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A B S T R A C T   

Leaf mass per area (LMA), leaf dry matter content (LDMC) and leaf water content/ equivalent water thickness 
(EWT) are commonly used functional plant traits in ecology. Whereas spectroscopy has recently proven to be a 
powerful tool to collect such functional trait information across large scales, it remains unclear whether these 
reflectance-based trait predictions are accurate enough to reliably model trait variation at the intraspecific level 
(i.e. across individuals of one species). We explored the potential of hyperspectral leaf reflectance-based methods 
to predict LMA, LDMC and EWT at the intraspecific level for two herbs (Hieracium umbellatum and Jacobaea 
vulgaris) and two shrubs (Rosa rugosa and Rubus caesius), based on 2400 leaf samples. More specifically we tested 
i) inversion of the PROSPECT-D radiative transfer model, ii) a generic PLSR approach using the multibiome LMA 
PLSR model and iii) a data-specific PLSR approach at the species level. For the latter approach we furthermore 
assessed both model transferability across species and the trade-off between sample size and model accuracy. 
Although the PROSPECT-D model inversion and the multibiome LMA PLSR model were relatively accurate for 
intraspecific LMA predictions of shrubs (R2 > 71 and 76%, respectively, however NRMSE = 33–47%), their 
performance was lower for herbs (R2 

< 61%, NRMSE = 28–50%). PROSPECT-D was furthermore slightly less 
successful in retrieving EWT at the intraspecific level (R2 < 70%, NRMSE = 16–43%), and unsuccessful in 
retrieving LDMC through combining LMA and EWT inversion results (R2 < 10%, NRMSE = 9–192%). The highest 
correlation accuracy was obtained for all three traits with the species-specific PLSR models (R2 > 70%, NRMSE 
< 10%). If high predictive accuracy is needed, we thus suggest the use of species-specific PLSR models. The 
training of species-specific PLSR models comes at the cost of a needed sample size of 100–160 leaves however, 
depending on the trait. Although transferability of species-specific PLSR models seems limited overall, our results 
suggest potentially high transferability across herbaceous species.   

1. Introduction 

Leaf (dry) mass per (fresh) area (LMA) and leaf dry matter content 
(LDMC), the oven-dry mass of a leaf divided by its water-saturated fresh 
mass, are among the most commonly used functional leaf traits in 
ecological research (Garnier et al., 2004; Poorter et al., 2009; Pérez- 

Harguindeguy et al., 2013). Their frequent use can be attributed to their 
impact on and response to a wide range of ecological processes (West
oby, 1998; Wilson et al., 1999; Poorter et al., 2009). For example, both 
traits are considered to be part of the global leaf economics spectrum 
(Wilson et al., 1999; Wright et al., 2004; Pierce et al., 2017) and 
consequently link up with plant-level responses to both abiotic drivers 

* Corresponding author at: Plant Conservation and Population Biology, Biology Department, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium. 
E-mail address: kenny.helsen@kuleuven.be (K. Helsen).   

1 shared first author 

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2021.108111 
Received 15 January 2021; Received in revised form 2 August 2021; Accepted 13 August 2021   

mailto:kenny.helsen@kuleuven.be
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2021.108111
https://doi.org/10.1016/j.ecolind.2021.108111
https://doi.org/10.1016/j.ecolind.2021.108111
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2021.108111&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 130 (2021) 108111

2

such as drought (Hodgson et al., 2011; Wellstein et al., 2017) and biotic 
drivers such as competition (Kunstler et al., 2016). A plethora of 
ecosystem functions have also been linked to LMA and LDMC, including 
primary production (Garnier et al., 2004; Smart et al., 2017) and litter 
decomposition (Garnier et al., 2004; Tao et al., 2019). Alternatively to 
LDMC, leaf water content is sometimes measured as an expression of 
moisture content. When leaf water content is expressed per leaf area (mg 
cm− 2), it is often referred to as equivalent water thickness (EWT), and 
can be transformed to LDMC through LMA (EWT = (LMA × LDMC-1) - 
LMA). As a functional trait, EWT has been shown to relate to a plant’s 
thermal regulation, drought resistance and flammability (Zeiger, 1983; 
Lawlor and Cornic, 2002). Accurate assessments of both LMA and EWT 
are moreover important to monitor ‘fuel moisture content’ (=EWT LMA- 

1, mg mg− 1), an important ecosystem proxy related to fire risk assess
ment (Yebra et al., 2013). 

Assessing functional trait patterns across large spatial and temporal 
scales is logistically challenging. To alleviate these constrains, spec
troscopy has proven to provide a powerful tool to collect large-scale 
functional trait information (Gamon et al., 2019). This involves 
recording specific light absorption and scattering features of plants 
across a number of spectral bands that can be linked to traits such as 
LMA, LDMC and EWT. Semimechanistic approaches, such as radiative 
transfer models, have proven successful at extracting functional trait 
information from leaf and canopy reflectance. These models are termed 
‘semimechanistic’ because they combine physically existing links be
tween certain traits and spectral properties with empirically derived 
specific absorption coefficients for these physical links (Jacquemoud 
and Baret, 1990; Jacquemoud et al., 2009; Kattenborn and Schmidtlein, 
2019). While these models take advantage of the straightforward and 
causal correlation between certain traits (e.g. EWT) and their spectral 
absorption features, for other traits (e.g. LMA) these links are more 
complex, because multiple structural components underlie their spectral 
retrievability (Cheng et al., 2014). While radiative transfer models such 
as PROSPECT do not allow direct quantification of LDMC, theoretically 
this trait could be indirectly estimated from EWT and LMA, both of 
which are included in the PROSPECT model (LDMC = LMA/(LMA +
EWT)) (Féret et al., 2019). 

Next to semimechanistic, also purely empirical statistical approaches 
have been adopted to quantify traits. The mathematically most 
straightforward statistical methods are known as ‘vegetation indices’ 
(VIs), which consist of simple univariate regression methods that 
combine a small number of spectral bands (Homolová et al., 2013; 
Verrelst et al., 2015). Advances in more complex multivariate statistical 
modelling techniques, such as partial least squares regression (PLSR) 
(Wold et al., 1983) have, however, also resulted in accurate extraction of 
functional trait proxies from hyperspectral data (Verrelst et al., 2015; 
Verrelst et al., 2019). The recently developed multibiome PLSR leaf- 
reflectance based prediction model for LMA nicely illustrates the po
tential of these statistical modelling techniques (Serbin et al., 2019). 
This model was trained on 2478 leaf samples from > 176 species and 
showed high model accuracy across biomes in the Americas (R2 = 0.89) 
(Serbin et al., 2019). 

In most studies exploring the accuracy of spectrally-derived leaf- 
level LMA, LDMC and EWT predictions, validation is usually performed 
across species or vegetation types and thus across relatively large trait 
ranges (e.g. Wang et al., 2011; Asner et al., 2011; Asner et al., 2015; 
Singh et al., 2015; Ali et al., 2017; Serbin et al., 2019). Whether such 
trait models are accurate enough to reliably reflect more subtle trait 
differences at the intraspecific level (intraspecific trait variation, ITV, i. 
e. across individuals of one species) remains unclear (Girard et al., 2020; 
however see Colombo et al., 2008; Feilhauer et al., 2018). There is 
nonetheless a need for methods allowing fast and correct assessment of 
trait values at the intraspecific level, since ecological research is 
increasingly demonstrating the extent (Messier et al., 2010; Siefert et al., 
2015) and importance of ITV in explaining both community ecological 
processes (e.g. Jung et al., 2014; Bennett et al., 2016) and ecosystem 

functioning (e.g. Breza et al., 2012; Helsen et al., 2018). 
Whether a semimechanistic or a statistical modelling approach is 

most promising to accurately retrieve trait values at the intraspecific 
level remains unclear, due to the trade-offs presented by their respective 
advantages and disadvantages. Semimechanistic models have the 
advantage that they are mainly based on relatively well-understood 
mechanistic relationships between the retrieved traits and spectral 
reflectance (Jacquemoud et al., 2009; Féret et al., 2019). Their retrieval 
accuracy, however, depends on the physical realism of the model and 
can often be improved through prior information on the expected trait 
variation range (Verrelst et al., 2015). Specifically in the context of 
species-specific models (assessing ITV), this could result in reduced 
sensitivity to subtle variation, potentially impacting their predictive 
accuracy. Statistical models, on the other hand, are not guaranteed to 
present solutions linked to the true physical relationship between traits 
and leaf optical properties and usually lack a physical basis to interpret 
the model’s parameters. This increases the chance of species-specific 
models that lack transferability (Verrelst et al., 2015; Féret et al., 
2019). In addition, unlike semimechanistic models, statistical models 
require some actual trait measurements for calibration. However, sta
tistical models do allow trait quantification of a larger suite of functional 
traits and effectuate this through complex and indirect relationships. 
This enables these methods to take advantage of co-variation between 
different functional traits within a certain dataset, potentially increasing 
model sensitivity and retrieval accuracy at the intraspecific level (Atz
berger et al., 2015; Verrelst et al., 2019). 

In this study we explore the potential of hyperspectral leaf reflec
tance data to reliably predict LMA, LDMC and EWT at the intraspecific 
level for two herbs and two shrubs. The number of studies exploring the 
accuracy of spectrally-derived LMA, LDMC and EWT predictions is less 
extensive for (herbaceous) grass- and shrubland species, since most 
work has focused on forests (Homolová et al., 2013; Van Cleemput et al., 
2018; however see Roelofsen et al., 2014; Serbin et al., 2019; Girard 
et al., 2020). In total, we measured these traits for 2399 leaves across the 
four species and additionally obtained the hyperspectral reflectance of 
each of these leaves. For three of these species; Hieracium umbellatum, 
Jacobaea vulgaris and Rubus caesius, all samples were collected along the 
Belgian North Sea coast. For the fourth study species, Rosa rugosa, half of 
the samples were collected along the Belgian North Sea coast in its 
invaded range, and the other half along the sea of Japan coast in 
Northern Japan, in the species’ native range. Since many invasive spe
cies exhibit different traits between their native and invaded ranges (e.g. 
Zou et al., 2007; Chun et al., 2009), this offered the opportunity to 
evaluate model transferability within a species. We addressed the 
following research questions:  

- Is the inversion of the PROSPECT semimechanistic radiative transfer 
model accurate enough to reliably quantify LMA, EWT and (indi
rectly) LDMC at the intraspecific level from hyperspectral leaf 
reflectance?  

- Can PLSR models trained across a large range of species (cf. the 
Serbin et al. (2019) LMA model) reliably predict traits at the intra
specific level?  

- Does species-specific statistical PLSR modelling enable an accurate 
quantification of LMA, LMDC and EWT at the intraspecific level?  

- Specifically for R. rugosa, can the PLSR model trained for the invasive 
range provide correct trait predictions for the native range? And 
more generally, are the species-specific PLSR models generalizable 
across the other study species?  

- How strong is the trade-off between training dataset size and model 
accuracy, in other words what is the minimum sample size needed 
for an adequate predictive PLSR model? 
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2. Materials and methods 

2.1. Trait and reflectance data acquisition 

Sampling was performed during June 2018 in the coastal sand dunes 
along the 60 km long Belgian North Sea coast (51.23◦N, 2.90◦E). In total 
we established fifty 3 m × 3 m vegetation plots containing a represen
tative selection of the abiotic and biotic variation of coastal dune 
grasslands in Belgium. In each of these plots we focused on four plant 
species typical of coastal sand dune grasslands, two dominant clonal 
woody species; Rosa rugosa Thunb. and Rubus caesius L., and two sub
ordinate herbs; Jacobea vulgaris Gaertn. and Hieracium umbellatum L. 
Since R. rugosa is an invasive species in Belgium (Bruun, 2005), we 
performed an additional sampling for R. rugosa during June 2019 along 
the 30 km long Ishikari sand dunes along the sea of Japan near the city of 
Sapporo on the northern Japanese island of Hokkaido (43.25◦N, 
141.35◦E). This area is part of the species’ native range and the most 
likely original source of introduction of the Belgian R. rugosa pop
ulations (Kelager et al., 2013). During this sampling campaign, another 
twenty-five 3 m × 3 m vegetation plots were established, all containing 
R. rugosa populations. Note that R. rugosa was in the same phenological 
stage in both ranges during sampling (early flowering onset). 

Leaf mass per area (LMA, mg cm− 2, the inverse of specific leaf area) 
and leaf dry matter content (LDMC, mg mg− 1) were measured for each 
study species using the protocol of Pérez-Harguindeguy et al. (2013). 
For each plot × species combination we measured both traits for 15 
individuals. Leaf area and fresh weight were measured within 48 h of 
collection on leaves rehydrated in wet Ziploc bags and stored at 5 ◦C, 
using a Canoscan LiDe 120 flatbed scanner (Canon, Japan) and a pre
cision balance (0.1 mg accuracy), respectively. Leaf dry weight was 
measured after minimum 48 h oven-drying at 70 ◦C. Equivalent water 
thickness (EWT, mg cm− 2) was subsequently calculated for each leaf 
sample as (fresh weight – dry weight)/area. The extent of ITV was 
quantified for each species and trait as the coefficient of variance, i.e. the 
standard deviation divided by the trait mean. 

Before trait processing, we measured the directional hyperspectral 
reflectance within 48 h of collection of the adaxial surface of each field 
collected, Ziploc-bag stored (i.e. rehydrated) leaf. Reflectance was 
measured using a SVC HR-1024iTM spectroradiometer equipped with a 
plant probe (leaf clip assembly), covering the 350–2500 nm spectral 
range and a resampled spectral resolution of 1 nm (Spectra Vista Cor
poration, NY, USA). We used the Spectralon and dark background pro
vided with the spectroradiometer for measurements. Prior to data 
analysis we removed the 350–400 nm and 2450–2500 nm noise win
dows and applied a Savitzky-Golay filter with a moving window of 45 
nm using the ‘hsdar’ R package version 0.7.2. (Savitzky and Golay, 
1964; Lehnert et al., 2018). 

Note that not all study species occurred in each plot, and that due to 
insufficient quality, 138 (5.4%) leaves and leaf spectra were removed 
from the final dataset, resulting in a total dataset of trait and spectral leaf 
data for 669 plants for R. caesius, 657 plants for J. vulgaris and 344 plants 
for H. umbellatum, all from Belgium. For R. rugosa the final dataset 
contained 371 plants from Belgium (the invaded range) and 358 plants 
from Japan (the native range). 

2.2. Semimechanistic model-based trait estimation 

We inverted the PROSPECT-D radiative transfer model to quantify 
LMA and EWT for all leaf level spectra (Féret et al., 2017; Féret et al., 
2019). PROSPECT-D was chosen over previous PROSPECT versions 
because it has improved trait parametrization based on a larger data
base, and on the inclusion of anthocyanins (Féret et al., 2017). We tested 
five approaches for the PROSPECT-D inversion. First, we used the ‘direct 
inversion method’ (iterative optimization) with the ‘optim’ function, 
based on the Matlab-code of Féret et al. (2008), implemented in the 
‘hsdar’ R package. Second, we used a ‘modified direct inversion method’ 

which first estimates the leaf structure parameter Ns directly from the 
reflectance spectra using equation 4 of Spafford et al. (2021), followed 
by PROSPECT-D inversion using only the 1700 to 2400 nm spectral 
domain for LMA and EWT estimation. These modifications have recently 
shown to improve LMA and EWT retrieval at the interspecific level 
across a large combined spectral dataset, and are implemented in the 
‘Invert_PROSPECT_OPT’ function of the ‘prospect’ R package (Féret 
et al., 2019; Spafford et al., 2021). Third, we used the ‘wavelet inversion 
method’ of Kattenborn et al. (2019), which combines wavelet analysis 
with a look-up-table (LUT) creation. Absorption processes in leaves act 
in overlapping wavelength regions, which can hamper trait retrieval 
(Blackburn, 2007). Wavelet analysis overcomes this problem by 
decomposing the spectral signal into components that relate to different 
scales linked to the different leaf constituents or traits. We first used the 
same settings as described in Kattenborn et al. (2019), with the excep
tion of the LUT size (50000) and the parameter range for LUT compu
tation (Cab: 1–75 µg cm− 2, Car: 1–15 µg cm− 2, Ant: 0.1–4 µg cm− 2, 
Cbrown: 0–1, Ns: 1–3, EWT: 5–51 mg cm− 2 and LMA: 1–21 mg cm− 2). 
The parameter ranges were largely based on the expected range for 
herbaceous and shrub species (cf. Feilhauer et al., 2017). The used range 
has furthermore shown to be optimal for LMA and EWT retrieval 
through PROSPECT-D inversion across the common species in our study 
area (Helsen et al., 2020). This approach was termed the ‘uncoupled 
wavelet inversion’. Fourth, we also performed a ‘coupled wavelet 
inversion’, with LUT computation for LMA directly coupled to that of 
EWT, using a conversion factor (f) for each LUT entry, so that each LUT 
entry for LMA equalled EWT / f. This follows the suggestion of Katten
born et al. (2017) and has shown to increase LMA estimation accuracy 
by preventing unrealistic LUT entries (e.g. combined high LMA and low 
EWT). For each LUT entry, f was randomly sampled within a range of 2.5 
and 5. Fifth, we applied the ‘hybrid inversion method’ combining LUT 
creation and random forests regression following the approach of Feil
hauer et al. (2017), using the same parameter range for LUT computa
tion as described for the ‘wavelet inversion method’ and a LUT size of 
11000. 

2.3. Statistical model-based trait estimation 

We evaluated the performance of the multibiome partial least square 
regression (PLSR) model for LMA of Serbin et al. (2019), henceforth 
termed the ‘multibiome LMA model’, at the intraspecific level for our 
four study species. PLSR is a variance-based regression technique that 
uses covariance structures (components) derived from the predictors 
(spectral bands) (Abdi, 2003). PLSR reduces the number of predictors by 
constructing a limited number of components, while at the same time 
maximizing their covariance with the response variable (Abdi, 2003). 
Note that the multibiome LMA model parameters were obtained from 
the supplementary material of Serbin et al. (2019), and that only the 
Belgian samples were used for the Rosa rugosa model. 

Additionally, we fit several PLSR models ourselves using the 
measured LMA, LDMC and EWT, and the collected leaf reflectance data 
using the ‘pls’ R package version 2.7–2 (Mevik et al., 2019). A separate 
PLSR model was trained for each species × trait combination. Note that 
for the Rosa rugosa models, only the Belgian samples were used. Each 
species dataset was randomly split once in a training and a test dataset 
(consistent 0.5:0.5 ratio). A PLSR model was then built using the 
training dataset. To allow optimal comparison with the multibiome LMA 
model, we used the same PLSR optimization protocol as Serbin et al. 
(2019), thus identifying the optimal number of PLS components for each 
model based on the minimal prediction residual sum of squares (PRESS) 
statistic, as detailed in Serbin et al. (2014). These models are henceforth 
termed the ‘PRESS PLSR models’. More specifically, we calculated the 
PRESS statistic of successive PLS components through 10-fold cross- 
validation (CV). This CV approach was jackknifed 30 times. Using this 
output we determined the optimal number of PLS components as the 
model with the lowest root mean square error (RMSE) of the PRESS 
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statistic and when successive PLS components did not improve this 
RMSE, as assessed using a t-test on the jackknifed data. Note that unlike 
Serbin et al. (2019), we did not square root transform the trait data, 
since all individual species × trait data were normally distributed. 

We additionally used a second PLSR optimization approach, using 
the built-in function ‘selectNcomp’ (‘randomization’ method with 
nperm = 1000 and alpha = 0.05) of the ‘pls’ R package (i.e. ‘RMSEP 
PLSR models’). This approach selects the optimal number of PLS com
ponents based on the minimum RMSEP (prediction error) of the 10-fold 
CV, which tends to present more conservative results (i.e. less selected 
components) than the PRESS PLSR models. For the final PRESS PLSR 
models, we calculated the variable importance in projections (VIP) 
statistic to visualise the spectral regions used by each trait prediction 
model. 

2.4. Model accuracy assessment 

For all trait estimation approaches, model accuracy was evaluated 
for each species × trait combination separately by performing a linear 
regression between the observed (yi) and model-predicted (ŷi) trait 
values, and calculating the ‘variance explained by the predictive model 
based on cross-validation’ (VEcv), the root mean square error (RMSE) 
and the RMSE normalized (divided) by the mean observed trait value 
(yi) (NRMSE). 

For each linear regression model, we quantified the coefficient of 
determination (R2), and the intercept (β0) and slope (β1), the latter two 
as proxies of the additive and multiplicative estimation bias, respec
tively. For β0, we assessed if values differed significantly from zero based 
on the standard linear regression output. For β1, significance of devia
tion from one was inferred using the ‘linearHypothesis’ function of the 
‘car’ R package by comparing the linear regression model using β1 as 
slope with a similar model using a slope of 1 (Fox and Weisberg, 2019). 
While R2 quantifies the percentage of variance explained by the fitted 
correlation between the observed and predicted traits (yi = β1ŷi + β0), 
VEcv represents a true measure of model accuracy, directly quantifying 
the percentage explained variance in yi by ŷi (yi = 1ŷi + 0) (Li, 2017). 

The VEcv was calculated using the ‘spm’ R package as (1 −

(
∑n

1
(
yi − ŷi

)2
/
∑n

1

(
yi − yi

−
)2

))100(%) (Li, 2019), with n = the number 

of observations. Throughout the manuscript ‘correlation accuracy’ and 
‘predictive accuracy’ refer to R2 and VEcv, respectively. RMSE and 
NRMSE present error measures and express the absolute and percentage 
of residual variance remaining between yi and ŷi , respectively (Li, 
2017). Note that all accuracy assessments were performed on half of the 
dataset (test datasets). 

For the PROSPECT-inversion method that produced the highest trait 

predictive accuracy, the overall goodness of fit was also assessed for the 
spectrum of each leaf, based on the absolute deviance (error) of the 
measured spectrum and the corresponding LUT spectrum. 

2.5. PLSR model transferability 

To evaluate the generalizability of the final optimal PLSR models, the 
species-specific optimized PRESS and RMSEP PLSR models were applied 
across each of the other study species separately. Each of these species- 
specific models was additionally applied to the Rosa rugosa dataset from 
the species’ native range in Japan. 

2.6. Trade-off between PLSR training dataset size and model accuracy 

To assess the trade-off between training dataset size and model ac
curacy, each RMSEP PLSR model was performed at different training 
dataset sizes ranging between 20 and 160 data points at a 20 data point 
interval. For each of these eight dataset size intervals, data points were 
randomly selected from the full dataset for both a training and test 
dataset and each resulting model was optimised following the previously 
explained minimum RMSEP approach (‘randomization’ method). This 
resampling with replacement (bootstrapping) was performed a 100 
times for each dataset size interval, allowing the construction of 95% 
confidence intervals (CIs) for the difference in VEcv and R2 of each 
dataset size interval compared to, respectively, the VEcv and R2 of the 
‘optimal RMSEP PLSR models’. 

3. Results 

On average across all study species, ITV was highest for LMA 
(23.45%) and lowest for LDMC (14.23%) (Table 1). Across all traits, the 
shrubs R. rugosa and R. caesius showed lower trait variation (CV) than 
the herbs J. vulgaris and H. umbellatum (Table 1, Fig. S1). 

Of all tested PROSPECT-D inversion methods, the coupled wavelet 
inversion method produced the best, albeit only moderately accurate 
estimations for EWT across all species based on R2 (R2 > 59%), although 
the modified direct inversion method produced equally accurate EWT 
estimation for two of the four study species (Table 1, S2). LMA corre
lation accuracy was relatively high for both shrubs (R2 > 71%) based on 
the coupled wavelet inversion method (Table 1). However, it was quite 
low for the two herbs (R2 < 40%), with higher correlation accuracy 
based on the modified direct inversion method for J. vulgaris (R2 =

61.1%) and based on the hybrid inversion method for H. umbellatum (R2 

= 44.4%) (Table 1, S2). Also for R. caesius, correlation accuracy was 
slightly higher for the modified direct inversion (R2 = 77.0%) compared 
to the coupled wavelet inversion (R2 = 73.5%). Indirect estimation of 
LMDC based on PROSPECT-D predicted LMA and EWT values did not 

Table 1 
Trait data (dataset size (N), mean value and coefficient of variation (CV, %)) and model accuracy assessment parameters (R2/NRMSE/VEcv (%)) for the coupled 
wavelet PROSPECT-D inversion method, the multibiome LMA model and the species-specific RMSEP PLSR models. Test dataset size for all models was N/2. Note that 
LDMC was indirectly derived for PROSPECT-D by using LMA and EWT estimations. EWT = equivalent water thickness, LDMC = leaf dry matter content, LMA = leaf 
mass per area.    

Trait data PROSPECT-D (wavelet, coupled) PLSR (multibiome LMA model) PLSR (species-specific, RMSEP model) 

trait species N Mean CV R2 NRMSE VEcv R2 NRMSE VEcv R2 NRMSE VEcv 

LMA Rosa rugosa (BE) 371  9.93  16.1  71.9  46.2 0  80.0  45.3 0  85.8  6.1  85.2 
Rubus caesius 669  5.45  24.7  73.5  33.4 0  76.9  47.1 0  88.4  8.9  88.4 
Jacobaea vulgaris 657  3.77  26.6  31.1  90.9 0  61.8  38.8 0  86.0  10.1  85.7 
Hieracium umbellatum 344  5.40  26.5  37.1  56.2 0  65.2  28.5 0  87.5  10.0  87.0 

LDMC Rosa rugosa (BE) 371  0.370  7.7  0.1  8.9 0     69.2  4.6  67.6 
Rubus caesius 669  0.342  12.2  6.0  16.6 0     79.7  5.8  79.7 
Jacobaea vulgaris 657  0.134  19.4  3.4  192.3 0     89.1  6.4  89.1 
Hieracium umbellatum 344  0.166  17.6  0.2  140.0 0     80.8  8.2  79.5 

EWT Rosa rugosa (BE) 371  16.85  13.6  59.6  28.0 0     70.4  7.3  69.3 
Rubus caesius 669  10.33  16.9  68.3  43.2 0     81.1  7.9  81.0 
Jacobaea vulgaris 657  24.22  17.5  69.2  16.5 14.0     73.8  9.2  73.2 
Hieracium umbellatum 344  26.94  18.7  66.3  22.2 0     76.2  9.7  76.0  
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present accurate results (R2 < 5%) (Table 1). For most PROSPECT-D 
predicted trait values, actual predictive accuracy (VEcv) was zero and 
RMSE and NRMSE (17–91%) quite high (Table 1, S2). Fig. 1 furthermore 
shows a systematic underestimation of LMA for the shrubs (β1 > 1) and 
overestimation for the herbs (β1 < 1) (Table S2). This systematic bias 
actually resulted in higher NRMSE for PROSPECT-D inversion methods 
with high correlation accuracy than those with low R2 values (Table S2). 

The mean absolute error between the measured and simulated 
spectra using the coupled wavelet inversion was relatively low at 0.0169 
reflectance units. Although some stronger biases occurred in the visible 
(±550 nm) and red-edge (±750 nm) regions of the spectra, the spectral 
regions mainly important for LMA and EWT estimation in the near- 
infrared and shortwave infrared did not show strong errors, thus indi
cating relatively robust trait estimations (Fig. S3). 

The multibiome LMA model showed higher correlation accuracy 
than PROSPECT-D inversion for all species, with moderate correlation 
accuracy for the herbs (R2 > 61%), and relatively high correlation ac
curacy for the shrubs (R2 > 76%) (Table 1, Fig. 2). However, VEcv values 
were again zero and (N) RMSE high (28–47%), indicating poor predic
tive accuracy (Table S4). Interestingly, similar underestimation of shrub 
species LMA observed for PROSPECT-D inversion was present for the 
multibiome LMA model, next to overestimation of herbaceous species 
LMA with values > 6 mg cm− 2, as also reflected in the β1 values 
(Figs. 1–2, Table S4). Although the PLSR coefficients (band importance) 
for the multibiome LMA model did contain parts of the spectral regions 
used by the PROSPECT-D model, they also included several seemingly 
unrelated spectral regions (Fig. 3). 

Both the species-specific PRESS and RMSEP PLSR models had high 

Fig. 1. Correlation scatterplot between predicted and 
observed trait values based on the PLSR validation 
datasets (N/2) for the coupled wavelet PROSPECT-D 
model inversion and the RMSEP PLSR model for 
each species – trait combination separately. The 
dotted line visualizes perfect trait predication (Y = X). 
For PROSPECT-D ‘predicted’ LDMC values were 
calculated from the predicted LMA and EWT values. 
EWT = equivalent water thickness, LDMC = leaf dry 
matter content, LMA = leaf mass per area.   
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model accuracy across all trait × species combinations, with NRMSE 
below 10% and both R2 and VEcv above 70% for most models, and 
above 80% for all LMA and several LDMC models (Table 1, Fig. 1, Table 
S4). Similarly as for PROSPECT-D inversion, estimations for EWT were 
slightly less accurate than for LMA (and LDMC) (Table 1). Although the 
PRESS PLSR models showed somewhat higher model accuracy for 
several trait × species combinations, their generalizability across species 
was much lower than that of the RMSEP PLSR models (Tables S5–S6). 
These results, together with the consistently higher number of PLS 
components suggest that the PRESS PLSR models suffer from slight 
overfitting issues and thus that the RMSEP PLSR models are more robust. 

The final RMSEP PLSR models for Belgian R. rugosa samples none
theless had relatively low model accuracy for Japanese R. rugosa sam
ples. Although NMRSE was below 11% for all traits and the R2 was 
around 74% for the LMA model, for LDMC and EWT, the R2 was only 
around 50% (Table 2). The Japanese R. rugosa samples did however 
show slightly lower trait means (LMA = 9.11 mg cm− 2, EWT = 16.50 
mg cm− 2, LDMC = 0.356 mg mg− 1) and trait variation (CV of LMA =
14.39%, EWT = 12.49%, LDMC = 7.21%) than the Belgian R. rugosa 
samples (Table 1). Similarly, the Belgian R. rugosa RMSEP PLSR models 
did not consistently present high predictive accuracy for the other three 
study species, with often much lower VEcv than R2 values (Table 2). Also 
the final RMSEP PLSR models for the other three study species showed 
mixed transferability (Table S5). Across the two herbs, all but one of the 
reciprocally transferred models were highly accurate, with R2 values ≥
80% (Table S5). These trait models had relatively similar VIP values 
(Fig. 3). For R. rugosa and R. caesius, VIP values of the LMA and EWT 
models were quite different, but relatively similar for the LDMC model 
(Fig. 3). 

RMSEP PLSR model VEcv and R2 showed high variance for the two 
smallest sample size groups (N = 20 and 40) across all trait × species 
combinations (Figs. 4 & S7). The minimum sample size needed to obtain 
VEcv values with a maximum difference of 10% to the VEcv of the 
optimal model on the full dataset (|beta| 〈10) was higher for the shrubs 

than the herbs for LMA (N = 80 vs. 60) (Table S8). For LDMC and EWT, 
this minimum sample size was species-specific, with N = 140, 120, 120 
and 60 for LDMC and N = 100, 120, 60 and 40 for EWT, for respectively, 
R. rugosa, R. caesius, J. vulgaris and H. umbellatum (Table S8). To obtain a 
beta < 5%, even higher sample sizes are needed, in case of LMA and 
LDMC of R. rugosa and LDMC and EWT of R. caesius even more than the 
maximum tested value (N = 160) (Table S8). 

4. Discussion 

4.1. Performance of the PROSPECT-D and multibiome LMA model 

The PROSPECT-D model inversion in our study showed similar LMA 
correlation accuracy for R. rugosa and R. caesius, as observed by Helsen 
et al. (2020) at the interspecific level in our study area (68.6%). These 
accuracies are furthermore in line with those for LMA retrieval through 
PROSPECT-inversion of several multispecies (tree) datasets, in respect to 
R2, but not RMSE (e.g. Li & Wang, 2011; Cheng et al., 2014; Féret et al., 
2019). The much higher RMSE values in our study are due to the sys
tematic underestimation of LMA for both shrub species. The multibiome 
LMA (PLSR) model showed somewhat higher correlation accuracy (R2 

> 76%) for both shrub study species, and acceptable accuracy for the 
herbaceous study species (R2 > 61%), which are in the range of the 
correlation accuracy of the multibiome LMA model across two inde
pendent mixed-species datasets (R2 = 66%) performed by Serbin et al. 
(2019). These accuracy levels were nonetheless lower than across the 
full multibiome calibration dataset (R2 = 89%) (Serbin et al., 2019). 
These differences in trait retrieval accuracy between woody and her
baceous species might be partly caused by the relatively low amount of 
herbaceous grassland species compared to woody species in the cali
bration datasets for both methods (Féret et al., 2017; Serbin et al., 2019), 
which might suggest the potential of improving both models by recali
bration using more (herbaceous) grass- and shrubland species. In gen
eral, spectral leaf-trait retrieval has focused more on woody species and 
forest biomes (Homolová et al., 2013; Van Cleemput et al., 2018). 

Interestingly, in both the multibiome LMA model and the PROSPECT 
inversions, LMA was systematically overestimated for the two shrubs, 
but not the two herbs (Figs. 1–2). Although there was some overlap 
between the spectral regions used by both models, several additional 
spectral regions were used in the multibiome LMA model (Fig. 3a). 
Assuming that PROSPECT-D represents the best available knowledge on 
absorption of LMA structural components, this discrepancy suggests that 
the multibiome model does not solely rely on (known) mechanistic re
lationships between LMA components and leaf reflectance, but is addi
tionally, partly calibrated on spectrally detectable trait intercorrelations 
acting across their global calibration dataset. 

Unlike for LMA, for EWT, PROSPECT-D trait estimation had more 
similar correlation accuracy for shrubs and herbs (R2 = 60–69%, 
Table 1). However, the EWT correlation accuracy was noticeably lower 
than across species in the study area (interspecific R2 = 80.6%) (Helsen 
et al., 2020), but still in the range of that of previous work on 
PROSPECT-inversion based EWT estimation (Li & Wang, 2011). 
Although the estimation errors for PROSPECT-D could be considered 
moderate for both LMA and EWT, they get extremely exaggerated when 
used to calculate LDMC (Fig. 1), thus indicating that PROSPECT-D could 
not be used to estimate LDMC at the intraspecific level in this study. 
Some methodological differences between our study and the data used 
to develop PROSPECT and the multibiome LMA model, such as the 
smoothing performed on our spectra, might have resulted in lower 
model accuracies. Specifically for PROSPECT, the use of bidirectional 
reflectance in our study, as opposed to directional-hemispherical 
reflectance will likely have affected our results. 

4.2. Performance of species-specific (RMSEP) PLSR models 

For LMA, correlation accuracy in our study (R2 > 85%) was in the 

Fig. 2. Correlation scatterplot between predicted and observed trait values 
based on the PLSR validation datasets (N/2) for the multibiome leaf mass per 
area (LMA) model for each species separately. The dotted line visualizes perfect 
trait prediction (Y = X). 
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same range as for the previously described multibiome LMA model 
(Serbin et al., 2019). The only other study assessing LMA from leaf-level 
spectra for shrub vegetation used simple VIs, which resulted in low 
correlation accuracy (R2 = 15%) (Ball et al., 2015). Similarly, Roelofsen 
et al. (2014) found an accuracy of only 11% for LMA reflectance 
retrieval with PLSR across 31 herbaceous species and Girard et al. 
(2020) found a correlation accuracy of 46% for PLSR-based LMA 
retrieval across 3 shrub and 1 herb species. The latter two study 
furthermore found a correlation accuracy of 57% and 70%, respectively 
for LDMC for the same datasets, which is slightly lower than observed at 
the intraspecific level in our study (R2 = 69–89%). Girard et al. (2020) 
also found a correlation accuracy of 71% for EWT retrieval across their 4 
study species. Two studies that explored leaf water through PLSR on 
ground-based canopy measurements, also showed correlation accuracy 
within the same range as our study (R2 > 70%) for hay meadows (R2 =

81%) (Fava et al., 2010) and for heath and dry grasslands (R2 = 56%) 
(Roelofsen et al., 2013). Overall these results illustrate that PLSR is a 
powerful tool, able to retrieve LMA, LDMC and EWT with equally high 
accuracy at the intraspecific, as at the interspecific and community level. 

Note that EWT on rehydrated leaves expresses the maximum water 
content of leaves, and thus reflects a fixed functional trait value of the 

Fig. 3. Variable importance in projections (VIP) statistic for the different RMSEP PLSR models for (a) leaf mass per area (LMA), (b) leaf dry matter content (LDMC) 
and (c) equivalent water thickness (EWT). Band importance (PLS coefficients) additionally illustrated for the multibiome LMA model of Serbin et al. (2019). Spectral 
absorption intensity also provided for dry matter (LMA) and water (EWT), as incorporated in the PROSPECT-D radiative transfer model. 

Table 2 
Model transferability results. Accuracy assessment parameters (R2/NRMSE/ 
VEcv (%)) for the RMSEP PLSR model constructed for the Belgian (BE) Rosa 
rugosa dataset across all other study species, including the Japanese (JP) Rosa 
rugosa dataset for each trait separately. Test dataset size was N. EWT = equiv
alent water thickness, LDMC = leaf dry matter content, LMA = leaf mass per 
area.    

R. rugosa RMSEP PLSR model 

trait species R2 NRMSE VEcv 

LMA Rosa rugosa (JP)  74.1  8.3 66.3 
Rubus caesius  75.6  33.4 0 
Jacobaea vulgaris  49.0  125.3 0 
Hieracium umbellatum  59.4  124.0 0 

LDMC Rosa rugosa (JP)  46.7  5.5 41.1 
Rubus caesius  66.4  7.1 66.1 
Jacobaea vulgaris  51.0  58.9 0 
Hieracium umbellatum  53.3  31.8 0 

EWT Rosa rugosa (JP)  52.3  10.3 32.4 
Rubus caesius  49.5  39.6 0 
Jacobaea vulgaris  67.0  10.6 63.1 
Hieracium umbellatum  72.8  12.5 55.4  

K. Helsen et al.                                                                                                                                                                                                                                  



Ecological Indicators 130 (2021) 108111

8

leaf. For certain applications, such as fire risk assessments, water content 
is actually measured in the field on partly dehydrated leaves, thus 
reflecting the water content during certain conditions. If spectral 
retrieval of EWT by our PLSR models is, similarly as by PROSPECT 
inversion, largely based on spectral regions directly affected by water 
content, these models should perform equally well for assessing ‘EWT’ of 
partly dehydrated leaves. However, our models should first be tested for 
field-based ‘EWT’ assessment of partly dehydrated leaves, before being 
applied in the context of fire-risk assessment. 

4.3. (RMSEP) PLSR model transferability 

Despite the high model accuracies, the species-specific trans
ferability success was mixed. Most strikingly, model transferability from 
the Belgian to the Japanese R. rugosa samples was reduced with 12, 23 
and 18% for LMA, LDMC and EWT, respectively. Although the trait 
ranges for LMA, LDMC and EWT were slightly different between 
Belgium and Japan (Fig. S8), transferability is more likely hampered due 
to differences in other, unmeasured traits. Indeed, the selected spectral 
bands of the R. rugosa PLSR models suggest that for LMA and EWT the 
models are partly calibrated on spectrally detectable trait in
tercorrelations, rather than on spectral regions directly affected by LMA 
components. 

Interestingly, model transferability was much higher within, than 
across life forms for LMA and LDMC, with R2 > 82% and VEcv > 58% for 
herbaceous species. Transferability did not seem to be related to trait 
range overlap though, except potentially for LDMC of both herbs (Fig. 
S8). Spectral retrieval of LDMC and LMA is effectuated by an aggregate 
of multiple leaf constituents or components, such as leaf proteins, cel
lulose, lignin and starch (Kattenborn et al., 2019). This was reflected in 
our LDMC PLSR models, where previously identified absorption bands of 

these structural components (summarized in Serbin et al., 2014) are 
represented by high VIP values. For the LMA models, not all absorption 
features were clearly related to known relevant leaf constituents. The 
VIP values of the LMA models furthermore showed a more similar 
pattern within, than among life forms (shrubs and herbs). For EWT the 
transferability trends were also less clear, suggesting stronger species- 
dependence of the models. Here, only the shrub species models 
showed clearly higher VIP for the 1450 and 1950 nm water absorption 
bands. Our life form dependent transferability results might suggest that 
the importance of the different structural components for LMA and 
LDMC are fundamentally different between herbaceous and woody 
species, potentially also partly explaining the LMA retrieval differences 
between both life forms for PROSPECT-D and the multibiome LMA 
model. Alternatively, intercorrelations between other spectrally 
detectable leaf properties, which differ fundamentally between life 
forms, are driving the patterns through the different VIP values for the 
PLSR models across both life forms (Roelofsen et al., 2014). This would 
suggest that the models are not fully following the physical theory of 
light absorption due to leaf dry matter components and water. Trans
ferability of our models should ideally be tested across a larger set of 
herbs and shrubs to assess the generality of these conclusions. 

4.4. Trade-off between PLSR training dataset size and model accuracy 

The analyses across different test dataset sizes showed that a rela
tively high number of observations is needed for all trait × species 
combinations. Although smaller sample sizes were sufficient for LMA 
compared to the other traits, and for herbs compared to shrubs, our 
results suggest a minimum of 100–120 leaf samples to obtain robust and 
accurate species-specific PLSR models. High intraspecific trait vari
ability (ITV) (Table 1) seemed to result in a lower minimum needed test 

Fig. 4. Boxplots for the predictive accuracy (VEcv) of the RMSEP PLSR models for each species, trait and sample size interval based on 100 bootstraps. The red line 
shows the VEcv of each PLSR model performed on the full dataset (see Table 1 for dataset sizes). EWT = equivalent water thickness, LDMC = leaf dry matter content, 
LMA = leaf mass per area. 
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dataset size, likely explaining the lower sample sizes needed for LMA 
compared to LMDC. Across all techniques, LMA was clearly the easiest 
trait to predict. This is reflected in higher predictive accuracy, higher 
transferability and smaller needed minimum test dataset sizes. Note that 
our resampling strategy did not directly account for trait range. As such, 
small sample sizes will often result in reduced trait ranges of the vali
dation dataset, and thus potentially lower accuracy than would be 
observed when resampling using a fixed trait range (Schweiger, 2020). 
However, this presents the most likely scenario during real data 
collection, where the full extent of the intraspecific trait range will be 
unknown before analysis. 

5. Conclusions 

Although the PROSPECT-D model inversion and the multibiome 
LMA PLSR model were quite accurate in intraspecific LMA predictions 
for shrubs, their performance was lower for herbs, potentially due to 
limited herbaceous species in their original calibration datasets. 
PROSPECT-D was furthermore slightly less successful in retrieving EWT 
at the intraspecific level. The use of bidirectional reflectance in our study 
likely resulted in lower PROSPECT inversion accuracy. Despite the 
reasonably strong correlation accuracy (R2), true predictive accuracy 
(VEcv) was very low for most species × trait combinations, indicating 
the importance of species-specific, or potentially only life form-specific 
(e.g. shrubs and herbs) correction factors addressing the additive and 
multiplicative estimation biases. 

If high predictive accuracy is needed for LMA, LDMC or EWT, we 
suggest that species- (and range-) specific (RMSEP) PLSR models are 
built, since this clearly allows higher predictive accuracy. Although 
transferability of species-specific PLSR models was limited between 
certain species, our results nonetheless point in the direction of poten
tially high transferability among herbaceous species, although this 
should be tested more widely in the future. The construction of species- 
specific PLSR models comes at the cost of a relatively large needed 
sample size of 60–160 leaves however, depending on the trait. 

6. Data accessibility 

Leaf-level spectral and trait data are available from respectively the 
EcoSIS spectral library (https://ecosis.org/package/e88b832d-d7da 
-48b5-af59-25a8079a0ab6) and the TRY Plant Trait Database (http 
s://www.try-db.org/). An R script allowing to run our different spe
cies × trait level RMSEP PLSR models is furthermore available on https: 
//github.com/LeonardoUU/Helsen-Bassi_et_al_2021_ecological_indic 
ators. 
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