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ABSTRACT 11 

Long-term field observations of nitrogen [N] and phosphorus [P] concentrations were used to 12 

construct nutrient budgets for the western Dutch Wadden Sea between 1976 and 2012. Nutrients 13 

come into the western Dutch Wadden Sea via river runoff, through exchange with the coastal zone 14 

of the North Sea, neighbouring tidal basins and through atmospheric deposition (for N). The highest 15 

concentrations in phosphorus and nitrogen were observed in the mid-1980s. Improved phosphorus 16 

removal at waste water treatment plants, management of fertilization in agriculture and removal of 17 

phosphates from detergents led to reduced riverine nutrient inputs and, consequently, reduced 18 

nutrient concentrations in the Wadden Sea. The budgets suggest that the period of the initial net 19 

import of phosphorus and nitrogen switched to a net export in 1981 for nitrogen and in 1992 for 20 

phosphorus. Such different behaviour in nutrient budgets during the rise and fall of external nutrient 21 

concentrations may be the result of different sediment-water exchange dynamics for P and N. It is 22 

hypothesized that during the period of increasing eutrophication (1976-1981) P, and to a lesser 23 

degree N, were stored in sediments as organic and inorganic nutrients. In the following period 24 

(1981-1992) external nutrient concentrations (especially in the North Sea) decreased, but P 25 

concentrations in the Wadden Sea remained high due to prolonged sediment release, while 26 

denitrification removed substantial amounts of N.  27 

From 1992 onwards, P and N budgets were closed by net loss, most probably because P stores were 28 

then depleted and denitrification continued. Under the present conditions (lower rates of sediment 29 



import and depleted P stores), nutrient concentrations in this area are expected to be more strongly 30 

influenced by wind-driven exchange with the North Sea and precipitation-driven discharge from 31 

Lake IJssel. This implies that the consequences of climate change will be more important, than 32 

during the 1970s and 1980s.  33 

HIGHLIGHTS 34 

- The main sources and sinks of phosphorus and nitrogen were different before, during and after the 35 

eutrophication peak in the mid-1980s 36 

- Eutrophication of North Sea advanced that of the Wadden Sea  37 

- Nutrient imports from river runoff either directly via Lake IJssel or indirectly via the coastal zone of 38 

the North Sea are the main sources 39 

- P budget indicates a long-term (ca. 10 years) storage and release of P from the sediment 40 

- Nutrient reduction did not (yet) results in conditions as found before eutrophication 41 
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1. INTRODUCTION 45 

Estuaries are highly productive ecosystems, mainly because they receive large inputs of nutrients 46 

and organic matter from both river runoff and the open sea (Cloern et al., 2013; Nixon, 1995). Since 47 

the 1960s, there has been much environmental concern about the  effects of increased riverine 48 

nutrient supply on the structure and functioning of estuarine ecosystems in Europe (Rosenberg, 49 

1985) and the United States (Cloern et al., 2013). Particularly, increased inputs of nutrients had 50 

major consequences for the coastal ecosystems, such as an increase of biomass of primary 51 

producers leading to oxygen depletion, changing species compositions and biodiversity and shifts to 52 

bloom-forming algae species, some of which are toxic (e.g. Cloern, 2001). Eutrophication is, amongst 53 

others, referred to as the excessive increase in nutrient inputs (Golterman, 1975) and the increase of 54 

organic matter due to an increased nutrient supply (). Here, we use the first definition. Worldwide 55 

measures in the 1980s following conventions, legislative instruments and other laws on 56 

eutrophication (Ferreira et al., 2011) were successful in reducing nutrient loads in the North Sea and 57 

Baltic Sea, but less effective in other European and US coastal waters, in particular for nitrogen 58 

(Grizzetti et al., 2012; Scavia and Bricker, 2006). 59 



The Wadden Sea, located in the south-eastern part of the North Sea bordering Denmark, Germany 60 

and The Netherlands is a shallow, intertidal sea consisting of intertidal flats, shallow subtidal flats, 61 

drainage gullies and deeper inlets and channels. Due to its outstanding universal values, it became a 62 

UNESCO world heritage site in 2009 (www.waddensea-worldheritage.org). The western part of the 63 

Dutch Wadden Sea is a highly dynamic estuarine environment with nutrient inputs from two main 64 

sources, i.e. from Lake IJssel, receiving water from the river Rhine, and from the coastal waters of 65 

the North Sea connected to the tidal basins via tidal inlets between the barrier islands (Duran-66 

Matute et al., 2014; Postma, 1950; Ridderinkhof et al., 1990). Field measurements and information 67 

from reflectance images retrieved by means of remote sensing suggest the presence of a coastal 68 

zone seaward of the barrier islands in which such an exchange of water, nutrients and organic 69 

matter between the Wadden Sea and the North Sea takes place (Jung et al., 2016; Postma, 1981; 70 

Postma, 1984; van Raaphorst et al., 1998; Visser et al., 1991).  71 

Loadings of nitrogen and phosphorus into the coastal waters of the North Sea, including the western 72 

Wadden Sea, strongly increased from the early 1950s until the early 1980s and decreased since the 73 

mid-1980s (e.g. Philippart et al., 2007; Prins et al., 2012; van Raaphorst and de Jonge, 2004; van 74 

Raaphorst et al., 2000; Vermaat et al., 2008).  Between 1978 and 1987, the main nutrient source in 75 

the western Wadden Sea was Lake IJssel (approximately 50% for phosphorus and 75% for nitrogen; 76 

Philippart et al., 2000). Consequently, during the early 1980s, the relative contribution of loading 77 

from the coastal North Sea was low; the loading of phosphorus was less than 25% and that of 78 

nitrogen less than 5% of the total loading (Philippart et al., 2000; van Raaphorst and van der Veer, 79 

1990).   Reduction of nutrients that started in the late 1970s was uneven in that P loadings were 80 

more effectively reduced than N loadings. This led to a large imbalance in the N : P stoichiometry in 81 

the Wadden Sea (Philippart et al., 2007) and the North Sea (Burson et al., 2016) and has affected the 82 

phytoplankton communities and productivity (Burson et al., 2016; Philippart et al., 2007). In 83 

particular during the spring bloom, phytoplankton in general is now mainly P-limited, whereas a Si–84 

P-co-limitation is likely for the diatom populations, when present (Ly et al., 2014). 85 

Nutrient dynamics are not only influenced by the loadings of dissolved phosphorus and nitrogen, but 86 

also by sedimentary processes (storage, burial, remineralization, and denitrification) and sediment-87 

water exchange of their particulate and dissolved forms. A recent study on sediment budgets 88 

showed that sedimentation rates in the western Wadden Sea are under the long-term influence of 89 

the closure of the southern part of the former Zuiderzee in 1932 (Elias et al., 2012). The closure has 90 

formed the present Lake IJssel and has resulted in an increased net inward transport of sediment 91 

and its associated organic matter, as tidal channels had to adjust to lower tidal volumes. Apart from 92 



these long-term morphological adjustments, sedimentary processes also interact with 93 

eutrophication trends. At the onset of eutrophication, local phosphorus concentrations might be 94 

buffered by net storage of P in the sediment, followed by gradual release after reduction of nutrient 95 

loads (Prastka et al., 1998). In the western Wadden Sea, remineralization plays an important role in 96 

the P cycle (Leote et al., 2015). Here, phosphorus might be stored over a longer time in the sediment 97 

and therefore serve as a buffer between the freshwater source of Lake IJssel and the North Sea 98 

(Kuipers and van Noort, 2008; Tappin, 2002). Local nitrogen concentrations will be influenced by 99 

denitrification, i.e. the reduction of nitrate to dinitrogen gas. Because denitrification rates in coastal 100 

sediments are related to the amount and quality of sedimentary organic matter and the 101 

concentrations of nitrate in waters overlying the sediment, changes in loads of sediments, organic 102 

matter and nutrients influence the magnitude of this flux (Deek et al., 2012). 103 

In this study, we present phosphorus and nitrogen budgets of the western Dutch Wadden Sea for 104 

the period 1976-2012 to analyse changes in the relative importance of import of nutrients from the 105 

North Sea coastal zone compared to that of other sources (Philippart et al., 2000; van Raaphorst and 106 

van der Veer, 1990). Previous budgets assumed that closing residuals of the budgets were related to 107 

the import of organic matter (N, P) and denitrification (N). For the present budgets, the possible 108 

contribution of changes in sedimentation and pelagic-benthic fluxes to the closing residuals of the 109 

budgets are also considered.  110 

 111 

2. MATERIALS AND METHODS 112 

2.1. Study area 113 

The Wadden Sea is a seaward barrier of sandy islands and shoals, stretching for 600 km from 114 

Denmark in the northeast to The Netherlands in the southwest. In this study, we focus on the 115 

Marsdiep and Vlie tidal basin in the westernmost part of the Dutch Wadden Sea. These basins are 116 

connected to the North Sea by two tidal inlets, i.e. the Marsdiep and the Vlie (Fig. 1A). Marsdiep and 117 

Vlie are the tidal basins with the main tidal inlets of the western Dutch Wadden Sea with tidal prisms 118 

of about 1050 × 106 and 1070-1150× 106 m3, respectively (Duran-Matute et al., 2014; Philippart, M., 119 

1988; Postma, 1982). The smaller Eierlandse Gat, located north of the Marsdiep and south-west of 120 

the Vlie tidal basin, has a tidal prism of 160 -200 × 106 m3 and its water exchange with the Marsdiep 121 

and Vlie basins is relatively low (Duran-Matute et al., 2014; Postma, 1982). It was, therefore, decided 122 

to exclude this basin from the nutrient budget analyses (c.f. Philippart et al., 2000). On average, the 123 

temperature of the Marsdiep tidal basin varies between 3°C in February and 18°C in August (van 124 

Aken, 2008b). Freshwater enters the Marsdiep tidal basin directly from discharges of Lake IJssel and 125 



indirectly from river runoffs in the south via the coastal zone (Fig. 1A). The salinity shows high 126 

variability and depends strongly on the amount of fresh water entering the system (van Aken, 127 

2008a). 128 

2.2. Nutrient data 129 

Time series on nutrient concentrations were obtained from the water quality monitoring database 130 

(DONAR, http://www.watergegevens.rws.nl) of the Dutch Ministry of Transport and Public Works. 131 

Details about the locations of the used stations and sampling methods can be found in Philippart et 132 

al., (2000) and van Raaphorst and van der Veer (1990). Total phosphorus (TP) includes dissolved 133 

inorganic phosphate (DIP), dissolved organic phosphorus (DOP) and particulate compounds of 134 

phosphorus (POP). Total nitrogen (TN) is the sum of ammonium (NH4
+), nitrate plus nitrite (NOx), 135 

dissolved organic nitrogen (DON) and particulate compounds of nitrogen (PON). For all stations 136 

which were used to construct the nutrient budgets (Fig. 1A), TP and TN concentrations were 137 

estimated from irregular measurements (see below) for every month from January 1976 to 138 

December 2012 (n = 444).  139 

For Stations b and c (Fig. 1A), nutrient concentrations were measured during the full study period 140 

but sampling occurred at irregular intervals. To construct a regular data set with monthly values for 141 

all stations, generalized additive models (GAM) were fitted for nitrogen and phosphorus separately. 142 

We used GAM because of its ability to fit the non-linear seasonal and long-term trends.  143 

The nutrient concentrations were modelled as a function of "Station" and as a function of the 144 

smoother f1 for "Year" (for the long-term trend) and as a function of the smoother f2 for "DayInYear" 145 

(for the seasonal trend). To smooth the seasonal trend, a penalized cyclic cubic spline was used to 146 

ensure that the ends of the fitted seasonal splines match up. The statistical model for nutrient 147 

concentrations ([TP] and [TN]; mol m-3) at different stations (S), years (Y) and day in the year (D) 148 

reads: 149 

[Nutrient]SYD ~ α + β × S + f1(Y × S) + f2(D × S) + ε   (1) 150 

Measurements at stations a, d and e were, however, terminated in 1988 (a) and 1993 (d and e) (Fig. 151 

1A). We estimated the nutrient concentrations at these locations by using measurements at other 152 

locations. We used the generated monthly values from the GAM (Eq. 1) for Station f in Dutch coastal 153 

waters to obtain values for a, and of Station g in Lake IJssel for e and d. In both cases the 154 

relationships between the concentrations of the respective stations were obtained by fitting a linear 155 

model through the data where both stations were sampled on the same day in the following form: 156 



NutStation 2 ~ α + β × NutStation 1]+ γ × Month + ε (2)  157 

where NutStation 2 is the nutrient concentration (mol m-3) at a station used for the nutrient budget 158 

calculations, i.e. Station a, e and d (Fig. 1B) and NutStation 1 is the measured nutrient concentration 159 

(mol m-3) at the reference stations (i.e. f, g). After estimating α and β, the regression model was used 160 

to predict missing values at stations a, e and d. 161 

To calculate the budgets the ratio of particulate N and P is needed for the water outside of the 162 

Marsdiep tidal inlet and the water inside the Marsdiep tidal inlet. However, the Station a was not 163 

sampled for the full period. Therefore concentrations of particulate P and N were derived from 164 

concentrations at Station f in a comparable way (GAM, followed by GLM), as done for total nutrients 165 

at the other stations but then for this station only. 166 

2.3. Nutrient budgets  167 

The pelagic nutrient fluxes through the western Wadden Sea were based on a hydrodynamic model 168 

containing advective water transport and tidal exchange rates (Ridderinkhof et al., 1990); it implies 169 

that we assumed a constant water flow through the system (from an input at the Vlie basin to an 170 

output at the Marsdiep basin). The atmospheric nitrogen input was based on values estimated for 171 

the southern North Sea by Rendell et al. (1993). 172 

In line with nutrient budget analyses by Philippart et al., (2000) and  van Raaphorst and van der Veer 173 

(1990), mass flows of phosphorus and nitrogen (mol s-1) were calculated by multiplying (i) the net 174 

advective water transport rates (m3 s-1; Q1 and Q2) with corresponding nutrient concentrations (mol 175 

m-3) at Station b (“Marsdiep Noord”) and Station c (“Vliestroom”) in the western Wadden Sea, and 176 

(ii) a tidal exchange rate (K1 in m3 s-1; Tab. 1) with the difference in nutrient concentrations between 177 

Station b and Station a (“Callantsoog2”). Dispersive exchange between the North Sea and Vlie tidal 178 

basin was assumed to be very low, and therefore not considered separately (c.f. Philippart et al. 179 

2000). Mass flows of phosphorus and nitrogen from Lake IJssel were determined by multiplying the 180 

daily averaged freshwater runoff (m3 s-1) at the two discharge sluices Station d (“Den Oever”) in the 181 

west and Station e (“Kornwerderzand”) in the east by their respective nutrient concentrations (mol 182 

m-3) (Fig. 1B; Table 1).  183 

For phosphorus, each monthly budget was closed with a residual term labelled TP-flow (FTP,residual; 184 

mol s-1) which includes the accumulation of particulate matter originating from the open sea, a 185 

process described for the Wadden Sea (Postma, 1961) and several other coastal areas (Postma, 186 

1980). For nitrogen, a constant atmospheric import of 0.19 mmol N m−2 day−1 was assumed (Rendell 187 



et al., 1993). Residual flow rates of particulate nitrogen (FTN,residual1; mol s-1) coinciding with P 188 

(FTP,residual; mol s-1) were calculated from the particular phosphorus flows using ambient ratios of 189 

particulate nutrients (N:Pparticular; mol mol−1) according to: 190 

FTN,residual1 = N:Pparticular × FTP,residual (1)  191 

Following Philippart et al. (2000), the ambient N : P-ratio of the particulate nutrients was computed 192 

on the basis of data from Station b. Finally, the nitrogen budget was closed with an additional and N-193 

specific residual flow (FTN,residual2; mol s-1).  The closing term of P, and the first closing term of N, 194 

account for storage and release of nutrients by sediments or microalgae, burial of organic matter in 195 

the sediment, unaccounted import from diffuse freshwater sources, and possibly other minor fluxes. 196 

The second closing term of N accounts mainly for denitrification, and further for deviations from 197 

standard stoichiometry in the fluxes covered by the first residual and for inorganic P burial that is not 198 

stoichiometrically related to N burial. Inevitably, estimation errors in the other terms of the budget 199 

will also appear in the closing terms. 200 

 201 

2.4. Sedimentation  202 

Estimates of the contribution of sedimentation to the residuals of phosphorus (FTP,residual; mol s-1) and 203 

nitrogen (FTN,residual; mol s-1) were derived from sedimentation and erosion values for 5-year periods 204 

of the Marsdiep and Vlie tidal basins (m3 y-1) as supplied by Elias et al. (2012). After conversion to 205 

average sedimentation and erosion rates for the western Dutch Wadden Sea, the sedimentation and 206 

erosion rates (mm y-1) were multiplied with the average phosphorus content of sandy and silty 207 

sediments, i.e. 100 and 225 µmol P g-1 dry sediment, respectively (Postma, 1954; van Raaphorst and 208 

Kloosterhuis, 1994).  209 

2.5. Burial, storage and release of nutrients by the sediment 210 

No long-term information on storage and release of nutrients by sediments existed. Therefore we 211 

constructed a storage and release time series based on the following assumptions. Storage of 212 

phosphorus in each year of the study period was estimated by assuming that around 30% of the TP 213 

input from the main freshwater source (Lake IJssel) got buried in the sediment after the spring 214 

bloom (Nixon et al., 1996). Release of P from the sediment in autumn varies between 10 and 40% of 215 

the stored P (Leote et al., 2015), and is inversely related to P concentrations in the water (Hupfer 216 

and Lewandowski, 2008). For this study, it was assumed that storage and release were equal during 217 

the first year (1976), implying that the maximum release of P is 16.6% of the stored P in the 218 



sediment. This rate was derived as follows.  A P concentration of 0.066 mol P m-2 in the top 1 cm of 219 

the sediment as measured in the 1950s by Postma (1954) was taken as a starting point (P0; mol m-2) 220 

for construction of the sediment storage and release time series, as this is the only reliable source 221 

for P in the sediment and an estimation of the change that happened in that time was out of the 222 

scope of this paper. For example, during the first year (1976) the annual burial was calculated as 30% 223 

of the total riverine P loads of 0.042 mol P m-2 y-1 resulting in a burial of 0.013 mol P m-2 y-1. Taking 224 

the assumed background value (0.066 mol P m-2) into consideration, this would add up to 0.066 + 225 

0.013 = 0.079 mol P m-2 after burial. The release in autumn would then be 16% of the stored P (i.e. 226 

0.013 mol P m-2) leaving 0.066 mol P m-2 in the sediment in winter. Within the year 1976, the net 227 

change in P in the sediment was by definition kept in balance and would equal to zero. 228 

3. RESULTS 229 

3.1. Model results and validation 230 

Predictions for missing values with GAM models were validated by searching for patterns in the 231 

residuals, but no such patterns could be detected (not shown).  Predicted values using the GAM 232 

models were in line with observations at the different stations (Supplementary information 1 to 3). 233 

The GAM models were therefore used within this study.   234 

3.2. Nutrient budgets 235 

3.2.1. Phosphorus 236 

The input of TP from Lake IJssel to the western Wadden Sea (i.e. Marsdiep and Vlie tidal basin) 237 

showed strong seasonality ranging between 0.0 mmol P m−2 d−1 in summer and 0.6 mmol P m−2 d−1 in 238 

winter (Fig. 2A). The input of TP from the North Sea into the Vlie tidal basin was positive by 239 

definition (as it is an advective flux with net inflow) and showed minor seasonality of less than 0.01 240 

mmol P m−2 d−1 between relatively high inputs in winter and relatively low inputs in summer and 241 

autumn (Fig. 2B).  At Marsdiep, the advective transport of P showed some seasonality with net 242 

export of more than 0.5 mmol P m−2 d−1 in January in the early years and of less than 0.1 mmol P m−2 243 

d−1 in June from 1995 (Fig. 2C). The tidally-driven exchange of nutrients between the Marsdiep tidal 244 

inlet and the North Sea was generally positive in January (ca. 0.5 mmol P m−2 d−1), February (ca. 0.1 245 

mmol P m−2 d−1) and November (ca. 0.2 mmol P m−2 d−1), implying net import of TP into the Marsdiep 246 

during these months, and negative and therefore net exporting P from the Marsdiep during the rest 247 

of the year; June is exceptional with high export rates (ca. 0.4 mmol P m−2 d−1; Fig. 2D). The residual 248 

P load was generally negative in November, January and February, implying a net export up to 0.5 249 

mmol P m−2 d−1 during these winter months and positive during the rest of the year, in particular in 250 

June, with a net import of more than 0.3 mmol P m−2 d−1 (Fig. 2E). 251 



Figure 3A presents the annual averages of the budget terms. The input of phosphorus from Lake 252 

IJssel into the Marsdiep tidal inlet peaked in the early 1980s at almost 0.3 mmol P m−2 d−1 followed 253 

by a decrease until the early 2000s and stabilization hereafter at around 0.1 mmol P m−2 d−1 (Fig. 3A). 254 

Between 1976 and 2012, the average positive loading from the North Sea to the Vlie tidal basin 255 

gradually declined from 0.17 to 0.06 mmol P m−2 d−1 (Fig. 3B). The advective export from the 256 

Wadden Sea to the North Sea via Marsdiep declined from almost 0.4 in the 1980s to less than 0.2 257 

mmol P m−2 d−1 in the 2000s (Fig. 3C).The tidally driven export of phosphorus between the Wadden 258 

Sea and the North Sea generally declined during the study period and even became positive in 2011 259 

and 2012, implying higher TP concentrations in the North Sea than in the Wadden Sea during these 260 

years (Fig. 3D).  Between 1976 and 2012, the residual P-load changed from an annually averaged 261 

accumulation (> 0.2 mmol P m−2 d−1 in 1976) to a net loss since 1992 of almost 0.1 mmol P m−2 d−1 in 262 

2012 (Fig. 3E). 263 

3.2.2. Nitrogen 264 

The input of total nitrogen from Lake IJssel to the western Wadden Sea also showed a strong 265 

seasonality. It varied between 0 mmol N m−2 d−1 in summer and 30 mmol N m−2 d−1 in winter (Fig. 266 

4A).  Nitrogen input into the Vlie basin from the North Sea was always positive, with values ranging 267 

between more than 6 mmol N m−2 d−1 in late winter / early spring and 0.8 mmol N m−2 d−1 in summer 268 

(Fig. 4B). The advective transport at the Marsdiep tidal inlet was always negative by definition with 269 

only minor seasonal signals whereas a minimum was reached in summer (less negative values, 1.5 270 

mmol N m−2 d−1) and the highest export in winter (12 mmol N m−2 d−1, Fig. 4C). The tidally driven 271 

exchange between the western Wadden Sea and the North Sea was mostly negative (net export, 272 

around 5 mmol N m−2 d−1 and in spring even up to 15 mmol N m−2 d−1), with net gain only in 273 

November (up to almost 4 mmol N m−2 d−1) and on occasion in January (Fig. 4D).  In the nitrogen 274 

budget two residual terms were present. The first was estimated based on the phosphorus budget 275 

where the amount of exchange of phosphorus was assumed to be connected with a certain N : P 276 

ratio to organic matter exchange with the North Sea . This residual of the nitrogen budget therefore 277 

followed the same pattern as in the phosphorus budget. Highest values were found in summer, with 278 

a net import of up to 10 mmol N m−2 d−1. In January as well as in most of February and November, a 279 

net export up to 15 mmol N m−2 d−1 was found (Fig. 4E). The second residual in the nitrogen budget 280 

represented the closing term and showed a less clear seasonality than the other components of the 281 

nitrogen budget (Fig. 4F). 282 

The annual averages of the nitrogen budget showed that the input into the western Wadden Sea 283 

from Lake IJssel peaked in the late 1980’s (12.5 mmol N m−2 d−1) with some variation in the 1990’s 284 

(between 12 and 7 mmol N m−2 d−1) and a relatively stable period after 1995 with an average 7.6 285 



mmol N m−2 d−1 (Fig. 5A). The exchange between the North Sea and the Vlie basin was always a net 286 

gain but it decreased over time from about 5 mmol N m−2 d−1 to 1.5 mmol N m−2 d−1 in the mid 1980’s 287 

and stayed constant since then (Fig. 5B).  The advective transport at the Marsdiep inlet was always 288 

negative by definition, indicating a net export around 1975 with less variability over time but still a 289 

slight decrease from 7.8 mmol N m−2 d−1 to 3.5 mmol N m−2 d−1 in 2012 (Fig. 5C). For the tidally driven 290 

exchange with the North Sea a net export decreasing over time from almost 12 mmol N m−2 d−1 291 

around 1975 to around 2 mmol N m−2 d−1 in the mid 1980’s and constant since then was found (Fig. 292 

5D). Between 1976 and 2012, the exchange of nitrogen in the first residual changed from an 293 

annually averaged inward transport (5 mmol N m−2 d−1 in 1976) to values around zero since 1980 294 

(Fig. 5E). The second residual showed a change from about 5 mmol N m−2 d−1 in 1976 to a net export 295 

of nitrogen since 1980 with a maximum in 1988 of 7.5 mmol N m−2 d−1 to a lesser value (>2  mmol N 296 

m−2 d−1) in recent years (Fig. 5F).  297 

3.2.3. Residual vs freshwater import 298 

The influence of freshwater import versus exchange with the North Sea was analysed by a 299 

comparison of the import from Lake IJssel with the respective annual residuals of the two nutrients 300 

(Fig. 6). For phosphorus the residual was highest (0.26 mmol P m−2 d−1) in 1976 and at the same time 301 

the import from Lake IJssel was small (0.12 mmol P m−2 d−1) compared to later years (Fig. 6A). From 302 

1976 to 1981, the residuals of P continuously decreased to 0.04 mmol P m−2 d−1 whilst the import of 303 

P from Lake IJssel increased to 0.28 mmol P m−2 d−1. From 1982 onwards, the residual of P started to 304 

be more variable but in general continued to decrease till the lowest value in this study (-0.08 mmol 305 

P m−2 d−1) was reached in 2012. The import from Lake IJssel has decreased over time to relatively 306 

stable values between 0.1 and 0.2 mmol P m−2 d−1 in the most recent years (Fig. 6A). These trends 307 

suggest two main phases, the first one (1976-1981) where the annual P residuals decreased and 308 

annual P imports from Lake IJssel increased, and the second one (1982-2012) were the P residuals 309 

decreased as did the P imports from Lake IJssel (Fig. 6A). 310 

The pattern was similar for the first residual of the nitrogen budget with highest values for the 311 

residual at the start of the series in 1976 (4.39 mmol N m−2 d−1) and relatively small values for the 312 

import from Lake IJssel (4.8 mmol N m−2 d−1) followed by a period with decreasing residual and 313 

increasing import from Lake IJssel (Fig. 6B). In the nitrogen budget, the highest N import from Lake 314 

IJssel (12.4 mmol N m−2 d−1) occurred in 1988 (Fig. 6B). In that year, the N residual was 0.14 mmol N 315 

m−2 d−1. From 1989 onwards, the annual N residuals continued to decrease but less steeply and with 316 

occasional increases in between until a minimum was reached at the end of the study period in 2012 317 

(-1.29 mmol N m−2 d−1). At the same time the annual N imports from Lake IJssel decreased to values 318 

of less than 10 mmol N m−2 d−1 with two exceptions in 1994 and 1995 and a minimum in 1996 with 5 319 



mmol N m−2 d−1.  This suggests that the change in this relative behaviour within the annual N budgets 320 

occurred between 1988 and 1989 (Fig. 6B), which is seven years later than observed for P (i.e. 321 

between 1981 and 1982; Fig. 6A). 322 

In the second residual of the nitrogen budget the trend was less pronounced than for the first N 323 

residual (Fig. 6C), but again this residual started in 1976 with the highest value (4.92 mmol N m−2 d−1) 324 

observed during the study period and reached its lowest value (-7.40 mmol N m−2 d−1) in 1988. From 325 

1988 onwards, this second N residual varied between -5.23 mmol N m−2 d−1 (1994) and -1.05 mmol N 326 

m−2 d−1 (1996). The behaviour of the second N residual in relation to the import of annual N from 327 

Lake IJssel suggests two phases, a period with a decreasing residual and an increasing import (1976-328 

1988) followed by a period where relatively high residuals coincided with relatively low imports from 329 

Lake IJssel (Fig. 6C).  330 

Comparing the trends in the closing residual of the P budget (Fig. 3E) and the total residual of the N 331 

budget (Fig. 5G) suggests three periods during the observational period, being (i) 1976-1980: where 332 

additional import of both phosphorus and nitrogen is required to close the respective P and N 333 

budgets, (ii) 1981-1991: where additional import of phosphorus is still needed to close the P budget, 334 

but additional export of N to close the N budget, and (iii) 1992-2012: where additional export of 335 

phosphorus and nitrogen is needed to close both nutrient budgets for the western Wadden Sea (Fig. 336 

7). 337 

3.2.4. Sedimentation, erosion, storage and release 338 

The particle exchange between the North Sea and the western Wadden Sea (i.e. Marsdiep and Vlie 339 

tidal basin) changed from net sedimentation in the period before 2000 to net erosion hereafter 340 

(Elias et al., 2012). This means that also the net loading of particulate nutrients most probably 341 

switched from net import into the western Wadden Sea to net export to the North Sea. In case of 342 

phosphorus this changed from an import into the western Wadden Sea of around 0.03 mmol P m−2 343 

d−1 in the period 1975-1980 to an export of 0.01 mmol P m−2 d−1 in the period 2000-2005 (Fig. 8).  344 

Assuming that the amount of stored phosphorus in the sediment had not changed between the 345 

early 1950s and the early 1970s, a net burial of P in the sediment was found in the beginning of the 346 

study period in the early 1970s, followed by a period of net release of P since 1985, after which most 347 

years showed a net release with a maximum found in 1991 (0.03 mmol P m−2 d−1), which is 10 years 348 

after the highest import from Lake IJssel in 1981 (Fig. 8). After 1997, the net annual storage/release 349 

of P levelled out to around zero (Fig. 8).   350 

4. DISCUSSION 351 

4.1.  Accuracy of model predictions for nutrient concentrations 352 



The analyses were computed partly using model estimates of nutrient concentrations based on 353 

measurements with a certain uncertainty. Model validations showed a good fit of all the models, 354 

giving an indication that at least the general direction of the budget should be trustworthy. However 355 

the fact that some of the model estimates are based on a combination of two different time series 356 

should be kept in mind. In addition, the relationships between nutrient concentrations of various 357 

stations used for estimating local nutrient concentrations when no data were available were 358 

assumed to be fixed in time, which might not have been true. So far there is no better alternative to 359 

this method. 360 

Import of nutrients in the western Dutch Wadden Sea from the freshwater can be direct (from Lake 361 

IJssel and other sources, (e.g. van Raaphorst and van der Veer, 1990)) and indirect (via the coast line 362 

of The Netherlands from the rivers, mainly the Rhine, e.g. de Jonge, 1990) in our study area. From 363 

these sources, only the freshwater import from Lake IJssel can be quantified as consistent long-term 364 

information since other freshwater nutrient sources are lacking. For 1950-1951, however, Postma 365 

(1954) estimated the import of total phosphorus from the canal “Noordhollands Kanaal” via the 366 

harbour of Den Helder into the Marsdiep to be 650 kg per tide (0.03 mmol P m−2 d−1), i.e. in the same 367 

order of magnitude as the total P supplied via Lake IJssel (1,050 kg per tide, 0.05 mmol P m−2 d−1). 368 

For 1985, van Meerendonk et al. (1988) estimated the import of total P from this canal into the 369 

Marsdiep to be 426 ton per year (0.03 mmol P m−2 d−1), i.e. similar as in the early 1950s (632 kg per 370 

tide or 0.02 mmol P m−2 d−1) but now almost an order of magnitude lower than the total P supplied 371 

via Lake IJssel (3,721 ton per year, 0.23 mmol P m−2 d−1). For the year 1985, the import of total N was 372 

estimated to be 1,837 ton per year (0.25 mmol N m−2 d−1) from the canal and 59,725 ton per year 373 

(8.26 mmol N m−2 d−1) from Lake IJssel (van Meerendonk et al., 1988). Although the freshwater 374 

discharge from this canal is relatively low (i.e. 3% of the total freshwater discharges into the western 375 

Wadden Sea; van Meerendonk et al., 1988), its importance as an additional nutrient source cannot 376 

be excluded, in particular for P during the beginning of the study period before the maximum 377 

concentrations were reached in the mid-1980s. 378 

Several compartments in our nutrient budget refer to the exchange of nutrients between North Sea 379 

and Wadden Sea as well as internal circulation (e.g. “Wadden Sea Throughput” and “Exchange North 380 

Sea”) and they were calculated using a fixed coefficient. Recent models of the hydrodynamics of the 381 

western Wadden Sea revealed that these coefficients could be variable depending on wind velocity 382 

and direction that can be so strong as to even reverse the normal tidal flow (Duran-Matute et al., 383 

2014) and lead to an average variability of the tidal prism of 20 %. So far, however, the outcomes of 384 

such hydrodynamic models are not available for the full study period of the nutrient budgets. 385 



Moreover, although variations in weather could explain some of the between-year variation, it is 386 

unlikely that they will explain the long-term changes discussed in this paper. 387 

4.2. Long-term trends 388 

Overall, there is a general increase of import of nutrients from Lake IJssel till the beginning of the 389 

1980s and a subsequent reduction afterwards. Furthermore, the initial net gain of phosphorus and 390 

nitrogen in the system switched to net loss in the mid-1990s and the first residual of the nitrogen 391 

budget switched from positive (indicating an additional N gain) in the late 1970s to negative 392 

(indicating net N loss) around 1980. There are several nutrient budgets available for the Wadden 393 

Sea, but often they only look at very short time spans (Grunwald et al., 2010) or were conducted 394 

before the 1990s (; ), when we detected a major change within our nutrient budgets.  395 

Different behaviour in nutrients during nutrient increase and reduction, as were detected in this 396 

study, may be the result of changing boundary concentrations, temporary storage of nutrients in the 397 

sediment (as has been described for phosphorus) or enhanced denitrification (Cornwell et al., 1999; 398 

Kana et al., 1998; Nielsen et al., 1995).  399 

In the 1970s freshwater runoff within Europe was highly loaded with nutrients and reached a peak in 400 

the early 1980s (van Raaphorst and de Jonge, 2004; van Raaphorst and van der Veer, 1990). 401 

Hereafter eutrophication was reduced and nutrient loads went down, also within the Wadden Sea 402 

(Grizzetti et al., 2012; Philippart and Cadée, 2000; Scavia and Bricker, 2006; van Raaphorst and 403 

van der Veer, 1990). This pattern is also clear in our study where the import from Lake IJssel into the 404 

western Wadden Sea peaked in 1981. However, our study period started in 1976 and is missing the 405 

early years in the eutrophication process that started in the 1960s (van Raaphorst and van der Veer, 406 

1990), making it difficult to assess whether the observed changes are showing signs of the system 407 

going back to the original state as it has been before the eutrophication in the 1970s or if it reached 408 

a new and different state of nutrient dynamics. 409 

 410 

High internal loadings from a large historical P-pool in sediments can delay recovery after P 411 

reduction for 10–15 years or longer in lakes (Jeppesen et al., 2005; Søndergaard et al., 2013) and has 412 

been proposed for estuaries as well (Prastka et al., 1998). Leote et al. (2015) stated that internal 413 

recycling might be the most important source for phosphorus in the system by the way of 414 

remineralization of stored material in the sediment, at least in recent years. Also van Beusekom and 415 

de Jonge (1998) suggested that part of the primary production in the Wadden Sea could only be 416 

sustained by this mechanism. We explored this possibility by estimating the stored and released P in 417 



the sediment and found a similarity with the order of magnitude and trend of the residual term of 418 

the P budget, indicating that this would at least be a possibility.  419 

It is striking that the largest values of the residuals occur at the start of the study period, between 420 

1976 and approximately 1984 for P (Fig. 3) and between 1976 and 1980 for N (Fig. 5G). The 421 

monotonic decrease of the P import at the Vlie tidal inlet during the full study period (Fig. 3B) 422 

indicates that the rise in P concentrations of the freshwater in Lake IJssel in the 1970s and 1980s is 423 

not reflected in the North Sea waters that enter through the Vlie during those years. This is pointing 424 

in the direction that the decrease in freshwater P sources for the North Sea coastal area has started 425 

earlier than the decrease in Lake IJssel concentrations (i.e. prior to 1976, whereas the decrease 426 

started in 1981 for Lake IJssel concentrations), which was also observed by de Jonge (1997). This 427 

would make sense, if one assumes that the same sediment burial and release mechanisms work in 428 

Lake IJssel as in the Wadden Sea. The advective exchange through the Marsdiep, in contrast (Fig. 429 

3C), does reflect the initial rise in P concentrations in the western Wadden Sea, and the decrease 430 

from approximately 1983 onwards. However, the rise between 1976 and 1981 has been slower than 431 

the rise in input from Lake IJssel, in accordance with the hypothesis of internal storage within the 432 

western Wadden Sea and Lake IJssel.  433 

By far the largest contribution to the strongly positive residual of P in the first years stems from the 434 

dispersive exchange in Marsdiep, showing that the concentration difference between western 435 

Wadden Sea and the North Sea in the surface water was much larger in 1976 than ten years later. If 436 

the P residual reflects import of P, then there the concentration difference is directed towards the 437 

Wadden Sea, with higher concentrations in the North Sea than in the Wadden Sea in the mid-1970s, 438 

and smaller differences later on. This is in line with winter concentrations of phosphate in the river 439 

Rhine at the Dutch-German border, which peaked in the early 1970s, i.e. before the period covered 440 

by the nutrient budgets of this study (van Bennekom and Wetsteijn, 1990).  441 

This could mean that the effects of reduced nutrient import from the rivers could be observed 442 

earlier in the North Sea than in the Wadden Sea. Most likely this is caused by  internal (storage) 443 

processes in Lake IJssel and in the western Wadden Sea that may have been stronger than in the 444 

North Sea, leading to lower concentrations in the 1970s, but eventually breaking down and releasing 445 

large amounts of P until the mid-1980s, even after the input of riverine input had been peaking. In 446 

particular, the enhanced release of P in anoxic sediment conditions, induced by enhanced organic 447 

carbon deposition, may have played a role in this process. It would be stronger in shallow systems 448 

such as Wadden Sea and Lake IJssel, than in the North Sea. Note, in this respect, that residual 2 of N, 449 

related to denitrification, has its strongest negative values during the mid-1980s. As denitrification is 450 

an anoxic process, this would naturally be accompanied by a relatively strong P release. 451 



For the nitrogen budget, the first residual was previously completely attributed to the import of 452 

organic matter containing P and N (Philippart et al., 2000). Present findings on the phosphorus 453 

budget now point, however, to additional process such as (i) import of dissolved nutrients and/or 454 

organic matter from a canal near Den Helder at the beginning of the study period, (ii) long-term 455 

variation in net sedimentation rates, and (iii) multi-annual storage and delayed release from the 456 

sediment. In contrast to P, N is not expected to have been stored and released over a multi-annual 457 

period (Tappin, 2002). However, the influence of import by an additional freshwater source and role 458 

of long-term changes in sedimentation rates on the N residual cannot be excluded. Due to 459 

insufficient information on, for example, N : P ratios of the freshwater discharge from the Den 460 

Helder canal, we cannot estimate how large this fraction is.  461 

The second and closing residual of the nitrogen budget was assumed to represent the atmospheric 462 

part of the nitrogen cycle, i.e. denitrification, the reduction of nitrate to nitrogen-gas (Deek et al., 463 

2012; Gao et al., 2012; Philippart et al., 2000). For parts of the eastern Dutch and western German 464 

Wadden Sea, Gao et al. (2012) estimated an annual loss of 745 mmol N m-2 y-1, corresponding to a 465 

daily loss of 2.04 mmol N m-2 d-1 which is in the range of what has been found by Deek et al. (2012) in 466 

the northern German Wadden Sea (2.1 mmol N m-2 d-1 close to Sylt and 3.8 mmol N m-2 d-1 close to 467 

Meldorf and the Elbe river) and in this study (average of 3.14 mmol N m-2 d-1 in the period 1994-468 

2012, Table 2).  469 

Comparison of the total residuals of P and N suggests that the western Wadden Sea was 470 

characterized by three different periods within the study period with regard to the nutrient budgets. 471 

During the first years (1976-1980), the budgets were closed by net gain of P and N, most probably as 472 

the result of net import from the already nutrient-rich North Sea. From 1981 to 1991, the net gain of 473 

P continued but the N  budget was closed by a net loss, possibly as a result of net release from the 474 

sediment for P and denitrification for N. From 1992, budgets were closed by a net loss of P and N, 475 

possible because there was no longer a release of stored P and denitrification of N continued. 476 

4.3. Future budgets 477 

Several studies showed that wind and rainfall affect the hydrodynamics of the Wadden Sea 478 

substantially (Donker, 2015; Duran-Matute et al., 2014; Duran-Matute & Gerkema, 2015). Duran-479 

Matute et al. (2014) found how wind can change the advective transport. Both of these effects will 480 

have an impact on the nutrient budgets since the exchange with the North Sea will be affected, as is 481 

the exchange between basins, however these changes are mainly short term. There is no study so 482 

far that analysed the changes in wind speed and direction over a long term perspective. Note, 483 

however, that the main emphasis of this study is on the long multi-year time scale, and that the time 484 

scale of wind-driven variability is much shorter than this. Unless it could be shown that wind patterns 485 



have systematically changed over the decades, and with that have changed the residual transport 486 

rates (which to our knowledge has never been proven), our estimates should be robust on longer time 487 

scales, even if there is wind-driven variability (besides variability from a multitude of other sources) in 488 

the short-term budget terms. An increased wind speed and bottom shear stress can also lead to an 489 

increased remineralization of phosphorus from the sediment due to increased disturbance (Leote 490 

et al., 2013). Rainfall may also affect the hydrodynamics, in direct and indirect ways. The direct way, 491 

being local rainfall, will have a minor effect on the nutrient concentration since maximum volume 492 

rates involved are at least two orders of a magnitude smaller than the tidal exchanges. However 493 

there are studies indicating that rainfall may influence the density gradient especially of flat areas 494 

and therefor is influencing the estuarine circulation and the respective exchange coefficient with the 495 

North Sea (Burchard et al., 2008). Indirect effects are larger, maximum fresh water discharge  from 496 

Lake IJssel after periods with heavy rainfall may be up to 2000 m3 s-1 (RWS, 2015), which is almost 497 

the same as the regular residual advective transport of 3556 m3 s-1 through the tidal inlets. 498 

Not all tidal basins in the Wadden Sea have inflow of freshwater. It is not clear how the nutrient 499 

budgets of these tidal basins are and how they are affected by changing wind and rain conditions. A 500 

study by Grunwald et al. (2010) in the tidal basin behind the German Wadden Sea island Spiekeroog, 501 

with only limited fresh water influence indicates that in these tidal basins an export of inorganic 502 

material is taking place that is not outbalanced by organic material being imported in the case of 503 

phosphorus. In their budget the import of organic material into the basin is higher for nitrogen than 504 

the export estimated, however they do not take Ammonium into account when looking at the 505 

export of inorganic material. This makes it difficult to directly compare the results from our study 506 

with the results of Grunwald et al. (2010). There is an indication that also denitrification might be 507 

higher in sediments with a lager freshwater inflow (Deek et al., 2012), which would at least partly 508 

explain the differences between the model by Grunwald et al. (2010) and this study.  509 

The budgets of this study require extensive nutrient data. However, extensive data sets are rare and 510 

most of the tidal basins have not been investigated extensively over a long period. Recently 511 

developed hydrodynamical models such as the GETM model of the Wadden Sea (Duran-Matute 512 

et al., 2014) could help in revealing previous hydrodynamics and water budgets of all tidal basins and 513 

could help developing nutrient budgets also for other basins by predicting water flow and nutrient 514 

concentrations at stations not directly monitored (Tiessen et al., 2012). Such models also bear the 515 

potential to allow an estimate how future changes in climate, like increased rainfall and stronger 516 

storms as projected by the Dutch Meteorological Institute (van den Hurk et al., 2006), may affect the 517 

nutrient budgets and subsequently primary production of the Wadden Sea. 518 
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7. TABLES 707 

Table 1: Main characteristics and water mass flows of the western Wadden Sea as based on the hydrodynamical model by 708 

(Ridderinkhof et al., 1990) and data on freshwater inputs between 1976 and 2012 (456 monthly averages) supplied by the 709 

Dutch Ministry of Transport 710 

 Characteristics Symbol Value Unit 

Volume  4.66x109 m3 

Surface area  1.41x109 m2 

Average depth  3.3 m 

Tidal exchange  3.60x107 m3 tide-1 

Tidal frequency  1.92 tides day-1 

Residence time  9 days 

Freshwater discharges from Lake IJssel Qd 295±151 m3s-1 

 Qc 210±131 m3s-1 

Advective transport via Vlie inlet Q2 696± 65 m3s-1 

Dispersive transport (tidal exchange) K1 3556 m3s-1 

Advective transport to North Sea Q1 1199±210 m3s-1 

 711 

Table 2: Annual averages of phosphorus and nitrogen loads (mmol m−2 day−1) of the western Wadden Sea. P and N refer to 712 

total phosphorus and nitrogen concentrations, respectively, small letters a to f to the respective stations used in the 713 

budgets (see Fig. 1). 714 

Nutrient Fluxes Name Function 
1976-

1977 

1978-

1987 

1988-

1993 

1994-

2012 

Phosphorus Input Outflow Lake IJssel Qd × Pd + Qe x Pe 0.15 0.24 0.16 0.15 

 Input Advective transport Vlie Q2 × Pc 0.17 0.15 0.12 0.08 

 Output Advective transport Marsdiep Q1 × Pb -0.32 -0.36 -0.25 -0.15 

 Output Exchange North Sea K1 × (Pa − Pb ) -0.22 -0.09 -0.04 -0.03 

 Residual Residual1 FTP, residual 0.23 0.06 0.00 -0.04 

Nitrogen Input Outflow Lake IJssel Qd × Nd + Qe ×Ne 6.00 9.55 8.12 7.94 

 Input Atmosphere Fatm 0.19 0.19 0.19 0.19 

 Input Advective transport Vlie Q2 × Nc 4.56 2.82 2.37 1.97 

 Output Advective transport Marsdiep Q1 × Nb -7.68 -6.18 -4.71 -4.18 

 Output Exchange North Sea K1 × (Na − Nb ) -10.91 -4.65 -2.03 -2.25 

 Residual Residual1 FTN,residual1 3.91 1.08 0.21 -0.50 

  Residual Residual2 FTN,residual2 3.93 -2.81 -4.13 -3.18 



8. FIGURES 715 

 716 

Figure 1: The study area with locations of the sampling stations in the North Sea (Station a, Callantsoog) and Noordwijk 717 

(Station f), the western Wadden Sea (Station b, Marsdiep; Station c, Vliestroom), and near the sluices in the dam that 718 

closes off the man-made freshwater Lake IJssel from the Wadden Sea (Station d, Den Oever; Station e, Kornwerderzand 719 

and Station g, Vrouwezand). (A) Geographical map of the study area. (B) One-compartment representation of the western 720 

Wadden Sea. Solid arrows represent tidally averaged advective water transport (Q1, Q2) and bimonthly averaged major 721 

freshwater inputs (Qd, Qe); the dashed arrow (K1) represents the dispersive exchange with the North Sea (Ridderinkhof et 722 

al., 1990).  723 



 724 

Figure 2:  Time series of monthly total phosphorus budget terms (mmol P m-2 d-1) in the western Wadden Sea with points 725 

being drawn at the first of the month as a representative for the whole month, A) Import from Lake IJssel, B) advective 726 

transport at Vlie tidal inlet, C) advective transport at the Marsdiep tidal inlet, D) exchange with North Sea at the Marsdiep 727 

tidal inlet, E) closing residual. Positive values indicate input into the tidal basins. Note the difference in the scale of the y-728 

axes.  729 

 730 



 731 

Figure 3: Time series of annual total phosphorus (TP) budget terms (mmol P m-2 d-1) in the western Wadden Sea (means ± 732 

SD) with points being drawn at the first of the year as a representative for the whole year, A) Import from Lake IJssel, B) 733 

advective transport at Vlie tidal inlet, C) advective transport at the Marsdiep tidal inlet, D) exchange with North Sea at the 734 

Marsdiep tidal inlet, E) closing residual. Positive values indicate net import into the tidal basins. Note the differences 735 

between the scales of the y-axes. 736 

 737 

 738 

 739 



 740 

Figure 4: Time series of monthly total nitrogen (mmol N m-2 d-1) budget terms in the western Wadden Sea with points 741 

being drawn at the first of the month as a representative for the whole month,  A) Import from Lake IJssel, B) advective 742 

transport at Vlie tidal inlet, C) advective transport at the Marsdiep, D) tidally driven exchange with North Sea at the 743 

Marsdiep tidal inlet, E) residual 1 derived from residual of P budget, F) residual 2, closing residual, G) Total residual. 744 

Positive values indicate inputs into the tidal basins. Note the difference in the scale of the y-axes. 745 



 746 

Figure 5: Time series of annual total nitrogen (TN) budget terms (mmol N m-2 d-1) in the western Wadden Sea (means ± SD) 747 

with points being drawn at the first of the year as a representative for the whole year, A) Import from Lake IJssel, B) 748 

advective transport at Vlie tidal inlet, C) advective transport at the Marsdiep tidal inlet, D) exchange with North Sea at the 749 

Marsdiep tidal inlet, E) residual 1 derived from the residual of the P budget, F) residual 2, closing residual, G) Total residual. 750 

Positive values indicate inputs into the tidal basins. Note the difference in the scale of the y-axes. 751 



 752 

 753 

 754 

Figure 6: Closing residuals versus import from Lake IJssel.  Residual of phosphorus budget vs import of P from Lake IJssel 755 

(A). Residual 1 of nitrogen budget (B) and Residual 2 of nitrogen budget (C) vs import of N from Lake IJssel in different 756 

periods; grey line represents the 1:1 line. Note the difference in the scale of the axes. 757 



 758 

 759 

Figure 7: Residual of phosphorus budget vs total residuals of nitrogen budget over study period. 760 

 761 

Figure 8: Time series of import of phosphorus from Lake IJssel (circles), the residual of the P budget (triangles), the 762 
estimated phosphorus transported by sediment (squares) and the estimated amount of phosphorus exchanged with the 763 
sediment (cross) in the western Wadden Sea.  764 
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