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Abstract Shelf seas and their associated benthic

habitats represent key systems in the global carbon

cycle. However, the quantification of the related

stocks and flows of carbon are often poorly con-

strained. To address benthic carbon storage in the

North–West European continental shelf, we have

spatially predicted the mass of particulate organic

carbon (POC) stored in the top 10 cm of shelf

sediments in parts of the North Sea, English Channel

and Celtic Sea using a Random Forest model, POC

measurements on surface sediments from those seas

and relevant predictor variables. The presented model

explains 78% of the variance in the data and we

estimate that approximately 250 Mt of POC are stored

in surficial sediments of the study area (633,000 km2).

Upscaling to the North–West European continental

shelf area (1,111,812 km2) yielded a range of

230–882 Mt of POC with the most likely estimate

being on the order of 476 Mt. We demonstrate that the

largest POC stocks are associated with coarse-grained

sediments due to their wide-spread occurrence and

high dry bulk densities. Our results also highlight the

importance of coastal sediments for carbon storage

and sequestration. Important predictors for POC

include mud content in surficial sediments, annual

average bottom temperature and distance to shoreline,

with the latter possibly a proxy for terrestrial inputs.

Now that key variables in determining the spatial

distribution of POC have been identified, it is possible

to predict future changes to the POC stock, with the

presented maps providing an accurate baseline against

which to assess predicted changes.

Keywords Organic carbon � Continental shelf �
Sediment � Spatial prediction � Europe

Introduction

Carbon dioxide (CO2) from the atmosphere is taken up

by seawater, where it is fixed by primary producers

such as phytoplankton with a proportion of this

particulate organic carbon (POC) supporting the food

web within the water column, while another part sinks
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to the seabed (Miller 2004). The latter may be

incorporated into the surface sediments or support the

benthic food web and be respired or buried, along with

POC from terrestrial sources. The sedimentation of

POC is therefore a key process in transferring CO2

from the atmosphere to the seabed where it may be

stored long term (decades–centuries) mitigating

increases in atmospheric CO2 associated with climate

change (Pachauri and Meyer 2014). There are, how-

ever, many natural mechanisms that affect the incor-

poration of POC into sediments, from physical

processes such as particle movement or bedform

migration due to storms and tides (Jenness and

Duineveld 1985) or water column temperature (Berner

1980; Middelburg 1989 and references there-in), to

biological processes such as infaunal activity and mode

of feeding (Aller 1982). POC supply, incorporation and

storage may also be perturbed by human activities such

as bottom trawling (Duplisea et al. 2001; Trimmer et al.

2005) through direct mixing or indirect impact on the

infaunal community. These processes can also be

altered through changes in supply through localised

eutrophication or redox effects associated with differ-

ing bottom oxygen regimes and anoxia (Diaz and

Rosenberg 2008; Middelburg and Levin 2009). Ulti-

mately, it is the balance between the supply from the

water column and remineralisation rate of benthic

POC, which controls the POC stock in the surficial

sediments and which will dictate the incorporation rate

of POC. An increasing POC stock, either over space or

time, therefore implies an increasing input or decreas-

ing remineralisation. This may be due to either

changing/contrasting lability of POC (i.e. terrestrial

vs marine source), natural conditions or human pres-

sures (Burdige 2005, 2007).

To understand how this range of processes affects

POC storage and hence how they will be affected

under future change or human pressure conditions, it is

first necessary to quantify the stock. Generally, these

natural and anthropogenic processes affect the upper

sediment layer and this study therefore estimates the

amount of POC in the surface sediments (0–10 cm) of

the North-West (NW) European continental shelf

using a data set of directly sampled stations to better

constrain their POC stocks and hence their role in the

carbon cycle. Understanding the functioning and

distribution of these coastal and shelf sea POC stores

is also critical since there are considerable pressures

on these systems both from local and far field effects

(Bauer et al. 2013) and by improving our quantifica-

tion and the underpinning conditions associated with

changes in the levels of such stores, we can better

understand the effects of future changes to them and in

turn the global carbon cycle.

Data on POCmeasurements have been reported in the

literature. These datasets are largely a result of detailed,

small scale studies on sediment biogeochemical process-

ing of carbon and associated pathways or linked to faunal

community analysis (Basford et al. 1993; Willems et al.

2007; Stockdale et al. 2009 and references there-in). As a

result, comparatively few attempts have beenmade so far

to spatially predict POC in surficial sediments across

defined areas of seabed: Mollenhauer et al. (2004)

presented a map of organic carbon in surface sediments

of the South Atlantic Ocean based on 1118 samples;

Seiter et al. (2004) spatially predicted organic carbon

content in the top 5 cm of global deep sea sediments at a

18 9 18 grid resolution by the application of a combined

qualitative and quantitative-geostatistical method;

Acharya and Panigrahi (2016) mapped the distribution

of organic carbon on the Eastern Arabian shelf with

Empirical Bayesian Kriging; Serpetti et al. (2012)

mapped the organic content of coastal sediments from

hydro-acoustic reflectance data in an area of seabed off

the east coast of Scotland; andNeto et al. (2016) assessed

the suitability of seismic peak amplitude as a predictor of

total organic carbon content in shallow marine sedi-

ments, based on data collected in the Cabo Frio mud belt

in an upwelling zone off south-eastern Brazil. This

indicates that maps of POC concentration in surficial

sediments have either been derived by means of acoustic

methods (Serpetti et al. 2012; Neto et al. 2016) with

limited spatial coverage or some type of kriging

(Mollenhauer et al. 2004; Seiter et al. 2004; Acharya

and Panigrahi 2016).

More recently, machine learning algorithms have

made inroads into spatial prediction and have been

used to spatially predict categorical (e.g. sediment

types; Stephens and Diesing (2014)) and continuous

(e.g. sediment composition; Stephens and Diesing

(2015)) data. Machine learning algorithms are data-

driven flexible statistical prediction techniques that

‘learn’ patterns in data to predict an associated value.

Machine learning is defined as ‘‘programming com-

puters to optimise a performance criterion using

example data or past experience’’ (Alpaydin 2010).

Such predictive mapping methods entail a two-step

approach: Initially, the relationship between a set of
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predictor variables and a response variable is modelled

from observations (samples). The established model is

then employed to predict the response variable at

unsampled locations for which values of the predictor

variables are known.

The aim of this study is to map and quantify POC in

surficial sediments over a large area. Hence, acoustic

methods are not applicable due to the lack of

suitable data. Geostatistical (kriging) methods would

be applicable in this case. However, there are advan-

tages in using a machine learning approach for the task

in hand, as such methods do not need to satisfy strict

statistical assumptions as is the case for kriging.

Additionally, such methods allow investigation of

predictor-response variable relationships, which

might shed light on factors and processes controlling

POC in surficial sediments at a regional scale, in

contrast to site specific studies undertaken previously.

The objectives of this paper are to (i) develop a

machine learning methodology that allows to spatially

predict POC concentrations in surficial sediments of

the NW European continental shelf in an accurate and

validated way, (ii) estimate the mass of POC stored in

surface sediments and (iii) elucidate relationships

between POC concentrations and relevant environ-

mental variables.

Regional setting

The study area is part of the NW European continental

shelf adjacent to the North–East Atlantic Ocean. It

includes parts of the North Sea, English Channel and

Celtic Seas (Fig. 1) and measures approximately

633,000 km2. Water depths range between 0 and

1235 m below sea level, with a mean depth of 67 m.

Most of the area (98.6%) is continental shelf with

depths shallower than 200 m. Within the study area,

greater water depths are only found in the Norwegian

Trench and on the continental slope off the Scottish

West coast.

Data

Response variable

A total of 1111 measurements of the concentration of

POC in the sediment fraction \2 mm collected

between 1996 and 2015 were collated from the Centre

for Environment, Fisheries and Aquaculture Science

(Cefas) in-house data holdings (Mason et al. 2017).

Sediment samples were freeze-dried and any material

[2 mm was removed. The sediment was subse-

quently ground and inorganic carbon removed using

a sulphurous acid digest. POC concentrations were

measured using an elemental analyser. For some sites,

more than one measurement of POC concentration

existed in the database. These were either repeat

measurements (replicates) or measurements for dif-

ferent depth horizons (0–5 cm and 5–10 cm). Average

values of POC concentration were calculated in such

instances, which reduced the number of records to

1004. Of those, 849 records co-occurred with all

available predictor variables (see below) and these

were used for further analysis. The statistics of POC

concentrations for varying depth intervals are shown

in Table 1.

The POC concentrations are reported as a propor-

tion (weight-%). In such a case, an arcsine transfor-

mation is advisable (Sokal and Rohlf 1981):

Y ¼ arcsin
p
X; ð1Þ

with X being measured POC as a fraction (ranging

from 0 to 1) and Y being the transformed POC

concentration. Back-transformation of the predicted

values is achieved via:

X ¼ ðsin YÞ2 ð2Þ

The data set was randomly split into training and

test data with a ratio of 2:1 respectively, yielding 566

samples for model training and 283 samples for model

testing.

Predictor variables

Predictor environmental variables were initially

selected based on their expected relevance to the

spatial distribution in POC and their availability. The

predictor variables are comprised of bathymetry,

Euclidean distance to the nearest shoreline, geo-

graphic position (eastings, northings), sediment com-

position (mud, sand and gravel fraction), earth

observation data (chlorophyll-a, depth of the euphotic

zone and suspended particulate matter (SPM) concen-

trations) from the moderate resolution imaging spec-

troradiometer (MODIS), hydrodynamic model data
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(depth averaged mean and peak current speed, peak

wave orbital velocity and peak wave-current shear

stress), water-column bottom salinity (annual average

and range), water-column bottom temperature (annual

average and range) and stratification (thermal and

salinity).

Methods

Random forest regression

The random forest (RF) prediction algorithm (Brei-

man 2001) was chosen as the modelling tool for the

Fig. 1 Location of the study area on the NWEuropean continental shelf (inset). Also shown are the locations of POC samples, split into

training and test datasets

Table 1 Statistics of POC concentration by depth interval

Depth N Mean (%) SD (%) Min (%) Max (%)

Surface (nominally 0–2 cm) 711 0.46 0.51 0.02 4.49

Surface layer; variable depths; max depth = 5 cm 33 0.21 0.17 0.03 0.70

0–5 cm 33 0.22 0.20 0.03 1.00

0–10 cm 72 0.52 0.36 0.07 1.64

186 Biogeochemistry (2017) 135:183–200

123



analysis because it has shown high predictive accuracy

in a number of domains (Prasad et al. 2006; Huang

et al. 2012; Mutanga et al. 2012; Oliveira et al. 2012;

Huang et al. 2014). RF can be used without extensive

parameter tuning, it can handle a large number of

predictor variables, is insensitive to the inclusion of

some noisy/irrelevant features, makes no assumptions

regarding the shape of distributions of the response or

predictor variables (Cutler et al. 2007) and is therefore

suitable for this analysis. The RF is an ensemble

technique that ‘grows’ many regression trees. It is

called a random forest because two elements of

randomness are introduced. Firstly, each tree is

constructed from a bootstrapped sample of the training

data. Secondly, only a random subset of the predictor

variables is used at each split in the tree building

process. This has the effect of making every tree in the

forest unique. The underlying principle of the tech-

nique is that although each tree in the forest may

individually be a poor predictor and that any two trees

could give different answers, by aggregating the

predictions over a large number of uncorrelated trees,

prediction variance is reduced and accuracy improved

(James et al. 2013: p. 316). Observations not included

in each tree construction, the ‘out-of-bag’ (OOB)

samples, are then used to create a form of cross-

validated prediction error. RF also provides a relative

estimate of predictor variable importance. This is

measured as the relative increase in mean squared

error associated with each variable when it is assigned

random but realistic values and the rest of the variables

are left unchanged. The randomForest package (Liaw

andWiener 2002), executed via the Marine Geospatial

Ecology Tools v08a.58 (Roberts et al. 2010), was used

for the implementation of the model. The forest had

500 trees, and the number of variables tested at each

split equalled the number of predictor variables

divided by three (rounded down). These are the

default settings, which were selected as an increase

in the number of trees or variables tested at each split

did not lead to improved results (measured as variance

explained, see below).

Model validation

The RF implicitly carries out a form of cross-

validation (CV) using the OOB observations. This

usually gives a reliable measure for real model

performance assuming enough trees are grown (Liaw

and Wiener 2002). In addition to this performance

indicator, the model constructed here is tested against

the test set of observations. For both the CV and the

test set, the performance is assessed by calculating the

mean of the squared prediction error:

MSEŷ ¼
1

n

Xn

i¼1

yi � ŷið Þ2 ð3Þ

where y are observed and ŷ are predicted values. The

‘variance explained’ (VE) by the model is then

calculated by taking the ratio of the MSE to the

variance (r2) of the observed values:

VE ¼ 1�MSEŷ

r2y
ð4Þ

The predictions of the transformed and back-trans-

formed response variable were compared with the

observed values from the test set and Pearson product-

moment correlation coefficients calculated.

Variable selection

Variable selection reduces the number of predictor

variables to a subset that is relevant to the problem. The

aims are to reduce redundancy without losing informa-

tion content and to increase the interpretability of the

model. Predictor variables were selected in a two-step

approach: Initially, the Boruta variable selection wrap-

per algorithm (Kursa and Rudnicki 2010) was

employed to identify important predictor variables.

Wrapper algorithms identify relevant features by per-

forming multiple runs of predictive models, testing the

performance of different subsets (Guyon and Elisseeff

2003). The Boruta algorithm creates copies of all

variables and randomises them. These so-called shadow

variables are added to the predictor variable data set and

the RF algorithm is run to compute variable importance

scores for predictor and shadow variables. The maxi-

mum importance score among the shadow variables

(MZSA) is determined. For every predictor variable, a

two-sided test of equality is performed with the MZSA.

Predictor variables that have a variable importance

score significantly higher than the MZSA are deemed

important. Likewise, predictor variables that have a

variable importance score significantly lower than the

MZSA are deemed unimportant. Tentative variables

have a variable importance score that is not significantly

different from the MZSA. Second, a RF model was run
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with the remaining predictor variables to establish the

variable importance. Beginning with the most impor-

tant variable, correlated variables (|r|[ 0.5) with lower

importance were subsequently removed.

Partial dependence plots

Partial dependence plots (Hastie et al. 2009:

pp. 369–370) give a graphical depiction of the marginal

effect of a predictor variable on the response. They allow

to visualise the effect of a predictor variable on the

response variable, while averaging out the effects of all

other predictors. Partial dependence plots are a useful

tool for data exploration.We used theMarineGeospatial

Ecology Tools v08a.58 (Roberts et al. 2010) to create

partial dependence plots for selected predictor variables.

Estimation of dry bulk density

Porosity (/) of the surficial sediment layer was derived

from predicted mud content (Stephens and Diesing

2015) employing an equation from Jenkins (2005):

/ ¼ 0:3805 � Cmud þ 0:42071; ð5Þ

with / and Cmud (mud content) both given as

dimensionless fractions. The equation is based on

data from the Mississippi–Alabama–Florida shelf. By

applying this equation to our study area, we assumed

that the relationship is not site specific. To test the

validity of this assumption, we compared estimates

made this way with porosity measurements carried out

at 55 stations in the Celtic Sea (Silburn et al. 2017).

We also apply an alternative mud-porosity relation-

ship based on the same porosity measurements and

predicted mud content (Stephens and Diesing 2015) to

assess the differences in the estimation of porosity.

Dry bulk density (qd) of the sediment was then

derived from sediment porosity and grain density

(qs = 2650 kg m-3) according to:

qd ¼ 1� /ð Þqs ð6Þ

All calculations were carried out in ArcGIS v10.1

using the Raster Calculator tool.

Estimation of the total mass of POC stored

in surficial sediments

The mass of POC (mPOC) per grid cell was calculated

by multiplying POC concentration (as a dimensionless

fraction) with dry bulk density (in kg m-3), the

sediment depth (d = 0.1 m) and the area of the grid

cell (A = 250,000 m2):

mPOC ¼ POC � qd � d � A ð7Þ

A summation of the values of all grid cells yielded the

total standing stock of POC.

Calculation of statistics for POC and dry bulk

density per sediment class

Statistics of POC concentrations and dry bulk density

were calculated for Folk sediment classes as mapped

by Stephens and Diesing (2015). For each sediment

class, 1000 random samples were generated and the

predicted values of POC concentration and dry bulk

density extracted. Due to low spatial extent, the

number of samples was lower for some classes

(gravelly mud, muddy gravel and slightly gravelly

sandy mud). The mean, standard deviation, 5th and

95th percentile of POC concentrations and dry bulk

density were calculated.

Scaling up to the NW European continental shelf

Results from the study area were scaled up to the NW

European continental shelf (Fig. 1, inset) in two ways:

First, we calculated mPOC bymultiplying the area of the

NW European continental shelf (A = 1,111,812 km2)

with the average mass of POC per m2 and to a depth of

0.1 m as derived for the study area. Second, we

employed statistics on POC and dry bulk density and

estimates of spatial extent for the different Folk

sediment classes (Supplement 1). We usedmean values

of POC and dry bulk density to derive an estimate of

mPOC. To account for uncertainty in scaling up our

results, we calculated estimates from the extreme low

and high end of the distributions of POC and dry bulk

density. We used the 5th and 95th percentiles to avoid

influence of outliers in either direction.

Results

Variable selection and importance

The Boruta variable selection process indicated that

nine variables were deemed important (Table 2).

Subsequent removal of correlated variables reduced
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the number of variables to six. The final selected

variables were mud content, annual average water

column bottom temperature, eastings, distance to

shoreline, gravel content and peak wave orbital

velocity. Figure 2 shows the relative importance of

the six variables to prediction accuracy. Mud content

in surface sediments is the most important variable in

predicting POC, followed by the annual average water

column bottom temperature (Table 3).

Model validation

Approximately 75% of the variability of the trans-

formed POC values is explained by the RF model

(Table 3). The good agreement between cross-vali-

dated and test set statistics indicates that the model is

not over-fitted to the training data and it is generalising

real patterns in the data. Figure 3 shows the predicted

versus the observed values for the transformed POC

(left) and POC concentration (right). From this it is

apparent that the model tends to slightly under-predict

POC concentration (predicted POC = 0.7896 *

observed POC when forced through origin). Pearson

product-moment correlation coefficients for the trans-

formed POC and POC concentration are r = 0.880

(n = 275, p\ 2.2e-16) and 0.842 (n = 275,

p\ 2.2e-16), respectively.

Data exploration

Partial dependence plots (Fig. 4) allow graphical

exploration of the relationships between the response

variable (transformed POC) and selected predictor

variables. Also shown is the relationship between

Table 2 List of predictor variables, results of the Boruta variable selection process and final selection of variables after removal of

correlated variables

Predictor variable Boruta Final Source

Bathymetry Tentative EMODnet-Bathymetry (http://www.emodnet-bathymetry.eu/),

Astrium Oceanwise (2011)

Distance to shoreline Important Selected Calculated

Eastings Important Selected Calculated

Northings Tentative Calculated

Mud Important Selected Stephens and Diesing (2015)

Sand Important Stephens and Diesing (2015)

Gravel Important Selected Stephens and Diesing (2015)

Chlorophyll-a Tentative Gohin et al. (2005)

Depth of euphotic zone Unimportant Gohin et al. (2005)

SPM (Winter) Unimportant Gohin et al. (2005)

SPM (Summer) Unimportant Gohin et al. (2005)

Average current speed Tentative Aldridge et al. (2015), Bricheno et al. (2015)

Peak current speed Important Aldridge et al. (2015), Bricheno et al. (2015)

Peak wave orbital velocity Important Selected Aldridge et al. (2015), Bricheno et al. (2015)

Peak wave-current stress Tentative Aldridge et al. (2015), Bricheno et al. (2015)

Annual average bottom salinity Tentative Berx and Hughes (2009)

Annual amplitude bottom salinity Important Berx and Hughes (2009)

Annual average bottom temperature Important Selected Berx and Hughes (2009)

Annual amplitude bottom temperature Tentative Berx and Hughes (2009)

Stratification salinity Unimportant Calculated from Berx and Hughes (2009)

Stratification temperature Tentative Calculated from Berx and Hughes (2009)

Table 3 Cross-validation and test set performance

Statistic Value

MSE (cross-validation) 0.000273

MSE (test set) 0.000273

Variance explained (cross-validation) 74.9%

Variance explained (test set) 77.5%
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transformed POC and POC (Eq. 1) to aid the inter-

pretation. Transformed POC, and likewise POC,

increases with an increasing mud content; however,

this increase is not uniform and levels off towards

higher mud content of[0.5 (i.e. 50 weight-%). For

bottom water-column temperatures below approxi-

mately 8 �C transformed POC stays constant at around

0.072 (0.52% POC), then drops steeply to 0.063 (0.4%

Fig. 2 Variable importance

scores. The importance of

predictor variables as

indicated by the random

forest algorithm. The x-axis

indicates the relative

increase in mean squared

error when the variable is

assigned random but

realistic values, the y-axis

indicates the variables of the

final model

Fig. 3 Observed versus predicted values for transformed POC (a) and POC concentrations (b). The diagonal line indicates y = x

190 Biogeochemistry (2017) 135:183–200
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POC). Beyond that, increasing bottom temperatures

relate to a broadly linear decrease in transformed POC.

Transformed POC values drop sharply with increasing

distance from the shoreline up to about 30 km, then

stay broadly constant at about 0.055 (0.3% POC).

Estimates of porosity and dry bulk density

Figure 5a shows values of measured porosity plotted

against estimates of porosity derived from predicted

mud content (Stephens and Diesing 2015) using Eq. 5.

Both are strongly (Pearson product-moment

correlation coefficient, r = 0.803) and significantly

(p = 1.65e-13) correlated and points plot along the

diagonal line that indicates perfect agreement. Plotting

measured porosity against predicted mud content

(Fig. 5b) yields a relationship that closely resembles

Eq. 5:

/ ¼ 0:4013 �mud þ 0:4265 ð8Þ

However, Eq. 5 systematically yields slightly lower

estimates for sediment porosity and consequently

slightly higher estimates of dry bulk density (Fig. 6).

Differences are highest in muddy basins.

Fig. 4 Partial dependence plots showing the relationships between mud content (a), annual average water column bottom temperature

(b), distance to shoreline (c) and transformed POC. Also shown is the relationship between transformed POC and POC (d)

Biogeochemistry (2017) 135:183–200 191
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POC in surficial sediments

Spatial patterns of POC are shown in Fig. 7. Highest

POC concentrations are associated with the Norwe-

gian Trench, shelf basins and coastal areas around

Scotland and north–east England. Lowest concentra-

tions are found in the southern North Sea, on Dogger

Bank, the English Channel and in the deeper parts of

the Irish Sea. Dry bulk density is negatively correlated

with mud content. Areas of high mud content, mainly

the shelf basins, consequently have a low dry bulk

density and vice versa (Fig. 6). This means that the

highest mass of POC per unit area (m2) is associated

with coastal areas around Scotland and north-east

England and the rims of shelf basins. Using Eq. 5 for

the estimation of porosity yields a total standing stock

of POC in the top 10 cm of shelf sediments of

mPOC = 247.1 Mt over an area of 632,881 km2, equal

Fig. 5 aObserved versus estimated values of sediment porosity (/). The diagonal line indicates y = x. b Predicted mud content versus

observed porosity. The solid line indicates the best fit linear regression (Eq. 8), the dashed line indicates Eq. 5

Fig. 6 a Dry bulk density based on Eq. 5 for porosity estimation. b Difference between dry bulk density based on Eq. 5 for porosity

estimation and dry bulk density based on Eq. 8 for porosity estimation
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to 390.4 t of POC per 1 km2. Alternatively, using

Eq. 8 for the estimation of porosity yields

mPOC = 243.3 Mt, which is 3.8 Mt (1.5%) lower than

the previous estimate. Due to these limited differ-

ences, we will subsequently use estimates of POC

derived by utilising Eq. 5.

Statistical values for POC concentrations and dry

bulk density by Folk sediment class are summarised in

Table 4. Note that no estimates could be made for

slightly gravelly mud. Statistics reported for gravelly

mud and muddy gravel are based on a very limited

number of data points as these sediment types rarely

occur within the study site. The highest POC concen-

trations are associated with gravelly mud, mud and

sandy mud. Conversely, gravel and sandy gravel

exhibit the lowest POC concentrations. The highest

standing stock of POC is associated with sand due to

the large area and high dry bulk density. Sediments

with the highest POC concentrations provide a minor

contribution to the overall POC stock. The total

standing stock of POC estimated frommean values per

sediment class as reported in Table 4 is

mPOC = 252.2 Mt, which is slightly higher (2%) than

estimated by summing up predicted values as reported

above.

Scaling up to the NW European continental shelf

A simple scaling up of mPOC to the area of the NW

European continental shelf based on the average mass

of POC per unit seabed and to a depth of 10 cm yields

mPOC = 434 Mt. Based on mean values of POC and

dry bulk density (Table 4), we derive mPOC = 476 Mt.

The lower and upper bounds of our estimates (based

on the 5th and 95th percentiles) are calculated to

230 Mt and 882 Mt, respectively. Note that the

contribution of slightly gravelly mud was based on

statistics for the mud class, as no statistical values

could be derived.

Discussion

We have described a quantitative spatial model of

POC concentrations in surficial sediments of parts of

the NW European continental shelf. The results were

produced with a repeatable method and validated with

independent, i.e. not used for model building, sample

data. The derived statistics indicate that the model is

not over-fitted to the training data and more than three

quarters of the variance in the response data are

explained by themodel. Predicted POC concentrations

are highly and significantly correlated with measured

POC concentrations, although the model appears to

slightly under-predict POC concentrations.

Model appraisal and limitations

Every model has limitations as it is a simplification of

reality and this is also true in this case. In the

following, we will discuss the major limitations of our

RF model:

Fig. 7 a Predicted concentrations of POC across the study site; b Predicted mass of POC per unit area seabed to a depth of 10 cm
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Firstly, care was taken to include as many poten-

tially relevant predictor variables as possible. Initially,

a conceptual model was developed and potentially

relevant variables were identified. Subsequently, those

were selected for which full coverage information of

the study site was available. These were then subjected

to a formal variable selection process. Important

variables may be not included in the final model due to

two reasons: (i) important additional variables may

have been omitted when creating the conceptual

model or (ii) it was not possible to obtain data on a

variable with full coverage. The latter is especially

likely to have occurred as at the time of model

development we were not able to source an even more

comprehensive set of physico-chemical, chemical and

biological variables including water column and

porewater nutrients concentrations, oxygen saturation

in bottom waters and sediment pH distributions.

Furthermore, the inclusion of biological variables

such as sediment microbial or faunal communities was

beyond the scope of this stage of model development.

However, such variables might be accounted for to a

certain extent indirectly via correlated variables

included in the model.

We believe that further improvements in model

performance are generally possible through a better

understanding of causal relationships (e.g. the pro-

cesses by which temperature or distance to shoreline

might affect carbon storage and mineralisation) lead-

ing to better conceptual models underpinning the

applied statistical approaches, through additional data

on relevant predictor variables becoming available as

a consequence of advances in parameter measurement

and increases in spatial coverage of relevant observa-

tions. However, we believe that under the given

circumstances our model is a significant achievement

as indicated by the fact that 78% of the variance in the

response variable is explained by the model.

The availability of predictor and response variables

is an external constraint that will influence model

performance. However, even if data on a variable exist

in principle, they might relate to a certain time interval

when the data were collected or for which they were

modelled (e.g. hydrodynamic models). Additionally,

predictor variables are gridded to a certain spatial

resolution. In our model, mismatches between vari-

ables do exist both temporally and spatially: e.g.

samples were taken from 1996 to 2015, but peak wave

orbital velocity was modelled for the period

1999–2008 (Bricheno et al. 2015) and annual average

bottom temperature refers to a climatology for the

years 1971–2000 (Berx and Hughes 2009). The

Table 4 Statistical values for POC concentrations and dry bulk density by Folk sediment class

Folk class Area (km2) POC (%) Dry bulk density (kg m-3)

P5 P95 Mean SD P5 P95 Mean SD POC stock (Mt)

Mud 3080 0.59 1.11 0.88 0.20 536 624 580 29 1.56

Sandy mud 13,656 0.54 1.11 0.78 0.21 646 1011 828 120 8.81

Muddy sand 64,043 0.27 0.92 0.54 0.22 1111 1429 1323 99 45.49

Sand 323,200 0.10 0.50 0.24 0.12 1454 1535 1511 25 116.24

Slightly gravelly sandy mud 122 0.55 0.93 0.67 0.16 789 1030 945 73 0.08

Slightly gravelly muddy sand 5772 0.32 0.82 0.54 0.22 1192 1433 1357 80 4.20

Slightly gravelly sand 92,414 0.07 0.43 0.22 0.11 1467 1534 1512 21 31.13

Gravelly mud 2 0.70 1.69 0.91 0.51 845 1080 1011 102 0.00

Gravelly muddy sand 1638 0.30 0.77 0.49 0.23 1287 1447 1397 51 1.12

Gravelly sand 90,987 0.12 0.44 0.23 0.10 1486 1534 1515 16 32.35

Muddy gravel 1 0.62 0.62 0.62 0.01 1234 1394 1314 125 0.00

Muddy sandy gravel 802 0.16 0.45 0.29 0.10 1438 1510 1482 25 0.34

Sandy gravel 35,222 0.12 0.35 0.19 0.09 1492 1534 1521 13 10.33

Gravel 1942 0.13 0.25 0.18 0.05 1511 1535 1529 8 0.55

Sum 632,881 252.21
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implicit assumption of our model therefore is that the

response and predictor variables are constant through

time. Such an assumption is unlikely to hold. How-

ever, we note that the mentioned time intervals do at

least partially overlap and it might be assumed that

changes in predictor variables are likely to act on

longer time scales before they become significant for

our model.

With regard to the spatial resolution of the gridded

predictor variables we note that four out of six

(distance to shoreline, eastings, mud and gravel)

existed at the same resolution as the POC model.

Annual average bottom temperature was provided at a

lower resolution of approximately 10 km and was

interpolated to match the 500 m grid of the other

predictor variables. We believe that this approach is

defendable as bottom temperature is likely to exhibit

relatively gradual changes over distances of 10 km.

Regarding peak wave orbital velocity, we obtained

modelled surface wave properties (significant wave

height and zero crossing period) at a spatial resolution

of approximately 12 km and calculated orbital veloc-

ities at the seabed utilising a high-resolution bathy-

metry (c. 200 m) in an attempt to better account for

small-scale variability in the predictor variable. Again,

the assumption was that surface wave properties

change gradually over distances of 12 km (at least in

water depths beyond the wave base) and that fine-scale

variability in orbital velocity is mainly driven by

changes in bathymetry, for which high-resolution data

existed. We are thus confident that we have accounted

for the differing spatial resolutions of the predictor

variables in an adequate way.

Factors controlling POC

Mud content, annual average water column bottom

temperature, eastings, distance to shoreline, gravel

content and peak wave orbital velocity were identified

as important predictor variables. Our results demon-

strate that mud content in surficial seabed sediments is

the most important variable in predicting POC

concentrations, which increase with an increase in

mud content. Such general relationships have been

observed before in North Sea sediments (Cadée 1984;

Lohse et al. 1996; de Haas et al. 1997; Trimmer et al.

2005); however, these were often based on a limited

number of samples in a spatially restricted area and

such studies focused on other sediment mechanisms

rather than regional scale POC-sediment composition

relationships directly. Various mechanisms have been

proposed, including sorption of organic matter to

mineral surfaces and its subsequent concentration in

fine-grained sediments with large surface areas (Keil

and Hedges 1993), preservation under anoxic condi-

tions in a static situation (e.g. Black Sea and Baltic

Sea) and high primary productivity in a dynamic

system (coastal upwelling primarily on the western

continental margins). Studies of sediment biogeo-

chemistry and carbon cycling have often noted this

relationship between sediment type and POC concen-

tration, both in terms of POC driving remineralisation

processes and towards an improved understanding of

conditions which control POC stocks. Again, these

studies have been geographically constrained and

focused on carbon or nutrient cycling directly so have

not described the regional scale relationships across

shelf sea areas.

When critically evaluating the observed link

between mud and gravel content and POC concentra-

tions, it is useful to consider the two end members of

such sediments and the spectrum of sediments

between. A relationship of increasing POC concen-

trations with mud content is expected given previous

findings. Fine sediments are often associated with high

natural organic matter loading due to proximity to

terrestrial inputs, sedimentary hydrographic environ-

ments of low natural disturbance or create an

environment where POC that is deposited naturally

accumulates due to the diffusional environment that

the higher mud percentage creates. This favours a

more reducing environment within the sediments and

anoxic bacterial processes of remineralisation, which

may lead to increased carbon storage in locations

where anaerobic degradation processes based on

alternative electron acceptors such as nitrogen, iron,

manganese or sulphur are dominant. Conversely,

substrates with lower mud percentages have more

open structures where advective flow in the upper

layers deepens the oxic layers and so POC drawn into

the sediments is more rapidly respired (Huettel et al.

1996; Huettel and Rusch 2000; Ehrenhauss et al.

2004). The transitions between these two end mem-

bers which control remineralisation rates through

sediment and oxygen are rarely described at a regional

scale and so this study bridges the gaps in understand-

ing of the interplay between these end-point mecha-

nisms and its relevance to POC stocks.
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Similarly, the observed trend of an increase in POC

concentrations with decreases in average bottomwater

temperature in the range of 7–12 �C covered by the

observational data and model agrees with many

studies on the remineralisation of POC in marine

sediments, both seasonal and geographical (Berner

1980; Middelburg 1989; Burdige 1991). The decrease

may be forced by the temperature dependency on

bacterial processes (both oxic and anoxic), as rem-

ineralisation occurs faster at higher temperatures or

alternatively by a negative relationship between

primary production (supply level and POC lability)

and temperature in the study area. A noticeable step

change at ca. 8 �C might potentially correlate to the

onset of additional metabolic pathways or non-linear

temperature controls involved in POC remineralisa-

tion or additionally conditions of these low-tempera-

ture shelf areas with disproportionately slow POC

remineralisation, for example refractory terrestrial

organic matter (TOM) inputs and low oxygen regimes

in sea-lochs or deep stratified regions (Glud 2008;

Burrows et al. 2014).

The observed influence of the distance to a

shoreline on POC concentrations might indicate a

change in POC sources: Close to the shore, terrestrial

inputs (such as drainage of peats or river catchments)

and benthic primary production (e.g. Duarte et al.

2005), where benthic systems lie within the euphotic

zone, might dominate measured nearshore POC con-

centrations. Further offshore, water column primary

and secondary productivity or detrital dominated POC

sources are more likely to prevail. The input of TOM

within these areas can also illustrate the significance of

this pool of POC closer to shore. It is a more refractory

component of POC and therefore will accumulate in

the stock to a greater extent than more labile marine

derived POC (Burdige 2005) Chlorophyll-a concen-

tration, which is a proxy for pelagic primary produc-

tivity, was not found to be an important predictor. This

might be explained by the overriding dominance of

other physical or physico-chemical determinants,

variabilities in transfer of POC production within the

water column and transfer to the bed (sinking,

recycling) or significant lateral transport by currents

during the sinking process. The derived chlorophyll-a

concentrations might also be confounded by POC

sources not quantified well by satellite systems (for

example deep chlorophyll maxima within stratified

regions) or by coloured dissolved organic matter,

which is frequently found in coastal waters but was not

explicitly accounted for when deriving products from

the MODIS data (e.g. Gohin et al. 2005).

POC stocks in surface sediments of the NW

European continental shelf

The estimation of the POC stock (Eq. 7) also depends on

robust estimates of dry bulk density. We used Eq. 5

(Jenkins 2005) to estimate sediment porosity and

subsequently dry bulk density (Eq. 6). Equation 5 is

based on a large data set; however, the samples were

collected on theMississippi–Alabama–Florida shelf.We

have demonstrated that this relationship generally holds

for our study area and that estimates of the POC stock are

hardly affected. We are thus confident that our estimates

of the mass of POC stored in surficial sediments of the

NW European continental shelf are realistic.

Our results (Figs. 4a, 7a) support the concept that

the highest concentrations of POC are associated with

muddy sediments. However, these do not always

translate into the highest values in terms of mass per

unit area, as dry bulk densities of muddy sediments are

usually low (Fig. 6). Counterintuitively, muddy sed-

iments (mud, slightly gravelly mud, slightly gravelly

sandy mud, sandy mud, gravelly mud) contribute little

to the total stock due to their spatially restricted areas

and low dry bulk densities. Conversely, sand, slightly

gravelly sand and gravelly sand contribute 71% of the

POC stock due to high dry bulk densities and

widespread occurrence in the study area (Table 4).

Hence, our results challenge the view that POC is

mainly stored in soft, fine-grained sediments. These

results indicate that future research needs to consider

previously under-studied coarse-grained sediments

with low mud contents.

So far, estimates of POC in the NW European shelf

area only exist for localised areas (Serpetti et al. 2012;

Burrows et al. 2014). Previous shelf wide approaches

to carbon budgets have been carried out but have

focussed on annual sedimentation rates in order to

generate annual carbon budgets (de Haas et al.

1997, 2002). This latter approach, although key to

our understanding of the autotrophy versus heterotro-

phy of shelf seas and overall carbon cycling, does not

address the fundamental question of the overall stock.

The results presented here are therefore the first large

scale estimate of POC in this area from field samples.

Our estimate of 250 Mt carbon stored in surficial
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sediments of the study area (A = 633,000 km2)

contrasts with an estimate of 18.1 Mt stored in the

top 10 cm of marine sediments off Scotland covering

an area of approximately 470,000 km2 (Burrows et al.

2014), an order of magnitude lower than our estimate.

Given that there is significant spatial overlap between

the two study areas, it is likely that the observed

discrepancy relates to differences in the approaches

taken to derive the carbon stocks. Burrows et al.

(2014) derived their estimate by combining average

POC concentrations for different sediment types taken

from published studies with the estimates of the spatial

extent of these sediment types. POC concentrations

were assumed to be zero for coarse-grained sediments.

This might to some extent explain the discrepancies

between the two estimates.

Our figure of 476 Mt (230–882 Mt) for the NW

European continental shelf shows the stock to be

important for example in comparison to estimates of

9000 and 25,000 Mt of carbon for the whole of Europe’s

forest vegetation and soils respectively (Kauppi et al.

1992; Dixon et al. 1994). It is important to note that the

area of the NW European continental shelf is

1,111,812 km2 in comparison to 2,830,000 km2 for

forest cover, i.e. *39% of the surface area for forest.

Shelf sea sediments therefore have an aerial storage of ca

3.6% that of terrestrial soils in Europe showing that this

store albeit smaller is nonetheless important.

We have identified key variables influencing the

distribution of POC but now that we have a baseline of

POC we can in the future address variables that

influence change in this stock. Long term changes in

water column variables such as light penetration

(Capuzzo et al. 2015) and changes in anthropogenic

physical pressures such as beam trawling intensity

(Callaway et al. 2007) may be important in terms of the

overall primary production reaching the bed and

sediment storage. Additionally, potential changes in

terrestrial land-use and catchment management policies

are likely to alter inputs of terrestrially derived POC.

The maps (Fig. 7) we have presented may therefore be

used in the future to show how changes of these and

other variables alter the sediment stock. It is likely that

the factors identified here in controlling regional POC

stock (temperature, terrestrial inputs, sediment compo-

sition) will all act in the future via climate change or

through human activities to alter these stocks. The

implications for spatially restricted muddy substrates

with high POC concentrations and for the spatially

extensive sand/gravel substrates with low POC con-

centrations are likely to be contrasting and different.

These changes are important since management deci-

sions on the distribution of fishing effort (Duineveld

et al. 2007) or marine aggregate extraction (Desprez

2000) might be able to increase the storage capacity of

key areas such as in coastal zones where POC stocks are

at their highest. The potential and importance of coastal

sediments for carbon sequestration has so far rarely

been investigated. Current research has focussed on

coastal vegetated habitats such as salt marsh (Chmura

et al. 2003), sea grass (Fourqurean et al. 2012) and

macroalgae (Krause-Jensen and Duarte 2016). Our

results suggest that coastal sediments and their role in

carbon storage and sequestration deserve more atten-

tion in the future.

Human activities may result in net release of CO2

due to sediment resuspension, or conversely an

increase in POC stocks by shifting sediments which

normally process carbon quickly towards regimes

which favour POC storage, with consequences for the

overall autotrophic/heterotrophic balance of shelf

seas. The link between spatial significance of stock

levels and factors that interact geographically to

produce this stock and the magnitude and direction

of change under future conditions or pressures will be

key to future management of carbon stocks. The maps

of POC stored in surface sediments presented here

with the variables (e.g. mud content and bottom

temperature) identified in the model provide a starting

point to identify controls and vulnerabilities of present

day stocks.

The magnitude of the stock on the NW European

continental shelf and by extension in other temperate

shelf seas shows how important the management of

this stock may be globally. Information on POC

stocks, their spatial distribution and the factors

controlling them will allow improved management

of shelf sea areas into the future or prediction of

changes in POC storage as a response to climate

change. We now need to apply these methods more

widely to estimate the stock of all temperate shelf seas

so that their importance is quantified and recognised.

Conclusions

We have presented a method that allows to spatially

predict and quantify POC stored in surficial sediments
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of shelf seas. We show that the surface sediments of

the NE European continental shelf are a regionally

important POC store. Conversely to expectations, the

largest POC stocks are associated with coarse-grained

sediments. We highlight the previously overlooked

importance of coastal sediments as a store for and site

of carbon sequestration. Key variables influencing

POC concentrations in shelf sediments of the NW

European continental shelf are mud content, annual

average bottom temperature and distance to coastline.

The resulting model outputs might be useful for a

variety of purposes including assessing surface sedi-

ment carbon stores by benthic habitat and location,

typifying different habitats in terms of their expected

surface POC concentration and mass and evaluating

their corresponding vulnerability to disturbance. Such

potential future uses of the presented results would not

only improve our scientific understanding of likely

sediment surface POC distributions but could also

form valuable information for marine policy develop-

ment and management decisions.
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