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ABSTRACT 
 

Adrienne Hoarfrost: Linking Environmental and Microbial Processes from Community to Global 
Scales 

(Under the direction of Carol Arnosti) 
 

 Life and the environment are inextricably interconnected. From the scale of a single 

microbe to the entire Earth system, biological and environmental processes have coevolved over 

billions of years into a complex system of interactions and feedbacks that together produce the 

geochemical and ecological conditions we observe around us.  Community-scale processes result 

in net biogeochemical fluxes, which vary across regional and global scales in predictable 

patterns. At the community, regional, and global scale, this dissertation addresses a question 

central to our understanding of environmental microbial systems: How do microbial community 

interactions with their environment govern their functional and ecological role in the ecosystem, 

and how do environmental conditions shape the distribution and functional capacities of 

microbial genetic diversity? I demonstrate that microbial carbon cycling capacities in warm core 

ring waters originating from the Gulf Stream during an eddy intrusion event on the Mid-Atlantic 

Bight continental slope are distinct from those occurring in other shelf and shelf break water 

masses, illuminating the relationship between marine microbial communities and physical 

processes at the regional scale. As these eddy intrusion events likely increase in the future, these 

regional scale interactions have functional and biogeochemical implications in both present and 

future oceans. At the global scale, I build models to accurately predict genetic diversity of the 

key marine heterotroph SAR86 from environmental variables, identifying five previously 



  iv 

unrecognized ecotypes within the SAR86 clade characterized by distinct environmental 

distributions, and resulting in the first global-resolution projections of SAR86 ecotype 

biogeography. From the community to the global scale, each level of inquiry demands solutions 

tailored to address the key challenges and opportunities unique to it, and new approaches are 

brought to bear at small and large scales, developing a more effective method to measure 

microbial activities in sediments to expand the range of environments for which microbial 

activity measurements are feasible, and providing a data discovery tool that harnesses the 

potential of publicly available sequencing datasets to scale data-driven discovery to ever more 

complex microbial systems.  
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INTRODUCTION 
 

 Microbial communities have fundamentally shaped the geochemical conditions on Earth, 

in the modern era and throughout every stage of Earth’s history (Falkowski et al. 2008). They are 

a foundational part of virtually every ecosystem, from the marine water column to the deep 

subsurface, across terrestrial landscapes, urban environments, and even in our own bodies. 

Microbial community processes play out over both short and long timescales, influencing 

conditions from the community to the global scale. Processes at the microbial scale result in 

community-scale fluxes of biogeochemical products. These fluxes vary across different 

communities, and the biogeography of these communities cumulatively results in global-scale 

biogeochemical cycles. Over time, the interactions and feedbacks between microbial and 

environmental processes shape the Earth’s climate and geochemical evolution.  

 At each scale of microbial action, the key scientific goals, challenges, and solutions 

depend on the scale of the microbial process in question. At the community scale, microbial 

enzymatic activities direct the flux of chemical energy between microbes and the environment. 

In the context of the carbon cycle, extracellular enzymatic activities initiate the remineralization 

of organic carbon (Arnosti 2011). The substrate specificities of extracellular enzymes, and the 

functional capacities of microbial communities to hydrolyze a spectrum of organic substrates, are 

central to the quantity and quality of carbon cycled by heterotrophic microbial communities. 

Measuring microbial extracellular enzymatic activities directly in environmental samples, 

therefore, is an important priority for community-scale investigations of microbial impacts on 

biogeochemical cycling. However, such measurements can prove infeasible in some sedimentary 
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environments, where organic substrates sorb to the sediment matrix (Lutzow et al. 2006; Theng 

1979). Activity measurements rely on sufficient recovery of fluorescently labeled substrate 

additions (Arnosti 1996; 2003; Hoppe 1983), and are often difficult or impossible in sediments. 

Chapter 1 presents a solution to this obstacle, in which a competitive desorption treatment 

addition to enzymatic activity measurements improves recovery of fluorescent substrates, 

improving the accuracy and feasibility of extracellular enzymatic activity measurements in 

sediments. This paper has been published (Hoarfrost et al. 2017), and has been reformatted and 

reprinted for this dissertation.  

 Enzymatic activity measurements can also illuminate the link between microbial 

communities and physical processes at the regional scale. Differences in functional capacities 

have been demonstrated across latitude (Arnosti et al. 2011), with depth (Hoarfrost & Arnosti 

2017; Steen et al. 2012), at the sediment-water interface (Teske et al. 2011), and between ocean 

regions (Arnosti & Steen 2013). While the oceans are clearly characterized by different carbon 

cycling capacities across ocean regions, the relationship between physical oceanographic 

processes and their associated enzymatic activities, as well as the biogeochemical implications 

under present and future ocean conditions, remain poorly understood. In the North Atlantic, 

warm core eddies originating from the Gulf Stream travel toward the coast, and can persist to 

ultimately intrude on the continental shelf break of the Mid Atlantic Bight (Gawarkiewicz et al. 

2012; Zhang and Gawarkiewicz 2015). As the oceans warm, Gulf Stream meanders are 

becoming more pronounced, and such eddy intrusions more frequent (Andres 2016; Monim 

2017; Gawarkiewicz et al. 2018). Chapter 2 investigates the microbial carbon cycling capacities 

of microbial communities within distinct water masses along a transect of the Mid Atlantic Bight 

shelf and shelf break during an eddy intrusion event. Distinct rates of activity and spectra of 
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substrates hydrolyzed within the warm core eddy intrusion demonstrates the relationship 

between microbial and mesoscale processes, the interconnections between biogeochemical 

cycling and the environment, and the implications of these interactions in a changing climate. 

This publication is in preparation for Limnology and Oceanography. 

 The differences in functional capacities seen at the community and regional scales, and 

their close interactions with environmental processes, beg the question of the manner in which 

genetic diversity varies at the global scale, and how these global distributions can be predicted by 

environmental variables. Differences in the functional biogeography of microbial communities 

are mirrored by biogeographical distributions of microbial community composition (Fuhrman et 

al. 2008; Ladau et al. 2013; Delong et al. 2006). While enzymatic activities provide a direct 

measurement of functional capacities, they are time-intensive measurements, and are difficult to 

gather at large spatial scales. Next-generation sequencing of whole microbial communities, in 

contrast, are readily available at global scales (Sunagawa et al. 2015; Rusch et al. 2007), as is 

environmental data from a variety of historical and satellite sources. In Chapter 3, these data 

sources are used to identify global ecotypes within the ubiquitous marine heterotroph SAR86, 

and to predict the distributions of these ecotypes at a global scale. This publication is in 

preparation for the ISME journal. The identification of SAR86 ecotypes is achieved by building 

machine learning models to predict SAR86 gene presence from environmental variables 

available at global resolution. Machine learning, a branch of statistical modeling that uses 

computing power to iteratively “learn” relationships from data without being explicitly 

programmed, thrives on large datasets. As sequencing datasets become increasingly available, 

new modeling approaches can bring new insight to the complex systems governing microbe-

environment interactions.  
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 The number of publicly available sequencing datasets have increased exponentially in 

recent years, and represent a largely untapped opportunity to answer data-intensive questions in 

environmental microbiology and biogeochemistry. While projects such as the TARA (Sunagawa 

et al. 2015) and Global Ocean Survey (Rusch et al. 2007) expeditions have provided invaluable 

global ocean sequencing datasets, they were time-intensive and expensive efforts that are not 

easily replicated, and the hundreds of samples produced are insufficient for many data-intensive 

questions. Future efforts to apply machine learning to marine microbiology, for example, could 

use every marine metagenome ever produced by next-generation sequencing technologies, likely 

numbering in the thousands rather than hundreds. However, parsing the more than 3 million total 

available sequencing datasets to identify the subset of datasets that match the research priorities 

for an individual project is a daunting task, with few existing resources to facilitate the process 

(Sayers 2017; Zhu et al. 2013). Streamlining the data discovery step is therefore a crucial task for 

environmental microbiology, and for bioinformatics in general. Chapter 4 presents MetaSeek, a 

data discovery tool for sequencing data, which integrates the metadata of all publicly available 

next-generation sequencing datasets in the Sequence Read Archive, and provides an easy-to-use, 

interactive online user interface as well as programmatic API to search, filter, save, download, 

and share integrated sequencing datasets for any users’ needs. The MetaSeek publication is in 

submission to the Application Notes section of the Bioinformatics journal. Because 

Bioinformatics has strict length limits on its Application Notes submissions, an additional 

“explainer”, with more detailed descriptions of key features of the MetaSeek tool, is made 

available in Appendix D. By lowering the barriers to data discovery, the first step of data-

intensive investigation, MetaSeek provides a means to scaling data-driven discovery, both in the 

geographic sense, by exposing environmental sequencing datasets (and those from other research 
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domains) at greater spatial and temporal resolution, and in the computational sense, exposing 

sufficient data to disentangle the vast complexity of microbial systems and answer some of the 

most pressing and elusive scientific questions in bioinformatics.  

 The four chapters of this dissertation address a central question underlying microbial-

environmental relationships at community, regional and global scales: How do environmental 

variables govern the distribution of microbial genetic diversity, and how do the interactions 

between environmental and biological processes impact the functional and biogeochemical role 

of microbial communities in the environment? Differences in microbial carbon cycling capacities 

related to regional-scale physical processes illuminate the functional relationship between 

microbial communities and environmental processes, and its implications for biogeochemical 

cycling both now and in the future. Global-scale models of microbial genetic diversity are 

accurately predicted by environmental variables, defining global ecotypes in an important marine 

heterotroph, and resulting in the first global-scale projections of gene-level biogeography. New 

approaches are brought to bear at both small and large scales, overcoming central challenges to 

understanding environmental microbiological systems from single communities to global-scale 

explorations, expanding the range of environments for which microbial activities can be 

measured, and introducing new tools and resources for data-driven discovery. Together, the 

following chapters explore the links between environmental and microbial processes, traversing 

community-scale activities to global-scale phenomena.  

 
 



  6 

REFERENCES 
 
Andres M. (2016) On the recent destabilization of the Gulf Stream path downstream of Cape 
Hatteras. Geophys Res Lett; 43. 
 
Arnosti C. (1996) A new method for measuring polysaccharide hydrolysis rates in marine 
environments. Org Geochem; 25:105–115.  
 
Arnosti C. (2003) Fluorescent derivatization of polysaccharides and carbohydrate-containing 
biopolymers for measurement of enzyme activities in complex media. J Chromatogr B Analyt 
Technol Biomed Life Sci; 793:181–91. 
 
Arnosti C. (2011) Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar 
Sci; 3:401–425.  
 
Arnosti C, Steen AD. (2013) Patterns of extracellular enzyme activities and microbial 
metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in 
carbon processing by pelagic microbial communities. Front Microbiol; 4. 
 
Delong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N, et al. (2006) Community 
Genomics Among Stratified Microbial Assemblages in the Ocean’s Interior. Science; 311:496–
503. 
 
Falkowski PG, Fenchel T, Delong EF. (2008) The microbial engines that drive Earth’s 
biogeochemical cycles. Science; 320:1034–9. 
 
Fuhrman JA, Steele J a, Hewson I, Schwalbach MS, Brown M V, Green JL, et al. (2008) A 
latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci; 105:7774–8. 
 
Gawarkiewicz, G., R. Todd, A. Plueddemann, and M. Andres. 2012. Direct interaction between 
the Gulf Stream and the shelf break south of New England. Sci. Rep. 2: 477. 
doi:doi:10.1038/srep00553 
 
Gawarkiewicz G, Todd RE, Zhang W, Partida J, Gangopadhyay A, Monim M-U-H, et al. (2018) 
The changing nature of shelfbreak exchange revealed by the OOI Pioneer Array. Oceanography; 
31:60–70. 
 
Hoarfrost A, Snider R, Arnosti C. (2017) Improved measurement of extracellular enzymatic 
activities in subsurface sediments using competitive desorption treatment. Front Earth Sci; 5:13. 
doi: 10.3389/feart.2017.00013. 
 
Hoppe H. (1983) Significance of exoenzymatic activities in the ecology of brackish water: 
measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser; 11:299–308. 
 
Ladau J, Sharpton TJ, Finucane MM, Jospin G, Kembel SW, O’Dwyer J, et al. (2013) Global 
marine bacterial diversity peaks at high latitudes in winter. ISME J; 7:1669–77. 



  7 

 
Lutzow, M. V., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, 
B., et al. (2006) Stabilization of organic matter in temperate soils: Mechanisms and their 
relevance under different soil conditions - A review. Eur. J. Soil Sci.; 57:426–445. 
doi:10.1111/j.1365-2389.2006.00809.x. 
 
Monim M. (2017) Seasonal and Inter-annual Variability of Gulf Stream Warm Core Rings from 
2000 to 2016. University of Massachusetts-Dartmouth. 
 
Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. (2007) The 
Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through eastern tropical 
Pacific. PLoS Biol; 5:0398–0431. 
 
Sayers E. (2017). The E-utilities In-Depth: Parameters, Syntax and More. 2009 May 29 [Updated 
2017 Nov 1]. In: Entrez Programming Utilities Help [Internet]. Bethesda (MD): National Center 
for Biotechnology Information (US). 
 
Steen AD, Ziervogel K, Ghobrial S, Arnosti C. (2012) Functional variation among 
polysaccharide-hydrolyzing microbial communities in the Gulf of Mexico. Mar Chem; 138–139: 
13–20. 
 
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. (2015) Structure 
and function of the global ocean microbiome. Science; 348:1–10. 
 
Teske A, Durbin a, Ziervogel K, Cox C, Arnosti C. (2011) Microbial community composition 
and function in permanently cold seawater and sediments from an arctic fjord of svalbard. Appl 
Environ Microbiol; 77:2008–18. 
 
Theng, B. K. G. (1979). Clay-Polymer Interactions: Summary and Perspectives. Clays Clay 
Miner; 30:1–10. doi:10.1346/CCMN.1982.0300101. 
 
Zhang WG, Gawarkiewicz G. (2015) Dynamics of the direct intrusion of Gulf Stream ring water 
onto the Mid-Atlantic Bight shelf. Geophys Res Lett; 42:7687–7695. 
 
Zhu Y, Stephens RM, Meltzer PS, Davis SR. (2013) SRAdb: query and use public next-
generation sequencing data from within R. BMC Bioinformatics; 14:19. 
 
 
 



  8 

 
 
 
 
 

CHAPTER 1: IMPROVED MEASUREMENT OF EXTRACELLULAR ENZYMATIC 
ACTIVITIES IN SUBSURFACE SEDIMENTS USING COMPETITIVE DESORPTION 

TREATMENT1 
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* Correspondence:  

Adrienne Hoarfrost 
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Keywords: carbon degradation1, microbial activity2, deep biosphere3, hydrolysis4, 

polysaccharides5. 

 

 

1 Introduction 
 

 Heterotrophic microbial communities play an important role in organic carbon cycling in 

subsurface sediments. Increasing genomic evidence of the predominance of heterotrophy in the 

subsurface environment (Biddle et al., 2006; Fry et al., 2008; Lloyd et al., 2013) suggests that 

 

______________________________ 
1 Hoarfrost A, Snider R, Arnosti C. (2017) Improved measurement of extracellular enzymatic activities in 
subsurface sediments using competitive desorption treatment. Front Earth Sci; 5:13. doi: 10.3389/feart.2017.00013. 
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heterotrophic remineralization of organic matter plays a larger role in the sedimentary 

environment than previously appreciated. A key first step in the heterotrophic breakdown of 

organic carbon is extracellular enzymatic hydrolysis, in which compounds too large to be taken 

up directly are hydrolyzed to sizes small enough for transport into the cell. The need for 

measurements of enzymatic activities to quantify heterotrophic processes in subsurface 

sediments is evident, but the technical challenges associated with these measurements are such 

that comparatively few measurements have been made, particularly in subsurface environments.  

Extracellular enzymatic activity is typically measured by addition of a fluorescently labeled 

substrate to an environmental sample, and hydrolysis is detected either as an increase in 

fluorescence as a fluorophore is cleaved (Hoppe, 1983) or as a change in molecular weight 

distribution as a fluorescent substrate is hydrolyzed into lower molecular weight products 

(Arnosti, 1996, 2003). In both cases, adequate recovery of the amended label or labeled substrate 

is necessary for interpretable results.  

 However, adequate recovery of fluorescent labels or labeled substrates is often difficult to 

achieve due to the tendency of organic compounds to sorb strongly to the sediment matrix. 

Sorption occurs when the organic substrates interact with sediment surfaces. Interaction 

mechanisms can include ligand exchange, cation bridges, or weak interactions including 

hydrophobic interactions, van der Waals forces, or H-bonding (Lutzow et al., 2006; Theng, 

1979). High molecular weight substrates often adsorb more strongly than low molecular weight 

compounds (Podoll et al., 1987) and so pose a particular challenge for activity measurements, yet 

these measurements are especially important as most natural organic matter is biosynthesized as 

high molecular weight compounds.  
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 The strength of sorption is dependent on the characteristics of the organic substrate as 

well as the sediment composition and mineralogy (Kaiser and Guggenberger, 2000). The 

interaction of these factors leads to great variation in the extent to which enzyme activities in 

sediments can be measured: in some sediments, activities are measured relatively easily, in other 

sediments sorption affects the quality of measurements to an extent that may affect the accuracy 

of results, and in some sediments there is such poor recovery of substrate that measurements of 

enzyme activities are not feasible. Thus, published data likely excludes sediments for which 

measurements are particularly challenging to obtain. Measuring activities in such sediments may 

be important for capturing the range of heterotrophic activities in the subsurface, however, and 

exclusion of such sediments may bias our understanding of microbial effects on environmental 

processes.  

 Several strategies have been used to attempt to overcome the effect of sorption on 

measurements of enzyme activity in sediments. Very dilute sediment slurries, for example 20:1 

ratios of aqueous media to sediment, can be used to minimize sorption surface area relative to 

substrate concentration (Lloyd et al., 2013). Another approach has attempted to correct for 

adsorption by calculating the sorption affinity constant of the target molecule from a separate set 

of incubation standards with known concentrations of fluorophore, and back-calculating the total 

concentration of substrate hydrolyzed in the enzyme activity calculation (Coolen et al., 2002; 

Coolen and Overmann, 2000). Both of these approaches have limitations, however. High dilution 

of sediments necessarily reduces microbial interactions with the sediment matrix, but such 

interactions may be important, since the interactions of organic matter with sediment particles 

can affect the bioavailability of substrates (Chenu and Stotzky, 2002; Keil et al., 1994). 

Moreover, phenomena such as quorum sensing are dependent upon close spatial interactions of 
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organisms and substrates (Hmelo et al., 2011), so quorum-sensing dependent enzymatic activities 

likely could not be measured in a dilute slurry. Ideally, experimental conditions should reflect 

natural conditions as much as possible. Correcting for sorption, aside from requiring additional 

time and resources to conduct incubations for sorption affinity constant calculations, assumes 

that sorption is at equilibrium within 8 hours. Sorption can occur on both short and long 

timescales (Pignatello and Xing, 1996), however, and the factors affecting this vary by sediment 

type and characteristics, so correcting enzyme activities using sorption affinity constants may not 

always yield accurate results.  

 Here we present an alternative strategy to measure enzymatic activities in sediments, an 

approach that counteracts the effect of sorption by recovering adsorbed substrate. We adapted a 

method developed previously to measure extracellular enzymatic hydrolysis of high molecular 

weight organic matter in sediments and seawater (Arnosti, 1996, 2003). The original method 

involves addition of a fluorescently labeled, high molecular weight substrate to sediments. After 

incubation, sediment subsamples are centrifuged to obtain porewater containing the partially-

hydrolyzed substrate, which are analyzed chromatographically to determine the molecular 

weight distribution of the hydrolysis products and thereby the hydrolysis rate. We have extended 

this method by developing a treatment to desorb amended labeled substrate from subsamples for 

better detection of enzymatic activities. We tested two desorption strategies, treatment of 

sediment slurry subsamples with extraction solutions at elevated pH, and treatment of 

subsamples with extraction solutions using competitive desorption. Elevated pH was tested 

because adsorption via ligand exchange occurs most strongly at acidic pH (Gu et al., 1994; 

Kaiser and Guggenberger, 2000), and compounds bound by this means may be more easily 

desorbed at high pH (Kaiser and Zech, 1999). Competitive desorption, addition of unlabeled 
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substrate to a subsample in order to desorb the adsorbed fluorescently-labeled substrate, was 

tested since adsorption occurs when compounds compete to adsorb to a limited number of 

available sorption sites in the sediment matrix (Gu et al., 1994). The adsorption of a particular 

molecule is often reversible, and a given molecule can be displaced by other molecules that 

compete for the same sorption sites (Gu et al., 1994, 1996). Competitive displacement of 

adsorbed compounds has been demonstrated with mixtures of natural organic matter of similar or 

stronger adsorption affinities (Gu et al., 1996). We tested both pH and competitive desorption 

strategies, optimized a desorption extraction method, and demonstrated its effectiveness with a 

range of marine subsurface sediments. Here, we report the efficacy of our optimized extraction 

method and its applicability to subsurface sediments from a range of geochemical settings.    

 

2 Materials and methods 
 
2.1 Sediment collection and characteristics 

 Sediments for development of the extraction treatment protocol (see below) were 

collected from the Marmara Sea. Once finalized, the extraction treatment was applied to 

sediments from a range of geochemical environments in the Eastern Mediterranean Sea and the 

Guaymas Basin.  

2.1.1 Marmara Sea and Eastern Mediterranean Sediments 

 Sediment from the Marmara Sea and the Eastern Mediterranean were collected during 

R/V Meteor cruise M84 in February 2011 (SI Table 1.1). Surficial sediments from the Marmara 

Sea (40°47.97’ N, 27°43.49’ E, 600m water depth) were collected by multicorer, and sediments 

from 570-585cm and 520-530cm depth horizons were collected by gravity corer. Sediments from 

the Eastern Mediterranean (33°02.00’ N, 32°38.00’ E, 1424m water depth) were collected by 



  13 

gravity corer at 365cm, 385cm, 440cm, 455cm, 575cm, and 582-590cm depth horizons. 

Individual depth intervals were subsampled from the cores into 50 mL centrifuge tubes, which 

were stored at 4°C in anaerobic chambers until use. Eastern Mediterranean sediments contained 

five sapropel layers that were cross-referenced with those described by Calvert and Fortugne 

(2001). Those used in these experiments included S4 (from 385cm), S5 (455cm), and S7 (582-

590cm). 

2.1.2 Guaymas Basin Sediments 

  Sediments from the Guaymas Basin, a spreading center within the Gulf of California, 

were collected aboard the R/V El Puma in October 2014 (Buckley et al., 2015). Sediments were 

collected at 5cm and 55cm sediment depth at six locations (P1, P3, P5, P8, P10, and P13) that 

vary in geological and environmental context (SI Table 1.1). Sediment intervals from cores were 

subsampled into airtight plastic containers and stored at 4°C until use in incubations. 

2.2 Sediment incubation preparation 

 Incubations with Marmara Sea sediment were used for initial development of the 

extraction treatment protocol in three preliminary experiments – PreX1, PreX2, and PreX3 – 

using sediments from 0-5cm, 570-585cm, and 520-530cm depth intervals, respectively. 

Autoclaved artificial seawater was added to homogenized sediments to make a 2:1 

seawater:sediment slurry. 21mL of slurry was dispensed into each of two 50mL-volume serum 

vials; one vial was autoclaved as a killed control, and one vial was used as a live experimental 

vial. These incubations were set up under aerobic conditions, and due to limited availability of 

sediments only chondroitin was used as a substrate.  

In Eastern Mediterranean and Guaymas Basin sediments, all sample preparation was carried out 

in an anaerobic chamber under N2 atmosphere. Each sediment sample was homogenized in a 

sterile beaker with a sterile spatula. Artificial seawater (Sigma S9883), autoclaved and cooled 
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under N2, was added in a 2:1 ratio to homogenized sediments and mixed thoroughly. 21mL of 

sediment slurry was portioned into each 50mL-volume, sterile serum vial using a sterile 

serological pipette, and sealed with a stopper and crimp. Nine serum vials were prepared from 

each sediment section – three live incubations and one killed control for each of two substrates 

(chondroitin and laminarin), and a live blank control. The sealed vials were removed from the 

anaerobic chamber, and two vials were autoclaved for 30 minutes, then cooled to room 

temperature to serve as killed controls. Substrate addition and subsequent subsampling of the 

incubations was carried out by opening the serum vials under a stream of N2, using aseptic 

technique. Substrate was added in 175µM monomer-equivalent concentrations; three of the live 

incubations and one killed control received fluorescently labeled chondroitin sulfate; three live 

incubations and one killed control received fluorescently labeled laminarin, and one live 

incubation served as a blank and did not receive substrate. Time zero samples were collected 

immediately after substrate addition; vials were then resealed with stoppers, crimped and stored 

at 4°C in the dark until further subsampling. Subsamples were taken at 3, 6, and 9 week 

timepoints.  

2.3 Development of the extraction protocol   

 The three preliminary experiments – PreX1, PreX2, and PreX3 – were used to develop 

and optimize the extraction treatment protocol. In each case, fluorescently-labeled chondroitin 

substrate was added to incubations at 175µM monomer-equivalent concentrations (PreX1) or 

350µM monomer-equivalent concentrations (PreX2 and PreX3), which is the concentration 

typically used in previous slurry incubations (e.g. Arnosti, 2003, 2008).  

 In the first experiment (PreX1), three desorption conditions were tested: competitive 

desorption, desorption with solution at pH=10, and desorption with solution at pH=11. The 
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incubations were set up as described in section 2.2, and the fluorescently-labeled chondroitin 

substrate was added. Subsamples were taken at t0 and 2 days. At each subsampling point, 0.5mL 

of sediment slurry was removed from each vial and added to a treatment tube containing 2mL of 

either 700µM unlabeled chondroitin (competitive desorption), carbonate buffer at pH=10 

(pH10), carbonate buffer at pH=11 (pH11), or a no-treatment control of 2mL DI H2O. The no-

treatment tubes were immediately centrifuged, and the supernatant was filtered through a 0.2 um 

pore-size filter and stored at -20°C. The treatment tubes were incubated and periodically shaken 

for two hours in a 30°C waterbath before centrifuging, filtering, and storing. Based on the results 

(see Results), competitive desorption was selected for use in subsequent experiments. 

 In the second experiment, PreX2, multiple concentrations of unlabeled substrate were 

tested for use in the competitive desorption approach. Three sediment incubations were again set 

up in serum vials – a live incubation, a killed incubation, and a live blank incubation, and 

fluorescently-labeled chondroitin substrate was added. Subsamples were taken at t0, 2 days, and 

6 days. At each timepoint, 0.5mL of sediment slurry was added to each treatment tube containing 

2mL of a solution of 700µM unlabeled chondroitin, 1400µM unlabeled chondroitin, or 2800µM 

unlabeled chondroitin. There was also a no-treatment DI H2O control. No-treatment tubes were 

immediately processed, while treatment tubes were incubated and periodically shaken for two 

hours in a 30°C waterbath before processing. Based on the results, 2800µM concentrations of 

unlabeled chondroitin was selected for subsequent experiments. 

 The third experiment, PreX3, tested whether the addition of sodium dodecyl sulfate 

(SDS) provided additional improvement to the competitive desorption treatment method 

developed in PreX2 and PreX1. Three sediment incubations, a live, a kill, and a live blank, were 

used. Subsamples were taken at t0, 7 days, and 14 days. At each timepoint, 0.5mL of sediment 
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slurry was added to each treatment tube containing 2mL of either 2800µM unlabeled chondroitin 

and 0.2% SDS, 2800µM unlabeled chondroitin only, or a no-treatment control of DI H2O. No-

treatment tubes were immediately processed, and treatment tubes were incubated for 2 hrs in a 

30°C waterbath before processing. Competitive desorption with addition of SDS was selected as 

the final extraction treatment method, and was applied to the sediments from the Eastern 

Mediterranean and Guaymas Basin.  

2.4 Activity measurements with competitive desorption treatment 

 At each timepoint, subsamples were taken from each incubation to measure the 

potential activity of extracellular enzymes that hydrolyze chondroitin or laminarin (Fig 1.1). For 

each subsample, two 15mL centrifuge tubes were prepared for an extraction treatment and for a 

no-treatment control, for a total of 18 falcon tubes per time point. Treatment tubes contained 

0.5mL of 14mM unlabeled chondroitin or laminarin (2800µM in 2.5mL), 0.5mL 0.5% SDS 

(0.2% in 2.5mL), and 1mL DI H2O. No-treatment tubes contained 2mL of DI H2O.  

 1mL of sediment slurry was removed with a N2-flushed syringe from each serum vial 

under a N2 stream using aseptic technique, and 0.5mL of slurry was added to each of the 

treatment and no-treatment tubes. No-treatment tubes were immediately centrifuged (2000rpm, 4 

minutes), and the supernatant was filtered through a 0.2µm pore size cellulose acetate syringe 

filter (Sterlitech CA0225) and stored in an epi tube at -20°C until analysis. Treatment tubes were 

allowed to process in a 30°C waterbath for two hours, shaking manually every 10-15 minutes, to 

allow desorption to occur. The treatment tubes were then centrifuged and syringe filtered in the 

same manner as the no-treatment tubes, and stored at -20°C. 
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 The proportion of fluorescently-labeled substrate that had been hydrolyzed into lower-

molecular-weight products in each subsample was analyzed using gel permeation 

chromatography with fluorescence detection, after Arnosti (1996; 2003).  

2.5 Fluorescent substrate preparation and chromatogram interpretation 

 The substrates laminarin and chondroitin were labeled with the fluorophore 

fluorosceinamine after the method of Arnosti (1996, 2003). In short, hydroxyl groups at multiple 

sites along the substrate are activated with cyanogen bromide, then coupled with the fluorophore 

fluoresceinamine, resulting in a high molecular weight substrate labeled with a fluorescent label, 

typically at multiple positions. The molecular weight distribution of a fluorescently-labeled 

substrate can be visualized using gel permeation chromatography with fluorescence detection. 

When a live incubation is amended with the substrate, hydrolytic activity shifts the molecular 

weight distribution of the fluorescent substrate from all high- to a mixture of high- and lower-

molecular-weight hydrolysis products, and the hydrolysis rate can then be calculated from the 

change in molecular weight distribution (relative to standards of known molecular weight). 

To visualize the molecular weight distribution of the substrate and any hydrolysis products, a 

sample is injected onto a 21cm G50 Sephadex gel permeation chromatography column 

connected in series to a 19cm G75 Sephadex column. These columns separate a sample by 

molecular weight such that the highest molecular weight compounds are excluded from the pores 

within a gel and the lower molecular weight compounds penetrate through the pores of the gel. 

The higher molecular weight compounds thus elute first from the columns, while the lower 

molecular weight compounds elute later. Standards of known molecular weight are used to 

determine elution times for different molecular weights. Elution time per sample in this study 

was 75 minutes, at a flow rate of 1mL/min. Fluorescence of the column effluent was tracked at 

an emission wavelength of 530 nm (excitation at 490 nm) using a Hitachi fluorescence detector, 
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and the molecular weight distribution was determined from the final chromatogram output of 

fluorescence signal vs. time. Hydrolysis rates were calculated from the change in molecular 

weight distribution from time zero to the time of sampling.  

 The added substrates, chondroitin and laminarin, are polysaccharides with different 

structures and characteristics: laminarin, a storage glucan in brown algae and diatoms, is a 

branched polymer of β-linked glucose units, while chondroitin is a sulfated polymer of n-acetyl 

glucosamine and glucuronic acid. The enzymes required to hydrolyze laminarin and chondroitin 

sulfate have been identified in marine bacteria (Alderkamp et al., 2007; Wegner et al., 2013; 

Xing et al., 2015), and activities of enzymes hydrolyzing these polysaccharides have been 

measured in a wide range of environments (e.g. Arnosti, 2008; Arnosti et al., 2009). 

2.6 Statistical analyses 

 When comparing whether the treatment resulted in increased total fluorescence intensity 

relative to no treatment in raw fluorescence units (FU; the detector signal in millivolts), a paired, 

one-sided t-test was used to compare chromatographic fluorescence intensities of incubations 

subjected to no treatment and treatment conditions. When comparing a percent improvement 

relative to zero, the no-treatment value was subtracted from the treatment value for a particular 

incubation, so an unpaired, one-sided t-test was used to test whether the percent improvement 

was greater than zero.  

2.7 Reproducibility 

 The raw data from this project is stored in the BCO-DMO database (Hoarfrost and 

Arnosti, 2016). The scripts used to process and analyze the data, and generate the figures in this 

publication, can be found at the corresponding github repository (Hoarfrost, 2016).  
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3 Results 
 
 The extraction treatment presented here was developed to reduce the effects of adsorption 

on substrate recovery when measuring extracellular enzymatic activity in sediments using a 

fluorescently-labeled high molecular weight substrate, and to broaden the range of sediments in 

which enzyme activities can be measured using these substrates. Competitive desorption with 

unlabeled substrate and SDS proved to be effective in improving key chromatogram 

characteristics, by decreasing peak width and increasing fluorescence intensities (Fig 1.2, SI Fig 

1.1). Some of the improvements in chromatogram characteristics can be summarized by the 

difference in area under the chromatogram, referred to here as the total integrated fluorescence 

intensity, between treatment and no treatment controls, which was used as an overall measure of 

chromatogram quality (Fig 1.2, Fig 1.3a and b, Fig 1.4, Fig 1.5).  

3.1 Competitive desorption treatment effects on chromatogram quality  

 At all timepoints, desorption treatment improved several chromatogram characteristics 

(Fig 1.2, SI Fig 1.1). Overall, total integrated fluorescence intensities were higher in treatment 

relative to no treatment controls (Fig 1.3a), as can be seen by the difference in peak heights (Fig 

1.2; note difference in scales on y axes). The desorption treatment was especially effective at 

desorbing the high molecular weight portion of the added substrate (Fig 1.3b), resulting in higher 

proportions of high- to low- molecular weight substrate, an effect that is particularly evident for 

laminarin in core P13 from Guaymas Basin (Fig 1.2b and c). Finally, the chromatogram peaks 

are sharper and peak width is narrower, as exemplified by the incubations with chondroitin in 

Mediterranean 385cm sediments (Fig 1.2a and c.). These characteristics result in higher quality 

chromatograms and lead to more easily interpretable rate calculations. In some cases, samples 

with no treatment applied resulted in very poor recovery of substrate and such low 

chromatogram intensities that they would be unusable (e.g. Fig 1.2b, panel 1-t0). In these cases, 
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competitive desorption treatment enables measurement of enzymatic activities in sediments 

where such measurements otherwise could not be made. 

 Although the extraction protocol includes a 2-hour incubation of a subsample treatment 

in a 30°C waterbath, this step does not appear to stimulate an increase in activity in the treatment 

subsamples that would otherwise bias our results. Treatment samples, in fact, yielded lower 

calculated hydrolysis rates (due to improvements in substrate recovery) than no-treatment 

controls, which are processed immediately without incubation in the waterbath (Fig 1.3c). The 

general activity patterns in the chromatograms, which may be summarized by how quickly the 

fluorescence in the low molecular weight portion of the chromatogram increased over time, were 

similar between no treatment and treatment controls despite differences in chromatogram quality 

and intensity (Fig 1.2). The relative rate of increase in fluorescence over time of low molecular 

weight substrate products within a particular incubation remained the same in the no treatment 

and treatment conditions (result of paired t-test, P=0.98), even in highly active sediments.  

3.2 Competitive desorption effects on substrate recovery and calculated hydrolysis rates  

 Desorption treatment increased total integrated fluorescence intensity of the resultant 

chromatogram by a median of 66% (P<0.001) relative to a no-treatment control (Fig 1.3a), with a 

median increase in fluorescence of 8.3 x 106 mV (P<0.001). The improvement in fluorescence 

intensity is observed in both the high- and low-molecular weight portion of the chromatogram, 

but is particularly effective in improving recovery of the high molecular weight portion (Fig 

1.3b). Recovery of high molecular weight substrate products is improved by a median of 200% 

(P=0.01), while recovery of low molecular weight substrate products is improved by a median of 

39% (P<0.001).  
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 The improved recovery of the substrate from the subsample results in a higher relative 

proportion of high- to low-molecular weight substrate than is observed in the no-treatment 

controls. The desorption treatment therefore results in a lower calculated hydrolysis rate in 

treatment samples (Fig 1.3c), with a median decrease in maximum hydrolysis rate of 5 nM/hr in 

treatment subsamples relative to no-treatment controls (P<0.01). 

The competitive desorption treatment improves substrate recovery in all sediments and substrates 

tested (Fig 1.4), although there is some variation in the percent improvement dependent upon 

sampling site (Fig 1.4a) and substrate (Fig 1.4b).  

3.3 Comparison of the competitive desorption treatment with low pH-extraction 

 Several extraction treatment methods were tested in three preliminary experiments in 

order to develop and optimize the desorption protocol. Competitive desorption, using 700µM 

unlabeled substrate, was compared to alternative extraction treatments using solutions with pH of 

either 10 or 11, as well as a no treatment control (Fig 1.5a). Competitive desorption was found to 

be most effective at recovering chondroitin, increasing integrated fluorescence intensity by a 

median of 66% (P<0.01), while both pH extraction treatments actually decreased substrate 

recovery. Based on these results, competitive desorption was chosen as the basis of the extraction 

treatment method. 

 The concentration of unlabeled substrate to use during competitive desorption treatment 

was optimized in a second experiment (Fig 1.5b), comparing 700µM, 1400µM, and 2800µM 

unlabeled substrate concentrations to a no-treatment control. 2800µM concentrations improved 

integrated fluorescence intensity by a median of 32% (P<0.01), a large improvement over 

700µM at 20% (P=0.06) and a slight improvement over 1400µM concentrations at 28% 
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(P=0.07). Based on these results, competitive desorption with 2800µM concentrations of 

unlabeled substrate was chosen as the basis of the final extraction treatment protocol. 

The addition of SDS to competitive desorption was compared to a no-treatment control in a third 

experiment (Fig 1.5c) to determine whether the inclusion of SDS with competitive desorption 

provides additional substrate recovery. While competitive desorption both with and without SDS 

improved substrate recovery, the addition of SDS increased integrated fluorescence intensity by 

a median of 32% (P<0.001), whereas competitive desorption without SDS yielded a 17% 

increase (P<0.001). Therefore, competitive desorption with SDS was chosen as the final 

extraction treatment protocol.  

3.4 Applicability of competitive desorption treatment using multiple substrates in sediments 
from diverse environments  

 We measured extracellular enzymatic hydrolysis in sediments from varied settings, and 

were able to detect hydrolysis at activities ranging from near-zero in the Eastern Mediterranean 

to more than 200nM/hr in parts of Guaymas Basin (Fig 1.6). The desorption treatment was more 

effective at increasing total integrated fluorescence intensities than a no-treatment control at 

every site (Fig 1.4a), with median percent improvement in total integrated fluorescence ranging 

from 7% (Guaymas core P1 depth 55cm, P=0.02) to 200% (Mediterranean non-sapropel, depth 

365cm, P<0.001).  

 The greatest improvements in total integrated fluorescence intensities were observed in 

the sediments where the no treatment controls were uninterpretable due to very low substrate 

recovery. One such example is Guaymas core P13 at 55cm (Fig 1.2b), with a median 

improvement in integrated fluorescence intensities of 190%. The high quality chromatograms 

observed after desorption treatment in these cases demonstrates that this protocol can expand the 

range of sediments in which enzymatic activities can be measured. 
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 Even in cases where the median improvement in fluorescence was relatively minor, for 

example Guaymas core P1 at depth 55cm, the treatment often improved the chromatogram 

quality in other tangible ways (Fig 1.2c). Guaymas P1-55cm exhibited very high hydrolytic 

activity, but the treatment recovered a large portion of high molecular weight substrate that was 

not recovered in the no treatment control, such that the final calculated hydrolysis rate was 110.6 

nM/hr in the treatment incubation relative to the much higher 169.8 nM/hr in the no-treatment 

control.  

 The desorption treatment was effective in improving total integrated fluorescence 

intensity for both chondroitin and laminarin (Fig 1.4b, e.g. Fig 1.2). The treatment had a greater 

effect on laminarin recovery than chondroitin recovery: laminarin integrated fluorescence 

intensity was improved by a median of 140% (P<0.001), while chondroitin fluorescence was 

improved by a median of 20% (P=0.01). 

 

4 Discussion 
 

 Microbial communities in sediments play an important role in driving key 

biogeochemical cycles. Organic carbon cycling is often the dominant metabolic function of 

microbial communities in subsurface environments (e.g. Biddle et al., 2006; Fry et al., 2008; 

Lloyd et al., 2013). Reliable measurements of enzymatic activities in sediments are fundamental 

to our understanding of microbial carbon-cycling potential in sedimentary environments. 

However, our ability to measure heterotrophic enzymatic activities directly in sediments, 

particularly subsurface sediments, has been hampered by the tendency for amended substrates to 

sorb to the sediment matrix. The extraction treatment presented here facilitates the measurement 

of enzyme activities in sediments by improving recovery of fluorescently labeled substrates in 
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sediments from a range of geochemical settings. This treatment further enables the measurement 

of enzyme activities in sediments that might not otherwise yield usable data due to effects of 

sorption. This approach can be used to directly link microbial potential activities to genetic 

potential or biogeochemical processes, to better understand the role of microbial communities in 

subsurface carbon cycling. This approach may also be useful in remediation applications, where, 

for example, one would like to quantify the bioavailability of sediment-sorbed organic 

contaminants (e.g. Alexander, 2000; Megharaj et al., 2011), or in agricultural applications where 

the rate of recycling of nitrogen- or phosphorous-containing organic substrates by soil microbial 

communities is of interest for applications in optimizing food production (Berg, 2009) or 

minimizing fertilizer use (Adesemoye and Kloepper, 2009).  

 Treatment of sediment-sorbed fluorescently labeled substrates using competitive 

desorption and SDS proved effective in all sediments and substrates tested (Fig 1.4) improving 

chromatogram fluorescence intensities (Fig 1.3a) and leading to hydrolysis rate measurements 

reflecting improved recovery on high and low molecular weight substrate products (Fig 1.3b). 

Both highly active and near-zero activities were detected using this procedure (Fig 1.6) and 

desorption treatment improved chromatogram characteristics in both types of sediments (e.g. Fig 

1.2a vs c). The geochemical and environmental contexts of the source sediments used to test the 

extraction treatment were varied, encompassing sapropelic sediments from the Mediterranean, 

with high concentrations of highly recalcitrant organic carbon; non-sapropelic, oligotrophic 

Mediterranean sediments; and sediments from Guaymas Basin ranging from highly compacted 

and sulfidic, to hemipelagic and diatom-rich, to coarse and sandy terrestrially-influenced 

sediments. The two substrates tested were distinct polysaccharides with distinct compositions 

and conformations, but both yielded improved recoveries when treated with the competitive 
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desorption treatment (Fig 1.4b). The rates obtained by the competitive desorption treatment were 

not significantly affected by the incubation at 30°C in extraction buffer for 2 hours, while the 

improvements in chromatogram quality and hydrolysis rate calculations were substantial. 

The hydrolysis rates measured in subsurface sediments highlighted the contrasting potential 

activities of sediment microbial communities in the Gulf of Mexico and Mediterranean Sea. 

Most locations in Guaymas Basin were much more active (ca. 100-200 nM/hr) than in the 

Eastern Mediterranean (ca. 0-20 nM/hr, Fig 1.6). Both of these subsurface sites exhibited lower 

activities than have been observed in surficial sediments (ca. upper 15cm of sediments) in 

previous studies, including Arctic sites (Arnosti, 2008) and sediments from the Gulf of Mexico 

(Arnosti et al., 2009). While the effect of desorption treatment on producing lower hydrolysis 

rates may have contributed to the difference in hydrolysis rates observed in this study, the 2-4 

order of magnitude difference in microbial community abundance between shallow surface 

sediments and deeper subsurface sediments (Kallmeyer et al., 2012) likely underlies the 

considerable difference in measured rates. The activities measured here are potential enzymatic 

activities, and thus reflect the relative capacities of the nascent microbial communities to access 

the added substrate. The difference in rates observed between Guaymas and Mediterranean 

sediments suggests that these lower rates may also be indicative of differences in microbial 

communities between surficial and subsurface depths.  

 The efficacy of the extraction treatment in all of these settings suggests that the 

competitive desorption approach may be useful as a general (and therefore standardizable) 

approach to substrate recovery in sediment enzyme activity measurements. The competitive 

desorption treatment was especially effective at recovering the high molecular weight fraction of 

substrate products (Fig 1.3b). Recovery of high molecular weight substrate products is 
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particularly useful in natural settings, because high molecular weight compounds are more likely 

to sorb to sediment than low molecular weight compounds (Podoll et al., 1987). The rates 

calculated from treatment samples may better reflect the potential hydrolysis rate occurring in 

the incubation, whereas the higher rate calculated for the untreated sample may be exaggerated 

due to disproportional sorption of the high molecular weight fraction. The demonstrated 

applicability of this treatment in sediments from broad environmental settings may be due to the 

mechanism of competitive desorption, which directly competes for sorption sites with a substrate 

of interest, regardless of the complex combination of factors that may affect adsorption rates 

(Pignatello and Xing, 1996) that may vary widely depending on the sediment and substrate 

characteristics.  

Limitations of this extraction treatment will therefore most likely occur when sorption is more 

irreversible, i.e. where the decrease in entropy due to complexation of a substrate with sediment 

is prohibitively large. In this case, once sorbed a substrate is less likely to exchange with the 

aqueous environment, leaving less opportunity for an unlabeled ‘competitive desorber’ to replace 

it and release the labeled substrate. Although the extraction treatment was effective in all 

settings, the overall percent improvement in total integrated fluorescence intensities was variable 

across sites (Fig 1.4a). For example, in the Eastern Mediterranean core substrate recovery was 

much better in the non-sapropel (“N” segments) than the sapropel (“S”) segments, perhaps due to 

the high concentrations of organic carbon in the sapropel segments. Future experiments may test 

a wider range of substrates, and additional sediments and soils with geological histories and 

contexts not investigated in this study, to better estimate the true variance of this extraction 

treatment approach and its overall applicability.  



  27 

 This method has been developed to improve measurements made with high molecular 

weight fluorescent substrates prepared after the method of Arnosti (1996, 2003), and is focused 

on improving recovery of hydrolyzed fragments of high molecular weight substrates. Other 

common methods of measuring enzymatic activities include use of low molecular weight 

substrate proxies, typically consisting of monomers linked to MUF or MCA fluorophores, after 

the method of Hoppe (1983). Measurement of enzyme activities with substrate proxies rely on 

the release of a fluorophore that becomes fluorescent upon hydrolysis from the attached 

monomer.  The method is thus affected by sorption of the freed fluorophore to the sediment 

matrix. In this case, an adaptation of the competitive desorption treatment would require use of a 

non-fluorescent analog of the MCA or MUF fluorophore. 

 Measuring the rate at which microbial communities hydrolyze organic compounds in 

subsurface sediments is essential to our understanding of subsurface ecosystems and their 

influence on biogeochemistry, environmental remediation, and agricultural productivity. The 

method presented here provides a promising means to more reliably and accurately measure 

heterotrophic extracellular enzymatic activities in sediments not otherwise amenable to these 

measurements.  
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Fig 1.1 – Conceptual figure of extraction treatment protocol for competitive desorption with 
SDS. Nine incubations were conducted for each sediment section: one live blank (‘bl’), and for 
each substrate one kill control (‘X’) and three live incubations. At subsampling, 1mL of slurry is 
removed from each incubation; 0.5mL of that subsample is treated with competitive desorption 
treatment (left), and 0.5mL receives no treatment (right). After centrifuging both treatments are 
syringe filtered and stored at -20°C. 
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Fig 1.2 – Representative chromatograms comparing treatment (bottom row) to no treatment 
controls (top row) in one of the live replicate incubations for (a) Mediterranean sapropel S4, 
385cm, chondroitin incubations (b) Guaymas core P13, 55cm, laminarin, and (c) Guaymas core 
P1, 55cm, laminarin. Note differences in scales on y axes. Improved chromatogram quality is 
seen in treatment incubations, with narrower peak widths, higher total integrated fluorescence, 
and a higher proportion of high- to low-molecular-weight substrate. 
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Fig 1.3 – Overall improvement in fluorescence intensity by competitive desorption and SDS 
treatment, for all experiments in Guaymas Basin and Eastern Mediterranean sediment. (a) The 
percent improvement in total integrated fluorescence intensity in desorption-treated samples 
relative to their no-treatment controls. (b) Percent improvement in total integrated fluorescence 
intensity using desorption treatment for the high- and low- molecular weight portions of each 
subsample. High molecular weight is operationally identified as the first third of a 
chromatogram, while low molecular weight is the last third. (c) Change in calculated maximum 
hydrolysis rate (nM/hr) in treatment versus no-treatment controls. Grey lines connect treatment 
and no-treatment subsamples from a single incubation. 

 

 

Fig 1.4 – Percent improvement in total integrated fluorescence intensity using desorption 
treatment method (relative to no-treatment control) (a) for each sediment section tested. 
Sediments from Guaymas Basin in green, Eastern Mediterranean in yellow, and (b) for each 
substrate tested. 
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Fig 1.5 – Percent improvement in total integrated fluorescence intensity for alternative extraction 
treatment candidates relative to a no-treatment control for (a) PreX1, in which competitive 
desorption, pH=10, and pH=11 extraction conditions are tested, (b) PreX2, in which three 
candidate concentrations of unlabeled substrate (700µM, 1400µM, and 2800µM) in the 
extraction treatment are compared; and (c) PreX3, in which the presence or absence of SDS in 
competitive desorption are compared. 

 

Fig 1.6 – Maximum hydrolysis rate (nM/hr) measured in sediments from (a) Guaymas basin and 
(b) Eastern Mediterranean. Note differences in scale on y axes.  
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1. Introduction 
  
 Western boundary currents often influence an adjacent or nearby continental shelf. The 

Mid Atlantic Bight continental shelf in the northeastern U.S. in particular is affected by warm 

core rings originating from the Gulf Stream (e.g. Joyce et al. 1992; Gawarkiewicz et al. 2001; 

Chen et al. 2014; Zhang and Gawarkiewicz 2015). Warm core rings generally form on the north 

side of the Gulf Stream and drift to the north and west, where they eventually encounter the 

upper continental slope and the outer continental shelf. In recent years, there have been instances 

in which the path of the Gulf Stream jet has shifted well north of its normal meander envelope 

and is in close proximity to the shelf break and outer continental shelf (Gawarkiewicz et al. 

2012; Ezer et al. 2013; Ullman et al. 2014). 

 Such shifts in ocean water circulation have the potential to profoundly affect the 

biological framework of life in the ocean. For example, upwelling of nutrient-rich deep water to 

the euphotic zone at the shelfbreak front in the Mid Atlantic Bight, where persistent upwelling 

contributes to enhanced primary productivity within the shelfbreak front and jet (He and Chen 

2010; Zhang et al. 2013), fuels primary productivity in this region. Such interactions between 

physical and biological processes have long been understood as the foundation of the ocean’s 

food web (Redfield 1958; McGillicuddy 2015). Understanding of finer-scale ocean circulation 

interactions with the shelf is less well-developed, in part because development of the instruments 

and capabilities to make higher resolution observations of relevant ocean parameters over 

sufficiently large temporal and spatial scales has occurred comparatively recently. In the last 

several years, however, new observational capabilities such as the Ocean Observatories Initiative 

Pioneer Array have highlighted increased exchange across the shelf break and the importance of 

warm core rings over the upper continental slope (Gawarkiewicz et al. 2018).  
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 Recent studies have suggested that Gulf Stream influences over the continental shelf and 

slope south of New England have been increasing. Andres (2016) found that the initiation region 

for large amplitude Gulf Stream meanders has been shifting steadily westward since 1995 and 

large amplitude meanders are now occurring west of the New England Sea Mounts. Furthermore, 

the number of warm core rings formed annually has increased by roughly 50% for the time frame 

2000-2016 compared to 1977-1999 (Monim 2017). Repeated cross-shelf glider transects from 

the Ocean Observatories Initiative Pioneer Array have shown that the mean salinity over the 

continental slope over a two year time period was 35.7 PSU, an increase of over 0.6 PSU relative 

to slope water mass properties from the 1970s and earlier (Gawarkiewicz et al., 2018). 

 Warm, salty waters intruding onto the shelf bring ecosystem changes: for example, new 

species have been documented on the continental shelf during seasons in which they are not 

normally present (Gawarkiewicz et al. 2018). However, the biogeochemical effects of such 

intrusions have not yet been investigated. The functional capabilities of microbial communities 

in ring features, and the timing and persistence of rings along the continental shelf, may affect 

the location and rate of carbon cycling along ocean basin margins. The activities of heterotrophic 

microbial communities are particularly important in this respect, since they are key drivers of 

carbon cycling, transforming and remineralizing organic matter, and generating new biomass. 

These processes function as a constraint on the amount of carbon recycled to the atmosphere as 

CO2 or transported to deeper water depths (Azam and Malfatti 2007; Falkowski et al. 2008). The 

carbon-cycling capabilities of these communities is initiated by the activities of extracellular 

enzymes, which hydrolyze high molecular weight (HMW) organic matter into sizes sufficiently 

small to be transported into the cell. The assemblage of enzymes that a microbial community can 

produce affects the nature and quantity of organic substrates that microbial communities can 
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access, as well as the rates at which they are hydrolyzed (Arnosti 2011). These functional 

patterns follow gradients across depth (Baltar et al. 2010b; Steen et al. 2012; Hoarfrost and 

Arnosti 2017), latitude (Arnosti et al. 2011), hydrographic properties (Baltar and Arístegui 2017; 

Hoarfrost and Arnosti 2017), and between coastal and open ocean regions (D’Ambrosio et al. 

2014).  

 Distinct hydrolytic capacities of microbial communities within water masses result in 

different rates of carbon degradation in different regions of the ocean, often most obviously 

where boundaries between water masses are sharp (Baltar and Arístegui 2017). Gulf Stream 

warm core rings may transport a distinct microbial community with distinct hydrolytic capacities 

(Baltar et al. 2010a). These distinct functional capacities may affect carbon cycling over the Mid 

Atlantic Bight shelf break during intrusions of eddy-derived waters onto the continental shelf; 

however, this possibility has not yet been investigated.  

 Recent years have brought increased use of new sensors, gliders, and floats that provide 

continuous physical and chemical data, enabling high-resolution spatial and temporal tracking of 

specific water masses, including increased frequency of ring intrusions on the shelf (Andres 

2016; Gawarkiewicz et al. 2018). In contrast, continuous and/or high-resolution measurements of 

microbial extracellular enzymatic activity – the initial step of carbon cycling – is not yet possible 

with similar spatial and temporal resolution.  Although high-resolution automated collection of 

samples of microbial transcripts provide new insight into microbial dynamics (e.g. Otteson et al 

2014; Aylward et al 2015), rates of processes cannot be inferred from such samples. Instead, here 

we focus on ship-based sampling and incubation of ‘end points’ of ring intrusion, by comparing 

microbial community activities in surface and bottom waters on a transect along the Mid Atlantic 

Bight shelf and shelf break during an eddy intrusion event. This transect included stations 
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spanning shelf water, slope water, and ring-derived water. Measurement of microbial activities – 

potential activities of enzymes hydrolyzing peptides and polysaccharides, as well as bacterial 

protein production – across these distinct water masses yields insight into the biogeochemical 

capabilities of microbial communities associated with interactions between the Gulf Stream and 

the continental shelf on the Mid Atlantic Bight. 

 

2. Methods 
 
 Hydrographic sampling was conducted with a SeaBird 911+ CTD from the R/V 

Endeavor between the 27th and 28th of April 2015 (cruise EN556). Vertical profiles were 

sampled at four stations between the 63 m and 207 m isobaths roughly along 71°W. Station 1 

was located at 40.7071°N 71.028°W, Station 2 at 40.4622°N 71.0008°W, Station 3 at 40.3084°N 

71.0048°W, and Station 4 at 40.0702°N 71.0052°W (Table 2.1, SI Fig 2.1).  Water masses were 

identified (see Results) based on temperature and salinity characteristics, as well as the 

observation of warm core eddy dynamics from sea surface temperature satellite observations in 

this region during the time period of sampling. 

 

2.1 Seawater collection  

Seawater was collected from 1 meter below surface and within a few meters of the 

bottom at each station using a Niskin rosette equipped with a CTD sensor. Bottom sampling 

depths were 58 m (Stn. 1), 78 m (Stn. 2), 97 m (Stn. 3), and 199 m (Stn. 4; Table 2.1). Seawater 

was transferred to 20 L carboys that were rinsed three times with water from the sampling depth 

and then filled with seawater from a single Niskin bottle, using silicone tubing that had been acid 

washed then thoroughly rinsed with distilled water prior to use. From each carboy, water was 

dispensed into smaller glass containers that were cleaned and pre-rinsed three times with water 
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from the carboy prior to dispensing. This water was used to measure bacterial productivity and 

the activities of polysaccharide hydrolases, peptidases, and glucosidases. A separate glass Duran 

bottle was filled with seawater from the carboy and sterilized in an autoclave for 20-30 minutes 

to serve as a killed control for microbial activity measurements.  

 

2.2 Incubation setup and subsampling – polysaccharide hydrolases 

 The potential of the seawater microbial community to hydrolyze six high molecular 

weight polysaccharides (arabinogalactan, chondroitin sulfate, fucoidan, laminarin, pullulan, and 

xylan) was investigated in surface and bottom water at all four stations. These substrates were 

chosen for their diverse molecular structure, and because they are all found in the marine 

environment and/or enzymes able to target these substrates are present in marine microorganisms 

(e.g. Alderkamp et al., 2007; Martinez-Garcia et al., 2012; Wegner et al., 2013). Substrates were 

labeled with fluoresceinamine, after the method of Arnosti (1996, 2003). 

 For each substrate, three 50 mL falcon tubes were filled with seawater and one 50 mL 

falcon tube was filled with autoclaved seawater to serve as a killed control. Substrate was added 

at 3.5 µM monomer-equivalent concentrations, except for fucoidan, which was added at 5 µM 

concentrations (a higher concentration was necessary for sufficient fluorescence detection). Two 

50 mL falcon tubes – one with seawater and one with autoclaved seawater – with no added 

substrate served as blank controls. Incubations were stored in the dark at as close to in situ 

temperature as possible, given the finite number of temperature-controlled incubators aboard 

ship (Table 2.1).  

 Subsamples of the incubations were collected at time zero, and at six subsequent 

timepoints (t1-t6): 2 days, 5 days, 10 days, 17 days, 30 days, and 42 days. These timepoints were 

chosen since it is impossible to know a priori at what timepoint hydrolytic activity can be 
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detected. Here, we report the data from the first three timepoints (2, 5, and 10 days), since all 

activities that were detectable throughout the timecourse of incubation were detected by the 10 

day timepoint. At each timepoint, 2 mL of seawater was collected from the 50 mL falcon tube 

using a sterile syringe, filtered through a 0.2 µm pore size syringe filter, and stored frozen until 

processing. 

 The hydrolysis of high molecular weight substrate to lower molecular weight hydrolysis 

products was measured using gel permeation chromatography with fluorescence detection, after 

the method of Arnosti (1996, 2003). In short, the subsample was injected onto a series of 

columns consisting of a 21 cm column of G50 and a 19 cm column of G75 Sephadex gel. The 

fluorescence of the column effluent was measured at excitation and emission wavelengths of 490 

and 530 nm, respectively. Hydrolysis rates were calculated from the change in molecular weight 

distribution of the substrate over time, as described in detail in Arnosti (2003). The pairwise 

similarity of the spectra of polysaccharide substrates hydrolyzed among sampling sites was 

calculated using the Jaccard similarity metric, and the statistical significance of the differences in 

hydrolytic spectra among the shelf, slope, and eddy-intrusion water masses was evaluated with 

the PERMANOVA metric. 

 Scripts calculating hydrolysis rates and producing the figures depicted in this manuscript 

are available at the associated Github repository (Hoarfrost 2017). 

 

2.3 Incubation setup and subsampling – peptidases and glucosidases 

 The hydrolysis of seven low molecular weight substrate proxies was measured in surface 

and bottom waters from all four stations. Two substrates, α-glucose and β-glucose linked to a 4-

methylumbelliferyl (MUF) fluorophore, were used to measure glucosidase activities. Five 
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substrates linked to a 7-amido-4-methyl coumarin (MCA) fluorophore, one amino acid – leucine 

– and four oligopeptides – the chymotrypsin substrates alanine-alanine-phenylalanine (AAF) and 

alanine-alanine-proline-phenylalanine (AAPF), and the trypsin substrates glutamine-alanine-

arginine (QAR) and phenylalanine-serine-arginine (FSR) – were used to measure exo- and endo-

acting peptidase activities, respectively. These substrates collectively are derived from two major 

classes of organic matter, carbohydrates (α-glucose and β-glucose) and amino acids that are 

constituents of proteins (leucine, QAR, FSR, AAF, and AAPF). Furthermore, these substrates are 

cleaved by enzymes that hydrolyze their substrates in two distinct patterns: exo-acting enzymes 

(cleaving end-terminus residues: α-glucose, β-glucose, and leucine) and endo-acting enzymes 

(mid-chain cleaving: QAR, FSR, AAF, and AAPF). As with the polysaccharide substrate 

incubations, these substrates were incubated at saturating concentrations and thus measure 

potential enzymatic activities. 

 Hydrolysis rates of the substrates were measured as an increase in fluorescence as the 

fluorophore was hydrolyzed from the substrate over time (as in Hoppe, 1983; Obayashi and 

Suzuki, 2005). Incubations with the seven low molecular weight substrates were set up in a 96-

well plate. For each substrate, triplicate wells were filled with a total volume of 200 µL seawater 

for experimental incubations; triplicate wells were filled with 200 µL autoclaved seawater for 

killed control incubations. Substrate was added at saturating concentrations. A saturation curve 

was determined with surface water from each station to determine saturating concentrations of 

substrate. Saturation curve incubations were conducted with leucine and β-glucose substrates, 

and as saturating concentrations were found to be similar for both substrates, this concentration 

was used as the saturating concentration for all glucosidase and peptidase substrates. The 

saturating concentration was identified as the lowest tested concentration of substrate at which 



  44 

additional substrate did not yield higher rates of hydrolysis. Fluorescence was measured over 24 

hours incubation time with a plate reader (TECAN spectrafluor plus; 360 nm excitation, 460 

emission), with timepoints taken every 4-6 hours. Hydrolysis rates were calculated from the rate 

of increase of fluorescence in the incubation over time relative to a set of standards of known 

concentration of fluorophore. The similarity of the spectra of glucosidase and peptidase 

substrates hydrolyzed among sampling sites were calculated as with polysaccharide substrates, 

using the Jaccard similarity metric and testing statistical significance with PERMANOVA. 

 Scripts to calculate hydrolysis rates and produce the figures shown here are available in 

the associated Github repository (Hoarfrost 2017).  

 

2.4 Bacterial productivity measurements 

Bacterial protein production was measured via 3H-leucine incorporation by heterotrophic 

bacteria using the cold trichloroacetic acid (TCA) and microcentrifuge extraction method (as in 

Kirchman, 2001). All work was performed aboard ship. In brief, triplicate live samples of 1.5 mL 

seawater as well as one 100% (w/v) TCA-killed control were incubated with 23 µL of L-[3,4,5-

3H(N)]-Leucine (PerkinElmer, NET460250UC) for between 4 and 24 hours in the dark at as 

close to in situ temperature as possible. Live samples were then killed with 89 µL of 100% (w/v) 

TCA and centrifuged (10,000 rpm at 4°C for 10 min) to pelletize cell material. The supernatant 

liquid was removed and 1 mL of 5% (w/v) TCA solution was added, followed by vortex mixing 

and centrifugation. Supernatant removal, mixing, and centrifugation were repeated using 1 mL of 

80% ethanol solution. Finally, the supernatant liquid was removed and each sample was dried 

overnight. After drying, 1 mL of scintillation cocktail (ScintiSafe 30% Cocktail, Fisher SX23-5) 

was added and incorporated radioactivity was measured using a LSA scintillation counter 

(PerkinElmer Tri-Carb 2910TR). Leucine incorporation rate was calculated from the 
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incorporated radioactivity, compared to 1 mL of scintillation cocktail spiked with 23 µL of L-

[3,4,5-3H(N)]-Leucine radioactivity, divided by incubation time. 

 

2.5 Dissolved organic carbon measurements 

Water samples for DOC measurements were collected from the Niskin bottles 

immediately after retrieval, before any other sampling took place. Clean and acid washed 

syringes, tubing, and filter holders were used for each sampling. Duplicate DOC samples were 

filtered using the same 60 cc syringe through combusted glass fiber filters (Whatman 1825-025) 

secured within a polycarbonate filter holder into two combusted 20 mL scintillation vials and 

acidified using 100 µL of 50% phosphoric acid, then immediately frozen at -20°C. DOC samples 

were analyzed by high temperature catalytic oxidation (HTCO) using a Shimadzu Total Organic 

Carbon analyzer (TOC-8000A/5050A).  

 

3. Results 
 

3.1 Water mass characteristics 

             The temperature/salinity properties from Stations 1-4 can be examined to determine the 

types of water masses present in April 2015 at the time of sampling. Overviews of T/S 

characteristics that define water masses in this region appear in Wright and Parker (1976) and 

Lentz (2003). Key water masses include shelf water beneath the thermocline, known as the Cold 

Pool, with temperatures typically 10°C or below, and salinities less than 34.0 PSU. Lentz (2003) 

has identified salinities between 34.0 and 35.0 PSU as shelfbreak frontal water. Slope water is 

generally 35.0-35.1 PSU. We define warm core ring water as having a salinity ≥ 35.5 PSU, 

although salinities within warm core rings can be 36.0 PSU or higher shortly after formation. 
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Temperature and salinity profiles from the CTD casts are shown in Fig 2.1, along with a T/S plot 

for the four stations and a satellite view of sea surface temperature on April 28, the day of 

sampling for Stns. 3 and 4. 

The water mass properties from Stns. 1 and 2 were typical of shelf water Cold Pool 

masses in April, with temperatures below 7°C and salinities below 34 PSU. The upper water 

column from Stns. 3 and 4 also had temperature and salinities typical of shelf water farther 

offshore, although both temperature and salinity were slightly higher than at Stns. 1 and 2 (Fig 

2.1). The salinity near the bottom in Stn. 3 was above 35 PSU, which is typical of slope water 

that includes mixtures of slope water and warm core ring water. The salinity for Stn. 4 was over 

35.5 PSU from 120 m depth to the bottom of the profile at 200 m depth, indicating properties of 

a warm core ring water mass (Table 2.1, Fig 2.1). Dissolved organic carbon (DOC) was highest 

at Stns. 1 and 2 surface (120-135 µM), with decreasing concentrations offshore (80-90 µM at 

Stn. 2 bottom, Stn. 3, and Stn. 4 surface), and the lowest observed DOC concentrations at Stn. 4 

bottom (63.5 µM) (Table 2.1).  

Contemporary sea surface temperature observations during the time leading up to and 

during the dates sampled show the influence of a warm core eddy-derived warm filament 

intrusion on the shelf break where Stn 4 was sampled (Fig 2.1d, SI Fig 2.1). One warm core ring 

approached the survey line from the west during April 5 to 22, followed by a second warm core 

ring beginning on April 22. By April 27-28, the dates of sampling, the activity of these two rings 

appear to have “pushed” a warm water filament towards the survey line. The activity of these 

two rings likely brought warm/salty water to the upper continental slope at Stn. 4. The T-S 

character (~12.5°C, ~35.6 PSU) of the water below 120 m at Stn. 4 is consistent with recent 

observations of water within the Gulf Stream jet at the southern perimeter of the Mid Atlantic 
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Bight (SI Fig 2.2), suggesting the deep water at Stn. 4 is of Gulf Stream origin, likely transported 

to the survey area by warm core rings. 

 

3.2 Microbial protein production 

Bacterial productivity was particularly low in Stns. 3 and 4 bottom water, at 7 and 3 pmol 

L-1 h-1 respectively, but was considerably higher in surface water of the same stations, at 42 and 

92 pmol L-1 h-1 respectively (Table 2.1). At Stns. 1 and 2, there was less difference between 

surface and bottom waters, and bacterial productivity was moderate compared to Stns. 3 and 4, 

ranging from 13 to 21 pmol L-1 h-1.  

 

3.3 Peptidase and glucosidase activities 

 Differences in the spectrum of peptide and glucose substrates hydrolyzed, as well as 

hydrolysis rates, were notable among shelf and shelf break water masses (Fig 2.2). The spectrum 

of peptide and glucose substrates hydrolyzed differed according to water mass source, resulting 

in significantly different Jaccard similarities of hydrolytic spectra between Stns. 1 and 2 Cold 

Pool shelf waters, Stn. 3 and 4 surface warm shelf waters, Stn. 3 bottom slope waters, and Stn. 4 

bottom Gulf Stream eddy waters (PERMANOVA P=0.006). At Stns. 1 and 2, which 

corresponded with Cold Pool shelf waters, comparatively few substrates were hydrolyzed, and 

activities were quite low, ranging between 0 and 5.2 nmol L-1 h-1. At these two stations, activities 

were dominated by hydrolysis of QAR-trypsin and either AAF-chymotrypsin (Stn. 2; Stn. 1 

bottom water) or α-glucose (Stn. 1 surface water). Nearer the shelf break, Stns. 3 and 4 showed a 

much wider spectrum of activities and considerably higher hydrolysis rates. The surface warm 

shelf waters of Stns. 3 and 4, which had similar physical characteristics to eachother (Fig 2.1), 

also showed similar hydrolysis profiles, dominated by leucine amino peptidase activities 
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averaging 79-88 nmol L-1 h-1, with trypsin (QAR, FSR) and chymotrypsin (AAF, AAPF) 

activities ranging between 4 and 21 nmol L-1 h-1, and very low but detectable levels of α- and β-

glucosidase activity. Bottom waters of Stn. 3, corresponding to slope waters, showed lower 

leucine aminopeptidase activity (24.1 nmol L-1 h-1) compared to surface water from the same 

station; activities of QAR-trypsin (at 24.1 nmol L-1 h-1) were, however, higher than in surface 

water of Stn. 3. At Stn. 3 (both depths) as well as surface water of Stn. 4, all of the peptidase and 

glucosidase substrates were hydrolyzed. In Stn. 4 bottom water, corresponding to the Gulf 

Stream eddy water, however, a much narrower spectrum of activities was measured: no FSR, 

AAF, or α-glucose were hydrolyzed. This narrow spectrum of activities did not translate to low 

hydrolysis rates for the other substrates, however, since leucine aminopeptidase activity was 21.7 

nmol L-1 h-1, and AAPF-chymotrypsin and QAR-trypsin activities were 12.7 and 4.4 nmol L-1 h-

1, respectively (Fig 2.2). 

 

3.4 Polysaccharide hydrolase activities  

 Polysaccharide hydrolase activities, measured initially after 48 hours’ incubation, also 

showed distinct differences among stations and depths in the spectrum of substrates hydrolyzed, 

as well as in hydrolysis rates (Fig 2.3). These hydrolytic spectra were significantly different 

among Cold Pool shelf (Stns. 1 and 2), warm shelf break (Stns. 3 and 4 surface), slope (Stn. 3 

bottom), and Gulf Stream derived eddy masses (Stn. 4 bottom, PERMANOVA P=0.048). 

Activities were considerably higher at Stn. 2 than at the other three stations (summed activities of 

26.7 and 44.7 nmol L-1 h-1 for surface and bottom water, respectively), and were dominated by 

chondroitin hydrolysis. As with peptidase and glucosidase activities, Stns. 3 and 4 surface waters 

also had similar polysaccharide hydrolysis profiles: chondroitin, laminarin, pullulan, and xylan 
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were hydrolyzed at both sites in similar proportions. Summed hydrolysis rates were lowest in 

bottom waters at Stns. 3 and 4 (1.7 and 5.0 nmol L-1 h-1 respectively), although their hydrolysis 

profiles differed: arabinogalactan, chondroitin, and laminarin were hydrolyzed in Stn. 3 bottom 

water, while fucoidan, laminarin, pullulan, and xylan were hydrolyzed in Stn. 4 bottom water. 

Fucoidan and arabinogalactan were only hydrolyzed in bottom waters, while pullulan was only 

hydrolyzed in surface waters and the bottom waters at Stn. 4.  

Given the duration of the polysaccharide incubations, the timecourse of substrate 

hydrolysis provides additional information about the response of a microbial community to 

specific polysaccharides, since multi-day incubations allow sufficient time for growth responses, 

as well as enzyme induction. Rapid hydrolysis suggests that a large fraction of a microbial 

community can hydrolyze a substrate or that the active portion of the community is able to 

respond quickly and at high capacities, while hydrolysis that develops late in a timecourse 

indicates an activity carried out by a small or slow-growing fraction of the community. Substrate 

hydrolysis patterns and response times to the six polysaccharides evolved considerably over a 

10-day incubation period across substrate, depth, and location (Fig 2.4).  Over this time frame, 

hydrolysis of chondroitin and laminarin became evident in all incubations and generally became 

an increasing proportion of total polysaccharide hydrolysis over time. Pullulan was rapidly 

hydrolyzed in all surface waters, but only in bottom waters at Stn. 4. Arabinogalactan was only 

hydrolyzed in bottom waters, and only at Stns. 1 and 3.  

 

4. Discussion 
 
 The frequency of warm core rings in the slope region south of New England has 

increased in recent years. In November 2009 (Ullman et al. 2014) and December 2011 
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(Gawarkiewicz et al., 2012), the North Wall of the Gulf Stream was in close proximity to the 

shelf break south of New England. Observations from the National Marine Fisheries Service, as 

part of the ECOsystems MONitoring program, have shown that ring water extended shoreward 

across most of the continental shelf in September 2014 (Gawarkiewicz et al., 2018). More 

recently, the Ocean Observatories Initiative Pioneer Array identified a large cross-shelf intrusion 

of ring water in January 2017. Our study identifies an eddy intrusion event on the continental 

slope during the time of sampling in April 2015. We detect distinct biogeochemical 

characteristics among water masses along the northern part of the Mid Atlantic Bight during this 

eddy intrusion event, and explore the effect of these events on microbially-driven carbon cycling 

in this region.  

 A pattern in microbial carbon cycling capacity unique to warm core eddy intrusions may 

have implications for carbon biogeochemistry within warm core eddies, and in particular on the 

biogeochemical cycling capacities of the continental shelf during eddy intrusion events. Across 

distinct water masses sampled from the continental shelf, shelf break, slope, and the Gulf Stream 

derived eddy (Fig 2.1), microbial communities demonstrated differences in the spectrum and 

rates of hydrolysis of a suite of high- and low-molecular-weight organic substrates, as well as in 

bacterial productivity, indicative of differences in carbon cycling capacities. Gulf Stream derived 

water in bottom water of Stn. 4 in particular was distinct from other water masses sampled at 

other stations and depths, and was characterized by particularly low bacterial productivity (Table 

2.1), the capacity to hydrolyze fewer peptide substrates relative to surface waters at the same 

station (Fig 2.2), and distinct polysaccharide hydrolase activities (Fig 2.3) as well as peptide and 

glucose substrate spectra (Fig 2.2). The hydrolytic pattern in Stn. 4 bottom waters contrasted 

with the shelf break surface waters of Stns. 3 and 4, the slope waters of Stn. 3 bottom water, and 
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the cold, shallow shelf waters of Stns. 1 and 2, each of which were characterized by hydrolytic 

spectra and hydrolysis rates significantly different from the other water masses. These water 

masses were also characterized by widely different rates of bacterial productivity, with 

particularly high bacterial productivity in shelf break surface waters, moderate productivity in 

cold shelf waters, and relatively low productivity in slope waters that nevertheless was more than 

twice the rate in warm core ring waters (Fig 2.1a; Table 2.1).   

 Differences in functional capacities were evident over long as well as short time-scales, 

as determined by incubations that reflect the capacity of the microbial community to respond to 

addition of specific polysaccharides. Even after 10 days of incubation, during which a significant 

growth response is possible, some polysaccharides were not hydrolyzed (Fig. 2.4), indicating that 

the microbial community as a whole lacked the ability to hydrolyze particular substrates, whether 

because they lacked the genes that encode the necessary enzymes or because such genes were 

not activated during the incubation time. Hydrolytic capacities in water from the warm core ring 

intrusion, and the timecourse over which different substrates were hydrolyzed most rapidly, were 

distinct from other sampling sites of shelf and shelf break waters (Fig 2.4). This observation 

suggests that the timing and persistence of eddy intrusions may also influence the spectrum of 

organic matter hydrolyzed by microbial communities in situ. 

A previous investigation of microbial activities in the Mid Atlantic Bight that sampled 

waters originating from a Gulf Stream eddy in close proximity to the continental shelf (Bullock 

et al. 2015) indicates that the hydrolytic and bacterial productivity patterns observed in this study 

are a consistent feature of Gulf Stream derived eddies and intrusions. Bullock and colleagues 

(2015) found that the same spectrum of polysaccharides – pullulan, laminarin, xylan, and 

fucoidan – were hydrolyzed after 2 days of incubation as in the present study, and bacterial 
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productivity was also notably low in waters derived from the Gulf Stream compared to the other 

water masses they sampled. Although not all of the peptidase substrates used in the current study 

were also measured in Bullock et al. (2015), activities of leucine aminopeptidase, α-glucosidase, 

and β-glucosidase showed similar patterns to Stn. 4 bottom water, with moderate leucine 

aminopeptidase rates (ca. 12 nmol L-1 h-1 compared to 21.7 nmol L-1 h-1 in this study) and very 

low α- and β-glucosidase rates. The similarity of hydrolytic rates and spectra, as well as the 

characteristically low bacterial productivity, in warm core ring waters across the current study as 

well as Bullock et al. (2015) suggests that water derived from warm core rings may have a 

consistent, distinct biogeochemical imprint on the continental shelf. Other studies comparing 

bacterial productivity in water from farther offshore or from warm core ring sampling sites to 

coastal or shallower water sites (Baltar et al. 2009, Alonso-Sáez et al. 2012) also found that 

bacterial productivity was lower in water originating from North Atlantic Central Water, 

consistent with both Bullock et al. (2015) and this study. 

The warm core eddies driving eddy intrusion events on the Mid Atlantic Bight originate 

from the Gulf Stream and North Atlantic Central Waters of the Sargasso Sea. Eddies in the 

Sargasso Sea have strong effects on net community production, carbon export, and microbial 

community composition and biomass (Benitez-Nelson and McGillicuddy 2008; Ewart et al. 

2008; Mouriño-Carballido 2009; Nelson et al. 2014) that mirror the patterns observed in eddy-

driven intrusion events at our sampling sites. These studies demonstrate the distinct bacterial 

distributions, biomass, and productivity characteristic of eddies relative to surrounding water 

(Ewart et al. 2008; Mouriño-Carballido 2009), which are also associated with distinct microbial 

communities and bacterial productivity in the same range as that observed in this study (Nelson 

et al. 2014). Bacterial production The distinct community dynamics associated with eddy 
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influences in the Sargasso Sea provide further evidence of the importance of physical mesoscale 

processes on the structure of bacterial distributions and activities; however, none of the 

aforementioned studies have measured enzyme activities, so the differences in hydrolytic spectra 

and rates in this study illuminate the potential net effect on the quality and quantity of carbon 

cycling during eddy intrusion events.  

The hydrolytic patterns differentiating shelf, shelf break, and eddy intrusion water 

masses, and their biogeochemical consequences, are driven by more complex processes than a 

simple temperature relationship. Despite the significantly higher temperatures of eddy intrusion 

water at Stn. 4 bottom, this temperature difference does not correspond to higher rates of enzyme 

activity; moreover, bacterial productivity is lower than the surrounding shelf and shelf break 

water masses. The observed differences in hydrolysis rates and patterns are not due to 

temperature differences across sites, for either polysaccharide substrates (R2=0.21. P=0.26) or 

peptide and glucose substrates (R2=0.05, P=0.59); incubation temperatures in surface waters at 

all four stations were identical despite distinct differences in hydrolysis rates and capacities 

(Table 2.1, Fig 2.1), and the highest polysaccharide hydrolysis rates at 48 hours were at Stn. 2, 

which along with Stn. 1 were the coldest stations sampled (Fig 2.3). Moreover, hydrolysis rates 

of low molecular weight substrates in Stn. 4 bottom water were lower than in surface waters of 

Stns. 3 and 4, despite the fact that Stn. 4 bottom water had a higher in situ and incubation 

temperature (Table 2.1, Fig 2.1, Fig 2.2). Instead, we see a shift in the spectrum of substrates that 

are hydrolyzed, and hydrolysis rates that are independent of temperature, and may be more 

closely related to differences in functional capacities of the nascent microbial community. This 

suggests that biogeochemical models that rely on temperature as the primary factor driving 

biogeochemical carbon cycling, which would predict higher overall activities and bacterial 
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production with increased warm core eddy intrusions on the continental shelf, would incorrectly 

predict biological impacts on carbon cycling rates. 

 There are several possible mechanisms for the observed differences in functional 

capabilities across water masses. Differences in functional capabilities across water masses may 

be partially driven by biogeographical differences in microbial communities, with eddy 

intrusions onto the continental shelf bringing with them a distinct microbial community with 

distinct hydrolytic capacities (Nelson et al. 2014). The differences in functional capacities 

observed across sites and water masses are in keeping with functional biogeographical patterns 

in substrate hydrolysis previously identified across latitude, station and depth (Arnosti et al. 

2011; Hoarfrost and Arnosti 2017), and between on-shore and off-shore sites in the North 

Atlantic along similar scales of distance (D’Ambrosio et al. 2014). These patterns in functional 

biogeography mirror biogeographical patterns in microbial community composition (Fuhrman et 

al. 2008; Zinger et al. 2011; Ladau et al. 2013; Nelson et al. 2014). Evidence in support of a 

linkage between community composition and function includes an investigation from the East 

China Sea, where communities in different water masses from shallow and bottom water depths 

on the continental shelf exhibited differential abundances of genes involved in hydrolysis of 

starch and chitin-derived carbon sources (Wang et al. 2017). In the North Atlantic, moreover, the 

diversity of genes from glycosyl hydrolase family 5, one of the largest families of glycosyl 

hydrolases, differed significantly between the Mid Atlantic Bight and open ocean sites (Elifantz 

et al. 2008). 

Differences in patterns of enzyme activities across water masses may also be due to 

differences in organic matter composition and/or primary producer communities. For example, 

the Mid Atlantic Bight shelf is typically dominated by diatoms and dinoflagellates (Falkowski et 
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al. 1994), whereas the North Atlantic open ocean typically harbors a higher number of 

cyanobacteria than in coastal regions (Lomas and Bates 2004). These different taxa differ in 

organic matter compositions (Biersmith and Benner 1998), and thus may result in distinct water 

mass organic matter compositions that could also influence the activities of the nascent 

heterotrophic communities. Amendment with marine high molecular weight DOM is known to 

induce shifts in microbial community composition and expression of genes involved in carbon 

cycling (McCarren et al. 2010), while amendment with diatom- vs. cyanobacterial-derived 

dissolved organic matter (DOM) induces different microbial community responses in diversity 

and richness (Landa et al. 2014).  

 The distinct hydrolytic patterns in waters corresponding to the Gulf Stream eddy 

intrusion in Stn. 4 bottom water, as it contrasts with hydrolytic patterns in continental shelf and 

shelf break waters, highlights the potential biogeochemical importance and consequences of 

changes in Gulf Stream interactions with the continental shelf. Distinct hydrolytic activities and 

functional capacities within ring waters may alter the amount and quality of carbon cycling on 

the continental shelf. As Gulf Stream ring and meander dynamics shift in the coming years, these 

biogeochemical consequences are also likely to shift. The distinct hydrolytic spectra coupled 

with low bacterial productivity characteristic of eddy intrusion waters suggests both that the 

composition of organic matter remineralized on the Mid Atlantic Bight shelf break during eddy 

intrusion events is likely to shift, while the overall rate of remineralization is likely to be lower. 

As the frequency and duration of such eddy intrusion events increase in the future, this has 

implications for microbial carbon cycling on ocean margins on a large scale. 

The frequency of ring intrusions onto the continental shelf, and the amount of time that 

such intrusions persist (e.g. Ullman et al., 2014; Zhang and Gawarkiewicz, 2015), may influence 
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the hydrolytic capacities and microbial activities in these regions, affecting the quantity and 

composition of organic matter remineralized on ocean basin margins, and having a significant 

effect on biogeochemical cycling of carbon and nutrients. In the future, the frequency of ring 

intrusions are likely to increase, due to the recent destabilization of the Gulf Stream (Andres 

2016) and the increasing number of warm core rings formed by the Gulf Stream (Monim 2017). 

As the continental shelf and slope south of New England is increasingly influenced by Gulf 

Stream waters via ring interactions and close contact with the north wall of the Gulf Stream 

(Gawarkiewicz et al. 2012), changes in microbial community function and biogeochemical 

carbon cycling driven by distinct functional capacities and patterns of bacterial productivity 

within warm core ring waters are also likely to shift.  
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Figure 2.1 – (a) A temperature/salinity plot identifying water mass characteristics from the four 
stations. Sampling locations indicated by circles, filled circles bottom and empty circles surface 
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waters. (b) Temperature (left) and salinity (right) profiles at each station. Blue: Stn. 1; Black: 
Stn. 2; Green: Stn. 3; Red: Stn. 4. (c) Conceptual figure of water masses sampled. (d) Satellite 
imagery of sea surface temperature on April 28, the day Stns 3 and 4 were sampled. Stations 
surveyed are indicated by black squares. Two warm core rings near the survey sites are indicated 
by blue arrows, and a warm filament being pushed onto the continental shelf where Stn 4 bottom 
waters are sampled is indicated. 

 

 

Figure 2.2 – Hydrolysis rate of the seven peptide and glucose substrates at each station (left to 
right) and surface and bottom (top and bottom panels). A-glu: α-glucose; B-glu: β-glucose; 
Leu: leucine; AAF: alanine-alanine-phenylalanine; AAPF: alanine-alanine-proline-
phenylalanine; QAR: glutamine-alanine-arginine; FSR: phenylalanine-serine-arginine. Note the 
order of magnitude difference in y axes between Stns. 1 and 2 and Stns. 3 and 4. 
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Figure 2.3 – Hydrolysis rates at the 48-hour sampling timepoint for the six polysaccharide 
substrates at each station (left to right) and surface and bottom (top and bottom panels). Black: 
arabinogalactan; Turquoise: chondroitin sulfate; Green: fucoidan; Yellow: laminarin; Blue: 
pullulan; Red: xylan. 
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Figure 2.4 – Relative contributions of polysaccharide hydrolase activities to summed hydrolysis 
rates (y axis) at the time of subsampling (x axis) for each station (left to right) and depth (top and 
bottom). Black: arabinogalactan; Turquoise: chondroitin sulfate; Green: fucoidan; Yellow: 
laminarin; Blue: pullulan; Red: xylan. 

 

Tables 
 latitude 

(°N) 
longitude 

(°E) 
bottom 
depth  
(m) 

samplin
g depth  

(m) 

sampling 
date  

 

(DD/MM/YYYY) 

inc 
temp  
(°C) 

in situ 
temp  
(°C) 

in situ 
salinity 
(PSU) 

in situ 
oxygen 
(ml L-1) 

bact. 
prod. 

(pM/hr) 

DOC 
(μM) 

stn 1 
surface 40.7071 -71.028 63 1 27/04/2015 8 5.7 32.8 7.2 13 

 
135.0 

 
stn 1 
bottom 40.7071 -71.028 63 58 27/04/2015 4 3.6 33.1 6.7 20 

 
137.1 

 
stn 2 
surface 40.4622 -71.0008 83.6 1 27/04/2015 8 6.3 33.1 7.1 21 

 
120.1 

 
stn2 
bottom 40.4622 -71.0008 83.6 78 27/04/2015 4 4.7 33.4 6.5 21 

 
81.0 

 
stn3 
surface 40.3084 -71.0048 102 1 28/04/2015 8 7.8 33.4 7.2 42 

 
90.2 

 
stn3 
bottom 40.3084 -71.0048 102 97 28/04/2015 8 10.5 35.1 4.7 7 

 
78.3 

 
stn4 
surface 40.0702 -71.0052 206.9 1 28/04/2015 8 7.7 33.4 7.3 92 

 
89.0 

 
stn4 
bottom 40.0702 -71.0052 206.9 199 28/04/2015 14 12.0 35.6 4.7 3 

 
63.5 

 
Table 2.1 – Location, environmental data, bacterial production and dissolved organic carbon for 
each station and depth.  
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Introduction 
  
 Microbial communities are important drivers of biogeochemical cycling and ecological 

function, and regulate the flux of carbon and nutrients in the oceans (Azam 1998; Falkowski et 

al. 2008). However, the complexity of interactions within microbial communities and with their 

environment limit our ability to link microbial community structure, function, and their 

variations across environments (Widder et al. 2016). Many studies have demonstrated the link 

between the taxonomic composition of microbial communities and their functional capabilities 

(e.g. Delong et al. 2006; Guidi et al. 2015; Raes et al. 2014; Shi et al. 2011; Widder et al. 2016) 
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as well as their dependence on environmental conditions (Louca et al. 2016a; Raes et al. 2014; 

Sunagawa et al. 2015). However, our understanding of the geographic distributions of genetic 

diversity within key taxa, their relationship to environmental conditions, and the manner in 

which these distributions may result in functionally distinct outcomes across different 

environmental regions, remains limited. These limitations restrict our ability to predict genetic 

diversity in the environment, and in the absence of accurate models linking environmental and 

microbial variables, lead to ecosystem models that ignore biology entirely or make erroneous 

assumptions based on simple environmental relationships (Treseder et al. 2012; Wieder et al. 

2015). 

 The biogeographical distribution of marine microbial communities has been observed at 

scales from single depth profiles (Delong et al. 2006) to global distributions (Ladau et al. 2013; 

Martiny et al. 2006), and results in spatial and temporal patterns in structure (Martiny et al. 2006; 

Zinger et al. 2011), function (Jiang et al. 2012; Louca et al. 2016a), and microbial diversity 

(Ladau et al. 2013). Mapping biogeographical distributions of microbial ecotypes from 

environmental variables is therefore of significant interest, illuminating the link between 

microbial structure, function, and ecosystem processes and enabling predictions of changes in 

biological phenomena as environmental conditions shift. However, there have been very few 

efforts to predict biogeographical patterns of genetic diversity of key microbial taxa in the ocean 

at large spatial scales (Kent et al. 2016; Ladau et al. 2013). 

 SAR86 is one such key taxa in the ocean. SAR86 is a ubiquitous marine heterotroph 

frequently identified in marine surface waters, and has been classified as a clade through 16S 

surveys of shallow ocean regions (Britschgi & Giovannoni 1991; Suzuki et al. 2001; Treusch et 

al. 2009). SAR86 is a very diverse group (Sunagawa et al. 2015) with at least three subclades 
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(Suzuki et al. 2001; Treusch et al. 2009). Despite its ubiquity in marine systems, SAR86 eludes 

cultivation, and knowledge of the ecological role of SAR86 in marine microbial communities is 

limited to genomic evidence from five genomes curated from single-cell sequencing or 

metagenomic assembly sources (Dupont et al. 2012; Rusch et al. 2013). Additionally, although 

SAR86 is very commonly detected in ocean environments, very little is known about how the 

distribution of subspecies and the vast genetic diversity within the SAR86 pangenome may vary 

across large spatial scales, and what environmental factors govern their biogeographical 

distribution.   

 In this study, we build a custom pangenome of SAR86 genes from metagenomic co-

assemblies and all available reference genomes. We find that SAR86 gene presence or absence 

across hundreds of globally-distributed metagenomic samples are strongly associated with 

environmental variables. We use machine learning to build models that accurately predict the 

presence of SAR86 genes from environmental data from satellite and historical sources available 

at global resolution, and make predictions at a global scale. Machine learning, a branch of 

statistics that iteratively “learns” patterns from data without being explicitly programmed, is 

particularly well suited to this application, enabling patterns in the environmental variables that 

best predict SAR86 gene distributions to emerge from the global metagenomic dataset. We then 

identify five clusters of genes that are characterized by similar environmental distributions. 

Biogeographical clusters underlying the SAR86 pangenome reveal previously unrecognized 

ecotypes within the SAR86 clade, and a previously unappreciated geospatial complexity in this 

otherwise ubiquitous marine heterotroph, while patterns of taxonomic and functional enrichment 

across clusters hold the potential to illuminate structure-function relationships across the marine 

environment.  
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Materials & Methods 
 

Creation of the SAR86 pangenome  

 A custom pangenome of SAR86 genes was created from 5 partial or near-complete 

reference genomes (SAR86A-E, Dupont et al. 2012; Rusch et al. 2013), 4 single-cell sequencing 

draft genomes (PATRIC ID 1007118.3, 1007119.3, 1009425.3, and 1009426.3; Wattam et al. 

2014), as well as SAR86 genes from a massive co-assembly of metagenomes that we performed 

using shotgun sequencing from the Global Ocean Survey (GOS) (Rusch et al. 2007). The 

pangenome of 58 423 SAR86 genes was created with the MIDAS tool (Nayfach et al. 2016), 

resulting in a total of 51 711 nonredundant SAR86 genes clustered at 90% nucleotide identity. 

Only 4 188 of these genes were derived from the five reference SAR86 genomes, highlighting 

the diversity of SAR86 genes that are still without genomic reference. 

 The metagenomic co-assembly of SAR86 was generated from 226 GOS sites to create a 

de novo SAR86 database (Genbank Bioproject PRJNA13694 and European Bioinformatics 

Institute accession numbers ERX913362-ERX913706). All pyrosequencing and Sanger 

metagenomic sequences were co-assembled using the CELERA assembler (Miller et al. 2008) at 

92% nucleotide identity. This threshold allowed for consensus assemblies at the species and 

strain level (Swan et al. 2013) with reasonable computation times. The resulting scaffolds 

encompass 3 Gbp of contiguous DNA sequence, while 85% of the sequence reads could be 

mapped back to the assembly.  Open reading frames (ORFs) on scaffolds were called using 

MetaGene (Noguchi et al. 2006). To determine the putative phylogenetic origin of the scaffolds, 

each predicted peptide was phylogenetically annotated using Automated Phylogenetic Inference 

System (APIS, Dupont et al. 2014), which annotates according to the position of the peptide 
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within a phylogenetic tree.  Thus a peptide 99% similar to a SAR86 protein will be annotated as 

SAR86 (with the associated taxonomic tree), while a peptide that branches basally within the 

phylogenetic tree next to Gammaproteobacteria would only be annotated as such. The scaffolds 

were taxonomically annotated at the lowest level for which greater than 50% of the ORFs had 

agreement in the APIS calls. This approach has been used in previously published pangenome 

biogeographic analysis (Kent et al. 2016). 

 

Mapping SAR86 gene presence/absence in a global metagenomic dataset 

 Sequencing reads from the TARA datasets were mapped to the SAR86 pangenome to 

determine SAR86 gene presence/absence at each TARA site. The TARA project (Sunagawa et 

al. 2015) was a large-scale, multi-year effort to sequence hundreds of marine seawater samples 

from globally-distributed sites and from depths ranging from surface to mesopelagic using 

consistent techniques (SI Fig 3.1). To date, the TARA project has made available 243 individual 

metagenomic samples, 198 of which were for live samples (pore size >0.22) and 45 of which 

were <0.22 filter pore size blank controls. The 198 live TARA samples were used to map to the 

SAR86 pangenome and create a global dataset of SAR86 gene presence/absence. Specifically, 

MIDAS (v1.1.0, Nayfach et al. 2016) was used to perform read alignment with bowtie2 (options 

--very-sensitive), mapping reads according to their best-hit with a % DNA identity of >90%. 

Reads with mapping quality <20 or mean base quality <20 were discarded. Where multiple 

sequencing runs had been conducted for a single sample, the run with the highest number of 

sequencing reads was used.  

 This mapping procedure resulted in gene coverage values for each of the 51 711 SAR86 

genes at each of the 198 live TARA sites. Gene coverage was normalized to a mean coverage 

value of 1 for each site by dividing by the mean gene coverage at that site, and finally, this 
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continuous value was converted to binary gene presence/absence at a threshold of 0.37, where 

genes with a normalized coverage value less than or equal to 0.37 were considered absent from 

the sample, and those with coverage greater than 0.37 were considered present. This threshold 

value was chosen from manual inspection of the SAR86 gene coverage distribution at individual 

TARA sites; where a strain or mixture of strains of SAR86 are present, a peak in normalized 

gene coverage frequency is observable, while erroneous gene assignments form a long tail of low 

coverage. The gene coverage values of this erroneous long tail was typically below e-1, or 0.37, 

as was particularly visible when viewed as a natural log distribution of gene coverage, so this 

value was chosen as a threshold below which normalized SAR86 genes are ‘absent’. 

 

Remote environmental data curation and processing 

 In order to build models predicting SAR86 gene presence from environmental data on a 

global scale, environmental features available at global resolution were collected from a 

combination of contemporary satellite data and curated sources of historical averages. A total of 

51 features were collected. These features, their sources, definitions, and units are summarized in 

SI Table 3.1. These data included 6 features from contemporary satellite data – sea surface 

temperature, chlorophyll a concentration, photosynthetically active radiation at the sea surface, 

particulate inorganic carbon at the sea surface, particulate organic carbon at the sea surface, and 

net primary productivity at the sea surface. 3 features constituted data about the source of the 

sample: latitude, longitude, and depth sampled. The remaining features were environmental data 

available at global resolution from historical averages of many values of interest, such as day 

length, dust flux, pycnocline depth, apparent oxygen utilization and concentrations of nitrate, 

phosphate, and silicate (SI Table 3.1). Historical environmental data were typically an average 

value at the annual, monthly, or decadal scale, averaged over a historical period of time ranging 
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from decadal to 57-year time scales. For example, the historical annual mean pH value, derived 

from BioOracle (Tyberghein et al. 2012), is the average annual pH over the period 1955-2012; 

the historical monthly mean nitrogen:phosphate ratio, in contrast, is the average N:P ratio during 

a particular month, averaged over the period of 1955-2012. The annual standard deviation for a 

historical value, available for some historical environmental features, gives an idea of the typical 

variation in an environmental variable over the course of a year for the relevant historical period.  

 For each TARA site, the environmental feature value closest to the sampling site’s 

latitude, longitude, and, where relevant, the sampling depth and/or sampling date, was derived 

from the original environmental data source. Environmental features, which are all continuous 

variables, were then centered and normalized to a mean of zero and a standard deviation of one 

across all TARA sites. This preprocessed environmental feature matrix (SI Table 3.2) served as 

the input feature vectors for each TARA site during model training.  

 

Gene presence/absence models & predictions 

 To predict SAR86 gene presence or absence from environmental variables, classification 

models were built using logistic regression with L1 regularization for each SAR86 gene, using 

the remote environmental data across TARA sites as input features. First, TARA sites where 

SAR86 was not present or abundance was low were filtered out, defined as sites where fewer 

than 1000 genes had 5x coverage (22 out of 198 TARA sites). Sites where environmental data 

features were missing were also filtered out (an additional 21 out of 198 TARA sites). This 

resulted in 155 out of the original 198 TARA sites that were used to train the models. 20 out of 

22 of TARA sites where SAR86 was not present or was in low abundance were mesopelagic 

samples; however, 41 TARA sites from mesopelagic depths had SAR86 abundances high 
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enough to be included in model training. This set of 155 TARA sites was randomly split into a 

training, validation, and test sets of 111, 13, and 31 sites respectively.  

 Of the 51 711 genes in the SAR86 pangenome, 24 317 of these were present at 20-80% 

of TARA sites. Logistic regression models were trained only for these variable genes, since it 

was not meaningful to predict the distribution of very rare or very common genes.  

 The L1 regularization penalty was tuned to minimize overfitting while maximizing 

accuracy in the validation set. A penalty parameter of 0.7 was chosen, which achieved a mean 

validation accuracy of 82.1% across all models, with 66.9% of models overfit. This is in 

comparison to no regularization penalty (C=1.0), which achieves 82.2% accuracy in the 

validation set and overfits in 70.1% of models.  

 A final logistic regression model was trained independently for all 24 317 variable genes, 

with a L1 regularization penalty (C=0.7), using the scikit-learn python package. These models 

can be reproduced with code available on the associated Github repository (Hoarfrost 2018). The 

recall, or the sensitivity rate, is calculated as (true+/(true+ + false-); precision is defined as 

(true+/(true+ + false+); and the F1-score is defined as 2*((precision*recall)/(precision+recall)). 

 

Clustering  

 The coefficients associated with each environmental feature input to the logistic 

regression models were used to cluster SAR86 genes into groups that were best predicted by 

similar environmental variables. By clustering on environmental variables associated with gene 

models rather than, for example, gene covariation across TARA sites, environmental variables 

underlying geographic distributions of genes are identified by definition, and projecting cluster 

distributions beyond TARA sites at global scales from environmental data is possible A k-means 

clustering algorithm was used for clustering genes into five clusters. The number of clusters, k, 
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was chosen for the k at which the inertia (sum of the squared distance of each point to its 

centroid) begins to decrease less rapidly; where the distance between centroids begins to increase 

less rapidly; and where map projections and comparisons of Euclidean distances of cluster 

centroids look unique for each cluster without producing repetitive distributions. Exploratory 

analysis in a jupyter notebook and a python script for reproducing clusters are available on the 

Github repository (Hoarfrost 2018).  

 Global projections of the biogeographical cluster distributions used global resolution 

spatial data of environmental features in netCDF files to make predictions at global scale. 

Prediction values were derived by multiplying normalized environmental feature values for each 

latitude and longitude coordinate by the cluster centroid coefficient for that environmental 

feature, summing this vector of coefficient-multiplied environmental feature values, and 

converting to a [0,1] scale using a sigmoid function, where any value greater than or equal to 0.5 

is considered a ‘present’ prediction, and anything less than 0.5 is considered ‘absent’ (Hoarfrost 

2018).  

 

Taxonomic & functional enrichment analysis  

 The distribution and enrichment across clusters were evaluated at the genome, contig, and 

functional level for two SAR86 reference genomes, SAR86A and SAR86E, for the contigs of the 

SAR86 co-assembly, and for the functional annotations to Pfam (Finn et al. 2016) for the SAR86 

pangenome.  

 Genome distribution across clusters was evaluated by counting the percentage of genes in 

the SAR86 pangenome originating from SAR86A or SAR86E assigned to each cluster. The 

correlation of SAR86A/E relative abundance with their associated cluster proportion within 

TARA sites was evaluated by deriving the relative abundance of SAR86A and E from the 
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mapped TARA samples, and renormalizing such that the abundances of SAR86A and E sum to 

1. The cluster proportions of cluster 1+5 and cluster 3+4 were similarly renormalized to sum to 

1.  

 Enrichment values were calculated the same way for both contig and functional 

enrichment analyses. The enrichment of a particular contig or Pfam family annotation was 

calculated as the actual number of genes from a contig/annotation observed for a cluster minus 

the expected value for a cluster, all divided by the expected value for that cluster. For example, 

for a particular contig, the expected value for a particular cluster is the number of genes on that 

contig proportionally distributed across clusters – or, on cluster 1, is the number of genes on the 

contig multiplied by the percentage of total SAR86 genes assigned to cluster 1. The actual 

number of genes from a contig for cluster 1 is simply the number of genes from that contig 

assigned to cluster 1. So, the final enrichment value is (actual – expected)/expected. A contig or 

Pfam was considered enriched on a cluster if the number of genes assigned to that cluster 

exceeded the value expected if genes from a contig were assigned evenly across clusters. An 

enrichment value above zero is therefore enriched, with a value of e.g. 2.1 resulting where 210% 

more genes from that contig were assigned to a cluster than expected; whereas a value below 

zero is depleted relative to the expected value, and a minimum value of -1 is found where zero 

genes were assigned to a cluster. An enrichment value of 0 indicates that the contig or annotation 

is not enriched or depleted for that cluster and is identical to what would be expected if genes 

were randomly assigned to clusters.  

 In the case of the functional enrichment analysis, there were 1337 Pfam families to which 

at least one gene was annotated; however, only 405 Pfams for which more than 20 genes were 

annotated to it were used for the enrichment analysis, since a rare Pfam with only one gene 
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annotated to it will look perfectly enriched to whichever cluster that gene was assigned to and 

skew enrichment analysis results. 

 To test the statistical significance of cluster enrichment values, a nonparametric Mann-

Whitney U test was applied to test whether the vector of enrichment values associated with each 

contig/annotation for each cluster was significantly different from the expected distribution of 

all-zeros.  

 

Results 
 
 This study first built machine learning models to learn the relationships between SAR86 

gene distributions and environmental variables. The regularized logistic regression approach 

used enabled us to identify the subset of environmental variables that are most important for 

predicting the geographical distributions of each individual gene, and the coefficient associated 

with that environmental variable-gene relationship. Using unsupervised clustering, we then 

identify clusters of genes with similar environmental distributions. Clustering is an approach that 

enables us to identify emergent properties and structure underlying the environmental gene 

distributions without explicit prior knowledge of expected SAR86 ecotypes. By using 

environmental variables available at global resolution in the original gene distribution models, 

we are then able to forecast these emergent properties at spatial scales far beyond the sampling 

locations specific to this study.  

 

Accurate prediction of SAR86 gene distributions from environmental variables  

 SAR86 gene content in TARA Oceans metagenomes is associated with environmental 

characteristics of sampling locations. We built a regularized logistic regression model for each 

gene that captures the probability of the gene being present in the SAR86 genomes at a given 
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location as a function of environmental variables. The L1 regularization we used during model 

training selects the most predictive environmental features, while the coefficients for less 

predictive environmental features converge to zero, effectively ignoring these features. This 

enables us to identify which of the many environmental variables are most reliably associated 

with a gene’s presence while avoiding overfitting.  

 The resulting 24 317 gene models predicted SAR86 gene presence/absence with an 

average of 79.4% accuracy in the test set, and a median test accuracy of 80.6%. From the 

confusion matrix (Fig 3.1a), we see that precision and recall measures are roughly even (0.85 and 

0.81, respectively), with an F1 score of 0.83. 87.4% of models, for 21 264 out of 24 317 gene 

models, had accuracies in the test set that were an improvement over the majority class accuracy, 

or the accuracy of the model if it predicts ‘all absent’ or ‘all present’, whichever is in the 

majority (Fig 3.1b).  

 As an additional test of the robustness of the models, the accuracy of predictions at those 

TARA sites that were not included in model development, where SAR86 was not present or were 

in very low abundance, was also examined. There were 20 of these TARA sites for which 

environmental data was available for all features. At these sites, 87.6% of the 24 317 SAR86 

genes were actually absent, while the gene models predicted that 65.2% of genes were absent. 

Overall, the average accuracy across the gene models was 68.5%, while the median accuracy 

was 70.0%. This is less accurate than the performance of the models at sites where SAR86 was 

present, but still reasonably accurate, and suggests that these models are robust to predictions 

outside of the distribution of gene presence used in training the models.  

 An average of 17 of 51 environmental features was significantly associated with each 

gene’s distribution across TARA Oceans sites, with many features shared across genes (i.e., 
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frequently selected during model training for both genes) (SI Fig 3.2). These include latitude, 

longitude, distance from land, ocean depth, and other features that might describe the general 

ocean basin or region of a sample; as well as pH, sea surface temperature, pycnocline depth, 

nitrogen:phosphorous ratio, cloud fraction, or other environmental factors that describe regions 

of the ocean that experience particular conditions at more fine resolution.  

 While the environmental features that best predict gene presence/absence varies by the 

individual gene model, and many of the 51 environmental variables are covariates with one 

another, training logistic regression multiple times on the same data results in the same sets of 

environmental features being chosen as the most predictive for each gene model (see jupyter 

notebook in Hoarfrost 2018). This consistency suggests that the environmental features selected 

in each model reflects a true difference in predictive power between the selected features and 

those that were not selected, rather than a random choice among features that are roughly equally 

predictive.  

 

Clustering of SAR86 genes into common environmental distributions & global projections of 
their biogeographic distributions  

 The environmental features that best predict individual genes, and the strength of the 

coefficients associated with any particular environmental feature, vary by the individual gene 

model. However, there are apparent patterns among genes as to which environmental variables 

are most predictive, and the magnitude and sign of the coefficients associated with those 

variables, with some groups of genes appearing to be predicted by similar environmental 

features. This suggests that genes which are predicted by similar environmental features in 

similar ways occupy similar geographical distributions characterized by unique environmental 

conditions.  
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 Kmeans clustering of genes by their logistic regression environmental feature coefficients 

revealed five clusters within the SAR86 pangenome characterized by similar environmental 

distributions. Each cluster reveals a distinct set of environmental features and coefficient patterns 

associated with the centroid of that cluster (Fig 3.2, SI Table 3.3). The centroids of the clusters 

define the average coefficient associated with each environmental feature across the genes that 

make up that cluster (SI Table 3.3). The cluster centroids can be used to project cluster gene 

presence or absence at a global scale, using the known global distributions of the input 

environmental features (Fig 3.3). These global projections of SAR86 biogeographical clusters 

reveal differential patterns in predicted geospatial distributions of SAR86 genes that are 

characteristic of the environmental features that best predict the presence of genes in that cluster. 

 In cluster 1, the environmental features with the highest magnitude coefficients included 

oceantemp_monthly_historical (-1.23), dustflux_monthly_historical (-0.75), 

phosphate_annual_historical (-0.66), pycnoclinedepth_monthly_historical  (0.50), and 

silicate_annual_historical (-0.40). The high magnitude of monthly historical features suggests a 

seasonal component, with genes more likely to be present during the winter and spring, while the 

negative coefficients associated with nutrients, temperature, and dust flux confine projections 

primarily to open ocean temperature regions.  

 In cluster 2, the environmental features with the highest magnitude coefficients included 

longitude (-1.01), par_annual_historical (0.84), cloudfraction_monthly_historical (-0.72), and 

solarinsolation_annualstdev_historical (-0.40). The photosynthetically active radiation (PAR), 

cloud fraction, and solar insolation coefficients all select for higher likelihood of gene presence 

in areas of high light, few clouds year round, and low variability in sunlight, as is typically found 

in lower latitudes, while the longitude coefficient selects for locations in the western hemisphere. 
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The TARA samples from the Pacific Ocean were only sampled from the western hemisphere, 

and were also the only locations where mesopelagic samples were taken. Not coincidentally, the 

TARA sites with the highest proportion of cluster 2 genes present were the mesopelagic samples 

and those samples taken in the Pacific Ocean (Fig 3.4).  

 Cluster 3’s most predictive environmental features included 

diffuseattenuation_annual_historical  (-2.43), longitude (0.92), sst_annual_historical                 

(0.87), and dustflux_monthly_historical (-0.40). The global projections for cluster 3 predict gene 

presence most confidently in the eastern hemisphere, at lower latitudes where temperature is 

higher, and away from coasts where diffuse attenuation is lower.  

 Cluster 4 environmental features with highest magnitude coefficients included 

sst_annual_historical (0.95), dustflux_monthly_historical (-0.53), longitude (0.42), 

ph_annual_historical (-0.41), and thermoclinedepth_annualstdev_historical (-0.37). Similarly to 

cluster 3, the genes in cluster 4 are predicted more likely to be present in the eastern hemisphere 

and where temperature is higher. There is also a slightly higher likelihood of a gene being 

present in the southern hemisphere, where dust flux is lower. The coefficients of features 

associated with cluster 4 are more even than other clusters, and so additional features with lower 

coefficient magnitudes, such as a negative association with phosphate 

(phosphate_monthly_historical , -0.26) and a positive association with cloud fraction variation 

(cloudfraction_annualstdev_historical, 0.22) also help to explain the predicted distribution of 

cluster 4 genes.  

 Cluster 5 environmental features with highest magnitude coefficients included 

solarinsolation_annualstdev_historical (0.58), sst_annual_historical (-0.49), pic_satellite (-0.42), 

cloudfraction_annual_historical (0.41), and silicate_annual_historical (-0.36). The positive 
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association with variable sunlight (solarinsolation_annualstdev_historical) and negative 

association with temperature result in distributions of genes present at higher latitudes, which is 

also contributed to by the positive association with cloud fraction, which is generally 

concentrated at higher latitudes and at the equator. The negative association with silicate restrict 

the southern polar distribution such that genes are less likely to be present near the Antarctic 

Convergence/AA Polar Front.  

 Each TARA site contained genes from a mixture of clusters, but the dominant clusters 

and the evenness of the proportion of each cluster was variable across sites (Fig 3.4, SI Fig 3.3, 

SI Table 3.4). For example, the predicted geographic distribution of cluster 2 as higher in the 

western hemisphere and Pacific Ocean is evident in the cluster proportions across TARA 

samples, for which cluster 2 is present in highest proportions for those TARA sites sampled in 

the Pacific Ocean (Fig 3.4, SI Fig 3.3b). In contrast, cluster 3 genes are found in higher 

proportions at TARA sites sampled in the Eastern hemisphere, reflecting their predicted 

geographic distributions (Fig 3.4, SI Fig 3.3c). The Shannon diversity measuring the relative 

proportions of the five clusters at TARA sites, which accounts for both the relative evenness of 

the cluster proportions as well as how many of the five clusters are present, ranged from 0.699 to 

1.532 (SI Table 3.4). The minimum possible value of 0 would indicate a site at which genes from 

only one cluster was present, while the maximum possible value of 1.609 (ln(5)) would indicate 

a site where genes from all five clusters are present in equal proportions. The TARA sites with 

the lowest Shannon diversity metrics include TARA station 93 at 34°S and 73°W off the coast of 

Chile, which is dominated by cluster 5 genes, and TARA stations 38, 42, 45, and 36 in the Indian 

Ocean, which are dominated by cluster 4 genes. The TARA sites with the highest Shannon 
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diversity metrics include many of the mesopelagic depth samples in the Pacific Ocean, as well as 

all depths sampled at station 70 in the South Atlantic basin at 20.4°S and 3.2°W.  

 

Taxonomic enrichment & functional differentiation across clusters define SAR86 ecotypes  

 The cluster assignments of genes from the SAR86 references genomes showed clear 

partitioning on taxonomic lines. Of the 24 317 genes that were used in models, only 810 

originated from one of the five reference SAR86 genomes. Of these, 622 genes were from 

SAR86A, and 157 genes originated from SAR86E, while only 5, 7, and 19 genes originated from 

SAR86C, D, and B respectively. The cluster assignments of genes from SAR86A and SAR86E 

were clearly differentiated, with genes from each genome assigned primarily to two clusters, and 

each cluster dominated by one genome. SAR86A genes were partitioned primarily into clusters 4 

and 3, with 493 and 118 out of the 622 SAR86A genes assigned to cluster 4 and 3 respectively, 

while only 4 and 7 genes were assigned to clusters 2 and 5, and 0 genes to cluster 1. The 157 

SAR86E genes were partitioned into clusters 1 and 5, with 76 and 78 genes respectively, while 

only 2 and 1 genes were assigned to clusters 2 and 4, and 0 genes to cluster 3.  

 Clusters also showed clear taxonomic differentiation at the contig level. Those genes that 

did not originate from one of the five SAR86 genomes originated from one of 732 contigs from 

the SAR86 co-assembly. Genes from the same contig were generally assigned to the same 

cluster, such that gene assignments of almost all contigs, 540 out of 732 contigs, were enriched 

on only one cluster, 183 contigs were enriched on only two clusters, and the remaining 9 contigs 

were enriched on 3 clusters (Fig 3.5). Where a contig was enriched, the enrichment was strong, 

with an average enrichment of 3.03 and a standard deviation of 0.43, and ranging from 1.41 in 

cluster 4 to 5.25 in cluster 2. This strong enrichment for one or a subset of clusters was paired 
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with a high frequency of -1.0 depletion values on the other clusters, which indicates that no 

genes from a contig were assigned to that particular cluster: 522 out of 732 contigs had -1.0 

enrichment values in cluster 1, 560 in cluster 2, 561 in cluster 3, 350 in cluster 4, and 279 in 

cluster 5. A Mann-Whitney U test testing whether the contig enrichment values for each cluster 

were significantly different than the null enrichment distribution of all zeros was highly 

significant for all clusters, with p values <0.001 for all clusters and as low as 7.4x10-159 for 

cluster 2 (Fig 3.5c). 

 The taxonomic partitioning across clusters is further supported by the relationship 

between cluster proportions and the relative abundances of SAR86 genomes at TARA sites. The 

clusters associated with SAR86A, clusters 3 and 4, were in higher proportions relative to the 

clusters associated with SAR86E, clusters 1 and 5, at TARA sites where SAR86A abundances 

were higher relative to SAR86E (SI Fig 3.4, Pearson R2 = 0.70, P=1.56x10-26).  

 In addition to taxonomic enrichment across clusters, there was also significant 

partitioning of genes at the functional level, with differential enrichment of Pfam annotated 

genes across clusters (Fig 3.6). Pfams were enriched on average by an enrichment value of 0.25 

and a standard deviation of 0.10, ranging from 0.13 in cluster 4 to 0.32 in cluster 2. This 

enrichment was significant for most of the clusters, with a Mann-Whitney U test resulting in p 

values of 5.6x10-3 for cluster 1, 1.6x10-9 for cluster 2, 0.016 for cluster 3, 1.1x10-11 for cluster 4, 

and 0.11 for cluster 5 (Fig 3.5c). Using a Bonferroni-corrected p value cutoff of 0.01 for 

significance, this suggests that clusters 1, 2, and 4 have significant functional enrichment, while 

functional enrichment on cluster 3 is marginally significant. Genes from a particular Pfam were 

most often assigned to only two or three clusters (Fig 3.6b). While functional enrichment in 

general was less strong than taxonomic enrichment, this may be due to the relative coarseness of 
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functional annotation compared to taxonomic assignments, and our inability to annotate many 

genes with confidence. Enrichment of specific Pfams corresponding to some ecologically 

important heterotrophic functions indicated possible niche differentiation across clusters: 

Glycosyl hydrolase family 3, which corresponds to exo-acting glucosidases, was enriched across 

clusters 3, 4, and 5, and depleted in clusters 1 and 2, while glycosyl hydrolase family 16, which 

corresponds to endo-acting glucanases, was enriched strongly on cluster 3, depleted in clusters 1 

and 2, and near the null value for clusters 4 and 5 (SI Fig 3.5).  

 

Discussion 
 
 While SAR86 is generally considered to be a ubiquitous heterotroph, this study 

demonstrates that SAR86 genetic diversity is strongly associated with, and accurately predicted 

by, environmental variables, and that distinct environmental distributions of gene clusters define 

a deeper geographic variability of SAR86 subgroups than previously appreciated. The SAR86 

clade is a group within the Gammaproteobacteria classified as such by their 16S rRNA gene 

similarity (Britschgi et al. 1991; Suzuki et al. 2001; Treusch et al. 2009). The three near-

complete and two partial genomes available for SAR86 (Dupont et al. 2012; Rusch et al. 2013) 

show high diversity within this clade; average nucleotide identity between genomes is between 

70-80% (SI Table 3.5). In light of this high diversity, it is not surprising that the SAR86 

pangenome can be disentangled into five distinct clusters with different geographic distributions 

associated with unique environmental predictors. These clusters are differentiated at the 

taxonomic and functional level, which has implications for our interpretation of SAR86, its 

biogeographic distribution, and its ecological role within microbial communities and across the 

marine environment.  
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 Using a data intensive approach to build machine learning models of the relationship 

between SAR86 genes and environmental variables at a global scale, we demonstrate how such 

an approach can be used to better understand the dynamics driving microbial biogeography, 

revealing patterns that may have been missed at the 16S OTU or community level, or with data 

from a smaller scale. Particularly as microbial data becomes increasingly available in the future, 

such an approach holds promise for illuminating the relationship between microbial community 

structure and ecological function across broad spatial scales.  

 An ecotype (Cohan 2006) is often identified in practice as a group of closely related 

lineages that co-occur on the same spatial or temporal scale and are associated with particular 

environmental conditions. The results of this study identify clusters of genes that, while their 

phylogenetic relatedness is unknown, are taxonomically and functionally differentiated and 

occupy distinct environmental distributions. While the functional traits that may confer niche 

specificity within these distributions is not obvious from our results, functional differentiation 

across clusters of glycosyl hydrolases (SI Fig 3.5), an important class of enzymes for 

heterotrophic metabolism of polysaccharides, suggest that genes associated with different 

clusters occupy distinct functional niches. Glycosyl hydrolase families 3 and 16 target many of 

the same substrates – β-linked glucans, including the abundant marine plankton storage glucan 

laminarin – but using different enzymatic mechanisms (Lombard et al. 2013). The strong 

enrichment in cluster 3, and strong depletion in clusters 1 and 2, of both families, compared to 

the enrichment of only family 16 in clusters 4 and 5, may indicate differing metabolic strategies 

of SAR86 taxa enriched on each cluster that describe distinct ecological functions. Given the 

clear taxonomic and functional partitioning of the SAR86 pangenome across clusters with 

distinct geographic distributions associated with unique environmental variables, and likely 
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niche partitioning across clusters, we conclude that the clusters described here define previously 

unidentified ecotypes within the SAR86 clade.  

 Previous investigations of temporal and geographic patterns in SAR86 noted that while 

the phylogenetic substructure of the SAR86 clade implies that it may be made up of multiple 

ecotypes, they were not able to identify these at the limited geographic resolution of their study 

(Treusch et al. 2009). The potential existence of SAR86 ecotypes was also noted in the apparent 

biogeographic distributions of SAR86A, B, C, and D genomes (Dupont et al. 2012), which 

differed in their distributions across coastal vs. open ocean sampling sites and along temperature 

gradients. This general observation is supported by the predicted distributions of the clusters 

identified in our study, for which three clusters (clusters 2, 3, and 4) are partially defined by their 

warmer, open ocean distributions, and two (clusters 1 and 5) were associated with cooler 

temperatures. The difficulty of identifying ecotypes in SAR86 is in contrast to SAR11, for which 

distinct ecotypes have been identified within a constrained geographic sample because they were 

strongly associated with differences in depth and salinity distributions (Carlson et al. 2009). This 

study was able to identify SAR86 ecotypes, despite their partially sympatric distributions that 

causes a single sampling site to be composed of genes from multiple clusters, because of the 

larger data size and geographic distribution of the TARA dataset.  

 The taxonomic and functional differentiation of genes across SAR86 ecotype clusters is 

significant in the context of interactions between microbial community structure, function, and 

ecology. Both community composition (Ladau et al. 2013; Martiny et al. 2006; Pommier et al. 

2007; Zinger et al. 2011) and functional traits (Delong et al. 2006; Jiang et al. 2012; Louca et al. 

2016a; Shi et al. 2011) vary biogeographically and can be predicted to some extent by 

environmental variables (Ladau et al. 2013; Louca et al. 2016a). Taxonomic variation can lead to 
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functional differentiation of microbial communities (Delong et al. 2006; Galand et al. 2018; 

Strickland et al. 2009), which ultimately shapes the biogeochemical and ecological function of a 

community; conversely, functional redundancy across microbial taxa can complicate the 

relationship between structure and function (Louca et al. 2018), with taxonomically variable 

communities playing similar functional roles (Louca et al. 2016b). Disentangling the relationship 

between environment, biogeography, structure, and function is therefore a significant ongoing 

challenge in microbial ecology (Louca et al. 2016a; Morales et al. 2011; Raes et al. 2014; 

Widder et al. 2016). By focusing on patterns at the individual gene level within a single clade, 

we are able to uncover patterns in environmental distributions of genetic diversity at a scale that 

would normally be obscured by the complexity inherent to microbial communities. For example, 

previous studies have found that functional classifications of taxa are better predicted by 

environmental parameters than taxonomic 16S-based classifications (Louca et al. 2016a); 

however, these functional classifications are broad – all of the SAR86 pangenome would be 

classified as ‘aerobic chemoheterotroph’ – in order to control for the inherent noise and 

complexity of mixed microbial communities. It is likely that within the SAR86 pangenome there 

is ecological niche differentiation within this category that, for example, could lead closely 

related phylotypes of SAR86 that occupy different ecotypes to utilize different substrates 

(Aguilar et al. 2004; Hunt et al. 2008; Martiny et al. 2015), which is supported by the functional 

enrichment across of our clusters and the differential enrichment of carbohydrate utilizing 

enzymes (SI Fig 3.5). Previous analyses of the genomic context of SAR86 genomes (Dupont et 

al. 2012) also suggest that much of the diversity between SAR86 genomes may be driven by fine 

scale diversification of catabolic enzymes on loci associated with TonB dependent receptors, 

which are responsible for transporting carbon compounds (as well as metals) into the cell. 
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 The accuracies of our gene models are better on average than previous studies (0.79 vs 

0.48, (Louca et al. 2016a), which may similarly be due in part to our focus on modeling 

individual genes rather than whole communities, for which there may be less noise and variation 

inherent to the data. This difference in model accuracy may also be due to our consideration of 

different, and a larger number, of input environmental features, and the fact that environmental 

features were chosen for their availability at global resolution rather than their putative 

importance in regulating microbial function. These environmental features may be more 

predictive of the distributions of SAR86 genes, even if they are less relevant to biological 

function. The environmental factors that influence whether an organism grows in a particular 

location or community may be different from those that drive their function within that 

community: for example, an organism may only grow in fresh or saline waters, while the 

maintenance of a nitrogen fixation pathway depends on nutrients or other factors. It is important 

to note that those environmental features that are selected as most predictive for each gene model 

do not necessarily drive the growth of SAR86 in a causal manner, but implies only that these 

environmental features are good predictive proxies for the presence of that gene. The 

interpretation of the most predictive environmental features may vary depending on the feature; 

some features may be a proxy for biological phenomena, while others simply define 

oceanographic regions, or are proxies for other factors not able to be measured that are true 

causal drivers of variation. The features chosen by the L1 regularization procedure are also likely 

biased by the scope of the samples used as inputs to the model: for example in this study, the 

cluster associated with western hemisphere longitudes is overrepresented in sites from the TARA 

expeditions in the Pacific Ocean; however, there are longitudes both east and west of the 

antemeridian in the Pacific, represented as negative and positive longitudes in the models, and it 
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is a limitation of the TARA dataset that only samples from the eastern part of the basin, in the 

western hemisphere, are represented. This observation also serves as a note of caution for the 

interpretation of the global projections, whose predicted distributions will likely break down 

most where representation of samples is most sparse, e.g. in polar regions.  

 We are able to make accurate predictions of geographic distributions of SAR86 genes at a 

global scale, identifying previously unacknowledged biogeographical complexity within an 

otherwise ubiquitous heterotrophic clade and making global projections of the distributions of 

SAR86 ecotypes associated with distinct environmental distributions. The approach used 

leverages a large dataset across broad geospatial distribution, demonstrating the potential of 

machine learning and the use of broader scale integrated datasets for marine microbial ecology. 

Such an approach may also be useful for bioprospecting: for example, to identify locations at 

which a cultured representative for a predicted gene of interest is likely to be found. The five 

global ecotypes underlying the highly diverse SAR86 clade, the taxonomic and functional 

differentiation across ecotypes, and the distinct environmental distributions of SAR86 genetic 

diversity highlights the importance of SAR86 within marine microbial communities and 

broadens the ecological context and interpretation of the ubiquitous marine heterotroph SAR86 

across the world’s oceans.  
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Figures 
 

 

 

 

Fig. 3.1 – Average confusion matrix (a) over all gene models and histogram of improvement 
accuracy (b) for the test set (blue) and training set (orange). In (a), true labels are indicated by 
columns, while labels predicted by the models are indicated by rows. From top left to bottom 
right rowwise, this corresponds to true positive, false positive, false negative, and true negative 
predictions. In (b), improvement accuracy is defined as improvement over the majority class 
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accuracy. An improvement accuracy great than zero, indicated by the vertical line, corresponds 
with models that score better accuracies than the majority class accuracy. 

 

 

 

Fig. 3.2 – Heatmap of model coefficients for each environmental feature (rows) and gene 
(columns). Genes are ordered by their biogeographical cluster assignments (x axis).  
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Fig. 3.3 – Global map projections of cluster distributions for each cluster (rows) in January, 
April, July, and October of 2009 (columns). Red indicates a high confidence of a gene cluster 
being present (prediction near 1), blue a high confidence of a gene cluster being absent 
(prediction near 0), and white a low confidence prediction (prediction of 0.5).  

 



  93 

 

Fig. 3.4 – Relative proportion of clusters at each TARA site (vertical bars). TARA sites are 
sorted by longitude (x axis). Blue, cluster 1; green, cluster 2; yellow, cluster 3; purple, cluster 4; 
pink, cluster 5.  
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Fig. 3.5 – Contig enrichment in clusters. (a) Heatmap of enrichment (red colors) or depletion 
(blue colors) of each SAR86 co-assembly contig (columns) across each cluster (rows). (b) Pie 
chart of the number of clusters in which SAR86 contigs are enriched. All contigs are enriched in 
three or fewer clusters, and most are enriched in only one. (c) Mean positive enrichment value, 
standard deviation of positive enrichment values, and the P value for the Mann-Whitney U test 
for whether a cluster enrichment vector is significantly different from null expected values, for 
each cluster. 
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Fig. 3.6 – Functional enrichment in clusters. (a) Heatmap of enrichment (red) or depletion (blue) 
of the 405 most abundant Pfam families (columns) across each cluster (rows). Pfams are ordered 
left to right by the number of genes annotated to it, from the most abundant Pfams to the Pfams 
with as few as 20 genes annotated to it. (b) Pie chart of the number of clusters in which Pfams 
are enriched. (c) Mean positive enrichment value, standard deviation of positive enrichment 
values, and the P value associated with the Mann-Whitney U test for whether a cluster 
enrichment vector is significantly different from null expected values, for each cluster. 
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1 Introduction 
 
 Sequencing data generation is rapidly increasing, as of 2018 reaching more than 3 million 

sequencing datasets in the Sequence Read Archive (SRA), the primary repository for next-

generation sequencing data in the International Nucleotide Sequence Database Collaboration 

(NCBI 2017). As research communities produce data at increasingly rapid rates, there is growing 

interest in leveraging these data resources for new insights into biological systems using 

comparative meta-analyses of large-scale integrated datasets. Data curation is the first step in this 

process, and generally requires identifying datasets in data repositories that match certain criteria 

that may be described within the datasets’ metadata. 
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 However, easy-to-use, flexible, and comprehensive tools for searching and filtering 

existing data repositories according to their metadata parameters are lacking. The e-utilities tool 

provided by the National Center for Biotechnology Information (NCBI), for example, is 

restricted to a free text search or exact string matching on a limited set of fields (Sayers 2017). A 

tool such as SRAdb (Zhu et al., 2013), in contrast, expands the searchability of metadata fields, 

but is specific to the R programming language and requires a local build of the SRAdb database. 

Neither of these tools, meanwhile, address the widespread errors in sequencing metadata, which 

is collected mainly via user-provided free text entries that result in frequent misspellings, missing 

fields, and nonobservance of existing metadata standards, the Minimum Information about any 

Sequence (MIxS) specification (Yilmaz et al. 2011).  

 MetaSeek provides a sequencing data discovery tool that facilitates easy and rapid 

curation of integrated sequencing datasets. The MetaSeek interface is intuitive, user-friendly, and 

flexible, allowing users to search on any metadata field in any of 10 ways. For programmatic 

access, MetaSeek exposes a simple API that is programming language agnostic.  

 

2 Infrastructure & Implementation 
 
 MetaSeek automatically scrapes metadata from the SRA on a weekly basis. In the SRA 

and in MetaSeek, each ‘#RX’ accession ID (SRX, ERX, or DRX depending on whether it 

originates from the USA NCBI, European EBI, or Japanese DDBJ databases respectively) is a 

unique metadata entry. Metadata for each dataset are gathered from across the SRA, BioSample, 

and PubMed databases and unified for each MetaSeek dataset entry. 

 As metadata are scraped from the SRA, they are cleaned and parsed to be compliant with 

MIxS metadata standards. Redundant fields are unified into a single field name, while fields with 
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categorical inputs are parsed where possible to these values, rather than free text entries. 

Numerical fields that are gathered as free text, such as latitude and longitude, are parsed into 

numeric values as well. Finally, some fields with commonly missing metadata can be inferred 

from the other metadata context: investigation_type, an essential MIxS standard field, is often 

not provided by the user but can be predicted by logistic regression with 94.1% accuracy from 

the library_source, library_strategy, library_screening_strategy, and study_type fields.  

 The cleaned metadata are stored in the MetaSeek database, which is wrapped with an API 

implemented in Python’s Flask library. The API interfaces communication between the database 

server and the MetaSeek web front-end, which is implemented in React, a popular JavaScript 

library for interactive web applications. 

 The MetaSeek database is hosted by Amazon Redshift, while the API and front-end is 

hosted on an Amazon EC2 server. Redshift provides a columnar data storage schema that allows 

for rapid response times to analytical workloads such as the summary histogram counts of 

metadata fields seen in the MetaSeek “Explore” page.  

 

3 Interfacing With MetaSeek 
 
 MetaSeek search, filter, and download functionality can be accessed via both the 

interactive online interface and a programmatic API. While the web interface emphasizes ease of 

use, the API emphasizes flexibility and comprehensiveness. Together, the online interface and 

API meet the needs of both casual and in-depth users. 

 

3.1 The Online Interface 

 The main search and filter functionality is provided on the “Explore” page 

(www.metaseek.cloud/explore). A filter panel provides intuitive filter options for the most useful 
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MetaSeek database fields. As users enter filter parameters, summary information of the datasets 

matching these filter parameters, such as counts of categorical variables, histograms of numeric 

fields, and a geographic map of dataset origins, are shown in real-time in an interactive 

visualization dashboard.  

 Users can save their configured filter parameters as “discoveries”, where they are 

accessible at a later date, shareable with other users, or able to be referenced in a publication. 

From the “Discovery Details” page, .csv files of either matching dataset IDs or all available 

metadata for each matching dataset can be downloaded directly. All user discoveries are made 

public and can be browsed on the “Browse” page, where previously saved discoveries can be 

used as a launching off point for other users. 

 

3.2 The MetaSeek API 

 The MetaSeek API provides a programmatic interface for querying the MetaSeek 

database. It is programming language agnostic and can be accessed via any HTTP POST request. 

The core API calls, SearchDatasetIds and SearchDatasetMetadata, take a set of filter parameters 

as input and return either a list of matching dataset IDs (SearchDatasetIds) or the full metadata 

(SearchDatasetMetadata) for every matching dataset. Filter parameters are flexible, such that any 

field in the MetaSeek database can be filtered by any value provided by the user, in any of 10 

ways called “rule types”. Rule types are indicated by the user by an integer corresponding to the 

desired rule type, which consist of: “greater than”, “less than”, “greater than or equal to”, “less 

than or equal to”, “is equal to”, “is not equal to”, “is equal to any of a list of items”, “is not equal 

to any of a list of items”, “contains the partial text”, and “is not null”.  
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4 Conclusions 
 
 MetaSeek fills a growing need in the bioinformatics community for faster, easier, and 

more accurate data discovery and integration. Future development will focus on curation of 

metadata from additional sequencing data repositories, direct integration with bioinformatics 

tools, and metadata inference from unstructured text data. Feature requests and input from the 

community are welcome and can be submitted via the website or directly to 

metaseek.cloud@gmail.com. Future updates and feature additions will be announced on the 

MetaSeek website. 
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Fig 4.1 – The MetaSeek workflow. 
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DISCUSSION 
 

 Microbial communities interact with their environment to drive the functional and 

biogeochemical outcomes of ecosystems, while environmental variables in turn influence the 

distribution of microbial genetic diversity. Decades of scientific inquiry have increased our 

appreciation of the vast complexity and interconnectivity between microbial communities and 

their environment (Azam 1998, Falkowski et al. 2008, Lima-Mendez et al. 2015), but significant 

questions remain in our understanding of the impact of microbial processes on biogeochemical 

fluxes, environmental regulation of the distribution of microbial genetic diversity, and building 

effective models to predict these complex ecosystem-level outcomes. This dissertation 

demonstrates the relationship between physical processes and biogeochemical outcomes at the 

regional scale, and how these outcomes may change as environmental conditions shift in the 

future. These regional differences are also visible at the global scale, where the geographical 

distribution of SAR86 genetic diversity, and the global distribution of SAR86 ecotypes, can be 

accurately predicted from environmental variables. As our scale of inquiry expands from the 

community, to regional, and finally to global scales, so too does the complexity of microbe-

environment interactions in the Earth system. Our ability to understand and predict these 

complex systems will depend on our ability to expand both the range of environments feasible 

for study at the community scale, as well as the computational limits of data-driven discovery at 

ever larger spatial, temporal, and computational scales.  
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 The expansion of community-level feasibility is exemplified by the extraction treatment 

presented in Chapter 1. It is a popular adage that we know more about the surface of the moon 

than we do about the bottom of the ocean. The deep subsurface is even more underexplored, 

despite the fact that volumetrically it is the largest biome on Earth, inhabited by a microbial 

population of roughly 1029 cells (Kallmeyer et al. 2012) rivaling in number that of both seawater 

and soils (Whitman et al. 1998). Expanding our ability to measure microbial activities in 

sedimentary environments is key to increasing our understanding of the diversity of microbial 

systems, the range of environmental conditions they inhabit, and the diversity of microbial 

survival strategies at the edges of the limits of life. The method introduced in Chapter 1 improves 

fluorescent substrate recovery from sedimentary systems by 66%, expanding the range of 

environments for which microbial activity measurements are possible to some of the least well-

studied environmental frontiers. 

 The results of Chapters 2 and 3 demonstrate the close association between microbial and 

environmental processes, as well as the potential for understanding and predicting microbial 

systems and their relationship with the environment with increasing complexity at increasing 

scales. The unique spectrum of carbon cycling rates and capacities of microbial communities in 

distinct water masses during eddy intrusions on the Mid Atlantic Bight has implications for 

biogeochemical cycling, with low bacterial productivity as well as a distinct spectrum of 

hydrolytic substrates characterizing warm core ringwater intrusions. As the oceans warm and 

similar eddy intrusions become more frequent (Andres 2016; Monim 2017; Gawarkiewicz et al. 

2018), the influence of microbial communities within eddy intrusions on biogeochemical cycling 

along continental shelf regions is likely to increase as well. The low bacterial productivity and 

hydrolytic spectra unique to warm core eddies, despite warmer temperatures relative to 
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surrounding water masses, demonstrates that predicting rates of biological carbon cycling in 

marine environments cannot be as straightforward as a simple temperature-growth relationship. 

Current Earth system models, however, either ignore biology completely or make simple 

assumptions about rates of activity due to temperature (Treseder et al. 2012; Wieder et al. 2015) 

that overlook the contribution of microbial community genetic capacities to their ultimate 

biogeochemical function, and the variable distribution of this genetic diversity in the world’s 

oceans. However, it is also clear that there is a relationship between environmental variables and 

the distribution of genetic diversity, as demonstrated in Chapter 3, where SAR86 gene 

distributions could be predicted with high accuracy from environmental variables with machine 

learning models. These gene models enabled the identification of five ecotypes within SAR86 

with distinct environmental distributions across the world’s oceans. The differential taxonomic 

and functional diversity across ecotypes has implications for biogeochemical cycling; however, 

the link between this vast diversity and net biogeochemical outcomes is not straightforward. A 

significant challenge going forward will be in deriving biogeochemically and ecologically 

relevant features from complex microbial data, which can be used to more closely relate 

microbial systems to the environmental processes they regulate, and improve our predictions of 

ecosystem function under past, present, and future Earth conditions.   

 Deriving patterns and high-level features from microbial systems is an extremely data-

intensive task. The MetaSeek data discovery tool provides a much needed resource to integrate 

datasets at the scale needed for ecosystem-scale investigations of microbe-environment 

interactions. As data size expands, our data analysis and modeling approaches must also adapt to 

best harness the potential of these data resources. Machine learning approaches, such as those 

used to identify SAR86 ecotypes from the global TARA dataset, are one such solution, but 
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significant potential remains in the adaptation of these tools for bioinformatics applications (Min 

et al. 2017; Soueidan & Nikolski 2016). 

 The coming years in environmental microbiology will be defined by our ability to 

integrate knowledge across all levels of microbial organization, from the local environments they 

inhabit to the global-scale processes they regulate; to leverage data-intensive integrations to 

uncover patterns in the complexity inherent to these systems; and to use this information to 

formulate new and more comprehensive theories of microbial organization and their functional 

role within the Earth system. This dissertation addresses questions central to microbial-

environmental interactions, linking microbial processes to environmental phenomena from 

community to global scales, and lays the groundwork for future investigation in data-driven 

discovery in environmental microbiology.  
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APPENDIX A: CHAPTER 1 SUPPLEMENTARY INFORMATION 
 

Supplementary Tables 
 

Sediment Source Sediment Description 
Marmara Sea Marmara Sea sediments were dominated by clay sediments (>50%) at the 

surface, and were rich in micro-carbonates containing abundant (~10%) 
coccoliths. Marls of primarily carbonate mudstone characterized the deeper 
sediments from 520 and 570cm, which also contained abundant small sulfide 
particles (Zabel et al., 2011).  

Eastern Mediterranean Eastern Mediterranean sediments contained five sapropel layers that were cross-
referenced with those described by Calvert and Fortugne (2001). Those used in 
these experiments included S4 (from 385cm), S5 (455cm), and S7 (582-590cm), 
which were all dark brown/black, organic-rich clays. The remaining non-
sapropelic layers were gray to light-gray coccolith ooze and clay (Zabel et al., 
2011). 
 

Guaymas Basin Cores P1 and P3 consisted of diatom-rich, non-sulfidic hemipelagic marine 
sediments, and were both collected on the outermost northwestern ridge flank of 
Guaymas Basin (27°38.27’ N, 111°53.89’ W; 27°37.68’ N, 111°52.57’ W) at 
water depths of 1604 m and 1611m, respectively. Core P5 (27°38.76’ N, 
111°38.91’ W) was sampled at the foot of the Sonora Margin, and contained 
highly compacted and sulfidic sediments. Core P8 contained suboxic sediments 
and was sampled on the upper Sonora Margin (27°40.34’ N, 111°24.12’ W) at 
995 m water depth. Core P10, dominated by hemipelagic, diatom-rich sediments 
was sampled in the central region of the northwestern ridge flanks (27°30.52’ N, 
111°42.17’ W) at 1731 m water depth. Core P13 was sampled on the 
southeastern edge of the ridge flank (27°12.45’ N, 111°13.77’ W), on the 
opposite side of the axis from P1 and P3. Sediments sampled from this core 
showed strong terrestrial impacts from a nearby river delta, with coarse and 
sandy sediments and sand layers. 

 
SI Table 1.1 – Description of sediments collected from the three sites used in this study – 
Marmara Sea, Eastern Mediterranean, and Guaymas Basin. 
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Supplementary Figures 
 

 

SI Fig 1.1 - Representative chromatograms comparing treatment (bottom row) to no treatment 
controls (top row) for (a) Mediterranean sapropel S4, 385cm, chondroitin incubations (b) 
Guaymas core P13, 55cm, laminarin, and (c) Guaymas core P1, 55cm, laminarin. Note 
differences in scales on y axes. Replicate 1, far left vertical panels, is duplicated from Fig 2. 
Improved chromatogram quality is seen in treatment incubations, with narrower peak widths, 
higher total integrated fluorescence, and a higher proportion of high- to low-molecular-weight 
substrate. 
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APPENDIX B: CHAPTER 2 SUPPLEMENTARY INFORMATION 
 
Supplementary Figures 
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SI Fig. 2.1 – Sea surface temperature from satellite imagery of the Rutgers Coastal Ocean 
Observation Lab for April 5 to May 3, 2015. Station sampling locations are denoted by black 
squares along ~70°W longitude in each image. The path of the Gulf Stream jet is indicated by 
white arrows on April 5. The anticyclonic circulation around each of two Gulf Stream warm core 
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rings is indicated with blue curved arrows whenever the rings are apparent. One warm core ring 
(RING) approaching the survey line from the west is observed during April 5 to 22. A second 
warm core ring (RING-2) is seen approaching the area from the southeast beginning on April 22. 
RING-2 moves close to the survey area by April 27-28, and a warm water filament is pushed 
toward the survey line ahead of it. The activity of these two rings likely brought warm/salty 
water of Gulf Stream origin to the upper continental slope at the southern end of the survey line. 
The cold/fresh water that can be seen in the April 27-28 images flowing southward from the 
survey line is likely the water measured in the upper ~20 meters at each of the 4 stations.  

 

 

 

SI Fig. 2.2 – Recent observations of T-S characteristics of Gulf Stream waters, from the 
“Processes driving Exchange at Cape Hatteras” (PEACH) project. The T-S character (Temp 
~12.5°C, Salinity ~35.6 PSU) of the water below 120 meters at station 4 is indicated on the plot, 
and is consistent with recent observations of water within the Gulf Stream jet at the southern 
perimeter of the Mid Atlantic Bight (see April 28 image of SI Fig 1), suggesting the deep water 
at Stn 4 is of Gulf Stream origin, likely brought to the survey area by warm core rings.  
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APPENDIX C: CHAPTER 3 SUPPLEMENTARY INFORMATION 
 
 
Supplementary Figures 
 

 
 
SI Fig. 3.1 – Map of TARA station sampling locations. Points are colored by depth region 
sampled: DCM: deep chlorophyll maximum; SRF: surface; MES.OMZ: mesopelagic in ocean 
minimum zone; MIX: mixotrophic; and MES: mesopelagic.  



 

  121 

 
SI Fig. 3.2 – Number of gene models (y axis) for which a particular environmental feature (x 
axis) was selected as nonzero during logistic regression model training. Features are sorted in 
order of the number of gene models for which it was nonzero. 
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SI Fig. 3.3 – Map of the relative proportion of biogeographic clusters 1-5, top to bottom, at each 
TARA site. The opacity of each symbol indicates the percentage of genes from that TARA site 
that belong to that cluster. 
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SI Fig. 3.4 – Correlation between the relative abundance of SAR86A (vs SAR86E) and the 
relative proportion of clusters 3 + 4 (vs clusters 1 + 5) at each TARA site (blue dots). Pearson R2 
= 0.70, P = 1.56x10-26. 

 
SI Fig. 3.5 – Functional enrichment of Pfams associated with glycosyl hydrolase family 3 (left) 
and glycosyl hydrolase family 16 (right) in each cluster. The expected value (‘overall’) is 
indicated by a horizontal line at 0, enriched values (red) appear above this line and depletion 
values (blue) below this line.  
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Supplementary Table Info, Captions, & Download 
 
**Because the supplementary tables described below are too large for print, the tables have been 
made available on the associated Github repository (Hoarfrost 2018). Tables can be downloaded 
directly from the url: https://github.com/ahoarfrost/SAR86/tree/master/SI_tables.** 
 
 
SI Table 3.1 – Metadata for each of the 51 environmental variables input to the logistic 
regression gene models, including variable name, time span metric over which historical sources 
are averaged or sample/satellite sources are gathered, original units of the dataset, whether data is 
available a depth resolution or surface only, and the original data source.  

SI Table 3.2 – Satellite and historical environmental data corresponding to the sampling site, 
date, and depth of each TARA site.  

SI Table 3.3 – The cluster centroid coefficient for each environmental feature. Columns: 
‘feature’, environmental feature name; cluster1-5: centroid coefficient for that cluster. 

SI Table 3.4 – Cluster membership proportions and Shannon Diversity metric for each TARA 
site. Columns: ‘run_id’, the European Nucleotide Archive run accession ID; ‘longitude’ and 
‘latitude’: coordinates at which TARA site was sampled. ‘tara_label’: TARA project label. 
‘cluster1-5’: proportion of genes present at that site assigned to that cluster. ‘shannon’: shannon 
diversity metric for each TARA site.  

SI Table 3.5 – Average nucleotide identity pairwise comparisons of SAR86A-E. Each cell is the 
ANI value for genome 1 (rows) compared against genome 2 (columns). ANI calculated after 
(Varghese et al. 2015) using the online calculator at https://ani.jgi-psf.org/html/calc.php?. 
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APPENDIX D: CHAPTER 4 METASEEK EXPLAINER 
 

 The MetaSeek data discovery tool facilitates the search and discovery of sequencing 

datasets, integration of curated datasets along any of their available metadata, and the download 

and dissemination of these curated datasets. The publication associated with the MetaSeek tool 

was submitted to the Application Notes section of the Bioinformatics journal, which has strict 

length limits. Since some readers may be interested in a more detailed explanation of key aspects 

of the MetaSeek tool, this section will elaborate on the central components MetaSeek.  

 The basic workflow for MetaSeek starts by ingesting new metadata for sequencing 

datasets as they become publicly available, cleaning, parsing, and predicting missing metadata as 

it comes in. These cleaned metadata, as well as the original values where applicable, are stored in 

the MetaSeek database. An API communicates with this database, translating requests for 

information from the website or API users to retrieve the appropriate response from the database, 

and returning the results of the request to the user (either the website itself or a developer using 

the API for their own purposes). For any particular type of data retrieval request, there needs to 

be an associated API call programmed into the MetaSeek app, which determines both what kind 

of request information it expects to receive from the user, and the nature of the response from the 

database. The MetaSeek front end website receives the results from an API call, and displays 

them accordingly, which may vary depending on which web page is making the request and what 

part of the MetaSeek interface is being interacted with. 

 The following sections describe details of each piece of this workflow. Additional 

information, tutorials, and documents can also be found on the MetaSeek website 

(https://www.metaseek.cloud/) and Github repository (https://github.com/MetaSeek-Sequencing-

Data-Discovery/metaseek). 
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Metadata scraping, cleaning, and parsing 

 MetaSeek hosts metadata from all sequencing datasets that are publicly available in the 

Sequence Read Archive (SRA), which includes a wide variety of sequencing data types. The 

only unifying quality of these datasets is that they are produced by next-generation sequencing 

technologies, and that they are publicly available (the SRA does allow a temporary privacy 

embargo for yet-to-be-published datasets). Periodically, MetaSeek runs a series of scraper scripts 

that are designed to find new datasets in the SRA, parse and clean them, and add them to the 

MetaSeek database. The MetaSeek scrapers use the NCBI eutilities, the NCBI’s own API, to 

search for datasets and get metadata for each dataset. Complicating the issue is that the NCBI 

hosts a number of databases, all designed to store slightly different information, and the metadata 

for one dataset may be spread across multiple databases: not just the accession associated with 

the dataset’s SRX accession ID (the ID associated with the SRA itself), but also additional 

sample metadata that may exist in the BioSample database and any publication metadata in 

PubMed.  

 In the first step of the scraper scripts, the MetaSeek scrapers use the eutilities “esearch” 

call to search for all publicly available datasets. Once it has a list of all dataset unique IDs in the 

SRA, it compares this list to the db_source_uid in the MetaSeek database, and removes any 

datasets that already exist. This leaves the scraper with a list of new SRA unique IDs for which 

metadata can be retrieved and added to MetaSeek. The SRA defines unique datasets at the level 

of the experiment, or SRX number, but these “experiments” can be nested within a larger project 

(SRP), and encompass multiple samples (SRS), or multiple sequencing runs (SRR). In 

MetaSeek, to avoid this nested structure, each row in the main MetaSeek Dataset table 
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corresponds with an SRX number. If multiple runs are associated with a single SRX, there is an 

additional Runs table that stores just the relevant sequencing run information for each individual 

run. 

 In batches of 500 datasets at a time, the scrapers then scrape metadata from the SRA 

database itself using the eutilities “efetch” call. For each unique SRA accession, the efetch API 

call returns a structured XML file that contains much of the metadata MetaSeek needs. This 

metadata, as the SRA organizes it, falls into seven basic categories: 'EXPERIMENT',' 

SUBMISSION', 'Organization', 'STUDY', 'SAMPLE', 'Pool', and 'RUN_SET'. The Experiment 

section includes basic info like the SRX accession, experiment title, and study title, but also 

several metadata fields describing the basic nature of the type of sequencing data of the dataset 

such as library_source, library_strategy, library_screening_strategy, and 

library_construction_method, which correspond to parameters such as whether it is a genomic, 

metagenomic, or transcriptomic sample; whether whole genome sequencing or an amplification 

strategy was used; whether any sequencing selection such as PCR or restriction digest was used; 

and what sequencing platform was used to sequence the sample. These fields are extremely 

useful for MetaSeek because they are mandatory fields that all users must fill out when 

submitting metadata to the SRA (unlike most fields, including those that are mandatory for the 

MIxS metadata standards), there is only a small controlled vocabulary of value inputs that can be 

provided for each field, and they actually enforce this standard of entry when metadata is being 

submitted with a sequencing data submission so the metadata in the SRA database is very clean. 

A “controlled vocabulary” is the set of possible values that are supposed to correspond to a 

particular metadata field, as defined by a metadata standard group such as MIxS. The 

‘Submission’ section includes the SRA submission ID. The ‘Organization’ section describes 
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contact and location info for the submitter. The ‘Study’ section describes information about a 

larger study that may encompass the experiment, such as the study title and the study accession 

SRP id. The ‘Sample’ section includes some of the information in BioSample, if it exists, such as 

the sample id (SRS#), BioSample id (SAMN#), sample title and description, and information on 

the taxon scientific and common name, and NCBI taxon id, which describe the species or taxon 

if it’s a genomic sample. The ‘Pool’ section is redundant with the other sections and is skipped. 

The ‘Run’ section describes information about the actual sequencing run that was conducted: the 

number of reads and bases sequenced, the download size of the sequencing data, counts of the 

number of each nucleotide, and read quality counts. From this information MetaSeek also 

calculates the average read length and the GC percent.  

 Once the SRA metadata is collected, the scrapers use the eutilities “elink” call to identify 

whether any BioSample or PubMed accessions linked to the SRA dataset exist. If they do, 

metadata from these databases are gathered with an “efetch” command and added to the 

MetaSeek metadata for that dataset. The BioSample database, in theory, stores the MIxS 

standard metadata fields for a dataset, and users are encouraged to submit metadata that is 

compliant with these standards. From the BioSample metadata, in addition to basic sample title, 

description info, and collection date information, MetaSeek collects the biosample_package field 

that theoretically corresponds with the env_package field defined in the MIxS standards (whether 

a sample is from ‘sediment’, ‘human-gut’, etc.), as well as a mishmash of “sample_attributes” 

fields. These are free text fields provided by the user, that are supposed to be the MIxS-

compliant mandatory and optional fields. A user enters both the field name and the field value as 

free text in their metadata submission packet, and these fields and values are supposed to 

correspond to MIxS-defined fields and controlled vocabulary values for the type of sample they 
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are submitting, which the user is left to determine from a long set of guides and lists provided by 

the SRA in an excel worksheet. As one would expect, this metadata is extremely messy, riddled 

with misspellings and missing information, but potentially useful. The PubMed metadata, if it 

exists, is also collected via an “efetch” call, and this metadata includes the citation information 

for the publication, and the metadata publication date.  

 Once all of the raw metadata is collected from SRA, BioSample, and PubMed databases, 

MetaSeek applies a number of cleaning and parsing operations to try to parse the messy 

sample_attributes fields into a clean set of MIxS-standard compliant field names and the 

appropriate controlled vocabulary value. First, the user-provided field names are parsed to MIxS-

compliant field names for all of the mandatory MIxS fields and the most commonly provided 

optional fields. This is done from a set of manually curated rules: for example, if a user has 

entered any of the values "env package", "environment package", "environmental package", 

"enviornmental package", "water environmental package", "human gut environmental package", 

etc., convert this field name to the MIxS-compliant “env_package”. These rules were curated 

using the first million datasets downloaded into the MetaSeek database during the app’s 

development, looking within the “sample_attributes” entries for the most common misspellings 

and misused terms, and parsing these to MIxS-compliant fields. When all of the MIxS-compliant 

fields are parsed and extracted, the user-provided values for these fields are parsed to comply 

with the appropriate controlled vocabulary for those fields that require them. This is done for the 

“investigation_type”, “env_package”, “sequencing_method”, and “mixs_specification” fields. 

Again, this is done using a set of rules – “if you see this or this or this change it to this” – that 

were manually curated by inspecting the most common mistakes and errors in one million user-

provided metadata entries. 
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 One field, “investigation_type”, is often missing metadata entries entirely despite the fact 

that it is a key (and theoretically “mandatory”) MIxS field, and can’t be parsed manually. 

However, this field can be accurately predicted from the mandatory SRA fields that are enforced 

during the SRA metadata collection process, are available for every dataset, and have clean 

controlled vocabularies. In the case where “investigation_type” is missing or can’t be parsed 

manually, I use a logistic regression model to predict the “investigation_type” field from the 

“library_source”, “library_strategy”, “library_screening_strategy”, and “study_type” mandatory 

SRA metadata fields. This can predict “investigation_type” with 94.1% accuracy. A confidence 

field with a measure of the confidence of the model prediction, 

“metaseek_investigation_type_P”, is also recorded. In all cases where MetaSeek has changed an 

original user entry to produce clean metadata, whether manually parsed or predicted, the original 

user entry is maintained in the “sample_attributes” field.  

 Two other important fields that is very messy are the latitude and longitude fields. The 

values for latitude and longitude are provided by the user as free text, which predictably results 

in many entries that are not easily converted to numeric values, and may use different units such 

as degrees-minutes-seconds rather than decimal degrees. However, there are a small number of 

common entry formats that users tend to use, and this can capture the vast majority of 

latitude/longitude entries. Using a series of regular expression pattern matching, these patterns 

are recognized and converted to a numeric value in decimal degrees, which is recorded in the 

“meta_latitude” and “meta_longitude” fields. The original “latitude”, “longitude”, or “lat_lon” 

fields are maintained in the MetaSeek database as well.  

 In a final cleaning step, missing data values which are often recorded by a variety of 

values – 'NA', 'Missing', 'missing', 'unspecified', 'not available', 'not given', 'Not available', 'not 
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applicable', etc. – are converted to a uniform None value. Finally, the cleaned and parsed 

MetaSeek metadata is inserted into the MetaSeek database. 

 

The MetaSeek database and API 

 The bulk of the MetaSeek database, containing the scraped and cleaned metadata, is 

contained in a single table, the Dataset table. Each row corresponds to a single SRX accession. 

The MetaSeek database also contains a Run table, which records sequencing information such as 

number of reads and bases sequenced about the SRR accessions associated with an SRX, and a 

Publication table, which records the PubMed publication metadata, if it exists, associated with a 

particular SRX. A Discovery table records the saved filter parameters, timestamp, owner, and 

“discovery” title and description for any saved discoveries from the MetaSeek website, and a 

User table saves the user ID associated with any users who log in on the MetaSeek website with 

the “log in with Google” button. These tables are used to retrieve discoveries saved by a user at a 

later date.  

 This database is hosted by Redshift, which is an Amazon database service that 

streamlines much of the tedious database management tasks, and is also uses a columnar data 

storage schema. This is in contrast to MySQL, for example, which uses a row-wise data storage 

schema. Databases, in general, are optimized to do particular operations lightning fast, because 

they organize the data under the hood in such a way that retrieving and returning certain kinds of 

information is optimized. However, this comes with tradeoffs, where other kinds of operations 

are not optimized and slower. In a traditional row-wise database, grabbing a row from the 

database and returning it to the user is super fast, but doing column-wise operations like filtering 

on the values of multiple fields can be slow. A columnar data storage is optimized in the opposite 
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direction, such that retrieving summary data from several columns is optimized for. This 

columnar optimization is ideal for the MetaSeek web interface: in the main MetaSeek “Explore” 

page, every time a user sets a filter parameter, they are asking the MetaSeek database to filter a 

field in a column-wise operation. Especially as databases get big, and MetaSeek now has over 3 

million unique entries in the Dataset table, this can become very slow, and as a result for the 

MetaSeek Explore page this can mean you wait a long time to get search results back. MetaSeek 

was originally stored in a MySQL database, and was recently converted to a columnar Redshift 

database. During performance testing of the new schema, queries that took 30 seconds to 1 

minute to return results in the MySQL database took between 0.5-5 seconds to return results in 

the Redshift database.  

 The MetaSeek API provides a set of calls designed to retrieve information required by the 

website interface, and also provides a number of user-facing API calls for programmatic access 

to query the MetaSeek database. This API is written in the python Flask library, which interfaces 

well with the web as well as multiple database schemas. The database-Flask app-React website 

software stack is a common use case, which has the added advantage of having a lot of 

documentation for overcoming common stumbling blocks on the web. The API receives requests 

as they come in – either from the MetaSeek website, or from a user accessing the database 

programmatically – and translates these requests to the database, which returns the appropriate 

information. The code of the Flask app defines the set of API calls that can be received, how that 

request should be parsed, and the kind of result that should be returned. For example, when a 

user selects a filter on the MetaSeek “Explore” page, the website sends to the app the filter 

parameters the user has set: the field filtered, the value/s the field should contain, and how this 

field should be filtered, e.g. values less than, or greater than, or included in a list of acceptable 



 

  135 

values, etc. The MetaSeek API takes this information and translates it into a NoSQL query that 

the Redshift database can understand, collects the results, and packages the returned data into the 

summary data visualized in the MetaSeek Explore visualization dashboard. Other API calls are 

available as well. When a user queries the API programmatically with the “SearchDatasetIds”, 

API call, for example, they similarly provide filter parameter data, which the Flask app translates 

into the appropriate NoSQL query, the database returns the MetaSeek dataset IDs that match 

those filter parameters, and the API packages this into a json format and sends this back to the 

user.  

 

The MetaSeek web interface 

 The meat of the MetaSeek website is on the Explore page. This is where users can filter 

the MetaSeek database based on the most important metadata fields, and look at interactive 

visualizations that summarize the matching datasets in real time. The most important fields are 

broken down into “General”, “Sequencing”, and “Environmental/Contextual” info. The general 

info includes basic information such as what type of sequencing dataset it is – a genome, 

metagenome, marker gene survey, etc. – and the basic source of the dataset – whether it’s from 

sediment, soil, water, human gut, wastewater, etc. The sequencing info section provides filters 

for the sequencing platform used (Illumina, Nanopore, etc.), the average read length or number 

of reads sequenced, whether it was single or paired-end sequencing, and the library strategy or 

screening strategy on which you can filter for WGS vs. amplicon, or Random vs. PCR 

sequencing. The environmental section provides filters for latitude, longitude, and the 

environmental biome, feature, material, and geographic location fields (MIxS fields describing 

the general environmental context of the sample). When a filter parameter is set, this is sent to 
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the API, which retrieves the datasets that match the filter parameters, summarize the results, and 

send this summary data back to the browser. The Javascript code on the website then uses this 

summary data to produce a suite of interactive visualizations on the visualization dashboard that 

allows the user to explore the features of the results of their search. These visualizations 

generally visualize the counts of datasets that fit in certain categories, or display histograms of 

the distribution of values from numeric fields across all the datasets, or plot the density of 

samples collected from a range of latitudes and longitudes on a map. There is also a paginated 

table that allows users to look at the full dataset metadata for matching datasets; by paginating 

this table, the browser doesn’t need to store the full metadata of all of the matching datasets, but 

only a few at a time, allowing a user to theoretically look at each dataset manually without 

crashing the browser.  

 If a user finds a set of filter parameters that match the datasets they are looking for and 

they want to save their results for a later date, or download the metadata or matching datasets to 

look at offline, they can save their “discovery” on the MetaSeek website. The site prompts the 

user to sign in with Google, and the discovery filter parameters are saved in the Discovery table 

of the MetaSeek database and associated with that user id in the User table of the MetaSeek 

database. The user is then taken to the “Discovery Details” page, which displays the visualization 

dashboard of the discovery’s matching datasets, and provides links to download either the 

matching dataset IDs or the full metadata for that discovery. These discoveries can also be 

browsed by any user on the Browse page, and that metadata can be downloaded. By saving the 

filter parameters and timestamp of each discovery, a user is able to easily return to and retrieve 

results at a later date, or cite their discovery in a future publication. 

 


