

Abstract Book

CPEG

2nd Crossing the Palaeontological-Ecological Gap

Online, 5th-9th September 2021

Hosted by the Museum für Naturkunde, Berlin

ISBN 978-84-09-33415-5 © 2021 The authors © Conference logo Jed Atkinson Editors: Haris Saslis, Catalina Pimiento, Faysal Bibi, Ignacio Lazagabaster, Martin Aberhan, Sara Varela, and Carl Reddin. Publisher: Transmitting Science

Table of Contents

Plenary talks	1			
Interrogating ecological patterns and processes across timescales Saupe	1			
A recommender systems approach to the fossil record Žliobaitė				
Consequences of selection and biotic interactions for macroevolution Liow	3			
Paleoecology reveals dynamic landscapes: case for conserving for change McGuire	4			
Integrating paleobiology and macroecology to inform current and future megafauna-based				
rewilding	5			
Svenning				
Session 1: Biogeography	6			
Climatic constraints on the latitudinal distribution and biogeographic history of dinosaurs Chiarenza <i>et al.</i>	6			
South American freshwater fish diversity shaped by Andean uplift since the Late Cretaceous Boschman <i>et al.</i>	7			
Biome specialization enhances diversification in swallowtail butterflies Gamboa <i>et al.</i>	8			
Marine plankton latitudinal diversity patterns since the last ice age Strack <i>et al.</i>	9			
Diversity dynamics through deep time: overcoming the hurdle of spatiotemporal sampling bias Flannery Sutherland	10			
The impact of the Permian and Triassic biotic crises on spatial patterns of origination and				
extinction in marine invertebrates Allen et al.	11			
Fossil evidence for marine dispersal in an iconic example of vicariance Capobianco et al.	12			
Palaeobiogeography of Neogene European chondrichthyans Villafaña et al.	13			
Using the abundance and climatic niche of fossil microvertebrates for paleoclimatic reconstruction Cruz <i>et al.</i>	14			
Past and present ecologies, panarchy and possible peatland futures Buchan	15			
The role of western Indian pleurotomariid gastropods in changing migration patterns of the family during the Cenozoic Bose et al.	16			
Considering how scale, biases in taxon sample, and evolutionary hotspots influence patterns of size evolution in fishes globally Clarke	17			
Session 2: Community ecology and Biotic interactions	18			
Shifts in ecological resources recorded in a 1-Ma-long drill core from the southern Kenya Rift				
explain Pleistocene mammalian faunal turnover and novel hominin behaviors Dommain et al.	18			
Worms on film: The colonization of anoxic, matground-dominated sedimentary environments during the Early Cambrian Mascord et al.	19			
The changing effect of biotic interactions on communities under human disturbance Tóth et al.	20			

Climate and ecosystem productivity control the functional role of omnivores in food webs Albrecht <i>et al.</i>	21
Phanerozoic prevalence of parasitism and marine metazoan diversity: Dilution versus amplification De Baets <i>et al.</i>	າ 22
The influence of stoloniferous reproduction on intra-specific competition in Ediacaran macrofossil assemblages Mitchell	23
An evidence of carrying capacity in the biodiversity dynamics of Coccolithophorids Rineau et al.	24
A common language and tools for multidimensional analyses in ecology and palaeontology Guillerme	25
Time-averaging of ecological signals in the vertebrate skeletal record of a modern African ecosystem	26
Behrensmeyer et al.	
Environmental change and body size Evolution in Neogene large mammals Huang et al.	27
Contribution of calcium isotope geochemistry to the study of diet in present and fossil	
elasmobranchs, case of Megalodon Assemat <i>et al.</i>	28
3D model of <i>Otodus megalodon</i> body reveal movement and feeding ecology Cooper <i>et al.</i>	29
Multi-scale causal analysis of biotic and abiotic drivers of Cenozoic mammalian evolution Bekeraitè et al.	30
Foraminiferal assemblage along the shallow transect on the Kveithola Trough (NW Barents Sea): An actuopaleontological approach	31
Caridi <i>et al.</i> Ecological data analysis of Ediacaran fossiliferous surfaces in the Bonavista Peninsula of	
Newfoundland	32
Pérez-Pinedo <i>et al.</i>	
Recurrence plots reveal the 'sloshing bucket'-like ostracod paleocommunity dynamics in the mid-Silurian of Baltica	33
Spiridonov et al.	
Integrating community turnover from modern and fossil data Rillo et al.	34
Projecting community trophic structures for the last 120,000 years González-Trujillo et al.	35
Next generation IBMs shed light on the paleoecological interactions of Late Cretaceous dinosaurs Vila <i>et al.</i>	36
Session 3: Functional ecology	37
Carbon and strontium isotope ratios shed new light on the paleobiology and collapse of	
Theropithecus, a primate experiment in graminivory Fannin et al.	37
Do the small-ranged species of mammals diversify slower? Smycka et al.	38
Unravelling the diverse locomotor repertoire of early primates using ankle bone morphology Monclús-Gonzalo <i>et al.</i>	39
The hidden legacy of megafaunal extinction: Loss of functional diversity and resilience over the Late Quaternary at Hall's Cave	40
Hedberg <i>et al.</i>	
Late Quaternary biotic homogenization of North American mammalian faunas Fraser et al.	41

Linking deep- and shallow-time paleoecology: the need for ecologically relevant traits Kearns <i>et al.</i>	42
Investigating fallback dietary habits among hominins: perspectives from controlled feeding	
experiments on domestic pigs	43
Louail et al.	
Ecometric modelling of the relationship between turtle body size distributions and climate	44
Parker et al.	
Capturing functional ecology from ichthyoliths	45
Sibert	.5
Understanding the 3D morphology of the Ediacaran rangeomorph <i>Fractofusus misrai</i> from	
Mistaken Point, Newfoundland	46
Taylor et al.	
Using paleontological trait data to evaluate temporal dynamics of ecosystem services	47
Smith et al.	.,
Southern Ocean diatom size dynamics and the end-Eocene paleoproductivity	48
Hunter et al.	
Nature, red in one and zero: simulating the evolution of predators	49
Furness et al.	.5
Session 4: Behavioral ecology and Extinctions	50
Dental microwear texture analysis of deer from Combe Grenal (Dordogne, France): new	30
insight into the paleoenvironmental variations during the Middle Paleolithic	50
Berlioz et al.	30
Energetic equivalence, isotaphonomy, and productivity loss as a driver of megafaunal	
extinction in the African fossil record	51
Bibi et al.	-
Extinction risk in Plio-Pleistocene Mediterranean bivalves	52
Danise et al.	
Integrating fossils and genomics to reconstruct the decline of the threatened Mountain	
Dragon, Rankinia diemensis	53
Ramm et al.	
How predictable are mass extinction events?	54
Foster <i>et al.</i>	
Primary and secondary extinction across a Mesozoic hyperthermal extinction event	55
Dunhill et al.	
Thermal extinction selectivity patterns during global warming events	56
Reddin et al.	
Modeling the immediate environmental consequences of the Chicxulub impact: Severe	
cooling and short peak ocean productivity	57
Brugger et al.	
Short-term impact of diet on dental mesowear: New insights from dental topography and a	
controlled feeding experiment on domestic pigs	58
Thiery et al.	
Reproduction and autoecology of an Ediacaran rangeomorph	59
Pasinetti <i>et al.</i>	
Biogeochemistry at the crossroads between environment and ecology: use of oxygen	
isotopes to track environment preference variation in fossil crocodilians	60
Gardin <i>et al.</i>	
A Mammoth buffet: resolving extinct herbivores community structure through high-	
resolution coprolite analysis	61
Mereghetti <i>et al.</i>	

Ice Age giants at the end of the world: chronology and extinction of Gomphotheres in Chile, South America Villavicencio et al.	62
Shifts in food web architecture and niche occupancy across the end-Cretaceous mass extinction García-Girón et al.	63
Climatic range of modern fossilizable phytoplankton Renaudie et al.	64
Bivalve assemblages as palaeoecological markers at the onset of the OAE2 event (Bohemian Cretaceous Basin, Czech Republic) Kunstmüllerová et al.	65
Simulating large grazers with a physiological model Traylor	66
Lepidophagy in the Triassic coelacanth <i>Piveteauia</i> McMenamin	67
Mass spawnings of the arthropod <i>Isoxys volucris</i> reveal a seasonal signature to the early Cambrian Sirius Passet Lagerstätte, North Greenland Nielsen <i>et al.</i>	68
Session 5: Conservation ecology and Biodiversity The sixth mass extinction outpaces the fifth one in freshwater ecosystems Neubauer	69 69
Improving the performance of species distribution models in new spatial-temporal domains: a trophic rewilding case study Mechenich	70
Quaternary carbonate factories of the Mediterranean Sea: a case study from the Northern Apennines Bracchi et al.	71
Providing Earth system modeling for studying ecological dynamics in deep time (with a focus on the Mesozoic Era) Landwehrs et al.	72
Incorporating recent fossil data in a multi-temporal framework markedly improves predictive power and transferability of ecological niche models Freymueller	73
Refining ecometric analyses to better integrate paleontology with ecology Short et al.	74
Mammal species occupy different climates following the expansion of human impacts Pineda-Munoz et al.	75
Late Pleistocene fossils recontextualize the ecology of introduced turkeys Sivakumar et al.	76
Integrative taxonomy of the bushbuck species complex (<i>Tragelaphus scriptus</i>): Combining molecular and morphological systematics Baird <i>et al.</i>	77
Assessing biodiversity of ancient plant ecosystems: opportunities, constraints, and a case study Luthardt <i>et al.</i>	78
Relationships between reef proliferation and reef diversity over geological time scales Khan et al.	79
Ecological census implications, site description, and systematic paleontology of Boomerang Cave, a vertebrate assemblage In Cache County, Utah, U.S.A. O'Brien <i>et al.</i>	80
A fossil of forest hog from Rusinga Island (Kenya) and the ecology of extant and extinct African Suidae Aguilar Lazagabaster <i>et al.</i>	81

At the crossroads of conservation palaeobiology: How World Heritage fossil sites contribute	
to the future by promoting the past Parker et al.	82
Session 6: Responses to climate change	83
Taking the long view: the importance of historical and ecological perspective in our	
understanding of the effects of climate change on phenological synchrony Weir	83
Evolutionary dynamics of the Southern Ocean diatoms across the Eocene-Oligocene transition Özen <i>et al.</i>	84
Assessing the impact of climate change on the structural integrity of benthic foraminifera during the Palaeocene Eocene Thermal Maximum – implications for future climate change Mulqueeney <i>et al.</i>	85
Functional stasis of mammalian communities across the PETM Whittingham et al.	86
Taphonomy and site formation history of vertebrate-bearing breccia in the caves of Sumatra Smith	87
Increase of marine provinciality over the last 250 million years was governed more by climate change than plate tectonics Kocsis <i>et al.</i>	88
Diversity-productivity relationship in past 21,000 years: the evidence from North American	89
Planktonic foraminifera conserved environmental niches across 700,000 years of glacial—interglacial climate change Antell et al.	90
Consistency in reef assemblages through the Holocene shows diversity persisting in a turbid reef Chan <i>et al.</i>	91
The size trait toolbox: new perspectives on community structure response to climate change in calcifying marine phytoplankton Sheward <i>et al.</i>	92
The clam before the storm – what bivalves can tell us about climate change Kruft Welton	93
Climate change and its effect on mammalian diversity in the Cenozoic of South Kouvari et al.	94
Bison responses to Late Quaternary climate change in North America Wendt et al.	95
Radiocarbon dating of individual foram tests show that alleged Lessepsian species are of	
Holocene age Albano et al.	96
	97

Contribution of calcium isotope geochemistry to the study of diet in present and fossil elasmobranchs, case of Megalodon.

A. Assemat¹, S. Adnet, K. Bayez, A. Hassler, F. Arnaud-Godet, F. Mollen, C. Girard, J. E. Martin

¹UMR 5554 Institut des sciences de l'évolution de Montpellier ISEM (CNRS, IRD, EPHE), Université de

Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 France

alexandre.assemat@umontpellier.fr

Previously based on the analysis of stomach contents, the study of shark diet and trophic position has gained momentum with the development of isotope geochemistry tools in recent years. These tools open new perspectives for the study of present-day species but also fossil species whose behavior remains poorly known from an ecological point of view. Recent analyses have shown a correlation between the calcium isotopic composition (δ^{44} Ca) of tooth enamel and the trophic position of the studied taxa. Here, we present a study based on changes in the calcium isotope composition of tooth enamel from three living shark species: the bluntnose sixgill shark (Hexanchus griseus), the make shark (Isurus oxyrinchus) and the great white shark (Carcharodon carcharias) during various growth stages. The results obtained in these sharks, which can reach several meters in length, show isotopic variability reflecting the change in trophic level correlated with ontogeny and/or spatial distribution of populations of the same species as well, but also highlight changes in the exploitation of food resources and scavenging phases in certain taxa. This characterization of calcium isotopic variability within several present-day species with different diets open the way to a better understanding of the ecology of extinct species like the famous Meg, O. (megaselachus) megalodon. A preliminary analysis of its ancient trophic level through time revealed a more complex signal than expected for this giant predator of Cenozoic seas.

Corresponding Author Page Index

Aguilar Lazagabaster	81	Hunter	48	Smith (H.E)	87
Albano	96	Kearns	42	Smith (J.A.)	47
Albrecht	21	Khan	79	Smycka	38
Allen	11	Kocsis	88	Spiridonov	33
Antell	90	Kouvari	94	Strack	9
Assemat	28	Kruft Welton	93	Svenning	5
Baird	77	Kunstmüllerová	65	Taylor	46
Behrensmeyer	26	Landwehrs	72	Thiery	58
Bekeraitè	30	Liow	3	Tóth	20
Berlioz	50	Louail	43	Traylor	66
Bibi	51	Luthardt	78	Vila	36
Boschman	7	Mascord	19	Villafaña	13
Bose	16	Mathes	97	Villavicencio	62
Bracchi	71	McGuire	4	Weir	83
Brugger	57	McMenamin	67	Wendt	95
Buchan	15	Mechenich	70	Whittingham	86
Capobianco	12	Mereghetti	61	Žliobaitė	2
Caridi	31	Mitchell	23		
Chan	91	Monclús-Gonzalo	39		
Chiarenza	6	Mulqueeney	85		
Clarke	17	Neubauer	69		
Cooper	29	Nielsen	68		
Cruz	14	O'Brien	80		
Danise	52	Özen	84		
DeBaets	22	Parker (A.K.)	44		
Dommain	18	Parker (E.)	82		
Dunhill	55	Pasinetti	59		
Fannin	37	Pérez-Pinedo	32		
Flannery Sutherland	10	Pineda-Munoz	75		
Foster	54	Ramm	53		
Fraser	41	Reddin	56		
Freymueller	73	Renaudie	64		
Furness	49	Rillo	34		
Gamboa	8	Rineau	24		
García-Girón	63	Saupe	1		
Gardin	60	Sheward	92		
González-Trujillo	35	Short	74		
Guillerme	25	Sibert	45		
Hedberg	40	Šimova	89		
Huang	27	Sivakumar	76		