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Abstract 

 

 

 Predictions of species’ ranges from distribution modeling are often used to inform marine 

management and conservation efforts, but few studies justify the model selected or quantify the 

uncertainty of the model predictions in a spatial manner. This thesis employs a multi-model, 

multi-area SDM analysis to develop a higher certainty in the predictions where similarities exist 

across models and areas. Partial dependence plots and variable importance rankings were shown 

to be useful in producing further certainty in the results. The modeling indicated that glass 

sponges (Hexactinellida) are most likely to exist within the North Pacific Ocean where alkalinity 

is greater than 2.2 μmol l-1 and dissolved oxygen is lower than 2 ml l-1. Silicate was also found to 

be an important environmental predictor. All areas, except Hecate Strait, indicated that high glass 

sponge probability of presence coincided with silicate values of 150 μmol l-1 and over, although 

lower values in Hecate Strait confirmed that sponges can exist in areas with silicate values of as 

low as 40 μmol l-1. Three methods of showing spatial uncertainty of model predictions were 

presented: the standard error (SE) of a binomial GLM, the standard deviation of predictions 

made from 200 bootstrapped GLM models, and the standard deviation of eight commonly used 

SDM algorithms. Certain areas with few input data points or extreme ranges of predictor 

variables were highlighted by these methods as having high uncertainty. Such areas should be 

treated cautiously regardless of the overall accuracy of the model as indicated by accuracy 

metrics (AUC, TSS), and such areas could be targeted for future data collection. The uncertainty 

metrics produced by the multi-model SE varied from the GLM SE and the bootstrapped GLM. 

The uncertainty was lowest where models predicted low probability of presence and highest 

where the models predicted high probability of presence and these predictions differed slightly, 

indicating high confidence in where the models predicted the sponges would not exist.   

 

 

Keywords: species distribution modeling, spatial ecology, glass sponges, spatial model 

uncertainty, GLM, GAM, BRT, MaxEnt, standard error, standard deviation. 
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Chapter 1. Introduction 

 

Biogeographical patterns for benthic marine taxa are poorly understood due to a lack of 

accessible geospatial information. Knowledge of the spatial distribution of species is a crucial 

prerequisite for the understanding of ecosystem functioning and processes as well as 

conservation management (Reiss et al., 2011). Fauna is more difficult to access and monitor in 

marine environments than in terrestrial environments. Due to the resulting limitation of data on 

marine taxa, predictive modeling methods are often employed in order to estimate their full 

distribution from the available data (Guisan et al., 2000; Guisan et al., 2005). Species distribution 

models (SDMs) used for this purpose, also referred to as habitat suitability models or ecological 

niche models, estimate the relationship between species’ coordinate data and the environment 

within which they exist (Franklin, 2009; Elith et al., 2011). While terrestrial SDM work is a 

fairly robust field, marine applications of SDM have been more recent in their developments 

(Reiss et al., 2011; Robinson et al., 2011). The field of marine SDM has been stimulated by 

increasingly available large-scale environmental data on ocean biogeochemistry and the need for 

prediction methods to quantify and estimate changes in species distribution in response to 

climatic changes (Reiss et al., 2011). However, a systematic review of 236 published papers on 

marine-based SDMs (Robinson et al., 2017) noted some shortcomings typical in the field. Only 

9% of the reviewed studies tested their model results against independent data, which is 

generally accepted as an unbiased method of assessing model performance, and 94% of the 

reviewed studies failed to report the amount of uncertainty derived from data deficiencies and 

model parameters. When model predictions are evaluated against independent data, there is 

usually no spatial component to the summary statistics or visualization of patterns of uncertainty 

such as spatial clustering or links with specific predictor variables (Elith et al., 2002b). A popular 

method of interpreting and calculating prediction uncertainty involves measuring similarities 

between distribution predictions, where multiple taxa, models, areas and/or spatial resolution are 

tested and the resultant predictions are compared (Monk et al., 2012; Pennino et al., 2016; 

Svensson et al., 2013). Besides similarity calculations, measuring and quantifying prediction 

uncertainty is an underdeveloped aspect of marine SDM work, and, along with testing several 

SDMs, will be explored in this thesis. 



2 

 

This thesis will focus on hexactinellid sponges in the North Pacific Ocean. The class 

Hexactinellida (kingdom Animalia, phylum Porifera), consists of between 400-500 species in 

two subclasses which contain five orders, 17 families, and 118 genera (Reiswig et al., 1983). 

They are often referred to as glass sponges because their skeletons are composed of spicules of 

silica. Hexactinellid sponges are sessile, relying on filter-feeding to obtain the macroscopic 

detritus material they subsist on (Atwater et al., 2001). After hatching, sponge larvae drift in the 

water column for a limited time before settling on the seafloor as juvenile sessile sponges 

(Maldonado, 2006). Observations of planktonic larval life in laboratories indicate that most 

larvae are anchiplanic, which means they generally remain in the water column for minutes to a 

few days, usually less than two weeks (Maldonado, 2006). Larvae are known to disperse under 

the influence of hydrodynamic processes that operate at a spatial scale of tens of meters to 

kilometers, and are not thought to be affected by active substratum selection, which operates at a 

smaller scale of centimeters to meters (Maldonado, 2006). Little is known about dispersion in 

specifically hexactinellid sponges, and limited information about species within the hexactinellid 

class is available in the dataset used for this thesis. Therefore it must be mentioned that this 

thesis operates under the assumption that glass sponges of different species react similarly to 

their environment, due to a lack of more specific data.  

When the sponges die, their siliceous skeletons remain and future sponges grow directly 

on them, forming reefs. Their skeletons have left a fossil record as far back as the Cambrian/Pre-

Cambrian, which would make them possible the earliest living metazoans on earth (Leys, 2003). 

While they are found in every ocean in the world, they remain a rare taxa with a seemingly 

specific set of environmental conditions required to thrive. Research on deep-sea reef-forming 

benthic taxa is crucial as they are important indicators of the health of benthic ecosystems and 

often increase biodiversity where they are found (Knudby et al., 2013; Beazley et al., 2013). 

Their high diversity, large biomass, complex physiology and chemistry, and long evolutionary 

history lend sponges (and their endosymbionts) to play a key role in diverse ecological 

processes, including but not limited to predation, habitat provision, nutrient cycling, food chains, 

and bioerosion (Rützler, 2004). Unfortunately, benthic marine taxa are vulnerable to climate 

change as well as human activities such as fisheries, specifically deep-sea trawling (Rooper et 

al., 2017). Glass sponge reefs in the waters off the coast of British Columbia have recently been 

permanently protected from trawling and other human activities through the establishment of 
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marine protected areas (MPAs). Since little is known about the distribution of this taxa outside 

British Columbia coastal waters, applying SDMs to glass sponges throughout the North Pacific 

will shed light on this otherwise difficult-to-research taxa.  

 

1.1 Thesis Objectives 

 

The primary goals for this research are threefold;  

 

 1) To map hexactinellid (glass) sponge distribution for the entire North Pacific Ocean, as 

well as several smaller areas, by testing several commonly used species distribution modeling 

methods,  

 2) To assess the model outputs both in terms of the relative importance of different 

environmental variables in making predictions about glass sponge presence/absence, as well as 

the specific dependence of glass sponge presence probability on these environmental variables, 

and  

 3) To compare existing methods for mapping prediction uncertainty.  

 

1.2 Thesis Format  

 

 This thesis is presented in article format, including a manuscript intended for publication. 

Chapter 1 provides an introduction for the thesis, as well as covering the thesis objectives and the 

format. Chapter 2 presents a manuscript titled “Predicting Glass Sponge (Porifera, 

Hexactinellida) Distributions in the North Pacific Ocean and Spatially Quantifying Model 

Uncertainty”. This manuscript will be submitted to a journal in the field of applied marine 

ecology and ecological modeling for publication such as Deep-Sea Research Part I: 

Oceanographic Research Papers. Chapter 3 provides a general conclusion of the manuscript 

presented in Chapter 2. Chapter 4 contains the literature cited for this thesis.  
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Chapter 2: Predicting Glass Sponge (Porifera, Hexactinellida) Distributions in the North 

Pacific Ocean and Spatially Quantifying Model Uncertainty 

 

2.1 Introduction  

 

 

 2.1.1 Species Distribution Modeling in Marine Environments 

 

Species distribution modeling allows for the understanding of processes that create 

habitat distribution patterns, and has become increasingly important in the face of threats such as 

habitat destruction, species invasions, pollution and climate change (Robinson et al., 2011). 

SDM algorithms require high-quality species presence/absence records as well as high-quality 

environmental information to infer the macroecological preferences of species (Tyberghein et al., 

2011). By transferring SDMs from terrestrial to marine environments, the validity of the model 

and its predictive performance will be affected by the unique physical properties of marine 

habitats (Robinson et al., 2011). This is largely due to the fact that marine ecosystems have 

significantly less permanence than terrestrial ecosystems; for example, a treeline or grasslands 

may remain stable during a timeline of decades, while ecological and physical conditions in the 

water are in continual flux (Longhurst, 2007). 

 

 2.1.1 Existing Guidance on Model Selection 

 

 Model complexity has increased greatly over time from environmental matching (e.g. 

BIOCLIM, DOMAIN) to more complex non-linear relationships between species and their 

environment (e.g. generalized additive models (GAMs), MaxEnt) (Elith et al., 2009). BIOCLIM 

is an early SDM package which relates the bioclimatic environment species exist within to a 

number of environmental predictor variables, such as temperature or elevation (Booth et al., 

2013). Due to the now numerous SDM methods, there is some difficulty in selecting an 

appropriate algorithm. The advice that would assist making an informed choice of method is 

currently scattered throughout literature (Elith et al., 2009). It remains difficult to know which 

model is ‘best’ for the given data before comparing multiple models. This thesis will therefore 

focus on several commonly used SDMs.  
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 Input data required for SDM work involves biological data: information about the species 

(single or multiple species) distribution, and environmental data: usually raster data describing 

the landscape the species is found within (Pearson, 2010). Biological data can be obtained in 

numerous ways: from surveys, museum collections, or personal collection and may be presence-

only (PO, coordinates of where the species has been observed), or presence/absence (PA, 

coordinates of where the species has not been observed). Generally models are thought to have 

more ecological validity when fit with PA data as opposed to PO data, however the quality of 

absence data is often questioned due to possibility of ‘false absences’, which refers to instances 

when a species was present but not detected, or the environment was suitable but the species was 

absent (Pearson, 2010). Environmental data refers to predictor variables depicting climate, 

topography, land cover and vegetation, substrate, and other physical and chemical attributes of 

the area being modeled (Franklin et al., 2010). Spatial scale is often considered when collecting 

data and has two components: extent and resolution. Spatial extent refers to the size of the area 

being modeled and spatial resolution refers to the size of grid cells of the data. It is often 

common for datasets with large extents to have coarse resolution, and small extents to have high 

resolution (Pearson, 2010). As with other deep-sea species modeling efforts, due to the lack of 

information available concerning the niche environmental preferences of the relevant taxa it is 

difficult to ascertain the importance of individual environmental variables prior to modeling. 

When working with taxa for which there are limited data, environmental input layers are by 

necessity often selected primarily based on their availability and presumed relevance, and less 

important variables can be identified and removed during the modeling process. 

 

Statistical Models 

 

The Linear Model 

 

Linear multiple regression models predict the response variable (Y) from a vector of 

multiple predictor variables, X = (X1, X2,…,Xp): 

        

Ŷ = β̂ο + ∑ Xj
p
j=1 β̂j + ε                          (Eq. 1) 
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where β̂ is the vector of estimated coefficients and β̂ο is an estimated constant known as the 

intercept (Franklin et al., 2010). The error term, ε, is normally distributed with zero mean and 

constant variance, and the variance of Y is constant across observations (Franklin et al., 2010).  

 

Generalized Linear Models (GLMs) 

 

While Franklin & Miller (2010) note that ecological data often violate the assumptions of 

the linear model, GLMs are often used in modeling and can be described as extensions of the 

linear model that can cope with non-normal distributions of the response variable (Venables et 

al., 1994). Distributions that are often used to characterize response variables in ecology include 

Gaussian, Poisson, binomial, negative binomial, and gamma (Franklin et al., 2010).  

 The linear model can be generalized using a link function that describes how the mean of 

Y depends on linear predictors, and a variance function that describes how the variance of Y 

depends on its mean (Chambers et al., 1992). The equation for the GLM can be seen in Equation 

2: 

 

δ(Ε(Y)) = LP = β̂ο + ∑ Xj
p
j=1 β̂j + ε                                        (Eq.2) 

 

where the predictor variables (far right side of the equation) are combined to produce a linear 

predictor, LP, and the expected value of Y, E(Y), is related to the LP through the link function, 

δ() (Franklin et al., 2010). Formulating a GLM for SDM involves selecting the response 

distribution and the link function (collectively known as the family of the GLM), the variance 

function, and the predictors (Franklin et al., 2010). The link function describes how the mean of 

Y depends on the linear predictor. For a binary response variable, a binomial distribution and 

logit link function are used.  

 

Generalized Additive Models (GAMs) 

 

Generalized additive models (GAMs) differ from GLMs in their ability to identify and 

describe a non-linear relationship between response and predictor variables; they are non-

parametric extensions of GLMs (Franklin et al., 2010).  



7 

 

 

δ(Ε(Y)) = LP = β̂ο + ∑ Xj
p
j=1 fj + ε                                        (Eq. 3) 

 

where the coefficients of the GLM are replaced by a smoothing function, f (Franklin et al., 

2010). The fit of a GAM model is generally evaluated by testing the non-linearity of a predictor 

versus the non-parametric fit (Franklin et al., 2010). GAMs are used for characterizing non-linear 

response curves of species because they can suggest the shape of the parametric response curve 

and are thus more flexible than GLMs (Franklin et al., 2010). GAMs are popular in SDM work 

because they tend to have high prediction accuracy, they have been subjected to comparisons 

with other models and have proven to be useful (Franklin et al., 2010).  

 

Machine Learning Models:  

 

Maximum Entropy (MaxEnt) Distribution Modeling 

 

The MaxEnt model was created in order to make predictions and inferences from 

incomplete data (Phillips et al., 2006), for example presence-only data. MaxEnt is one of the 

most common forms of SDM and “has been described as especially efficient to handle complex 

interactions between response and predictor variables” (Fourcade et al., 2014). MaxEnt is an 

acronym created for the concept of maximum entropy modeling (Guinotte et al., 2014), which 

extrapolates the likelihood a species has of existing in any specific geographic space. This can 

also be defined as a measure of dispersiveness. The underlying principle is that one should 

assume uniform distributions are preferred, given certain constraints (Nigam et al., 1999). Since 

becoming available in 2004, MaxEnt has been used to publish diverse projects including: finding 

correlates of species occurrences, mapping current distributions, and other related tasks in 

ecological, evolutionary, conservation and biosecurity applications (Elith et al., 2011). 

MaxEnt has often been explained as estimating a distribution across geographic space 

(Phillips et al., 2006). Elith et al. (2011) give an alternative view: a characterization that focuses 

on comparing probability densities in covariate space. Their research examines how MaxEnt can 

be understood by looking at Bayes’ rule: 
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Pr(γ = 1|𝓏) = f1(𝓏)Pr(γ = 1) ∕ f(𝓏)                                      (Eq. 4) 

 

where γ = 1 indicates presence, γ = 0 indicates absence, 𝓏 indicates a vector of environmental 

covariates. It must be assumed that all environmental variables z are available landscape-wide, 

and L is the extent of the landscape. f(𝓏) can be defined as the probability density of covariates 

across L, f1(𝓏) can be defined as the probability density of covariates across locations within L 

where the species is present, and f0(𝓏) can be defined as where the species is absent (Elith et al., 

2011). The quantity to be estimated is the probability of presence of the species, conditioned on 

the environment: Pr(γ = 1|𝓏).  

Equation 4 can theoretically be explained by the following: that if the conditional density 

of the covariates at presence sites is known, f1(𝓏), and if the unconditional density of covariates 

across the study area is known, f(𝓏), the prevalence Pr(γ = 1) is the only remaining value 

necessary to calculate the probability of occurrence (Ward, 2007; Elith et al., 2011). First, 

MaxEnt’s core output involves estimating the ratio f1(𝓏)/ f(𝓏). This gives insight about which 

features are important and how suitable one place is compared to another, which is the core of 

the MaxEnt model output. This explanation of MaxEnts’ structure by ecologists rather than 

statisticians can be helpful in understanding the complicated processes that the data undergo. 

 

Boosted Regression Trees (BRT) 

 

 Boosted regression trees (BRT) is an ensemble method for fitting statistical models that 

differs from conventional techniques to fit a single parsimonious model; BRTs combine the 

strength of two algorithms: regression trees and boosting (Elith et al., 2008). Regression trees are 

models that relate a response to their predictors by recursive binary splits, and boosting is an 

adaptive method which combines simple models to give improved prediction performance (Elith 

et al., 2008).  

The decision trees in BRT are tree-based models which partition the predictor space into 

rectangles, doing this using a series of rules to identify regions having homogeneous responses to 

predictors (Elith et al., 2008). Then, a constant is fitted to each region, with regression trees 

fitting the mean response for observations in that region. Fitting a single decision tree is often 

done by growing a large tree and afterwards pruning it by collapsing the weakest links (identified 
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through cross-validation) (Elith et al., 2008). Decision trees are popular because they allow for 

information to be represented in an intuitive manner that is easy to visualize. Trees are 

insensitive to outliers and are able to accommodate missing data in predictor variables by using 

surrogates (Breiman et al., 1984). 

 

 

2.2 Study Area and Data 

 

 

 2.2.1 Study Area 

 

 The Pacific Ocean, the largest and deepest of the earth’s oceans, is about 15 times the 

size of the United States, and is almost equal in area to the total land area of the world. The 

ocean can be divided by the equator into two separate areas: the north and south. The study area 

for this project is contained by the boundaries of the North Pacific Ocean: bordered by the Arctic 

Ocean in the north, Asia in the west, the Americas in the east, and the equator in the south. It 

provides habitat for thousands of species, including cold-water sponges and corals. Due to the 

size of this study area, five sub-areas were delineated within the North Pacific to account for the 

likely varying physical and chemical environments across an area as large as the North Pacific. 

These sub-regions within the North Pacific include a) The US Exclusive Economic Zone (EEZ) 

around Alaska, b) The Canadian EEZ around British Columbia, and c) The US EEZ around the 

Washington-Oregon-California coast, as well as d) two smaller areas within the Canadian EEZ 

which were manually delineated but roughly correspond to i) Hecate Strait and ii) the shelf 

waters west of Vancouver Island (Figs. 1-4). It is likely that there are varying environments 

within an area as large as the North Pacific, as well as varying groups of sponges. Using a multi-

area analysis ensures a more comprehensive attempt at capturing these potentially different 

species-environment relations.  
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Figure 1. Hexactinellid Sponge Distribution in the North Pacific with insets of the Gulf of Alaska and 

British Columbia coastline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Alaska sub-area with contained sponge presence-absence (PA) data. 
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Figure 3. British Columbia, Hecate Strait and Vancouver Island sub-areas with contained sponge PA 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. United States Washington-Oregon-California sub-area with contained sponge PA data. 
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 2.2.2 Biological Data 

 

Presence and absence glass sponge data were obtained from trawl surveys conducted by 

Fisheries and Oceans Canada (DFO) and the US Government. Data from several surveys were 

collected and merged to create a dataset containing both presence and absence information for 

42,113 coordinate locations sampled between 1996 and 2016. The dataset contains 16,148 

presence points and 25,684 absence points. As can be seen in Figures 1–4, and Table 1, the 

species presence/absence points are located largely in coastal waters along the coast of North 

America, and out along the Aleutian Islands, with a few data points from Hawaii. No data are 

available from the western North Pacific. 

In an attempt to decrease sample bias, the original dataset of 42,113 coordinate points 

was thinned based on environmental variation (See Methods section for more detail). After the 

data was thinned based on local environmental variation of the predictor variables, the resultant 

dataset had 12,467 sponge presence absence points.  

 

Table 1. Hexactinellid sponge data: location of data points and source. 

Data Geographic Extent No. of 

Presences 

No. of 

Absences 

US bottom trawl 

surveys from 

Alaska (1996-

2016) and US 

West Coast 

(1996-2004) 

 

1008 22,322 
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Presence data 

from North 

Pacific Marine 

Science 

Organization 

(PICES) 

Working Group 

32  

14,134 0 

DFO 

commercial 

bycatch logs 

 

0 3530 

DFO 

commercial 

catch records 

aggregated to 

1km grid 

 

251 0 

DFO research 

databases and 

museum records 

 

868 0 
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Total  42,113 

 

 

 2.2.3 Environmental Data 

 

Environmental variables were selected based on availability and presumed likelihood of 

being relevant to the distribution of glass sponges. Potential environmental variables relevant to 

the distribution of glass sponges have been compiled from various sources through the North 

Pacific Marine Science Organization (PICES) Working Group 32 (Table 2). The environmental 

data layers are in a raster format, with a cell size of 1000m by 1000m, using an azimuthal 

equidistant projection with a central meridian of -180. The values reflect the near-sea floor part 

of the water column.  

 

Table 2. Environmental variables, units and reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Name Units Reference 

Alkalinity μmol l-1 Steinacher et al. (2009) 

Aragonite saturation state ΩARAG Steinacher et al. (2009) 

Aspect degrees Becker et al. (2009) 

Calcite saturation state ΩARAG Steinacher et al. (2009) 

Depth m Becker et al. (2009) 

Dissolved inorganic carbon μmol l-1 Garcia et al. 2014a 

Eastness degrees Wilson et al. (2007) 

Nitrate μmol l-1 Garcia et al. 2014b 

Northness degrees Wilson et al. (2007) 

Oxygen ml l-1 Garcia et al. 2014a 

Phosphate μmol l-1 Garcia et al. 2014b 

Roughness unitless Wilson et al. (2007) 

Rugosity unitless Becker et al. (2009) 

Salinity pss Zweng et al. 2013 

Silicate μmol l-1 Garcia et al. 2014b 

Slope degrees Becker et al. (2009) 

Temperature °C Locarnini et al. 2013 

TPI (Topographic Position Index) unitless Wilson et al. (2007) 

TRI (Terrain Ruggedness Index) unitless Wilson et al. (2007) 
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2.3 Methods 

 

Many of the choices in the following methodology section were made in an effort to 

maximize reproducibility of this study, however had other methods been selected, the results 

could have differed. Within the SDM field, reproducibility is a common problem. Advanced 

modeling techniques, data selection and processing require many choices to be made which 

decreases the replicability, yet is nonetheless common and relatively unavoidable in SDM.  

 

 2.3.1 Data Pre-Processing 

 

Spatial sampling bias, a common problem in marine and terrestrial SDM, decreases the 

accuracy and interpretability of SDM outputs. Spatial filtering is a common method of removing 

spatial bias as a data pre-processing step. For example, Boria et al. (2014) filtered clustered data 

to discard any data point within 10 miles of another point, and Varela et al. (2014) applied an 

environmental filter which discards presence points that are too clustered in environmental 

space. The following steps were taken to spatially thin the data in a manner which takes into 

account the differences in areas with high environmental variation and areas with low 

environmental variation. The principle at the basis of this method is that areas with low 

environmental variation across space require less geographically dense data to cover 

environmental variability than do areas with high environmental variation, and they can therefore 

be thinned more than areas with high variation in an effort to reduce bias in the dataset. 

 

1. The local standard deviation of each predictor variable was calculated for a 9x9km 

window centered on each cell, and then normalized to a 0-1 scale. The 19 normalized 

values were then added together to produce a single raster with a theoretical value range 

of 0-19, quantifying local environmental variation across the study area. 

2. A histogram was plotted to view the frequency distribution of this local environmental 

variation (Fig. 5). If this histogram had been multimodal, spatial areas corresponding to 

each local maximum, i.e. clusters of low or high local environmental variation, could 

have been identified. However, the histogram was unimodal, so instead quintiles were 

calculated to separate the study area into 5 regions ranging from lowest to highest local 

environmental variation. The maximum value for each quintile can be seen in Table 3. 
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Figure 5. Histogram showing environmental variance data distribution. 

 

Table 3. Quintile breaks for the variance data (environmental variance values from Figure 5). 

20% 40% 60% 80% 100% 

1.576018 1.893480 2.200223 2.730262 9.180244 

 

3. Five subsets of the presence/absence data were then generated, one for each quintile, and 

semi-variograms were generated based on the bathymetric values from each subset. 

Depth was chosen to be the predictor for which to produce semi-variograms for several 

reasons: 1) depth often is one of the most important variables in any SDM for 

hexactinellid sponges in this study area, and 2) it can be used as a proxy for many other 

variables in this study. 

4. The semi-variograms all used 1000m bins and a cut-off of 25,000m to ensure 

standardization (Fig. 6). For each plot, the distance at which semi-variance increased to 

more than 500 was noted. For the first quintile (representing the area with lowest local 

environmental variation) this distance was ~15,000m, for the second quintile it was 

~7500m, and for the third, fourth and fifth quintile it was ~2500m. The semi-variance 

value of 500 was selected visually to provide a range of reasonable distances that were 

considered suitable to inform the scale of spatial thinning. 
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Figure 6. Semi-variogram plots showing five quintiles, with semi-variance value of 500 indicated to 

show approximate calculation of range value. 

 

5. Based on these semi-variograms, block-based thinning was applied to the 

presence/absence data: 

i. A grid with 15,000m cell sizes was overlaid on the study area, and the mean value 

of the local environmental variation raster was calculated for each cell. For those 

cells falling in the first quintile, i.e. with mean local environmental variation 

<1.576 (see Table 3), the presence/absence data were aggregated according to the 

following rules: 

a) If no presence/absence observations were found in the cell, the output 

would be empty. 

b) If there were at least as many presence as absence observations in the cell, 

the output would be a presence point, located in the center of the cell. 

c) If there were more absence than presence observations in the cell, the 

output would be an absence point, located in the center of the cell. 

ii. This process was repeated with 7500m cells applied to points in the second 

quintile, and with 2500m cells applied to points in the third, fourth and fifth 

quintiles. 
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iii. The outputs were combined to produce a single set of spatially thinned 

presence/absence observations. Out of the original 42,113 presence and absence 

points, 12,467 remained after thinning. A sample section from the Aleutian Arc 

can be seen in Figure 7, showing the difference between the original points and 

the thinned points.  

 

 2.3.2 Species Distribution Modeling  

 

For each of the predefined areas, the following SDM types were tested using the 

‘Biomod2’ (Thuiller et al., 2016) package in R (R Core Team, 2013): GAM, BRT and MaxEnt 

(resulting in 18 model-area combinations). The following parameters for modeling were used: 

 ‘Number of Evaluation Runs: 3’; Running three evaluations means the calibration 

and evaluation is run 3 separate times independently, which allows for a more 

robust test of the models when independent data is not available. 

 ‘Data Split: 80%’; this sets 80% of the data aside for calibration of models, with 

the remaining 20% used for validation. 

 Model accuracy measures: KAPPA, TSS, AUC; KAPPA refers to Cohen’s Kappa 

Coefficient, and TSS to True Skill Statistic (Zhang et al., 2015). Both Kappa and 

TSS are threshold-dependent measures of model accuracy. They range from −1 to 

+1, where +1 indicates perfect agreement between predictions and observations 

and values of 0 or less indicate agreement no better than random classification 

(Landis et al., 1977). The Area Under the receiver operator characteristic Curve 

(AUC) is an effective, threshold-independent model evaluation indicator and is 

also independent of prevalence (i.e. the frequency of occurrence) of the target 

species (Zhang et al., 2015). Ranges used to interpret accuracy metrics from these 

statistics can be found in Table 4.  

 

Table 4. Model accuracy ranges for AUC, Kappa and TSS measures (Zhang et al., 2015). 

 Poor Moderate Good/Excellent 

AUC < 0.7 0.7 - 0.9 > 0.9 

Kappa and TSS < 0.4 0.4 – 0.8 > 0.8 



19 

 

 

 Figure 7. Sample area showing spatially thinned data and original data on the Aleutian Arc. 
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 2.3.3 Interpretation of Model Results 

 

Model output can be classified into two types: aspatial and spatial. Aspatial outputs from 

models consist of variable importances and partial dependence plots depicting fitted functions 

relating probability of occurrence to each selected predictor, while spatial outputs consist of GIS 

layers depicting the probability of presence across the study area (Ferrier et al., 2002). 

Variable importance values were calculated for every model-area combination. These 

values quantify to what extent each predictor variable contributes to the predictions made by the 

model. The variable importance value is calculated as the result of one minus the correlation 

between the original prediction and the prediction with only the individual variable of interest. 

While the individual values are dependent on the algorithm used, they can still be used to 

provide relative information on predictor importances within the model.  

Partial dependence plots provide a graphical representation of how likely the species is to 

be present, given a gradient of the specific environmental predictor. As with variable importance, 

these plots are calculated when the model is built, by averaging every other predictor variable 

except the one chosen predictor, and the change in model response is measured in relation to 

changes in the one variable. Partial dependence plots showing results from multiple algorithms 

can be used to visually compare species responses to environmental variable values. Partial 

dependence plots were generated for predictor variables that ranked in the top 25% in variable 

importance in several models and areas. The predictor variables chosen for closer analysis were 

alkalinity, oxygen, silicate, and phosphate. Additionally, frequency distribution plots were 

produced for alkalinity, oxygen, silicate, and phosphate in each area, showing the percentage of 

presence (as opposed to absence) data points across the range of environmental variable values. 

This information can shed light on which value ranges the species most commonly exists within. 

Partial dependence plots can be compared for similarities, variable importance was also 

considered in an effort to find strong trends in how predictors contribute to different 

models/areas. It can be posited that if the response curves of a particular predictor variable are 

similar across multiple models/areas, the variable importance is likely to be high as well. When 

the response curves vary significantly, it is more likely those variables ranked toward the lower 

range of variable importance for the model. 
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 2.3.4 Mapping Prediction Uncertainty  

 

For the purpose of testing and comparing uncertainty metrics spatially, a binomial GLM 

was fit to the Hecate Strait boundary (Fig. 3), a subset of the original, North-Pacific-wide 

dataset. 1,255 presence/absence points were included within the area and three environmental 

predictors with high variable importance were selected and clipped to the same extent; alkalinity, 

oxygen and silicate. A GLM was selected because it can provide a model-based uncertainty 

measure that can be mapped in addition to the actual model predictions. The logit-link function 

was selected for the binomial GLM because it is appropriate for binary data and ensures the 

predicted values will be between 0 and 1 (Kindt et al., 2005). Three spatially explicit uncertainty 

metrics were compared using this GLM model: 

 

 2.3.4.1 GLM Prediction Standard Error 

 

The first uncertainty metric involved producing partial dependence plots from the GLM 

outputs and adding confidence intervals to the partial dependence plots. In order to obtain the 

predicted values from the estimates of the coefficients, the inverse link function needs to be 

calculated. Using the inverse link function, the confidence interval was calculated as the fitted 

value plus/minus two times the standard error on the link scale. CIs were calculated for 

alkalinity, oxygen and silicate. Adding confidence intervals can provide information on why 

certain areas would have predictions with high or low confidence. Next (and separate from the 

confidence intervals), the standard error of the prediction was calculated. Standard error provides 

the absolute measure of the typical distance between the data points and the regression line, in 

the units of the dependent variable. The standard error of the prediction was then written to a 

raster and thus the uncertainty of the model can be seen spatially. 

 

 2.3.4.2 Bootstrapped GLM Standard Deviation 

 

The second uncertainty metric was obtained by bootstrapping the GLM. Bootstrapping is 

an approach to statistical inference based on building a sampling distribution for a statistic by 

resampling repeatedly from the data. 200 bootstrap samples were created from the data. GLMs 

were then calibrated on the bootstrap samples, still using alkalinity, oxygen and silicate as 
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predictors for the models. The calibrated models were then used to make predictions, and the 

standard deviation was calculated for the predictions.  

 

 2.3.4.3 Standard Deviation of Multiple Model Predictions 

 

The third uncertainty metric aims to test if standard deviations are geographically 

comparable among a variety of models. By running eight models available in the Biomod2 

package (GLM, BRT, GAM, FDA, MARS, RF, MAXENT.Phillips and MAXENT.Tsuruoka) on 

the Hecate Strait subset, the standard deviation of all the predictions can be calculated, as for the 

GLM bootstrapping above. This provided a spatial view of where the models produced similar 

results and where they differed. 

 

 

2.4 Results 
 

 

 2.4.1 Model Performance 

 

 Model fit statistics and variable importance values from the GAM, BRT, and MaxEnt 

models run on the North Pacific basin-wide data, as well as the five sub-areas are presented in 

Table 5. Figures 8-11 present the outputs of these models in the form of partial dependence plots 

and show the data distribution for alkalinity, oxygen, phosphate and silicate for each model/area. 

Only these four variables were selected because they had consistently high variable importance 

values.  

As can be seen in Table 5, AUC values for the majority of the models were between 0.7-

0.9. These values are interpreted to indicate these models performed moderately well (See Table 

4 for value ranges associated with model accuracy) (Zhang et al., 2015). Two MaxEnt models for 

the BC and Alaska areas performed poorly, with AUC values of 0.655 and 0.428 respectively, 

and the GAM and BRT models for the Vancouver sub-area performed especially well, with AUC 

values of 0.946 and 0.978, the highest of all the models and areas. The Kappa and TSS values 

reported similar results in terms of models in the North Pacific, BC, and Alaska generally 

performing poorly, and models in the Vancouver and Hecate Strait sub-areas performing well 

(more detailed results for all models and areas can be found in Table 5).  



23 

 

 

 2.4.2 Variable Importance 

 

For each area and model type, the model assigns a variable importance value to each of 

the 19 environmental predictors which were used as input to the model. The variables are 

arranged by importance to the model on a scale of 0-1. Individual variables ranked among the 

top 25% within each specific model are highlighted in Table 5. Alkalinity is ranked within the 

top 25% of variables in 13 out of 18 models. Oxygen is the next variable of highest importance 

being ranked within the top 25% of variables in 9 out of 18 models. Variables which are ranked 

within the top 25% in at least 4 of the 18 models include phosphate, silicate, temperature, nitrate, 

depth, omega aragonite, and omega calcite. The remaining variables are ranked within the top 

25% for less than four models.  
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Table 5. Model Results, Fit Statistics and Variable Importance Values (top 25% of variables in each model are bolded in blue). 

  
  

North Pacific BC EEZ ALASKA EEZ US WOC EEZ BC Hecate Strait BC Vancouver Island 

Model GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt GAM BRT MaxEnt 

Kappa 0.371 0.368 0.343 0.321 0.398 0.250 0.330 0.359 0.033 0.620 0.595 0.516 0.449 0.514 0.453 0.818 0.824 0.787 

TSS 0.447 0.449 0.409 0.378 0.440 0.254 0.491 0.506 0.022 0.618 0.598 0.516 0.425 0.526 0.486 0.825 0.864 0.7 

AUC Value 0.799 0.880 0.776 0.750 0.797 0.655 0.804 0.816 0.428 0.890 0.878 0.836 0.777 0.850 0.811 0.946 0.978 0.85 

V
a
ri
a

b
le

 I
m

p
o
rt

a
n
c
e
 (

S
c
a
le

 o
f 

0
-1

) 

Alkalinity 1 0.410 0.071 1 0.01 0.001 1 0.163 0.024 1 0.22 0.01 1 0.136 0.137 1 0.013 0.002 

Omega 

Aragonite 

0.973 0.003 0.005 0.703 0.008 0 0.837 0.009 0.05 0.679 0.008 0.376 0.832 0.048 0.069 0.68 0.003 0 

Aspect 0.011 0.001 0 0.016 0.005 0 0.001 0.002 0.002 0 0 0.118 0.425 0.102 0.075 0.045 0.002 0 

Omega 

Calcite 

0.885 0.009 0.015 1 0.021 0 0.953 0.014 0.023 0.976 0.011 0.219 1 0.005 0.046 1 0.001 0 

Depth 0.303 0.025 0.027 0.509 0.021 0.017 0.256 0.026 0.007 0.043 0.016 0.7 0.622 0.009 0.001 0.718 0.101 0.166 

Dissolved 

Inorganic 

Carbon  

0.389 0.009 0 0.638 0.002 0.069 0.641 0.008 0.01 0.658 0.005 0.629 0.642 0.013 0.059 0.656 0.003 0.005 

Eastness 0.029 0.005 0.011 0.01 0.003 0.066 0.008 0.001 0 0.017 0.003 0.035 0.166 0.006 0 0.059 0 0 

Nitrate 0.367 0.012 0.028 0.559 0.148 0.249 0.35 0.021 0.117 0.2 0.027 0.322 0.099 0.05 0.076 0.609 0.003 0.314 

Northness 0.006 0.001 0 0.014 0.003 0 0.001 0 0 0.001 0 0 0.002 0.021 0.012 0.156 0.016 0.003 

Oxygen 0.393 0.020 0.167 0.48 0.007 0.111 0.113 0.108 0.134 0.405 0.127 0.239 1 0.011 0.074 1 0 0.013 

Phosphate 0.156 0.004 0.014 1 0.121 0.13 0.333 0.004 0.003 0.266 0.011 0.018 0.456 0.048 0.011 0.557 0 0 

Roughness 0.02 0.001 0.012 0.056 0.002 0.113 0.032 0.001 0 0.016 0.001 0.029 0.009 0.003 0 0.641 0.001 0.001 

Rugosity 0.003 0 0.004 0.05 0.03 0.114 0.025 0.001 0.94 0.015 0.003 0 0.029 0.006 0 0.443 0.001 0.001 

Salinity 0.021 0.008 0.014 0.633 0.018 0.263 0.116 0.056 0.021 0.017 0.028 0.877 0.589 0.011 0 0.562 0.002 0 

Silicate 0.241 0.002 0.028 0.482 0.002 0.071 0.643 0.052 0.003 0.504 0.038 0.001 1 0.008 0.028 0.821 0.001 0.009 

Slope 0.002 0.001 0.002 0.051 0.012 0.049 0.041 0.003 0.026 0.036 0.008 0 0.03 0.012 0 0.382 0.053 0 

Temp 0.257 0.002 0.001 0.211 0.034 0.059 0.144 0.011 0.041 0.818 0.019 0.411 0.599 0.002 0.034 0.897 0.001 0 

TPI 0.024 0.008 0.001 0.012 0.01 0.046 0.028 0.027 0.002 0.031 0.007 0.064 0.003 0.006 0.066 0.31 0.006 0.031 

TRI 0.003 0 0 0.004 0.001 0.037 0.032 0.001 0 0.257 0.001 0.021 0.009 0.025 0.087 0.449 0.004 0.002 
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Figure 8. Partial dependence plots for alkalinity in all areas and models with ranked variable importance. 
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Figure 9. Partial dependence plots for oxygen in all areas and models with ranked variable importance. 
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Figure 10. Partial dependence plots for phosphate in all areas and models with ranked variable importance. 
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Figure 11. Partial dependence plots for silicate in all areas and models with ranked variable importance. 
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 2.4.3 Partial Dependence Plots  

 

Partial dependence plots generated for alkalinity, oxygen, phosphate and silicate can be 

seen in Figures 8-11. Table 5 presents depth as a frequently important variable in this analysis of 

glass sponges. Partial dependence plots from multiple models and areas show that as the taxa 

encounters depths shallower than 1000 meters, the probability of presence decreases, confirming 

they are more likely to be found in deep waters (Fig. 12). Figure 13 shows the taxa data in the 

BC Vancouver sub area, it can be easily noted here that the majority of the presence values are in 

the deeper waters. It is important to note that glass sponges also exist in shallow waters, as 

evidenced by the glass sponge reefs of coastal British Columbia (Fig. 15). 

 

Figure 12. Partial dependence plots for depth from GAM, GLM, and random forest (RF) models. Each 

plot has three lines for each time the evaluation was run.  

Figure 13. Bathymetry and species data points within BC Hecate Strait sub-area (grey line is missing 

data). 
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 2.4.3.1 Alkalinity 

 

Figure 8 shows partial dependence plots and ranked variable importance for alkalinity, 

for each of the 18 model-area combinations. Within the North Pacific area, all three models 

suggest a high probability of glass sponge presence within highly alkaline waters. In the British 

Columbia area, the GAM model suggests an increase in glass sponge presence probability with 

alkalinity values higher than 2.2 μmol l-1, a trend that is also present in each of the sub-areas. The 

BC Hecate area, in particular, suggests an increased probability of presence for glass sponges in 

alkalinity values of 2.2 μmol l-1 and higher. All three models produced comparable partial 

dependence plots for this area, where variable importance values for alkalinity rank 1st out of 19 

variables for all three models. Finally, the data distribution plot for alkalinity values in the BC 

Hecate area shows a high percentage of presence values in alkalinity ranges of between 2.15 and 

2.25 μmol l-1. The BC Vancouver area has a comparable GAM response curve as BC Hecate, 

however the BRT and MaxEnt models for BC Vancouver have lower variable importance ranks 

and do not show an increase in probability of presence with increased alkalinity values. The BC 

Hecate Strait area has a range of alkalinity values of 1.855 – 2.308 μmol l-1, while most other 

areas have a maximum of closer to 2.4 or 2.5 μmol l-1. 

 

 2.4.3.2 Oxygen 

 

Partial dependence plots for oxygen (Fig. 9) are interestingly varied as well; the general trend 

seen in GAM models from several of the areas suggests an increased probability of presence 

with lower oxygen values, except that the GAM model for the BC area suggests the opposite. 

Oxygen was 10th in variable importance in the GAM model for the BC area, which means there 

is less indication in the model that glass sponges are strongly influenced by oxygen. The GAM 

plot for the BC area is interesting because it presents a pattern opposite to the oxygen plots for 

other areas, opposite to the plots for other models, and opposite to the data distribution itself. The 

variable importance values for oxygen in these models are not as consistently high as for 

alkalinity. The data distribution plots for all of the areas show a greater proportion of presence 

values in area with relatively low oxygen concentrations.  
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 2.4.3.3 Phosphate 

 

 Response curves for phosphate can be seen in Figure 10, and present a wide variety of 

possible responses of probability of sponge presence in relation to phosphate content. Due to the 

lower variable importance values, it is more difficult to find strong environmental trends in the 

data. Phosphate was within the top three variables influencing the GAM, BRT and MaxEnt 

models within the BC area. For the remaining areas, the variable importances range from 4th to 

last (19th). The plots from the BC area indicate that probability of sponge presence increases with 

phosphate levels of roughly 3 μmol l-1 and higher. The next highest variable importance values 

are a result of the BRT and MaxEnt models for the BC Hecate area. Phosphate was 4th in 

variable importance for these two models and both indicate a slight increase in probability of 

presence between 2.0 and 2.5 μmol l-1.  

 

 2.4.3.4 Silicate 

 

 Models which indicated that higher silicate content is more suitable for sponges included 

MaxEnt (North Pacific, BC Hecate and BC Vancouver), and GAM (Alaska, US, BC Hecate and 

BC Vancouver) (Fig. 11). The data distribution plots largely indicate a greater proportion of 

presence values with increasing silicate value. The two partial dependence plots with the highest 

variable importance values (3rd) area the MaxEnt model in the North Pacific area and the BRT 

model in the US area. While both these plots indicate a general increase in probability of 

presence in relation to an increase in silicate levels, the BRT model in the US also indicates an 

increased probability of presence with very low silicate contents. Generally, because silica plots 

have lower variable importance values than alkalinity or oxygen plots, less weight can be placed 

on their accuracy. The silicate GAM plot for the BC area produced an opposite result to the 

remaining plots.  

 

 2.4.3.5 Spatial Predictions 

 

 Figure 14 shows the predicted probability of glass sponge presence from the BRT, GAM 

and MaxEnt models for Alaska, in the form of a raster prediction probability of presence.  
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Figure 14. Model predictions from BRT, GAM, and MaxEnt models for the Alaska sub-area. 

  

 Alaska was selected for this section because it is a smaller area than the North Pacific 

(which is a large area, thus making predictions difficult to see in detail) but larger than the BC 

and US areas (which are quite small and have less variation in predictions of probability of 

presence). The AUC values for these three models respectively are 0.816, 0.804, and 0.428, 

meaning the BRT and GAM models performed very well and the MaxEnt model performed 

poorly. The MaxEnt model for the Alaska area is the model that performed least well across all 
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models and areas, and as can be seen in Figure 14c, the area is divided into red (high probability 

of presence) and blue (low probability of presence) without much variation between those two 

predictions. Figure 14a and b show much more variation of probability of presence across the 

prediction. 

 

 2.4.4 Uncertainty Metrics: BC Hecate Strait 

  

 Uncertainty refers to a lack of sureness or confidence about something (Elith et al., 

2002b). Most outputs of SDM work are presented with confidence, with no indication of 

uncertainties, but it has been proposed that maps of uncertainty would help in the interpretation 

of these predictions (Elith et al., 2002b). The Hecate Strait sub-area in BC was used for the 

uncertainty metric analysis because of its high environmental variation and interesting patterns of 

alkalinity, oxygen and silicate distributions. The prediction from a GLM run on this area can be 

seen in Figure 15, along with the outlines of the Hecate Strait/Queen Charlotte Sound Glass 

Sponge Reefs Marine Protected Area (MPA).  

 

Figure 15. GLM prediction of glass sponge probability of presence in Hecate Strait with MPA 

boundaries. 
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 The Northern Reef and part of the Central Reef are contained within the Hecate Strait 

boundaries employed for this study. The MPA boundaries overlap with moderately high 

suitability for glass sponges; providing some confidence in the model predictions and their real-

world accuracy, despite the MPA area boundaries not falling within the highest probability of 

presence areas (red areas).  

 

 2.4.4.1 Standard Error of GLM 

Prediction  

 

 Figure 16 shows the partial 

dependence plots for alkalinity, oxygen 

and silicate for the GLM model of the BC 

Hecate Strait area, with model-based 

confidence intervals added. Generally the 

confidence intervals are narrow, 

corresponding to a low expected error, for 

predictor value ranges with many data 

points, shown in the figure as a high 

density of red/blue lines. Value ranges with 

wider intervals have fewer data points. If 

the areas with wide confidence intervals 

overlap spatially, the relevant areas are 

likely to produce less certain predictions. 

 The standard error of the GLM fit 

was written to a raster and can be seen in 

Figure 17a. Area 2 in Figure 17a has high 

uncertainty.  

 

Figure 16. Partial dependence plots 

for alkalinity, silicate, and oxygen 

with estimated confidence intervals. 
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Figure 17. Uncertainty metrics mapped to Hecate Strait: a) standard error of GLM prediction, b) standard 

deviation of bootstrapped GLM, and c) standard deviation of multiple models. 
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There are very clear environmental gradients throughout Hecate Strait which can be visually 

confirmed to have an influence on the uncertainty metrics. Area 1 in Figure 17a has low 

alkalinity and silicate levels with high oxygen levels (Figs. 19-21). This combination of 

environmental values generally coincides with absence data for glass sponges, which the models 

interpret as unsuitable habitat. The standard error in Fig. 17a is low, indicating high certainty in 

the prediction of low probability of sponge presence. Area 2 in Figure 17a has high uncertainty 

values. Area 2 corresponds with opposite niche environmental characteristics to Area 1; very 

high alkalinity levels, very high silica levels, and very low oxygen levels, all of which are value 

ranges that are poorly represented in the data. As can be seen in the partial dependence plots 

(Fig. 16), these value ranges are associated with low data density and high CIs. The GLM is 

forced to make predictions for these areas based on a combination of few data points with similar 

values and extrapolation from more data-dense value ranges, which leads to extreme predictions 

and higher uncertainty.  

 

 2.4.4.2 Standard Deviation of Bootstrapped GLMs 

 

 Figure 17b presents the result of bootstrapping the binomial GLM 200 times, calculating 

the standard deviation for each cell and then writing this result to a raster. This method of 

spatially showing prediction uncertainty yields similar results to the initial method of calculating 

the standard error from the GLM. It shares an area of high uncertainty with the first method 

(Area 2), which was noted as having extreme values of all three input predictors. This method, as 

well as the first method, does not show Area 1 to have high standard error, indicating consistency 

across methods.  

 

 2.4.4.3 Standard Deviation of Multiple SDMs 

 

 Finally, Figure 17c presents the result of running multiple SDMs and mapping the 

standard deviation of the model predictions. The models used and their individual predictions 

can be seen in Figure 18. This method shows the highest uncertainty to exist in the lower right 

corner of Hecate Strait, which corresponds to medium uncertainty in the first two methods. 

While taking a different approach from the first two methods, this final method is equally as 

important for determining spatial uncertainty from predictive models and yields interesting 



41 

 

results that could aid policy makers in making informed decisions based on SDMs. Area 1 in 

Figure 17c has low standard deviation because the majority of the SDMs produced a similar 

probability of presence for this area (Fig. 18). This is a consistent result from all three methods, 

indicating low uncertainty in environments considered unsuitable for the species in question. The 

areas that are yellow and orange yield higher error values because the models produced different 

results, despite having been calibrated with the same data. Each of the specific model outputs 

showed the highest probability of species to be in the area which has high standard deviation in 

Figure 17c. The resultant high standard deviation is a result of this being the area of the model 

output that changes the most with each different SDM.  

 

Figure 18. Predictions of glass sponge probability of presence in Hecate Strait: a) GLM, b) GAM, c) 

BRT, d) RF, e) FDA, f) MARS, g) MaxEnt Phillips, and h) MaxEnt Tsuroaka. 
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2.5 Discussion 

  

 2.5.1 Aspatial Model Predictions: Partial Dependence Plots and Variable Importance 

  

As a method of assessing the validity of models, partial dependence plots and variable 

importance rankings were presented and analyzed. The results presenting partial dependence 

plots and variable importance values from the GAM, BRT and MaxEnt models can provide 

information about 1) the ability of the model to describe the environment-species relationships, 

and therefore 2) the potential for using the model to make inferences about the ecology of glass 

sponges and characteristics of their habitats. 

In addition to standard model performance metrics such as AUC, TSS and Kappa, ranked 

variable importance and partial dependence plots can inform how certain or uncertain an SDM-

based prediction is. If a multi-model and multi-area approach has been used for the modeling, 

and a given environmental variable has high importance values across multiple model types and 

areas, a higher confidence can be placed in that variable having a non-spurious effect on the 

distribution of the response variable, e.g. glass sponges in the present case. It is likely that the 

use of more models, and more environmentally distinct areas would serve to strengthen the 

multi-model, multi-area approach even more. The expected result from performing a multi-area, 

multi-model approach was that strong habitat preferences will be reflected similarly in partial 

dependence plots from different models and areas, while weak habitat preferences will not.  

Using this approach, the partial dependence plots for alkalinity strongly suggest a causal 

relationship between alkalinity and glass sponge presence. According to the model results, glass 

sponge probability of presence increases in conjunction with higher alkalinity values, specifically 

at concentrations of 2.1 μmol l-1 or 2.2 μmol l-1 and higher. While several of the areas modeled 

produced this trend, the BC Hecate area displays arguably the most consistent result based on the 

fact that all of the three models for this area ranked alkalinity as first out of nineteen other 

variables. Less confidence can be placed in certain areas and models where alkalinity is ranked 

lower and the associated response curves are inconsistent with those of high variable importance. 

For example, MaxEnt models in BC and US areas have alkalinity importance rankings of 14th 

and 15th respectively, and neither of the corresponding partial dependence plots provide any 

useful ecological information about how sponges respond to alkalinity levels. Although the 

models are too complex to provide a definitive explanation, it is likely that the BC and US areas 
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have other environmental variables which are more influential for the model, and therefore the 

relationship between sponge presence and alkalinity is more difficult for the model to identify. 

Every highly ranked (top 25 percentile) partial dependence plot of alkalinity shows an increased 

probability of presence associated with high alkalinity values, generally above 2.2 μmol l-1. 

Areas of Hecate Strait which meet these alkalinity values are relatively few and can be seen in 

Figure 19. 

 

Figure 19. Alkalinity values across Hecate Strait. 

 

According to the partial dependence plots with high variable importance rankings, a high 

probability of glass sponge presence is associated with low oxygen values, generally below 2 ml 

l-1. Deep-water sponges, and many other invertebrates, use little oxygen and have adapted to live 

in low-oxygen environments, for example during low tide or in benthic sediments (Leys et al., 

2018). Leys and Kahn (2018) note that glass sponges tolerate long-term hypoxic conditions by 

reducing their filtration rate and feeding activity. Filtration, they concluded, is costly to glass 
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sponges and attempting to slow their filtration has driven innovations in their morphology and 

physiology (Leys et al., 2018). Chu et al. (2019) also found that dissolved oxygen was a highly 

ranked positive predictor of habitat for cold-water coral and sponge grounds in the Canadian 

northeast Pacific Ocean. As a result of this finding, Chu et al. (2019) predicted that cold-water 

coral and sponge taxa would have lower oxygen requirements in comparison to highly mobile 

taxa such as fish. It was also found, in an attempt to validate the models predicting that cold-

water corals and sponges are likely to occur in severely low oxygen environments, that these taxa 

exist in oxygen levels as low as 0.2 ml l-1 at the Union and Dellwood seamounts (both are 

southwest of the southern point of Haida-Gwaii). Figure 20 shows the distribution of oxygen 

content across Hecate Strait. It is important to note how related oxygen and alkalinity are to each 

other in this area. With many sponges existing in high-alkalinity, low-oxygen waters, it is 

difficult to know whether this is because of the high alkalinity, the low oxygen, some 

combination of the two, or a third variable that is also correlated with both alkalinity and oxygen. 

This illustrates the benefit of using a multi-area approach, because these two variables may be 

less related in other areas which have also been modeled.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Oxygen values across Hecate Strait. 
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Silicate was not often returned from the models as one of the top 25% of variables, 

however certain models and areas did produce silicate as the most important variable. These 

included MaxEnt for the North Pacific area, GAM and BRT for the Alaska area, BRT for the US 

area, and GAM for the BC Hecate area. Out of these, most show an increased probability of glass 

sponge presence with high levels of silicate. High levels of silicate often overlap with high levels 

of alkalinity within Hecate Strait (compare Fig. 19 and Fig. 21).  

 

Figure 21. Silicate values across Hecate Strait. 

 

In published literature, it has been indicated that glass sponges need high levels of 

dissolved silica (Leys et al., 2004; Austin., 1984; Chu et al., 2019). Chu et al. (2019) found that 

silicic acid was a top predictor for sponge groups because biogenic silica (biogenic silica occurs 

when dissolved silicate transforms to particulate skeletal matter (Treguer et al., 1995)) can 

constitute over 90% of the biomass of cold-water sponges. Silicate levels are high in both the 

Antarctic Ocean as well as the coastal northeast Pacific Ocean, which are both regions of high 
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glass sponge abundance (Leys et al., 2004; Treguer et al., 1995). Interestingly, the Hecate Strait 

area shows an increased probability of glass sponge presence at much lower levels of silicate 

than the remaining areas tested within this thesis. Many areas indicate high probability of glass 

sponge presence in areas with silicate values of 150 μmol l-1, however Hecate Strait indicates 

high probability of presence beginning where silicate values reach over 40 μmol l-1. The highest 

level of silicate within the Hecate Strait subarea is 74 μmol l-1. Whitney et al. (2004) identified 

silicate levels of over 40 μmol l-1 around sponge reefs in Hecate Strait, thus confirming this 

result. 

Evaluating partial dependence plots in addition to model accuracy metrics as an 

additional way to assess SDM outputs is a descriptive and largely qualitative exercise. The 

challenge is that there can be valuable information concerning ecological relationships, but also 

nonsensical and spurious relationships, presented in these plots. But there is value in producing 

multiple models for multiple areas because oceanic environments subject to different currents 

and water masses and different levels of terrestrial influence can vary drastically in their 

biogeochemistry. This thesis presented one approach to disentangling the two; by looking for 

species-environment relationships that are strong (as indicated by high variable importance), 

consistent between model types and consistent between different areas, it is possible to extract 

only those relationships most likely to be caused by ecological processes. The two anomalous 

plots mentioned in the results section, the oxygen and silicate plots from the GAM model for the 

BC area, presented the opposite relationships of what the remaining models presented. These two 

plots are an excellent example of why it is important to not make inferences about ecological 

relationships based on single-model and single-area partial dependencies. 

Using ranked variable importance values and selecting a threshold for a confidence cut-

off can provide a quantitative measure of accuracy. Providing a measure of probable accuracy 

alongside model outputs can be helpful for environmental managers and stakeholders who 

require numerical models to estimate species distribution to design effective spatial management 

measures for conservation and protection. 

  

 2.5.2 Spatial Model Uncertainty Predictions 
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Spatially examining the uncertainty of model predictions is not commonly done in SDM 

studies, however it is important that potential users of SDM products have an understanding of 

the predictive accuracy of models and how this may vary across geographic space (Elith et al., 

2005). Most evaluation metrics of predictive performance use a comparison of predictions 

against observations at a particular set of sites (Fielding et al., 1997). As also done in this thesis, 

statistics such as kappa and AUC values are widely used to assess whether predictions are 

suitably accurate for their intended use, however these statistics are somewhat restricted because 

they do not assess the predictions in geographic space and do not allow for exploration of spatial 

errors (Elith et al., 2005; Elith et al., 2002a; Fielding et al., 1997). 

  

 2.5.2.1 Confidence Intervals and Standard Error 

 

It is suggested in SDM literature that plotting confidence intervals (CI) around model 

predictions could be crucial to the interpretation of the models’ performance, particularly 

mapping confidence intervals of these predictions (Elith et al., 2002b; Elith et al., 2005). CIs 

around plotted responses (such as partial dependence plots) help show where species-predictor 

variable relationships are most uncertain (Ferrier et al., 2002). Adding these error metrics is 

instrumental for producing models which can be understood as ecological realities (Elith et al., 

2005). Figure 16 shows CIs added to partial dependence plots of alkalinity, oxygen and silicate. 

The largest CI on each plot correlates with the lowest density of data points in each variable. 

Sponge data where silicate values are greater than 55 μmol l-1 have the highest uncertainty, as 

there are fewer data points for silicate values over this threshold. As mentioned earlier, silicate 

levels in Hecate Strait have been documented to be lower than surrounding areas, yet sponges 

remain in great abundance in Hecate Strait.  

According to Figure 15, the highest probability of sponge presence within Hecate Strait 

coincides with areas comprised of high alkalinity, very low oxygen, and medium-high silicate 

levels. Hecate Strait is a shallow asymmetric channel between Haida Gwaii and the northern 

mainland of British Columbia (Perry et al., 1994). It is a unique area due to its shape; it is 

roughly 140km wide at its southern end and narrows to 48km in the north, covering around 

23,000km2 with depth values reaching down to 494m. The shallowest part is the northwest area, 

which has low alkalinity levels, high oxygen levels and low silicate levels. This is also the area 
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for which the lowest probability of presence for sponges was predicted (Fig. 15). This NW area 

(labelled as Area 1 in Fig. 17) shows consistently low uncertainty with all three methods. All 

models used predicted low probability of sponge presence in this area, due to its physical 

characteristics mentioned previously, and all methods of quantifying uncertainty show low 

uncertainty in this area, indicating it is highly probably this area is unsuitable for sponges.  

Using confidence intervals as the only means of quantifying the uncertainty of SDM 

predictions is not a complete method, according to Elith et al. (2002b), who mention that 

uncertainty in model outputs is not explicitly accounted for in the CIs of GLMs. They suggest 

that bootstrapped CIs can better account for different sources of uncertainty rather than simply 

applying CIs to GLM predictions. This is an interesting avenue for further work on spatially 

quantifying model uncertainty, as only the SE of the GLM fit and SD of the bootstrapped GLMs 

were calculated in the work that underlies this thesis. Area 2 was identified as an area of highly 

uncertain predictions by both the SE of the GLM fit and the SD of the bootstrapped GLMs. The 

bootstrapped runs of the GLM produce very consistent predictions in the northwest part of 

Hecate Strait (Area 1). The third method of measuring uncertainty involved running eight SDMs 

on the same data used for the prior methods and then calculating SE of all eight predictions. 

Figure 17c presents high SE values around the southeast corner of Hecate Strait, this area has 

medium uncertainty in the first two methods, indicating slight differences in model predictions. 

The eight models produced consistent predictions for the NW area of Hecate Strait, suggesting 

with a low level of uncertainty that sponge probability of presence in this area is low. 

One method of comparing these three metrics of estimating uncertainty is by looking at 

the original biological input data. Area 1 mostly contains absence values and almost no presence 

values (Fig. 19), therefore it seems that when every model shows low probability of presence, 

one can assume with some confidence it is likely correct. Additionally, Area 1 is shallow, has 

high levels of oxygen and low levels of both silicate and alkalinity, which are environmental 

conditions that are the opposite of what generally models consider suitable habitat for sponges. 

Figure 17a, b and c present Area 1 as having low uncertainty, indicating all assign low 

uncertainty to the prediction of low probability of presence in this area. 

These results allow for the conclusion that if the model predicts low probability of 

presence, it has higher certainty in this prediction than in predictions of high probability of 

presence. The first two methods differ from the last method in what they show, but the first two 
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methods show medium uncertainty in the same areas which are highly uncertain in the last 

method (the areas where the models all predict relatively high probability of presence, but of 

varying values and slightly different geographic spreads of this high probability of presence). 

This leads to the conclusion that uncertainty is generally lowest where the models predict the 

species not to be, and highest where the models predict the highest probability of species 

presence to be.  

Both bootstrapping a model and running multiple SDMs are useful methods of 

calculating prediction uncertainty, and both these methods could be extremely useful for 

providing planners with information to consider when employing the predictions in conservation 

planning and decision making (Ferrier et al., 2002). 

 

 2.5.3 Limitations 

 

 Numerous limitations exist within SDM work; not all models are transposable to distinct 

environments, they are strongly dependent on the considered scale, they are difficult to 

implement in a management context, many models are not easily interpretable, and software is 

not always available to practitioners (Guisan et al., 2005). Alongside all of these limitations, a 

consistent limitation is that fact that any model will rely heavily on the quality of the input data. 

This study used a spatial data thinning method based on local environmental variation to 

eliminate the spatial sampling bias that was present in the original data set. Spatial bias is a 

common limitation in the SDM field because it may cause biased model results and it is difficult 

to tell if the species-environment relationships in the model are representative of the real world 

or if they are a function of how the data was sampled. When using biological data from another 

organization, such is the case here, it can be challenging to find sufficient details about the data 

to ensure its quality. There are also limitations in the interpretation of regression based models 

and machine learning models. The two methods produce different results. For example 

calculating uncertainty metrics is more easily done from regression models as opposed to 

machine learning models. This thesis compared a regression based model with two machine 

learning models. A final limitation often overlooked in SDM studies is the spatial dependency of 

accuracy of the model outputs. Presenting the error spatially is an important aspect of SDM 

moving forward, as it will be easily understood by those in environmental management who are 
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unfamiliar with the modeling methods. Spatially presented error metrics add value to the already 

used aspatial error metrics. 
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Chapter 3. Conclusion 

 

By analyzing a variety of commonly used SDMs and examining different spatial and 

aspatial metrics to quantify model accuracy and uncertainty, this thesis has shown how applying 

a multi-model and multi-area approach can improve the interpretation of the modeled species-

environment relationships. It has also shown how different methods of uncertainty mapping can 

provide increased insight as to which areas are predicted by the model to have high/low levels of 

uncertainty.  

Running three models on six areas showed that partial dependence plots can differ 

substantially between model types and adjacent geographical areas. It is therefore necessary to 

not overstate the ecological results presented in individual plots, and to be careful while 

interpreting them ecologically. One way to assess the ecological interpretability of partial 

dependence plots is to perform a multi-model, multi-area study, and compare plots across models 

and areas prior to drawing ecological inferences. 

Based on the results presented in this thesis, it appears that glass sponges are most likely 

to be found in areas with alkalinity values greater than 2.2 μmol l-1 and oxygen values lower than 

2 ml l-1. While silicate was also an important environmental predictor, the results for the 

probability of sponge presence in relation to silicate are more variable. Every area except Hecate 

Strait indicated that glass sponges are more likely to exist in areas with silicate values of 150 

μmol l-1 and over, however lower values in Hecate Strait confirm sponges can exist in areas with 

silicate values of 40 μmol l-1 and over.  

While model accuracy metrics like AUC and TSS contain important information about 

the ability of a model to produce good predictions, spatial uncertainty metrics can outline areas 

where predictions are more or less likely to be correct. There is a small area in the south of 

Hecate Strait (Area 2) that both the GLM and the bootstrapped GLM indicate as being subject to 

highly uncertain predictions. Such areas should be treated cautiously regardless of the overall 

accuracy of the model as indicated by the accuracy metrics, and such areas could be targeted for 

future data collection. 

 Finally, it was shown that different approaches to estimating prediction uncertainty can 

yield different results but still important results. This can be seen in Hecate Strait: predictions for 

the shallow, low-alkalinity area in the NW part of Hecate Strait (Area 1) are consistent between 
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models (all models give low probability of sponge presence), consistent between bootstrapped 

runs of the GLM models and the SE of the GLM model (which also all predict low probability of 

sponge presence), and are also consistent with the data points from that area. This indicates we 

are very confident in the model prediction of low probability of sponge presence in Area 1. The 

highest uncertainty corresponds to areas where models have presented high probability of 

presence, since these areas do not all overlap neatly, the uncertainty arises from these varying 

predictions.  
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