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ABSTRACT Microbiome management research and applications rely on temporally
resolved measurements of community composition. Current technologies to assess com-
munity composition make use of either cultivation or sequencing of genomic material,
which can become time-consuming and/or laborious in case high-throughput measure-
ments are required. Here, using data from a shrimp hatchery as an economically relevant
case study, we combined 16S rRNA gene amplicon sequencing and flow cytometry data
to develop a computational workflow that allows the prediction of taxon abundances
based on flow cytometry measurements. The first stage of our pipeline consists of a
classifier to predict the presence or absence of the taxon of interest, with yielded an
average accuracy of 88.13% 6 4.78% across the top 50 operational taxonomic units
(OTUs) of our data set. In the second stage, this classifier was combined with a regres-
sion model to predict the relative abundances of the taxon of interest, which yielded
an average R2 of 0.35 6 0.24 across the top 50 OTUs of our data set. Application of
the models to flow cytometry time series data showed that the generated models can
predict the temporal dynamics of a large fraction of the investigated taxa. Using cell
sorting, we validated that the model correctly associates taxa to regions in the cytometric
fingerprint, where they are detected using 16S rRNA gene amplicon sequencing. Finally,
we applied the approach of our pipeline to two other data sets of microbial ecosystems.
This pipeline represents an addition to the expanding toolbox for flow cytometry-based
monitoring of bacterial communities and complements the current plating- and marker
gene-based methods.

IMPORTANCE Monitoring of microbial community composition is crucial for both micro-
biome management research and applications. Existing technologies, such as plating
and amplicon sequencing, can become laborious and expensive when high-throughput
measurements are required. In recent years, flow cytometry-based measurements of
community diversity have been shown to correlate well with those derived from 16S
rRNA gene amplicon sequencing in several aquatic ecosystems, suggesting that there is
a link between the taxonomic community composition and phenotypic properties as
derived through flow cytometry. Here, we further integrated 16S rRNA gene amplicon
sequencing and flow cytometry survey data in order to construct models that enable
the prediction of both the presence and the abundances of individual bacterial taxa in
mixed communities using flow cytometric fingerprinting. The developed pipeline holds
great potential to be integrated into routine monitoring schemes and early warning sys-
tems for biotechnological applications.
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Bacterial communities are complex and highly dynamic associations that play im-
portant roles in many biotechnological applications. One issue that hinders efforts

to study and manage these communities is the fact that existing technologies to assess
community composition either rely on cultivation or necessitate the extraction and
sequencing of genomic material, both of which are time-consuming and laborious. As
a result, the availability of fine-scale resolution data on bacterial community dynamics
is still limited in many fields. One example hereof is the aquaculture sector (1), where
the development of effective management strategies to reduce the occurrence of dis-
eases is hampered by our limited knowledge of the microbial ecology of these systems.
Additionally, routine monitoring schemes in aquaculture farms still rely mainly on
(selective) plating, which prohibits accurate description of general dysbiotic states and
specific disease outbreaks.

Flow cytometry (FCM) is a single-cell technique that is increasingly used as a fast
and inexpensive tool for characterizing microbial communities in a wide variety of fields,
including drinking water production and distribution (2–4), surveys of natural ecosystems
(5–8), aquaculture (9), and fermentation (10, 11). Over the last decade, through the develop-
ment of advanced data analysis pipelines, the application of FCM has moved beyond its ini-
tial purpose of estimating cell densities (12). These computational advances include a range
of fingerprinting pipelines (13, 14), algorithms for estimating community stability (15), and
algorithms for estimating community diversity metrics (16). Flow cytometry-derived diversity
metrics have been shown to be highly correlated with those derived from 16S rRNA gene
amplicon sequencing in some ecosystems (16–19), suggesting that there is a link between
the taxonomic community composition and phenotypic properties as derived through FCM.
This observation is supported by the fact that sorted fractions of a community have taxo-
nomic compositions different from that of the entire community (20–24).

Using machine-learning techniques, Bowman et al. (25) and Rubbens et al. (26) showed
that the relative abundances of specific operational taxonomic units (OTUs) are predictive of
the abundances of high-nucleic acid (HNA) and low-nucleic acid (LNA) subcommunities in
FCM data of natural ecosystems, illustrating the possibility of linking specific regions in the
cytometric fingerprint to taxonomic groups using modeling approaches. Several studies
have sought to further exploit this relationship in order to build predictive models for taxo-
nomic community composition based on FCM data. Most of these studies take a bottom-up
approach in which they train predictive models on data of axenic bacterial cultures.
Rubbens et al. introduced the use of in silico communities based on axenic culture data (27),
while Özel Duygan et al. developed a pipeline that allows classification of mixed commun-
ities into classes of predefined cell types by comparing data to signatures of a set of strains
and bead standards (28). Cytometric fingerprints of axenic cultures are known to be dynamic
over time, for example, in the function of growth stage (29–31). Additionally, we have recently
shown that the single-cell properties of an individual taxon, as measured by FCM, depend on
the presence of other bacterial taxa in the community (32). Hence, a different cytometric signa-
ture can be expected for a taxon in a mixed community compared to the one that is observed
in axenic culture. Therefore, making predictions based on models that were trained on axenic
culture data can sometimes lead to unreliable predictions in mixed communities (32).

In this study, we aimed to further integrate 16S rRNA gene amplicon sequencing and
flow cytometry survey data in order to construct models that enable the prediction of both
the presence and the abundances of multiple individual bacterial taxa in mixed commun-
ities using flow cytometric fingerprinting (Fig. 1). As a case study, we used samples taken
from a whiteleg shrimp (Litopenaeus vannamei) hatchery, of which the dynamics have previ-
ously been described (33). We first verified the taxonomic stratification in the cytometric fin-
gerprints using cell sorting. We then developed a two-stage pipeline using flow cytometry
data as the input that, first, predicts the presence/absence of bacterial taxa and, second, pre-
dicts the relative abundances of bacterial taxa. Through the direct linking of flow cytometry
and amplicon sequencing survey data, the constructed models do not rely on data from
axenic cultures. We verified the ability of the models to assign taxa to the specific regions in
the cytometric fingerprint using marker gene data from the cell-sorted community fractions
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and using a three-strain mock community. Finally, we tested the approach of our pipeline
on two independent data sets to evaluate its applicability to other systems.

RESULTS

In this study, we used published flow cytometry and 16S rRNA gene amplicon data
from an 18-day sampling campaign in an L. vannamei hatchery where five replicate cul-
tivations were studied (33). The replicate cultivation tanks were sampled at a resolution
of 3 h for flow cytometry and once per day for 16S rRNA gene sequencing. This data
set was combined with newly generated 16S rRNA gene amplicon data on sorted frac-
tions of samples originating from this previous study.

Taxonomic information is conserved in flow cytometric fingerprints. Prior to model
training, the connection between the taxonomic composition of the bacterial communities, as
derived through 16S rRNA gene amplicon sequencing, and their phenotypic properties, as
derived by flow cytometry, was evaluated using cell sorting. In total, 57 community fractions
were sorted from 20 samples using 5 gates (referred to as subcommunities 1 to 5 [SCs 1 to 5]).
The sorted regions in the flow cytometry data space (i.e., gates) were chosen to maximize the
coverage of the community across the side scatter and SYBR green I fluorescence range (see
Fig. S1 at https://doi.org/10.6084/m9.figshare.16337103) and represented subcommunities
with relative cell abundances between 3% and 56% of the total cell gate (Fig. 2A).

For all subcommunities, the taxonomic richness was significantly lower than that of the
cell gate (one-sided Wilcoxon rank sum test, P , 0.0001) (Fig. 2B). The taxonomic composi-
tions of the five gated subcommunities were significantly different from that of the cell gate
as well as from each other (permutational multivariate analysis of variance [PERMANOVA] on
Bray-Curtis dissimilarities, P , 0.01) (see Table S1 and Fig. S2 at https://doi.org/10.6084/m9
.figshare.16337103). Each subcommunity was enriched in specific taxa and shared a limited
number of taxa with the other subcommunities (Fig. 2C). Many taxa were uniquely detected
in a specific subcommunity (e.g., OTU 1 Phaeodactylibacter sp. in SC 1); however, some taxa

FIG 1 Overview illustration of the workflow and application of the pipeline presented in this study. During the training stage, samples from the system
under study are collected and analyzed using both flow cytometry and 16S rRNA gene amplicon sequencing. For the 16S rRNA gene amplicon data, the
reads are processed to calculate relative abundance profiles for each sample. The models are trained for each taxon individually. Therefore, the relative
abundances of the taxa of interest are extracted, which results in a single vector for each taxon. For flow cytometry, the single-cell data are separated from
the background signals by manually creating a gate on the primary fluorescent channels and subsequently discretized by applying a Gaussian mixture
mask, which assigns each cell to a specific cluster. This results in a data frame with the relative abundance for each cluster of the Gaussian mixture in each
sample. Two models are constructed for each taxon: an absence/presence classifier and a regression ensemble to predict the relative abundance of the
taxon of interest. During the deployment stage, the system under study is sampled using flow cytometry, and the trained models are used to predict the
presence/absence and relative abundance of one or multiple taxa of interest.
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were detected in two (e.g., OTU 3 Nioella sp. in SCs 1 and 2) or three (e.g., OTU 7 Kordia sp.
in SCs 1, 2, and 3) subcommunities (Fig. 2C; Fig. S2 at https://doi.org/10.6084/m9.figshare).
The overlap in taxonomic compositions between gates that were more dissimilar from each
other in the cytometric space was smaller than that between gates that were more similar (e.g.,
SCs 1 and 5, which are more dissimilar from each other than from other SCs, share only 15
OTUs, while SCs 1 and 2, which are close to each other, have 147 OTUs in common) (Fig. 2C),
confirming that specific taxa typically occur in specific positions of the cytometric space.

The two most narrowly defined subcommunities (i.e., SCs 3 and 5), with the lowest
abundance in the community, represented subcommunities with low taxonomic diversity and
were nearly mono-dominant, (i.e., Kordia sp. in SC 3 and unclassified Alphaproteobacteria sp. in
SC 5), while the larger and abundant gates (i.e., SCs 1, 2, and 4) were dominated by multiple
taxa (Fig. S2 at https://doi.org/10.6084/m9.figshare.16337103). It should be noted that the
numbers of sorted samples were not equally distributed over the five sorting gates (i.e., SCs 3
and 5 were sorted once and three times, respectively, while SCs 1, 2, and 4 were sorted 15, 17,
and 18 times), which may have caused the cumulative number of observed taxa in SCs 3 and
5 to be lower than in SCs 1, 2, and 4. Nevertheless, also the average number of taxa per sam-
ple was lower for SCs 3 and 5 than for SCs 1, 2, and 4 (Fig. 2B).

Throughout the shrimp cultivation, the phylogenetic composition in the subcom-
munities was preserved well, even though the composition of the total community
was dynamic over time and communities differed between the replicate tanks from
which samples were sorted.

FIG 2 (A) Relative abundances of the sorted subcommunities (SCs), based on the measurements of the Influx v7 sorter. (B)
Observed taxonomic richness in the sorted community and subcommunities. The values above the brackets indicate the P
values of a one-sided (lower) Wilcoxon rank sum test. Note that for subcommunity 3, no P value is supplied since this
subcommunity was sorted only once. (C) Upset graph illustrating intersections between the taxonomic compositions of the
sorted subcommunities (i.e., the numbers of common OTUs). The upper bars illustrate the cumulative number of OTUs that
are found in a subcommunity (in the case of a single dot) or shared between subcommunities (in the case of two
connected dots). Note that the numbers of sorted samples were not homogeneously distributed over the five sorting gates
(i.e., SCs 3 and 5 were sorted once and three times, respectively, while SCs 1, 2, and 4 were sorted 15, 17, and 18 times [Fig.
S2 at https://doi.org/10.6084/m9.figshare.16337103]).
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Development of a pipeline to extract taxonomic information. Cell sorting was
performed on a different instrument (BD Influx) from that used for the FCM measure-
ments of community samples (BD FACSVerse). To be able to use both the community
sample and the sorted sample data as a single data set, a set of representative samples
was measured on both instruments, the gates that were used for sorting were man-
ually recreated on the FACSVerse data, and the correspondence between the relative
cell abundances in the gates on data of the two instruments was used to evaluate the
quality of the manually recreated gates (Fig. S1 at https://doi.org/10.6084/m9.figshare
.16337103). The corresponding flow cytometric fingerprints of the sorted subcommun-
ities were obtained from the community measurements using these gates. The com-
bined data set (i.e., including both sorted and community measurements) consisted of
169 samples for which both 16S rRNA gene amplicon and flow cytometry data were
available. Models were trained for each OTU individually, using the flow cytometry
data as the input and the presence or abundance of the OTU of interest as the model
output. Details about the model construction are provided in Materials and Methods.
Performances for the top 50 OTUs from the aquaculture data set were evaluated. All
reported performance values are performances on the validation sets (i.e., on data that
were not used for model training).

In the first part of the pipeline, a presence/absence classifier is trained. Classification
performance was evaluated using accuracy and the AUC. The accuracy indicates the
percentage of correctly predicted samples in the data set. The AUC indicates the area
under the receiver operating characteristic (ROC) curve (i.e., the probability that a randomly
chosen sample in which the taxon is “present” is assigned a higher probability for “present”
than a randomly chosen sample in which the taxon is “absent”). AUC values allow an easy
comparison to a classifier that assigns labels randomly (i.e., AUC = 0.5). We were able to per-
form presence/absence classification with high accuracies, ranging from 78% to 98% for
individual OTUs and AUC values between 0.66 and 0.99 (Fig. 3A and B). The numbers of
false-positive samples (i.e., in which the taxon is incorrectly predicted to be present) and
false-negative samples (i.e., in which the taxon is incorrectly predicted to be absent) did not
differ strongly for individual OTUs (two-sided Wilcoxon rank sum test, P. 0.05).

In the second part of the pipeline, the relative abundances of individual taxa were
modeled using a regression ensemble. Regression performance was evaluated using R2 i.e.,
the proportion of the variance in the relative abundance values that can be predicted from
the flow cytometry data) and mean average error (MAE), i.e., the average deviation between
true and predicted relative abundances). The regression ensembles had R2 values between
0.00 and 0.64 (0.21 6 0.18 on average) and mean absolute error values between 0.24 and
9.06 (3.41 6 2.19, on average) (blue dots in Fig. 3). The regression ensembles frequently pre-
dicted high relative OTU abundances for samples where an OTU was either absent or present
in very low abundance (Fig. S3B at https://doi.org/10.6084/m9.figshare.16337103). Therefore,
the predictions of the classifier were superimposed on the regression predictions (Fig. S3A at
https://doi.org/10.6084/m9.figshare.16337103); the predicted relative OTU abundances in sam-
ples that were classified as absent were set to zero, but predictions for samples in which the
OTU was predicted to be present remained unchanged. This reduced the number of false-pos-
itive samples by an average of 10-fold (i.e., from 40 6 17 to 4 6 3 out of 100 samples).
However, superimposing the classifier to the regression results slightly increased the number
of false-negative samples from 36 3 out of 100 samples to 86 5 on average. Overall, the R2

values were increased to 0.35 6 0.24 on average (ranging between 0.00 and 0.81), and the
MAE was reduced to 1.316 0.97 on average (green dots in Fig. 3).

To evaluate the ability of our approach to correctly capture dynamics of taxa over time, we
predicted the presence and relative abundances of four taxa on the time points for which no
amplicon data were available. Additionally, we calculated the predicted absolute OTU abun-
dances by multiplying bacterial densities by the predicted relative OTU abundances. The taxa
were selected based on good (OTU 1, R2 = 0.81), intermediate (OTU 2, R2 = 0.65 and OTU 6,
R2 = 0.19), and low (OTU 13, R2 = 0.03) overall prediction performances. For OTU 1, the predic-
tions followed the overall patterns that were estimated by interpolation of the time points for
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FIG 3 Classifier accuracy (A), AUC (B), regression R2 (C), and MAE (D) values for the top 50 abundant OTUs from the
aquaculture data set. For the regression metrics (R2 and MAE), both the regression model outputs (in blue) and final
pipeline outputs (i.e., after imposition of the classifier predictions on the regression results, in green [visualized in Fig.
S3 at https://doi.org/10.6084/m9.figshare.16337103]) are illustrated. OTUs are ordered according to their final R2 values.
The three dots for each model represent three repeated fold splits, and the vertical line per OTU indicates the average
performance of the replicates. The vertical line at 0.5 in panel B indicates the random-guessing threshold of a binary
classifier.
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which amplicon data were available (Fig. 4). Additionally, the predictions for which the abun-
dances did not match the trends that were estimated by interpolation often coincided with
low absolute abundances. Similarly, for OTU 2 and OTU 6, which had intermediate model per-
formances, the abundance patterns followed the expected trends well (Fig. S4 and S5 at
https://doi.org/10.6084/m9.figshare.16337103). For OTU 13, which had the lowest perform-
ance, the patterns did not correspond to those that were expected based on interpolation of
the available data points (Fig. S6 at https://doi.org/10.6084/m9.figshare.16337103).

Since the models were trained on survey data, in which there may be co-occurrence
between taxa, predictions of individual OTUs may (partly) rely on detecting co-occur-
ring OTUs and not the OTU of interest itself. In that case, the applicability of the pipeline
may be limited to filling gaps in the time series of the data set that was used for model train-
ing (i.e., relying on auto-correlation between the samples over time), but the reliability of
predictions on independently generated time series of the same environment (e.g., repeated
shrimp cultivation in this case) may be limited. To verify the impact of co-occurrence, we
compared the performances of models that were trained on only four of the replicate tanks,
and predictions were made on the 5th tank (setting 1) with models that were trained using
a randomly chosen training and validation set from data of all replicate tanks (setting 2). The
former ensured that the co-occurrence patterns of the validation data (i.e., data from the 5th
tank) were not incorporated during model training, while the latter incorporated all co-
occurrence patterns during model training. There was an average decrease in the R2 of 0.02
across the 50 OTUs in setting 2 relative to that of setting 1. This small decrease suggests that
co-occurrence has only a minor influence on model performance. To further investigate
how reliably the model can link taxa to a population in the cytometric fingerprint, we
assessed, for the top 10 OTUs, the feature importance of the clusters in the cytometric fin-
gerprint (see Materials and Methods for the procedure) with the regions of the sorting
gates in which these taxa were observed. Overall, the positions of clusters with high fea-
ture importances corresponded well to the positions of the gates in which these taxa were
observed, with the exception of OTU 6, for which clusters were detected over the entire
range of the bacterial community fingerprint (Fig. S7 at https://doi.org/10.6084/m9
.figshare.16337103). For some OTUs there were small deviations, which may be the result
of technical aspects. For example, some OTUs were not detected in regions with high
feature importances, which may be the result of the limited number of sorted samples
and the fact that these were biased toward only 3 tanks during the first half of the sam-
pling campaign (i.e., days 4 to 13). Second, the sorting gates were recreated from the
data of one instrument to the other (see Materials and Methods and Fig. S1 at https://doi
.org/10.6084/m9.figshare.16337103). This may have caused gates immediately adjacent
to the subcommunities to be either marked or not marked, while this was not the case.
Overall, these results show that the models can robustly associate taxa with regions in the
cytometric fingerprint where they are detected using 16S rRNA gene amplicon sequencing,
and hence, they do not rely heavily on co-occurrence patterns.

To test whether taxa that are phylogenetically closely related are more likely to be
associated with the same regions in the cytometric fingerprints, the relationship between
phylogenetic distance between taxa and feature importance similarity was evaluated. There
was a significant (adjusted R2 = 0.039, P , 2e–16, Pearson correlation = 20.20) relationship
between the similarity of cluster importance for different OTUs assigned by the model and
the phylogenetic similarities (Fig. S8 at https://doi.org/10.6084/m9.figshare.16337103). This
relationship was negative, indicating that OTUs which are phylogenetically closely related
are more likely to be associated with the same regions in the cytometric fingerprints.

The sensitivity of the model performance to the amount of data available for train-
ing was investigated for two OTUs (i.e., OTUs 1 and 6) by training models on randomly
subsampled data sets that contained 20, 40, 60, or 80% of the data set (i.e., 34, 68, 101,
or 135 samples). For both of the OTUs and both classification and regression, there was
a strong reduction in performance at the lower sample sizes (see the learning curves in
Fig. S9 at https://doi.org/10.6084/m9.figshare.16337103). Classification accuracy was reduced
by 10% and 5% for OTU 1 and OTU 6, respectively, for every 20% reduction in data set size.
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FIG 4 Predictions for OTU 1 (Phaeodactylibacter sp.; R2 = 0.81) from the aquaculture data set. The
five replicate shrimp cultivation tanks (T1 to T5) were sampled at a resolution of 3 h for flow
cytometry and once per day for 16S rRNA gene sequencing. The presence and relative
abundances for OTU 1 at the time points for which no amplicon data were available were
predicted in order to evaluate the ability of our approach to correctly capture the dynamics of this
taxon over time. The dark shades (measured) correspond to the values that were determined
based on 16S rRNA sequencing. The lighter shades (predicted) correspond to time points for
which only flow cytometry data were available and predictions were made using the models.
Expected values can be estimated by interpolation of the measured samples (indicated with the
lines between the measured samples). The reported values are averages of the two replicate
measurements at each time point. (A) Predictions of the presence/absence classifier. (B) Predicted
relative abundances. (C) Predicted absolute abundances, calculated by multiplying the predicted
relative abundances by the total cell density as determined through flow cytometry. d, day.
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For the regression models, the R2 values were halved when the model was trained on only
20% of the data compared to when it was trained on 80% of the data. For both of the
OTUs, the performance did not yet reach a plateau, suggesting that more data are required
to improve model performances.

Application of the approach on external data sets. To test whether the approach
of our pipeline was applicable for monitoring other (managed) microbial systems, the
entire workflow was replicated on a three-strain cytometric mock community from the
work of Cichocki et al. (34) and a data set of insular reactor communities from the work
of Liu et al. (23). Details about the data sets are provided in Table S2 at https://doi.org/
10.6084/m9.figshare.16337103.

For the mock community classifier, AUC values ranged between 0.81 and 1.00 and R2 val-
ues were 0.896 0.03, on average (Fig. 5). Since this was a simple mock community, we could
validate that the clusters that were assigned a high importance by the model corresponded
well to the regions where these taxa were found in the cytometric fingerprint (Fig. S10 at
https://doi.org/10.6084/m9.figshare.16337103). For the reactor communities, the AUCs of the
top 18 OTUs ranged between 0.57 and 1.00. As for the aquaculture data set, there were big
differences in the model performances of individual OTUs. The ranges of performances were
similar, as for the aquaculture data set, with an average R2 of 0.336 0.27.

DISCUSSION
Predictive models can link taxa to specific regions in the cytometric fingerprint

and predict temporal abundance dynamics. Substantial variations in model perform-
ances were observed for the individual OTUs, for both the aquaculture (Fig. 3) and the
validation (Fig. 5) data sets. For all OTUs, the classifier AUC values were largely above the ran-
dom-guessing threshold of 0.5, indicating that the presence of all taxa could be predicted
with moderate-to-high certainty. In contrast, for the prediction of relative abundances, there
were large differences in performance between OTUs. For the aquaculture data set, predic-
tions for OTUs with a high-to-intermediate R2 occasionally diverged from what were expected
based on interpolation of the time points for which 16S rRNA data were available, but the
overall patterns of taxon presence and abundance were predicted well (Fig. 4; Fig. S4 and S5
at https://doi.org/10.6084/m9.figshare.16337103). Based on these results, we conclude that the
constructed models are suitable for monitoring dynamics over time but that one should be
more cautious when evaluating single snapshot samples. The number of required samples
to predict reliable trends depends on the taxa of interest and the dynamics of the system
under study. We acknowledge that for a subset of the investigated OTUs, performances
were very low and predictions did not correspond to the expected patterns (Fig. S6 at
https://doi.org/10.6084/m9.figshare.16337103). Further improvement of prediction perform-
ances would greatly increase the applicability of the model. The required model accuracy
and tolerated bias will depend on the final context and application (e.g., research, environ-
mental monitoring, pathogen monitoring, etc.). Aspects that can further improve model
performances include increased data set sizes for model training (Fig. S9 at https://doi.org/
10.6084/m9.figshare.16337103), optimization of acquisition settings, and included fluores-
cence detectors (35) or the incorporation of different or additional stains in the cytometric
measurements (36, 37).

It should be noted that we do not expect the models to improve until the relative
abundances of all taxa in a mixed community can be perfectly predicted, since flow cyto-
metric data contain only information regarding a limited set of phenotypic properties.
Studies using axenic culture data have observed that some combinations of taxa are difficult
to distinguish (28, 38), and studies using sorting and subsequent sequencing typically also
observe subcommunities that contain multiple taxa (22). Some taxa may be indistinguish-
able based on their cytometric fingerprints. Our results indicated that OTUs that are phylo-
genetically closely related to each other are more likely to be associated with the same
regions in the cytometric fingerprints and can therefore be harder to distinguish (Fig. S8 at
https://doi.org/10.6084/m9.figshare.16337103). Additionally, some taxa are known to exhibit
high phenotypic plasticity (39), which may make it difficult for the model to reliably associ-
ate a region in the cytometric fingerprint to such taxa. This implies that we can expect that
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for some taxa in a given environment, it may be impossible to construct performant models,
despite the availability of large data sets and/or sorting data.

In contrast to previously developed methods that predict taxon abundances based on
flow cytometry (28, 38), our method does not rely on data from axenic cultures. We have
previously shown that the cytometric fingerprint of an individual taxon in the presence of
other taxa is different from that in axenic culture and that relative abundance predictions
that rely on axenic culture data can therefore be unreliable for mixed communities (32).
Hence, for methods that rely on FCM fingerprints of individual taxa for model training, it is
recommended that one use experimental setups where it is possible to determine whether
the fingerprint in axenic culture is representative of the in situ phenotypic fingerprint of the
taxon (e.g., through physical separation of cultivated taxa, cell sorting, etc.). By training mod-
els directly on survey data of mixed communities, the need to determine the correct in situ
fingerprint of a taxon prior to model training is removed. We have shown that the models
that were constructed for the top 10 OTUs were capable of determining the regions in the
cytometric fingerprint that correspond to the locations where these taxa were found through
sorting and subsequent amplicon sequencing (Fig. S7 at https://doi.org/10.6084/m9.figshare

FIG 5 Model performances with the two validation sets. (A) Classifier AUC values for the three-strain mock
community. (B) R2 values for the three-strain mock community. (C) Classifier AUC values for the top 18 OTUs of
the reactor communities. (D) R2 values for the top 18 OTUs of the reactor communities. The three dots for each
model represent three repeated fold splits, and the vertical line per OTU indicates the average performance of
the replicates. The vertical line at 0.5 in panels A and C indicate the random-guessing threshold of a binary
classifier.
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.16337103), except for OTU 6. It should be noted that large sorting gates were used in the cur-
rent study, which allows us to verify only whether the model linked the correct region in the
fingerprint to each taxon and not whether the exact cell population(s) was identified correctly
by the model. Future validation studies based on sorting with more precise gates are needed
to further evaluate the sensitivity of the methodology.

It should be noted that the current study did not verify the performances of the
constructed models on an independent data set (e.g., a repeated shrimp cultivation).

Prospects for bacterial monitoring in biotechnological applications. The flow cyto-
metric toolbox for monitoring environmental communities already contains algorithms for
estimating community-level diversity (16, 40), stability (15), and turnover (41), as well as algo-
rithms that allow one to associate population dynamics with environmental or experimental
parameters (13) and pipelines that are designed for community-level classification into dif-
ferent categories (e.g., diseased/healthy, etc.) (42). Standalone community-level metrics, such
as diversity or stability, may be difficult to interpret and, therefore, to couple to specific man-
agement actions because of the high bacterial heterogeneity and fast dynamics that are typ-
ically observed in bacterial systems. Additionally, different shifts in community composition
may require a different action of the operator that is monitoring the system. The pipeline of
our study allowed us to add an additional layer of taxonomic information to these metrics,
which should increase the actionability of operators. Once the models have been constructed,
predictions can be made for multiple taxa simultaneously, allowing monitoring of a large frac-
tion of the bacterial community.

We have shown that the pipeline that was developed in this study can be extrapolated
to other applications, including analyses of laboratory mock communities and mixed reactor
communities (Fig. 5). Performances for the mock-community strains was high, which was
expected due to the lower community complexity. Average model performances on the re-
actor communities were similar to those of the taxa in the aquaculture communities, despite
not including sorting data in the training set. This illustrates that cell sorting data are not an
absolute necessity to create performant models. However, including sorting data serves as
an important validation step for the constructed models (Fig. S7 at https://doi.org/10.6084/
m9.figshare.16337103) and may therefore be recommended when studying a new environ-
ment. The current study did not include data of natural environments, such as lake and
ocean survey data, and hence, the applicability of the pipeline to these environments should
be investigated further.

The main advantages of using flow cytometry for community composition monitoring
lies in the speed (i.e., minutes) and the high potential for automation (43, 44), which enables
monitoring with high temporal resolution. Additionally, the independence of cultivation is a
great advantage for monitoring managed ecosystems, since human-induced stressors, such
as disinfection, are known to induce viable but nonculturable (VBNC) states (45). Practical
applications of the pipeline can include monitoring the efficacy of management strategies,
follow-up outbreaks of unwanted bacterial taxa, monitoring the presence of probiotic
strains, etc. We believe that the pipeline that was developed in this study holds great
potential to be integrated into routine monitoring schemes and early warning systems
for biotechnological applications.

MATERIALS ANDMETHODS
Samples. In this study, we used a combination of previously published flow cytometry and 16S rRNA

gene amplicon data from an L. vannamei hatchery (33) and newly generated 16S rRNA gene amplicon data on
sorted subcommunities of samples originating from that previous study. This data set is referred to as the aqua-
culture data set. Five gates were created for cell sorting (see Fig. S1 at https://doi.org/10.6084/m9.figshare
.16337103). The gates were chosen to cover the range of SYBR green I fluorescence and side scatter that were
observed in the data set. The samples that were selected for sorting were chosen from three of the replicate
tanks, over different days, in order to include communities with heterogeneous taxonomic compositions.

Flow cytometry. Samples for flow cytometry were fixed with 5 ml glutaraldehyde (20%, vol/vol) per ml
(33). Glutaraldehyde-fixed, SYBR green I-stained community samples were measured with a FACSVerse flow cy-
tometer, and sorting was performed with a BD Influx v7 USB sorter. The procedures for flow cytometric meas-
urements, cell sorting, and control samples accompanying these procedures are outlined in detail in the sup-
plemental Materials and Methods at https://doi.org/10.6084/m9.figshare.16337103.
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Illumina sequencing. Sequencing of the V3-V4 region of the 16S rRNA gene amplicon was performed
on an Illumina MiSeq sequencer. The DNA extraction protocols and details about the sequencing are outlined
in the supplemental Materials and Methods at https://doi.org/10.6084/m9.figshare.16337103.

Data sets. The applicability of the pipeline was additionally tested on two independent data sets: a
synthetic community and a mixed community. The synthetic community data set contained samples of a three-
strain mock community (Stenotrophomonas rhizophila DSM 14405, Kocuria rhizophila DSM 348, and Paenibacillus
polymyxa DSM 36). The reactor community data set originated from the study of Liu et al. (23). More information
regarding the data sets, their processing, and availability is provided in Table S2 at https://doi.org/10.6084/m9
.figshare.16337103.

Data analysis. (i) Flow cytometry analysis. The flow cytometry data were imported in R (v3.6.3)
(46) using the flowCore package (v1.52.1) (47). The data were transformed using the arcsine hyperbolic
function (16), and the background of the fingerprints was removed by manually creating a gate on the
primary fluorescent channels (Fig. S12 at https://doi.org/10.6084/m9.figshare.16337103).

(ii) 16S rRNA gene amplicon sequencing analysis. Raw sequencing reads from the previous study
and raw sequencing reads generated in this study were processed together. Analysis was performed
with the software package mothur (v.1.42.3) (48). Contigs were created by merging paired-end reads based on
the Phred quality score heuristic, and they were aligned to the SILVA v123 database. Sequences that did not
correspond to the V3-V4 region as well as sequences that contained ambiguous bases or more than 12 homo-
polymers were removed. The aligned sequences were filtered, and sequencing errors were removed using the
pre.cluster command. UCHIME was used to removed chimeras (49), and the sequences were clustered in OTUs
with 97% similarity with the cluster.split command (average-neighbor algorithm). Since the 97% similarity cut-
off was used, it is possible that an OTU contained multiple closely related strains. OTUs were subsequently clas-
sified using the SILVA v123 database. The OTU table was further analyzed in R (v3.6.3) (46). OTU abundances
were rescaled by calculating their proportions and multiplying them by the minimum sample size present in
the data set. Absolute taxon abundances were calculated by multiplication of relative abundances with total
bacterial densities, as determined through flow cytometry. The correction with cell counts was performed
using the determined cell counts for that specific sample.

Predictive models. (i) FCM preprocessing. The data were normalized to the [0,1] interval by divid-
ing each parameter by the maximum observed SYBR green I fluorescence channel (i.e., the targeted
channel) intensity value over all samples in the data set (i.e., all samples are normalized using the same
value). Next, the flow cytometry data were processed by applying a Gaussian mixture mask to the data
that allows one to classify each cell into one of the cell clusters that are detected in the data set. For gen-
erating the mask, all samples are subsampled to the same number of cells per sample in order to not
bias model training toward a specific sample. As with the method of Ludwig et al. (50), the Gaussian mix-
ture model (GMM) was optimized based on the Bayesian information criterion (BIC) using PhenoGMM
(19). This discretization results in a one-dimensional (1D) vector for each sample that represents the
number of cells present in each mixture. Unless indicated otherwise, the parameters that are included in
the model are those that were optimized prior to measurement (i.e., forward scatter [FSC], side scatter
[SSC], fluorescence 1 [FL1] [527/32], and FL3 [700/54]). Finally, the mixture counts were converted to rel-
ative abundances per sample and transformed using a centered log ratio (clr) transformation imple-
mented in the compositions package (v. 2.0.0) (51):

clrðx1Þ ¼ x1

ðYn

j¼1
xjÞ1=n

2
64

3
75

The clr transformation does not change data dimensionality and has previously been used for proc-
essing of microbial composition data (52).

(ii) Illumina preprocessing. Taxa with low relative abundances are not expected to be detected
through flow cytometry. Hammes et al. determined a quantification limit for flow cytometry of 102 cells/
ml (53). Since all samples were diluted 10 times, taxa with an absolute abundance below 103 cells/ml
were not expected to be observable in the flow cytometry data. Therefore, in each sample, the relative
abundance of OTUs with an absolute abundance lower than 103 cells/ml was set to zero.

(iii) Model training and validation. For each OTU, a presence/absence classifier and a regressor for
relative abundance predictions were trained. To test the robustness of the pipeline, prediction perform-
ance was evaluated using independent validation sets with a nested cross-validation scheme (i.e., in the
outer loop, 20% of the data are held out for validation of the final model, and in the inner loop, 5-fold
cross-validation is used for tuning and training of the models). This outer loop was repeated three times
with different fold splits. The pipeline consists of a random-forest (RF) classifier to predict the presence
or absence of the taxon of interest and a regression ensemble (i.e., a combination of a gradient boost
regression and a support vector regression with polynomial kernel) to predict the relative abundance of
the taxon of interest. All models were implemented using the caret (v6.0.86) (54) and caretEnsemble
(v2.0.1) (55) packages.

Sequencing survey data are typically zero-inflated (i.e., for each individual OTU, the OTU will be absent
or have a very low relative abundance [Fig. S11A at https://doi.org/10.6084/m9.figshare.16337103]). Prior
to model training, samples were randomly combined in silico to increase the number of samples where
the OTU was abundant (Fig. S11B and C at https://doi.org/10.6084/m9.figshare.16337103). This increased
model performances (Fig. S11D at https://doi.org/10.6084/m9.figshare.16337103).

For the presence/absence classifier, samples with an OTU abundance lower than 1% were labeled as
absent, and samples with an OTU abundance higher than 1% were labeled as present. The reason why
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an arbitrary value of 1% was chosen as a cutoff is that small differences in sequencing depth between
samples may cause samples with similarly low relative abundances to be labeled differently (i.e., as
absent or present). An RF classifier was trained to separate both classes. Before training the classifier, the
number of features was reduced using a recursive feature elimination (rfe) strategy (rfe function in caret,
25 iterations). In short, the training data are split into a test set and a train set, the model is tuned on the
train set, and the features are ranked according to their importance. For each subset of the Si most im-
portant features, the model is trained on the training set and predictions are made on the test set. This
procedure was repeated 25 times, and the average performance profile over the different subset sizes
was calculated. The performances quickly reached a plateau. To avoid incorporation of redundant fea-
tures, the features required to reach an accuracy with a maximal deviation of 0.5% of the maximal accu-
racy were included (pickSizeTolerance function in caret). Inclusion feature selection improves the ability
of the model to use features/clusters that are associated with the modeled taxon and not with corre-
lated clusters that may belong to other taxa (Fig. S12 at https://doi.org/10.6084/m9.figshare.16337103).

For predicting the relative abundances, models with unbound outcomes were used. To avoid the generation
of predictions outside the [0,1] range, the logit transformation was applied to map the relative abundances of
the individual OTUs to values in the [–Inf, Inf] range before training the regression models, as follows:

logitðxiÞ ¼ ln
xi

12 xi

� �

Zero values were replaced by one-tenth of the smallest nonzero abundance value. The final regression pre-
dictions were inversely transformed so that the final predictions were bound to the [0,1] range. A linear regres-
sion ensemble was trained using a gradient-boosting regression and a support vector regression with polyno-
mial kernel. Because the regression models were marked by a high frequency of false-positive predictions, the
classifier was used to correct the regression output (i.e., predicted abundances of samples for which the classi-
fier predicted “absent”was set to zero [Fig. S3 at https://doi.org/10.6084/m9.figshare.16337103]).

Relative feature importance values of each model were stored to be compared either between taxa or to
the sorting data. For the random-forest classifier and gradient-boosting regression, the mean squared error
was calculated on the out-of-bag data for each tree, the values of the variable that was tested were randomly
shuffled in the out-of-bag sample, and the mean squared error was calculated again. Differences in the mean
squared error values were averaged and normalized. For the support vector regression, the relationship
between each predictor and the outcome was evaluated by fitting a loess smoother. The R2 statistic was calcu-
lated for this model against the intercept-only null model. This number was returned as a relative measure of
variable importance.

Data availability. Our entire data analysis pipeline is available as an R Markdown document at
https://github.com/jeheyse/FCM-16S_PredictiveModelling. Raw FCM data and metadata for the aquacul-
ture data set are available at FlowRepository under accession number FR-FCM-Z3CY. Raw sequence data
of the bulk samples originated from a previous study (33) and are available from the NCBI Sequence
Read Archive (SRA) under accession number PRJNA637486. Raw sequence data for the control samples
and the sorted and the mock communities generated in this study are available from the NCBI SRA
under accession number PRJNA691168. The supplemental information can be found at the following
link: https://doi.org/10.6084/m9.figshare.16337103.
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