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Abstract

Compound flooding may result from the interaction of two or more contribut-

ing processes, which may not be extreme themselves, but in combination lead

to extreme impacts. Here, we use statistical methods to assess compounding

effects from storm surge and multiple riverine discharges in Sabine Lake,

TX. We employ several trivariate statistical models, including vine-copulas and

a conditional extreme value model, to examine the sensitivity of results to the

choice of data pre-processing steps, statistical model setup, and outliers. We

define a response function that represents water levels resulting from the inter-

action between discharge and surge processes inside Sabine Lake and explore

how it is affected by including or ignoring dependencies between the contrib-

uting flooding drivers. Our results show that accounting for dependencies

leads to water levels that are up to 30 cm higher for a 2% annual exceedance

probability (AEP) event and up to 35 cm higher for a 1% AEP event, compared

to assuming independence. We also find notable variations in the results

across different sampling schemes, multivariate model configurations, and sen-

sitivity to outlier removal. Under data constraints, this highlights the need for

testing various statistical modelling approaches, while the choice of an optimal

approach remains subjective.
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1 | INTRODUCTION

Flooding is one of the deadliest and costliest natural
disasters, particularly in coastal areas with a relatively
higher concentration of exposed populations and assets
(Hallegatte et al., 2013; Hinkel et al., 2014; Wahl

et al., 2017). Depending on the location, both extra-
tropical and tropical storms can result in flooding events
with a wide range of socio-economic consequences. In
coastal areas, flooding can result from the interaction
between freshwater fluxes (high rainfall or high dis-
charge) and high coastal water levels (tide + surge +
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waves, or combinations thereof), when two or more flood
drivers exceed high thresholds simultaneously or in close
succession (Raymond et al., 2020; Zscheischler
et al., 2020). For instance, the unusual series of winter
storms in the United Kingdom in 2013/2014 led to wide-
spread flooding and damage of coastal defences due to
the joint action of extreme sea levels and waves (Haigh
et al., 2016; Santos et al., 2017). In 2017, Hurricanes Har-
vey and Irma were categorised among the costliest disas-
ters in the US history (Amadeo, 2018), leading to
significant damages and loss of lives caused by extreme
rainfall and storm surge (Dilling et al., 2017; Sebastian
et al., 2017; Wahl et al., 2018). Despite the important
implications for coastal flood risk management, depen-
dence between flooding drivers is often ignored and can
lead to a misinterpretation of flood risk (e.g., Moftakhari
et al., 2017; van den Hurk et al., 2015; Wahl et al., 2015;
Zscheischler & Seneviratne, 2017). To address this issue,
a detailed understanding of potential compounding
effects is necessary when building/upgrading flood risk
reduction measures or performing risk analyses to
improve resilience against these high-impact compound
coastal and riverine flooding events.

Global and regional assessments provide insights into
compound flooding potential over larger spatial scales
(Couasnon et al., 2020; Eilander et al., 2020; Hendry
et al., 2019; Kelln et al., 2020; Marcos et al., 2019; Ward
et al., 2018), sometimes also analysing past trends (Wahl
et al., 2015), or predicting future variability (Bevacqua
et al., 2019; Moftakhari et al., 2017). However, every estu-
arine system is unique and local assessments of the inter-
action between flooding drivers provide a deeper
understanding of the underlying processes driving com-
pounding effects at a specific location (e.g., Bender
et al., 2016; Bevacqua et al., 2017; Couasnon et al., 2018;
Jane et al., 2020; Moftakhari et al., 2019; Serafin
et al., 2019). Insights from such local studies can aid engi-
neers and risk management officials in performing more
robust flood risk assessments that consider compounding
effects in the planning, design, and operation of flood risk
reduction measures. Approaches for assessing compound
flooding include the implementation of hydrodynamic
and/or hydrologic models (e.g., Gori et al., 2020; Leijnse
et al., 2021; Santiago-Collazo et al., 2019), application of
statistical models capable of modelling dependence struc-
tures between flooding drivers (Heffernan & Tawn, 2004;
Sklar, 1959), or a combination of both (e.g., Moftakhari
et al., 2019; Muñoz et al., 2020; Serafin et al., 2019; van
den Hurk et al., 2015).

Given their low computational cost and relatively
easy implementation, statistical models provide an ideal
way for an initial screening to assess whether, and to
what extent, compounding effects are relevant. The

statistical appraisal of compound events usually requires
implementing event sampling techniques to ensure
observations are independent and identically distributed
(IID). Thus, studying extreme co-occurring events in a
robust statistical framework requires long overlapping
records from which a sufficiently large number of events
can be derived to capture the dependence structure
between drivers. Yet, in many cases only relatively short
observational records are available that are unlikely to be
representative of the full range of environmental forcing
conditions. For instance, Ward et al. (2018) highlight that
on a global scale, overlapping discharge and sea-level
records are usually shorter than 50 years. Overlapping
data duration is especially crucial along hurricane-prone
estuarine settings, where observational records may not
contain sufficient events associated with tropical cyclone
activity due to the rarity of such events, which may result
in an underestimation of compounding effects and
flooding risk. Despite advances in numerical modelling
capabilities leading to longer and more consistent hydro-
logical forcing records, data scarcity is an acute issue in
studies of this nature. In particular, there is a need for a
network to record all relevant variables concurrently, and
ideally also provide information about the total water
level response when combined. The uncertainty intro-
duced by scarce data can lead to consequential uncer-
tainties in assessing flood risk (e.g., Santos et al., 2021).
These uncertainties can stem from the approaches
utilised to sample events from the raw data (e.g., block
maxima (BM) or peaks-over-threshold (POT)), how com-
binations of flooding drivers are defined (e.g., one-way or
two-way sampling), and the statistical model of choice.

The main aim of the present study is to identify the
strengths and weaknesses of different commonly used
event sampling techniques and state-of-the-art statistical
models when assessing compound flooding from river
discharge and storm surge in a complex estuarine sys-
tem with limited data. We focus our analysis on Sabine
Lake, TX, where existing coastal storm risk manage-
ment (CSRM) projects are being upgraded and new
CSRM systems are proposed, and where compound
flooding effects from riverine discharges and coastal
storm surge processes may be relevant (Couasnon
et al., 2020; Ward et al., 2018). The following objectives
are addressed:

1. Develop a response (or impact) function that relates
compound flooding drivers (storm surge and riverine
discharge) with water levels inside Sabine Lake.

2. Assess the sensitivity of estimated total water levels to
different types of multivariate statistical models.

3. Assess the sensitivity of estimated total water levels to
different event sampling techniques.
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4. Assess the sensitivity of estimated total water levels to
removal of outliers from observational data.

2 | STUDY AREA DESCRIPTION

Sabine Lake is located at the border of Texas and Louisiana
(Figure 1) and connected to the northern Gulf of Mexico
through the Sabine Pass inlet. Port Arthur is the largest town
bordering Sabine Lake, with over 50,000 residents (2010 cen-
sus). Port Arthur, Beaumont, and Orange are together
known as the ‘Golden Triangle’ and are home to a wide
range of nationally critical petrochemical and industrial
assets. Two main rivers flow into Sabine Lake, the Neches
and Sabine Rivers. Both rivers are similar in length and
catchment size (Figure 1b). TheNeches River has a basin size
of 10,011 mi2 and a length of 416 miles, whereas the Sabine
River has a catchment size of 9,756mi2 and is 510 miles long.
Historic events, including most recently hurricane Laura,
demonstrate that the study area is prone to flooding by both
extra-tropical and tropical storms. For instance, record rain-
falls during the first week of March in 2016 in the Sabine
River basin resulted in Deweyville, TX, being only accessible
by air or boat (Breaker et al., 2016; McIntosh &
Lander, 2016). In 2017, Port Arthur suffered severe flooding
during Hurricane Harvey. Although primarily driven by
extreme rainfall and river discharge, flooding was likely
exacerbated by a moderate storm-driven surge which hin-
dered water drainage from Sabine Lake into the Gulf ofMex-
ico over several days (Jonkman et al., 2018; Sebastian
et al., 2017; Valle-Levinson et al., 2020).

3 | DATA

Our main focus is to assess the interaction between dis-
charge, provided by the Neches and Sabine rivers flowing
into Sabine Lake, and storm surge (or non-tidal residual;
NTR). Other processes and/or inflows that may affect the
water levels inside the lake include locally generated
waves, discharge from smaller streams like Taylor Bayou,
direct precipitation onto the lake, and overland flow.
However, their contribution is small compared to the dis-
charge from Sabine and Neches rivers entering the lake
(TWDB, 1981). Depending on the hydrodynamic charac-
teristics of the system, tides can also influence flooding
consequences during compound events. However, the
tidal amplitude at our study site is relatively small com-
pared to extreme NTR events and tide-surge interaction
is relatively minor. It is noted that Sabine Pass often
makes the list as one of the locations with the highest
number of days of ‘chronic nuisance flooding’ within the
continental United States (Sweet et al., 2020). We focus
here on analysing the dependence and associated com-
pounding effects stemming from the meteorologically
driven components of surge and discharge.

We use river discharge because it represents near-
term runoff from a storm event that contributes to the
riverine water levels at the confluence with Sabine Lake,
where it interacts with coastal water levels. Discharge
data are obtained from the U.S. Geological Survey Stream
Gauge (SG) network (https://waterdata.usgs.gov/nwis/
rt). SGs located near the mouths of the Neches and
Sabine rivers and associated tributaries are shown in

FIGURE 1 Overview of the study area, including locations of tide and stream gauges (a), schematic of the Sabine and Neches river

watersheds (WS) (b), and length of available data records in the area (c)
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Figure 1a. Discharge is available in hourly and daily time
steps, but the record of the latter is significantly longer
for most SGs (Figure 1c) and hence used in the analysis.

Coastal water levels are obtained from hourly sea-
level data reported at National Oceanographic and Atmo-
spheric Administration (NOAA) tide gauges (TGs)
(https://tidesandcurrents.noaa.gov/) located in and
around Sabine Lake (Figure 1a). TGs measure the total
still water level, which includes mean sea level (MSL),
tides, and NTR including effects of wave setup, currents,
atmospheric pressure, winds, precipitation, and runoff
processes. As we are interested in assessing the interac-
tion between discharge and coastal NTR, we remove
trends (due to sea-level rise), MSL seasonality, and the
tidal signal from the observed water levels. To detrend
the data for sea-level rise impacts we use a linear fit. Sea-
sonal MSL is removed by subtracting a running monthly
mean. Tidal effects were removed using the NOAA tidal
predicted water level values in order to derive hourly
NTR values. From the latter we derive the maximum
daily NTR which can be directly paired with daily
discharge data.

To assess compounding effects, we quantify how the
interaction between flooding drivers can lead to, or can
exacerbate, a response (or impact) variable of interest. In
our case study, the flooding drivers are coastal NTR and
discharge from both Sabine and Neches rivers, whereas
the response variable is the NTR inside Sabine Lake,
which is affected by the interaction between both the
coastal and riverine components. We use NTR data from
the tide gauge Sabine Pass North (TG 2 in Figure 1a) to
represent the coastal hydrological forcing, as it provides
the longest record in the direct vicinity of the study site.
Discharge is taken from stream gauges at Evadale (SG 5
in Figure 1a) and Ruliff (SG 7 in Figure 1a) to represent
inflows coming from the Sabine and Neches rivers (here-
inafter referred to as DS and DN, respectively). Inside
Sabine Lake, the tide gauge at Port Arthur (TG 3 in
Figure 1a) measures the NTR generated by the interac-
tion between both flooding drivers, which is considered
here as the response variable (hereinafter referred to as
WL). The WL across a lake can be affected by local wind
forcing, thus in a perfect scenario the WL inside the lake
would be represented by the average of measurements
taken at different locations around the lake. To explore
the variation, we examined the differences in WLs from
two TGs located in the lake: TG3 located in east of the
lake and TG4 located in the northeast of the lake, close to
the mouth of the Neches River (Figure 1). Given where
they are located in the lake, winds blowing latitudinally
or diagonally might affect them differently, while longitu-
dinal winds would induce the same effect on both. For
the extreme events identified in overlapping records (see

Section 4.1 for more details about sampling techniques),
a root-mean-square error (RMSE) of 0.05 m was found
between the extreme WL events at the two gauges lead-
ing us to conclude that local wind effects are negligible
for the particular focus of our analysis. We use TG3 to
define the response variable in our analysis, as TG4
records are likely more influenced by discharge due to its
proximity to the mouth of the Neches River.

4 | METHODOLOGY

There are different choices one must consider when
assessing compound flooding using multivariate statisti-
cal models, starting with the selection of the model to
capture correlations between drivers. Here, we compare
two different multivariate statistical models that are com-
monly used: copulas (Sklar, 1959) and the Heffernan and
Tawn (2004) model (hereafter HT04). Another important
choice is the methodology employed to sample a set of
events from the raw data, from which dependence will be
modelled. While some models require a specific approach
to sampling (i.e., HT04 utilises declustered exceedances
over a threshold), the choice of sampling is subjective
when using copulas. For copula models, we test two dif-
ferent sampling techniques, namely POT and BM (see
Section 4.1).

The framework followed to assess compound flooding
using either approach (copula or HT04 modelling) is sim-
ilar in implementation and outlined in Figure 2. The
framework is divided into four main steps. First, extreme
events are sampled from the time series ensuring they
are IID and by conditioning on each variable in turn
(green colour in Figure 2). Second, the sampled events
are used to train a response function that links flooding
drivers (used as predictors) and the associated response
variable (the predictand; here WL in Sabine Lake) (grey
colour in Figure 2). For simplicity and to ease compari-
son between the different sampling approaches consid-
ered here we use multiple linear regression models
(Seber & Lee, 2012) for this purpose. Third, suitable mar-
ginal distributions are derived for the IID flooding driver
events (i.e., surge and discharge) (orange colour in
Figure 2). We test a wide range of probability distribu-
tions commonly used in hydrologic analysis and select
the best fitting according to the Aikake information crite-
rion (AIC) (Sakamoto et al., 1986). The declustered
exceedances are fitted to a generalised Pareto distribution
(GPD) (Coles et al., 2001). Fourth, different multivariate
statistical models are tested and used to capture depen-
dence between flooding drivers. Once an appropriate
model has been selected, it is used to create a large set of
synthetic events; first in probability space and then
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transforming all variables into real units via the previ-
ously identified marginal distributions (blue colour in
Figure 2).

After completing these analysis steps, we use the syn-
thetic surge-discharge combinations along with the
response function (from step 1) to predict the response
variable WL; this is shown by the connection between
orange and grey boxes in Figure 2. Compounding effects
are assessed by repeating this procedure for two scenar-
ios, one accounting for existing dependences between
flooding drivers and another one assuming independence
between flooding drivers. Comparing the results from
these two approaches allows quantification of the com-
pounding effects for a range of relevant annual exceed-
ance probabilities (AEPs).

In the following two subsections we provide an over-
view of both statistical models, highlighting the different
pre-processing steps. The analysis is performed using a
trivariate statistical modelling approach (considering
NTR, DN, and DS). We also tested a simplified bivariate
approach where both river inflow time series are addi-
tively combined; we only show the final results for this
analysis to compare against the trivariate approach.

4.1 | Sampling and dependence
modelling with copulas

Data pre-processing for the application of copula models
in the context of our analysis requires defining appropriate
variable combinations that optimally explain the behav-
iour of the response variable. Sampled events from the
time series should be IID and contain information of the
memory of the system when significant lags between

flooding drivers and the response variable exist. We
employ the two most frequently used methods (Ferreira &
de Haan, 2015) to identify extremes: BM (Gumbel, 1958)
and POT (Pickands III, 1975). The BM approach consists
of dividing the time series of a given variable into non-
overlapping periods of equal size (blocks) from which the
maximum observation in each period is computed. As data
are limited for our case study, blocks are defined on a
monthly basis (e.g., Menéndez & Woodworth, 2010)
instead of using annual maxima. BM ensures events are
IID, but information about multiple extreme events hap-
pening in the same period is lost. The POT approach
addresses this issue by selecting exceedances above a
threshold. The threshold should be high enough so that
selected events can be considered extremes (to not violate
the asymptotic justification of the extreme value model)
while also obtaining enough events to derive robust distri-
bution parameters to reduce variance. Previous studies
used thresholds resulting in approximately 3–5 events per
year (e.g., Cao et al., 2020; Serafin & Ruggiero, 2014). POT
exceedances must be declustered to ensure that the
selected events abide by the IID rule (Davison &
Smith, 1990). Declustering approaches may differ
depending on the variable in question and its behaviour at
a specific site. Here, we use the meteorological indepen-
dence criterion (Ciavola & Coco, 2017) to decluster events,
using a 3-day window for surge (e.g., Haigh et al., 2016).
The appropriate declustering window for discharge is
highly site specific and depends largely on the catchment
characteristics. After applying a range of high thresholds
and assessing the average duration of the exceedances, a
7-day window was used to decluster discharge series as
events rarely lasted longer than a week. For a few events,
these declustering windows were inappropriate, and in

FIGURE 2 Steps involved

in data pre-processing (green),

marginal analysis (orange),

dependence modelling (blue),

and developing a response

function (grey)
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these instances, exceedances were declustered manually
by taking the maximum value from the observations
exceeding a high threshold during a given event. For
example, Hurricane Harvey's surge and extreme discharge
lasted longer than 3 and 7 days, respectively.

In coastal regions, the complex interplay between
storm surge and discharge can lead to compounding
effects through multiple processes, which can be classi-
fied into three main mechanisms (Wahl et al., 2015;
Zscheischler et al., 2020); in case (1) both drivers are
extreme and in cases (2) and (3) only one is extreme but
the other one still contributes to cause or increase
impacts:

(1) The joint occurrence of extreme freshwater drivers
and extreme NTR may elevate WLs to a point where
flooding occurs and/or impacts are exacerbated;

(2) An extreme storm surge causes widespread
flooding and impacts are aggravated by moderate rainfall
and/or discharge; and

(3) The impacts of an extreme discharge or precipita-
tion event are amplified through the interaction with a
moderate storm surge which blocks or slows down
drainage.

Two distinct approaches have been used in the past
when selecting extreme event combinations that cover all
the above-mentioned mechanisms: the impact-based
approach (e.g., Bevacqua et al., 2017) and the n-way sam-
pling approach (e.g., Wahl et al., 2015; Ward et al., 2018),
where n indicates the number of flooding driver variables
considered. The impact-based approach takes IID
extreme events from the response variable (in our case
WL inside Sabine Lake) and identifies coincident
(or near-coincident) values of the flooding drivers (here
NTR, DN, and DS). The n-way sampling approach is simi-
lar in implementation but is applied to all flooding
drivers and carried out n times, conditioning on one vari-
able at a time. For instance, if NTR is the conditioning
variable, we first identify IID extreme NTR events and
then match them with (near-)coincident observations of
the other (conditioned) flooding drivers. In this study, the
n-way sampling approach is utilised as the available data
length for the impact variable is shorter (~6 years; TG
3 in Figure 1c) compared to the overlapping records of
flooding drivers (~34 years; TG 2, SG 5, and SG 7 in
Figure 1c). Moreover, we found that NTR peaks (at the
coast) usually coincide with WL peaks (inside Sabine
Lake), which means that the impact-based approach
would likely lead to a very similar set of events compared
to the n-way sampling approach when conditioning
on NTR.

When matching the conditioning variable with the
conditioned variables we use the following approach.
When NTR is the conditioning variable we pair

declustered maximum daily NTR with the coincident
river discharges (DS and DN, respectively). When dis-
charge is the conditioning variable, we first find the
highest NTR within a 10-day window of the discharge
peak(s) and then select the discharge values that coincide
with the identified NTR. As outlined in the previous par-
agraph, NTR was identified as the main driver for WL
inside Sabine Lake and hence by following this approach
we identify the flooding driver combinations which most
likely resulted in the highest WL.

Once the multivariate samples of the flooding drivers
have been identified, copulas can be used to model their
dependence structure. Copulas are attractive for this kind
of analysis as they enable the dependence structure
between the contributing variables and their marginal
characteristics to be modelled separately (Nelsen, 2007).
Sklar, 1959 describes the connection between a copula C
and a bivariate cumulative distribution function (CDF)
FXY x,yð Þ of any pair of variables X ,Yð Þ as follows:

FXY x,yð Þ¼C FX Xð Þ, FY Yð Þ,½ �,

where FX xð Þ and FY yð Þ are the univariate marginal distri-
butions. The bivariate probability density function (PDF)
has the following form:

f XY x,yð Þ¼ c FX xð Þ,FY yð Þ½ �f X xð Þf Y yð Þ,

where f X xð Þ and f Y yð Þ represent the marginal PDF's. To
simulate a realisation x,yð Þ from X ,Yð Þ, first simulate a u
variate on [0,1].

The following conditional distribution of {V given u}:

cu vð Þ¼P V ≤ vjU ¼uf g¼ ∂

∂u
C u,vð Þ

is exploited to obtain v by setting v = c �1½ �
u uð Þ. Subse-

quently, u,vð Þ are transformed to x,yð Þ using the proba-
bility integral transform:

x¼F �1½ �
X uð Þ

y¼F �1½ �
Y vð Þ

(
:

More details about simulations using copulas and sam-
pling algorithms are described by Salvadori et al. (2007).

For the copula analysis we use rank order statistics to
convert combinations of NTR and discharge events to the
unit hyper-square (for bivariate analysis) or unit hyper-
cube (for trivariate analysis). Then we derive copula
parameters for a set of 40 different copulas (using the
VineCopula R package version 2.3.0; Schepsmeier
et al., 2015) using the maximum pseudo-likelihood
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estimator (Kojadinovic & Yan, 2010). The best-fit copula
model is selected by comparing the dependence struc-
tures of observations and simulations through AIC, and
employing a goodness-of-fit test (Genest et al., 2009) to
assess whether the selected copula model is appropriate.

The equations and explanation above refer to the
bivariate case, which is considered here only for compari-
son purposes (and only final results are shown in
Figure 10) by combining discharge time series from the
Neches and Sabine rivers. For our main analysis we con-
sider NTR and discharge from both rivers separately; this
trivariate approach is implemented using vine copulas
(Aas et al., 2009). Vine copulas are a type of pair-copula
construction which allow a multivariate probability den-
sity to be represented as the product of a cascade of
pair-copulas and marginal densities. This hierarchical
construction provides more flexibility compared to the
limited set of higher-dimensional copulas, as the bivari-
ate copulas can be selected from a wide range of copula
families. The regular vine (Bedford & Cooke, 2001) is a
graphical model organising the many possible pair copula
decompositions, which quickly becomes large as the
number of dimensions increases. In the model,
the dependence structure is determined by the bivariate
copulas and a nested set of trees. The canonical (or C-)
vine and D-vine are two special cases of regular vines,
each providing a specific recipe for decomposing the mul-
tivariate probability density. Each of the three possible
decompositions of a three-dimensional copula density are
simultaneously a C- and a D-vine (e.g., Jane et al., 2020).
There are three possible regular vine models on three
variables depending on the ordering of the variables. The
VineCopula R package implements the sequential
method in Dissmann et al. (2013) to select among the reg-
ular vine structures. The method selects the arrangement
yielding spanning trees which maximise the sum of abso-
lute the empirical Kendall's rank correlation coefficient
(τ; Kendall, 1938) between the variable pairs at each step.
The best fitting bivariate copula family between each var-
iable pair is then determined by the AIC. For more infor-
mation on fitting and simulating from vine copulas
consult Aas et al. (2009).

4.2 | Sampling and dependence
modelling with the HT04 model

We employ the HT04 model as an alternative way to cap-
ture marginal and dependence characteristics of the rele-
vant flooding drivers when at least one is extreme. The
HT04 model fits multivariate regression models to
the conditional samples, capturing the dependence through
the regression parameters and associated residuals rather

than prescribing a parametric distribution. In common
with the copula approaches, the marginal and dependence
modelling are carried out independently. Let Xt = (Xi, …,
Xj)t be a time series of a set of flooding drivers. The mar-
ginal behaviour of each flooding driver is analysed individ-
ually by applying the POT method to define declustered
extremes and fitting a GPD to the excesses above a suffi-
ciently high threshold ui. The empirical distribution eFi of
Xi is combined with the GPD above the threshold (ui),
resulting in the following semiparametric function
(Coles & Tawn, 1991):

bFi xð Þ¼
eFi xð Þ x ≤ ui

1� 1� eFi uið Þ
� �

1þξi
x�uið Þ
βi

h i�1=ξi x >ui

8<:
where i denotes a given flooding driver, βi >0 and ξi �R
are the GPD parameters. In the dependence analysis, the
variables are converted to common scales to remove the
marginal information and ensure only information
regarding the dependence structure remains. When
implementing the HT04 approach, the variables are typi-
cally converted to standard Gumbel marginal distribu-

tions obtained by setting Yi ¼�log �log bFi Xið Þ
h i� �

.

Letting Y�i be the vector of all drivers expect Yi on the
transformed scale, the HT04 model is generally
implemented utilising the multivariate nonlinear regres-
sion model:

Y�i jYi ¼ aYiþYb
i Z for Y i > v,

where v is a high threshold on Yi, a� 0,1½ � and b<1 are
parameters, and Z is a vector of residuals. Parameter esti-
mation is carried out using maximum-likelihood estima-
tion under the temporality assumption that Z follows a
normal distribution with unknown mean and variance.
Asymptotically, Yi > v is statistically independent of Z,
thus v should be large enough for this condition to hold.
A detailed description of the rejection sampling method-
ology involving conditioning a variable to exceed v and
independently sampling joint residuals to simulate
extreme events is given in Wyncoll and Gouldby (2015),
among others. The HT04 model is only applied for the
trivariate analysis, not in the simplified bivariate
approach outlined above.

5 | RESULTS

The results section is structured as follows. The first sub-
section shows the performance of the response function
that relates the flooding drivers to the response variable.
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The second subsection summarises the results from the
copula analysis for both BM and POT sampling methods
as well as when removing outliers. The third sub-
section shows results from the HT04 model (including
sensitivity to outlier removal) and concludes with a com-
parison of the compounding effects derived by all the dif-
ferent approaches.

5.1 | Response function

A response function that relates the three flooding drivers
(NTR, DN, and DS) to the response variable (WL) requires
overlapping data for all four variables. This overlapping
data duration is ~6 years in our case. We use the impact-
based sampling approach to identify high WL values and
coincident flooding drivers. Simple (in the bivariate
cases) and multiple (in the trivariate cases) regression
models are used here. Results of the model performance
from a 10-fold cross validation are shown in Figure 3 for
the different cases considered in the analysis. Overall, the
monthly BM approach (Figure 3a,c) leads to better results
compared to the POT sampling approach. This is due to
the BM approach ignoring some extreme events, that is,
when two extremes happened in the same month only
the most extreme is sampled and conversely it includes

more moderate events when no extreme occurred in a
given month. The latter are better captured by the regres-
sion model implemented here for the response function.
On the contrary, the POT sampling results in an underes-
timation of the most extreme WL events in the lake; the
notable outlier (circled in red) in Figure 3b,d denotes
hurricane Harvey.

5.2 | Copula analysis to assess
compounding effects

First, we present the results for the BM approach
(Figures 4 and 5). As we are using an n-way sampling
procedure that leads to three distinct samples, we only
show results for the conditioning case that captures the
strongest compounding effects; for the BM approach this
happens when we condition on DS. Other cases are also
analysed and included in the comparison Figure 10 but
detailed results are not shown. We identify 406 dis-
charge-surge pairs and their Kendall's τ reaches values of
0.17, 0.18, and 0.49 for the NTR-DN, NTR-DS, and DS–DN

pairs, respectively; all statistically significant at the 95%
confidence level. Figure 4a–c shows the marginal distri-
butions that are selected for the individual flooding
drivers; results are shown for all selected events (black)

FIGURE 3 Performance of

the response functions assessed

by a 10-fold cross validation for

the bivariate BM (a) and POT

(b) sampling, and the trivariate

BM (c) and POT (d) sampling.

For POT, we chose a threshold

leading to between three and

five events per year on average,

which translates to

approximately the 97th

percentile threshold applied to

the response variable WL. BM,

block maxima; POT, peaks-

over-threshold
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and when removing outliers (green; hurricanes Ike and
Harvey removed). Removing the outliers leads to better
marginal fits but AEP WLs decrease. Based on the AIC
we select the generalised extreme value (GEV) distribu-
tion for NTR (Figure 4a) and Weibull distribution for

river discharges (Figure 4b,c). Figure 4d–f shows scatter
plots of the observed and modelled (via vine copulas) var-
iable pairs highlighting that the selected copula models
can reproduce the observed dependence structures. The
vine-copula structure which best describes the depen-
dence between drivers contains two Frank copulas and
the Joe copula.

Using the simulated pairs of flooding drivers (red dots
in Figure 4d–f) we derive the response variable WL with
the response function outlined in Section 5.1, and repeat
the analysis under the assumption of independence.
Figure 5 shows that the WL AEP curves accounting for
dependence and using all data (red) are higher than
when assuming independence (blue), indicating the exis-
tence of compounding effects. For the 1% AEP event, the
WL derived with the dependence case is 15 cm higher
than the one derived under the independence assump-
tion. To assess the sensitivity of the results to outliers the
analysis was repeated with outliers removed. More specif-
ically, we are interested in removing the effect of extreme
tropical cyclones in the records (Hurricanes Ike and Har-
vey), as these events belong to a different population for
which available records do not provide a robust enough
sample to identify an appropriate theoretical distribution.
We have identified these on the basis of boxplots of the
univariate data sets (not shown), where an outlier is
defined as any observation further than three standard
deviations from the mean. The differences across the

FIGURE 4 (a–c) Plotting positions (crosses) and the theoretical distributions selected as marginal distributions with 95% confidence

levels (green: all events; black: outliers removed). (d–f) Observed data pairs (black) and 48,000 simulated (equivalent to 4000 years of data)

pairs (red) from the fitted vine copula in the probability space

FIGURE 5 WL AEP curve for the n-way BM sampling

approach when conditioning on DS and modelling dependence

with vine copulas. The response variable WL derived with multiple

regression models using triplets of the flooding drivers as predictors

when assuming independence (blue when all data are used; grey

when outliers are removed) and when preserving dependence

through the vine copula (red when all data are used; black when

outliers are removed). AEP, annual exceedance probability; BM,

block maxima
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modelling approaches with dependence included or
ignored persist when outliers are removed but become
smaller, demonstrating the sensitivity of the AEP to indi-
vidual extreme events in both the marginal distributions
(Figure 4) and response variable (Figure 5) when short
data records are used.

In the remainder of this subsection, we show the results
for the POT approach (Figures 6 and 7). The application of
POT to define events requires the selection of a relevant
threshold by which exceedances are determined and
declustered. We chose this threshold in such a way that
approximately three events per year are selected on average.
Similar to the monthly maxima approach, we show detailed
results when DS is the conditioning variable, as this condi-
tioning case captures the strongest compounding effects.
The 80th percentile was applied to derived declustered
events, resulting in 96 events. This relatively low threshold
is explained by the need to use a large storm window to
decluster discharge events, which lowers the length of data
that can be utilised to sample events. Kendall's τ reaches
values of 0.03, 0.08, and 0.43 for NTR-DN, NTR-DS, and DS–
DN pairs, respectively; only the correlation between the two
discharges is significant at the 95% confidence level. Despite
the rank correlation values being different, the overall pic-
ture in terms of the strength of dependence between differ-
ent drivers is the same as in the monthly maxima
approach. Based on the AIC we select the Log-normal

distribution as the marginal distribution for NTR
(Figure 6a) and Weibull distributions for the river dis-
charges (Figure 6b,c). The vine-copula structure that best
describes the dependence between drivers again contains
two Frank copulas and the Joe copula. The simulations pro-
vided by the copula models (Figures 4d–f and 6d–f) rarely
exceed the highest observations despite synthetic records
being significantly longer. In the copula models shown
here, the outliers show there could be underestimation
especially in the tail of the distributions: data shortness
leads to few extremes, which affects the robustness of the
marginal fit. Differences in the WL return levels from using
simulated triplets under the dependence and independence
assumptions are similar to those derived with the monthly
maxima approach (i.e., approximately 15 cm for the 1%
AEP event) (Figure 7). The effect of outlier removal is also
evident here, but smaller as compared to the monthly max-
ima case (Figures 6a–c and 7).

Overall, both the BM and POT approaches lead to
similar conclusions in terms of the existence and strength
of compounding effects. However, differences exist in the
strength of dependence between the flooding driver pairs,
where lower rank correlation coefficients are found in
the POT approach. The fact that significant dependence
only exists between the river discharges, yet both
approaches indicate similar compounding effects, high-
lights that co-occurrences of extreme discharges in the

FIGURE 6 (a–c) Plotting positions (crosses) and the theoretical distributions selected as marginal distributions with 95% confidence

levels (green: all events; black: outliers removed). (d–f) Observed data pairs (black) and 12,000 simulated (equivalent to 4000 years of data)

pairs (red) from the fitted vine copula in the probability space
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two rivers play an important role in generating these
compounding effects. Although the correlation with NTR
is low in the POT approach, the concurrent NTR values
are often moderately high, hindering efficient convey-
ance of the high river discharge into the Gulf of Mexico.

5.3 | HT04 analysis to assess
compounding effects

Lastly, we apply the HT04 model to confirm the existence
and quantify potential compounding effects between
flooding drivers including an assessment of the sensitivity
of the results to outlier removal. Results from the HT04
model are shown in Figures 8 and 9. The response func-
tion used to transform HT04-derived simulations into
real units is the 3D function leading to the highest perfor-
mance (3D-BM in Figure 3). The marginal distributions
are GPD for all flooding drivers (Figure 8a–c), as events
are defined based on declustered POT exceedances fol-
lowing the sampling technique that is specific to the
HT04 model; results are again shown for all data (black)
and when outliers are removed (green). The comparison
between observed and modelled pairs (black and red dots
in Figure 8d–f) shows that the dependence structures
between variable pairs are captured. In contrast with the
previously shown copula models, various simulations
exceed the highest discharge/NTR observations, indicat-
ing this model, which uses GPDs as marginals, may be
more appropriate in the face of short records. Figure 9
shows notable differences in the AEP WLs of the
response variable between the dependence (red) and
independence (blue) assumptions when using all data.
Compounding effects are stronger compared to those
identified with the copula modelling approaches, leading

FIGURE 7 WL AEP curve for the n-way POT sampling

approach when conditioning on DS and modelling dependence

with vine copulas. The response variable WL derived with multiple

regression models using triplets of the flooding drivers as predictors

when assuming independence (blue when all data are used; grey

when outliers are removed) and when preserving dependence

through the vine copula (red when all data are used; black when

outliers are removed). AEP, annual exceedance probability; POT,

peaks-over-threshold

FIGURE 8 (a–c) Plotting positions (crosses) and the theoretical (GPD) distributions selected as marginal distributions with 95%

confidence levels (green: all events; black: outliers removed). (d–f) Observed data pairs (black) and simulated (equivalent to 2000 years of

data) pairs from the fitted HT04 model in the probability space. GPD, generalised Pareto distribution
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to differences between dependence and independence
cases of approximately 35 cm for the 1% AEP event
(Figure 10). However, the response function changes
notably, and compounding effects disappear when hurri-
canes Ike and Harvey are removed, indicating higher sen-
sitivity of the HT04 approach to outlier removal.

Figure 10 shows the comparison of the compounding
effects derived when subtracting the response function
obtained under the independence assumption (WLi; blue
curves in Figures 5, 7, and 9) from the one obtained when
modelling the dependence (WLd; red curves in Figures 5,
7, and 9). We refer to the resulting curves as ‘delta cur-
ves’ and note that our main focus is on these differences
that represent compounding effects, as opposed to the
absolute WL values derived in either case. For each of

the copula modelling approaches we combine the delta
curves for the different conditioning cases (including the
ones not shown in detail above) by identifying for each
AEP the highest value along the different delta curves,
that is, delta curves are merged using an envelope that
follows the highest values. In Figure 10 (the ‘2D’ curves),
we also show the results for the simplified bivariate anal-
ysis where river discharge time series are combined. It is
evident that this simplification does not appropriately
capture the compounding effects that are otherwise evi-
dent, when both river discharge time series are treated
separately.

6 | CONCLUSIONS

Here we develop and implement a framework that
includes a range of different modelling approaches to
explore compound flooding potential from riverine dis-
charge and storm surge (or NTR) in Sabine Lake,
TX. Sabine Lake is part of a complex estuarine system
that receives discharge from two main rivers, the Neches
and Sabine, and is connected to the Gulf of Mexico. Data
constraints with short discharge and sea-level records
make a reliable statistical assessment challenging. This
led us to explore the sensitivity of the results to different
multivariate models, sampling techniques, and removal
of outliers.

In terms of multivariate statistical models, we employ
(vine) copulas and the HT04 model, which are able to
sufficiently capture the dependence structures between
different flooding drivers when at least one can be con-
sidered extreme. For copulas, we use two approaches to
sample extreme events, BM and POT, conditioning the
flooding drivers using an n-way approach that samples
from one variable at a time and ensures the longest
records available in the study area are used. BM (here

FIGURE 9 WL AEP curve for the HT04 approach. The

response variable WL derived with multiple linear regression

models using simulated triplets of the flooding drivers as predictors

when assuming independence (blue when all data are used; grey

when outliers are removed) and when preserving dependence

through the HT04 model (red when all data are used; black when

outliers are removed). AEP, annual exceedance probability; HT04,

Heffernan and Tawn (2004)

FIGURE 10 Difference between

dependence and independence WL

curves (delta curves) for all statistical

models considered in the analysis. Delta

curves derived from approaches that use

the n-way sampling approach are

obtained by taking the highest

difference for a given AEP across the

three conditioning cases. AEP, annual

exceedance probability
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monthly maxima) offers the advantage of selecting a
more balanced set of events that increases the perfor-
mance of a response function relating flooding drivers
and the response variable (WL). However, some extreme
events are lost in the sampling process, which may con-
tain relevant information on potential compounding
effects. The POT approach only selects the most extreme
events which are of most interest from a flooding per-
spective but also the hardest to model; consequently, it is
outperformed by the BM approach in the response func-
tion modelling.

Both BM and POT approaches point to the existence
of compounding effects at the site of similar magnitude;
for example, differences of ~15 cm in the 1% AEP WL of
the response variable when comparing results from the
dependence and independence assumptions. Results indi-
cate that the co-occurrence of extreme discharge events
from both rivers play an important role in generating
compounding effects, in combination with moderate
storm surges. Hence, a simplified bivariate analysis does
not capture compounding effects in the same manner as
the trivariate approaches used here. The disadvantage of
the n-way sampling approach lies in the more compli-
cated aggregation of results, as the methodology has to be
implemented separately for each flooding driver. Such
aggregation is straightforward when using the HT04
model. The latter provides an improved representation of
the most extreme events and leads to larger differences of
~35 cm between dependence and independence return
level curves for a 1% AEP event. However, the HT04
model is more sensitive to the removal of outliers in
terms of compounding effects being detected compared
to the copula approaches. The simulation procedure for
the HT04 method involves resampling observed residuals
(from the regression) rather than sampling from a fitted
distribution and therefore it is expected that the results
are more sensitive to the removal of the two largest
events on record. Overall, large uncertainties in all con-
sidered approaches are associated with data scarcity and
the presence of outliers caused by tropical cyclones. Tak-
ing a conservative approach, we identify the HT04 to be
the best candidate, as it provides a good marginal fit and
representation of the most extreme events in the depen-
dence modelling.

The framework implemented here is generic and can
be transferred to other locations with appropriate obser-
vational data or model hindcasts of the different flooding
drivers. The analysis is particularly useful for initial
assessments regarding the existence and importance of
compounding effects, and can also help guide more com-
plex process-based numerical modelling studies, for
example, by identifying the dominant driver(s) of com-
pounding effects and choosing combinations of process-

based models accordingly. An avenue for future research
is the inclusion of volumetric flow rate in the modelling
framework by accounting for the duration of the events.
Although the incorporation of additional variables would
significantly increase the complexity of the multivariate
statistical model, the consideration of volume is notice-
ably relevant for gate operations and the appraisal of
compound flooding potential.
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