on the performance of post-metamorphic 

individuals. For example, increases in oceanic temperatures with climate change are likely to 

drive faster larval growth rates (Pankhurst and Munday 2011), which are correlated with 

reduced post-metamorphic performance in fish and frogs (Beck and Congdon 2000; Ficetola 

and De Bernardi 2006; Tejedo et al. 2010; da Silva et al. 2019b). Therefore, fitness in 

populations that experience warmer environmental conditions is likely to be reduced, and 

therefore, genetic variation at low latitudes (where warm water temperatures are experienced) 

may also be reduced.  
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While slower burst swimming speeds are an obvious cost of rapid larval growth rates, 

as slower individuals are likely to have reduced predator avoidance capabilities, it is less clear 

whether fast or slow metabolic rates are “better” for fitness. Some studies suggest that 

individuals with slow resting metabolic rates are likely to have higher fitness than individuals 

with fast metabolic rates (Steyermark 2002; Krams et al. 2013). This is because individuals 

with low metabolic rates are able to allocate more energy to demanding activities such as 

reproduction and cellular maintenance (Beck and Congdon 2000). For example, low metabolic 

rates have been observed to be correlated with higher survival rates in meal worm beetles 

(Krams et al. 2013). In contrast, other studies predict that faster metabolic rates are likely to be 

linked with higher fitness (Garamszegi et al. 2006; Kaseloo et al. 2012), as high metabolic rates 

are also likely to facilitate increased energy for other energetically demanding activities. For 

example, male mice with higher basal metabolic rates have larger testes and thus are likely to 

have greater reproductive success (Kaseloo et al. 2012), and high metabolic rates in birds are 

correlated with greater song complexity, which is known to be linked with mate quality and 

fitness (Garamszegi et al. 2006). A large meta-analysis that compares metabolic rates with 

fitness across taxa is required to gain a better understanding on how metabolic rate affects 

fitness.  

I was able to determine how larval traits such as growth rates, hatch size and settlement 

size are correlated with post-metamorphic thermal performance in this study; however, it was 

disappointing that I was unable to determine the environmental conditions that B. cocosensis 

experienced during their larval dispersal. Initially I aimed to test how thermal conditions during 

development altered post-metamorphic thermal performance. For example, I hypothesised that 

individuals that experienced greater thermal variability during larval dispersal would have 

wider thermal performance curves and greater acclimation capacities. It is possible to 

determine the natal origins of fish using Nitrogen, Carbon or Strontium isotope signatures at 

the hatch mark within otoliths (Thorrold et al. 2001; Rachel et al. 2008; Walther et al. 2008; 

Schloesser et al. 2010). Isotope analysis requires a calibrated isotope library for the study site 

latitude water chemistry, and is quite expensive, and thus was outside the scope of my thesis 

(Thorrold et al. 2001; Rachel et al. 2008; Walther et al. 2008; Schloesser et al. 2010). In 

addition, it is possible to back-calculate larval dispersal patterns using their pelagic larval 

durations and current velocities that likely carried larvae to their settlement locations (Condie 

et al. 2005; Pfeiffer-Herbert et al. 2007). This technique allows estimation of the distance and 

direction that larvae dispersed prior to arriving at their settlement location. Oceanic 
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temperatures along the dispersal path of larvae can then be estimated at different locations 

using marine environmental variable data bases such as BIO-ORICLE (Tyberghein et al. 2012), 

which provides information on marine temperature, salinity, oxygenation and chlorophyll a 

concentrations at different depths. However, many marine larvae migrate vertically with 

changes in photoperiod and age (Paris and Cowen 2004), and the depth that B. cocosensis 

larvae migrate to is unknown but is likely to influence the environmental temperatures that they 

are exposed to. Future studies could attempt to use these techniques to determine the range of 

thermal conditions larvae experience and how these conditions might drive differences in their 

post-metamorphic thermal performance. The conditions pelagic larvae experience and how 

their traits alter post-metamorphic performance is a fascinating and relatively unexplored topic 

and further research in the field is likely to uncover links between developmental conditions 

and experience, on the one hand, and adult fitness and survival, on the other.  

 

5.5 Concluding remarks 

The way in which daily, seasonal and intergenerational thermal variability affects ectotherm 

performance is extraordinarily complex. The time scales, magnitude and predictability of 

thermal variation affects the evolution of thermal performance curve shape and acclimation 

capacity (Gabriel 1999; Angilletta Jr et al. 2002; Gabriel 2005; Gabriel et al. 2005; Angilletta  

2006; Angilletta 2009; Asbury and Angilletta Jr 2010; Healy and Schulte 2012; Beaman et al. 

2016; Rohr et al. 2018). Developmental traits such as growth rate and size can also influence 

post-metamorphic acute thermal performance (Chapter 3). To understand how animals respond 

to changes in temperature it is important to assess ecologically relevant traits that are linked to 

survival and fitness. Measuring traits such as rate of luminance change for background 

matching can shine light on the physiological mechanisms that drive predator-prey interactions. 

In addition, it is important to compare how temperature affects the thermal sensitivity of 

performance among populations and different life-stages.  

I found an interesting commonality between the Point Lookout adult population and the 

Heron Island juvenile population. Thermal performance curve shape was not altered by thermal 

acclimation to seasonal thermal conditions in adult fish from Point Lookout (i.e. curve shape 

stayed the same but the curve itself shifted with changes in temperature) or variation in larval 

growth rate and settlement size in juvenile fish from Heron Island. This finding is interesting 

because there is a large degree of variation in performance between individuals in both studies, 

and performance thermal optima’s can be shifted with changes in temperature or larval growth 
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rate, but variation in performance curve shape is relatively small in both studies. These findings 

provide evidence to suggest that the shape of thermal performance curves may be constrained 

in B. cocosensis, or animals that experience rapid daily thermal fluctuations. Similar findings 

by Healy and Schulte (2012) show that thermal performance curve shape is not altered by 

thermal acclimation in temperate killifish; and other studies by Niehaus et al. (2011) and 

Schuler et al. (2011) show that thermal performance curve shape does not change with exposure 

to different degrees of thermal variability or stochasticity. Therefore, in environments that 

experience rapid daily thermal fluctuations, thermal performance curve shape may be 

constrained, but selection may favour a high degree of reversible plasticity for species that 

experience seasonal thermal variation or changes in thermal environment between life-cycles.  

In this thesis I contribute to the understanding of the evolution of reversible plasticity 

and performance curve shape by showing that thermal acclimation can be maintained in an 

environment where daily and seasonal thermal variability is equal; by adding evidence to 

suggest that acclimation capacity can be retained when thermal performance curves are wide; 

that animals that experience great intergenerational thermal variability are likely to retain high 

levels of plasticity; that rate of luminance change for background matching has the potential to 

acclimate to changed thermal conditions; and that rapid developmental growth rates can be 

costly for juvenile thermal performance. I have combined concepts across a broad range of 

biological disciplines including thermal physiology, thermal adaption, evolutionary ecology, 

visual ecology, animal behaviour, larval biology, and developmental physiology. By combing 

concepts and techniques from these disciplines I have been able to contribute knowledge on 

how temperature affects a species that experiences a high degree of environmental uncertainty 

from larval dispersal and a large degree of daily and seasonal thermal variability.  
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