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Abstract

Atmospheric nitrous oxide (N2O) contributes to global warming and stratospheric ozone depletion, so reduc-
ing uncertainty in estimates of emissions from different sources is important for climate policy. In this study, 
we simulate atmospheric N2O using an atmospheric chemistry-transport model (ACTM), and the results are first 
compared with the in situ measurements. Five combinations of known (a priori) N2O emissions due to natural 
soil, agricultural land, other human activities, and sea–air exchange are used. The N2O lifetime is 127.6 ± 4.0 yr 
in the control ACTM simulation (range indicates interannual variability). Regional N2O emissions are optimized 
using Bayesian inverse modeling for 84 partitions of the globe at monthly intervals, using measurements at 42 
sites around the world covering 1997 – 2019. The best estimated global land and ocean emissions are 12.99 ± 0.22  
TgN yr−1 and 2.74 ± 0.27 TgN yr−1, respectively, for 2000 – 2009, and 14.30 ± 0.20 TgN yr−1 and 2.91 ± 0.27 
TgN yr−1, respectively, for 2010 – 2019. On regional scales, we find that the most recent ocean emission esti-
mation, with lower emissions in the Southern Ocean regions, fits better with that predicted by the inversions. 
Marginally higher (lower) emissions than the inventory/model for the tropical (extratropical) land regions are 
estimated and validated using independent aircraft observations. Global land and ocean emission variabilities 
show a statistically significant correlation with El Niño Southern Oscillation (ENSO). Analysis of regional land 
emissions shows increases over America (Temperate North, Central, and Tropical), Central Africa, and Asia (South, 
East, and Southeast) between the 2000s and 2010s. Only Europe as a whole recorded a slight decrease in N2O 
emissions due to the chemical industry. Our inversions suggest revisions to seasonal emission variations for three 
of the 15 land regions (East Asia, Temperate North America, and Central Africa), and the Southern Ocean region. 
The terrestrial ecosystem model (Vegetation Integrative SImulator for Trace Gases) can simulate annual total 
emissions in agreement with the observed N2O growth rate since 1978, but the lag-time scales of N2O emissions 
from nitrogen fertilizer application may need to be revised.

Keywords nitrous oxide; MIROC4-atmospheric chemistry-transport model; inverse modelling; global and re-
gional N2O emissions
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1. Introduction

Nitrous oxide (N2O) emissions cause 300 times 
more warming over 100 years than equal emissions 
of carbon dioxide (CO2), and N2O has the 3rd largest 
increase in radiative forcing from 1750 to 2019 
(Etminan et al. 2016; IPCC 2013). N2O is inert in the 
troposphere and is dissociated by ultraviolet radiation 
(wavelength < 240 nm) and by reaction with oxygen 
in an excited state (O1D) in the stratosphere where 
it plays the most significant role in ozone depletion 
(Crutzen and Ehhalt 1977; Fahey et al. 2018; Ravis-
hankara et al. 2009). Because of natural emissions in 
the pre-industrial era (circa 1750), atmospheric N2O 
was 271 ppb (parts per billion) (MacFarling Meure 
et al. 2006). Atmospheric N2O averaged 327.5 ± 2.9 
ppb from 2010 to 2019 (https://gml.noaa.gov/ccgg/
trends_n2o), a 21 % increase from the pre-industrial 
level due to an increase in anthropogenic activities 
(Crippa et al. 2020; Ishijima et al. 2007). Of this 21 % 
N2O increase, 18 % has occurred since 1900 with a 
large-scale application of nitrogen fertilizer. Natural 
production of N2O dominantly occurs in soil, where 
bacteria fix nitrogen from the atmosphere, and bacteria- 
mediated geochemical processes in the ocean, both 
involving nitrification and denitrification in anoxic 
environments (Butterbach-Bahl et al. 2013; Yoshida 
et al. 1989).

A recent study showed large differences between 
atmospheric N2O inversion estimates of emissions 
and process-based terrestrial ecosystem models for 
land and ocean regions and a large gap in land–ocean 
partitioning of N2O emissions (Tian et al. 2020). The 
authors estimated emissions of 5.1 (range: 3.1 – 7.2) 
TgN yr−1 from global oceans and 10.8 (range: 9.3 –  
12.5) TgN yr−1 from global land for 2000 – 2009 by 
inverse (top-down) modeling, and bottom-up global 
total emission of 16.4 (range: 12.3 – 22.4) TgN yr−1. 
Bottom-up emission estimations are based on inven-
tory emissions for various activity sectors and process 
modeling of terrestrial and ocean biogeochemical 
cycles (Bouwman et al. 2013; Buitenhuis et al. 2018; 
Butterbach-Bahl et al. 2013; Ito 2019; Winiwarter 
et al. 2018). Over the past few decades, large and sys-
tematic efforts have resulted in an evolution of sea–air 
N2O emission distribution based on oceanic pN2O up-
scaling and empirical modeling (Manizza et al. 2012; 
Nevison at al. 1995; Yang et al. 2020), which have not 
yet been utilized in an inverse modeling framework 
for understanding their impacts on estimated N2O 
emissions at global and regional scales. The inverse 
models generally under-determined the emissions 

because of the lack of sufficient high-quality mea-
surements to constrain regional N2O emissions and 
because of the uncertainties in parameterizations of 
photochemical loss and atmospheric tracer transport in  
the forward-running atmospheric chemistry-transport 
models (ACTMs). One long-standing challenge re-
mains in simulating N2O seasonal cycles at most of  
the in situ measurement sites (Nevison et al. 2007; 
Ricaud et al. 2021; Thompson et al. 2014a).

Regional emissions by inverse modeling of at-
mospheric N2O were estimated in the past 15 years 
because of improvements in measurement precision 
and development of long-term measurement networks 
(Hirsch et al. 2006; Huang et al. 2008; Saikawa et al. 
2014; Thompson et al. 2019; Wilson et al. 2014) 
and improvements in, and proliferation of, top-down 
models (Ishijima et al. 2010; Prather et al. 2015; 
Thompson et al. 2014b, c, 2019). Thompson et al. 
(2019) is the first study to explore the role of a priori 
emissions and chemistry-transport models on the 
estimated N2O emissions by inversion. Nevertheless, 
no study has been conducted to elucidate the roles 
of these factors on the estimated emission in a single 
modeling system, to disentangle the roles of selecting 
a priori emissions, and processes in forward-running 
ACTMs. An emission assessment framework using 
multi-model inversion provides only the range of un-
certainty arising from their own choices of transport, 
chemistry, and emissions but does not elucidate the 
sources of uncertainty. The quality assessment of the 
ACTM simulations is one of the key factors to enable 
better estimates of trace gas sources and sinks at 
Earth’s surface via inverse modeling (Rayner 2021).

Here, we use the JAMSTEC’s Model for Interdis-
ciplinary Research on Climate (MIROC, version 4.0) 
(Watanabe et al. 2011)-based atmospheric chemistry- 
transport model (referred to as MIROC4-ACTM) for 
simulating N2O and subsequently performed inverse 
modeling for 84 partitions of the globe (Ishijima et al. 
2010; Patra et al. 2018; Thompson et al. 2019). The 
sensitivity of the estimated N2O emissions is discussed 
in relation to the ACTM transport and chemistry para-
meterizations, selection of a priori emission scenarios, 
and choices of prior emission and measurement data 
uncertainties in the inverse model. The study signifi-
cantly differs from the MIROC4-ACTM inversion 
used in Thompson et al. (2019), for the choices of 
a large number of a priori emission scenarios, input 
parameter selection for the inverse model, and ACTM 
transport sensitivity simulations.

https://gml.noaa.gov/ccgg/trends_n2o
https://gml.noaa.gov/ccgg/trends_n2o
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2. Data and methods

2.1 A priori N2O fluxes from land and ocean
Four main sources contribute to total N2O emissions,  

namely, 1) anthropogenic sources from industrial ac-
tivities, 2) emissions from natural soils, 3) emissions 
from fertilized/agricultural soils, and 4) sea–air fluxes.

The Emissions Database for Global Atmospheric 
Research, version 5.0 (EDGAR_v5.0) is an inventory- 
based estimate of emissions from industrial activities, 
covering energy production and use, manufacturing 
and construction, transport, direct and indirect emis-
sions from manure management, emissions from 
biomass burning, direct and indirect emissions from 
managed soils, and treatment of solid waste and 
waste water (Crippa et al. 2020). EDGAR presents 
emissions for the three main greenhouse gases (fossil 
CO2, CH4, and N2O) and F-gases. The emissions are 
calculated by using sectorial activity data supplied by 
different institutions, and emission factors generally 
derived from IPCC guidelines (IPCC 2006; Eggleston 
et al. 2006). Considering the consistent methodology 
for emission estimation, the EDGAR database assures 
a full cross-country comparability (Oreggioni et al. 
2021). Uncertainties of the EDGAR_v5.0 emissions 
are detailed for all greenhouse gases (Solazzo et al. 
2021). For N2O particularly, the global uncertainties 
stemming from agricultural activities were greater 

than 200 %. Figure 1 shows that global total industrial 
emissions in EDGAR_v5.0 amounted to 1.34 ± 0.07, 
1.54 ± 0.04, 1.70 ± 0.08 and 1.92 ± 0.04 TgN yr−1 in 
the 1980s, 1990s, 2000s, and 2010s, respectively.

In one set of simulations, natural soil emissions 
were maintained constant at 7.5 TgN yr−1 for the whole  
period of simulation, for which 1 × 1 degree gridded 
emissions are taken from the Global Emissions 
InitiAtive (GEIA) database (Bouwman et al. 2013). 
Natural soil emissions are also taken from a terrestrial 
ecosystem model–Vegetation Integrative SImulator 
for Trace Gases (VISIT) (Ito et al. 2018). The VISIT 
model simulates emissions of N2O from natural soil 
using a generalized scheme of nitrification and denitri-
fication (Parton et al. 1996), in which the fraction of 
N2 and N2O emissions varies dynamically dependent 
on soil temperature and moisture conditions. Also, 
the N2O emission is dependent on soil nitrogen 
concentration, which is affected by various processes 
such as atmospheric deposition, nitrate leaching, and 
human fertilizer input. The result shows interannual 
variations with relatively high values in El Niño years 
but remained fairly stable at 7.1 ± 0.3 TgN yr−1 during 
1980 – 2019 (Fig. 1). Agricultural soil N2O emissions 
are simulated using nitrogen fertilizer input data from 
the statistical database of the Food and Agri culture 
Organization of the United Nations (FAOSTAT;  
https://www.fao.org/faostat/en/#data/RFN), which 

Fig. 1. Time series of N2O fluxes using three ocean fluxes (scaled to light blue lines; Table 1) and two land fluxes 
due to anthropogenic fluxes (GEIA and VISIT in Total-egvy and Total-evvy, respectively) and a set of industrial 
emissions (EDGARv5.0). The ENSO cycle is depicted as the colored shading (Wolter and Timlin 2011) (data 
source: Multivariate ENSO Index Version 2 (MEI.v2); https://psl.noaa.gov/enso/mei/).

https://psl.noaa.gov/enso/mei/
https://www.fao.org/faostat/en/#data/RFN
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showed steady increases, with 2.84 ± 0.10, 3.20 ± 
0.28, 3.40 ± 0.22, and 3.97 ± 0.23 TgN yr−1 in the 
1980s, 1990s, 2000s, and 2010s, respectively (Fig. 1).

Sea–air fluxes are taken from three different sources 
and have evolved dramatically since the mid-1990s. 
Nevison et al. (1995) estimated global total emissions 
of 3.6 TgN yr−1 by globally extrapolating 60,000 
partial pressure difference (ΔpN2O) measurements 
between air and seawater with limited seasonal and 
spatial coverage. These were paired with air–sea 
transfer coefficients using modeled windspeeds that 
were considered biased high over the Southern Ocean. 
Manizza et al. (2012) modeled oceanic N2O cycling 
in a physical–biogeochemical model, which accounts 
for biogeochemical tracers (PO4, SiO2, O2, DIC, al-
kalinity, and iron) in an ecosystem component based 
on two phytoplankton groups (diatoms and small 
phyto plankton) and one generic grazing zooplankton 
(Dutkiewicz et al. 2005). The air–sea gas fluxes 
of N2O were calculated according to wind speed- 
dependent gas transfer velocity (Wanninkhof 1992), 
generating a net outgassing flux of 4.5 TgN yr−1. The 
net outgassing flux is scaled to a global total value of 
3.52 TgN yr−1 for this analysis. More recently, Yang 
et al. (2020) used the most comprehensive database of 
surface ΔpN2O measurements (over 158,000 in total) 
to extrapolate observations to the global ocean with a 
machine learning ensemble approach; together with 
revised estimates of gas transfer velocity, the study 
and produced a much different flux map (details in the 
results section) and global total emissions at 4.2 ± 1.0 
TgN yr−1. Yang et al. (2020) fluxes are scaled to 3.6 
TgN yr−1 and 2.67 TgN yr−1 for two simulation cases, 
which are referred to as Yang-scaled and Yang-low, re-
spectively (Table 1). This work was inspired by these 
recent developments in sea–air N2O flux estimation 
because the recent modeling studies of atmospheric 
N2O faced difficulty in choosing an ocean flux model 
(Thompson et al. 2019; Tian et al. 2020).

2.2 JAMSTEC’s MIROC4-ACTM
The MIROC4-ACTM was developed for the 

simulation of long-lived species (Patra et al. 2018). 
The MIROC4 atmospheric general circulation fields 
of horizontal winds (U, V) and temperature (T) are 
nudged to the Japanese 55-year reanalysis with New-
tonian relaxation times of 1 day for U and V, and 5 
days for T [control; referred to as “Prior (UV1,T5)”]. 
A sensitivity simulation is performed by weakening 
the nudging strength with Newtonian relaxation 
times of 5 days for U and V, and 10 days for T [WN; 
referred to as “Prior (UV5,T10)”].

Loss of N2O due to photolysis by solar ultraviolet 
(UV) radiation and two paths for reaction with O(1D) 
is modeled in ACTM as follows:

N2O + hν (UV) ® N2 + O(1D), ( jN2O)

N2O + O(1D) ® 2NO 
(ka = 0.73 × 10−10 × e20/T cm3 molecule−1 s−1), (R1)

N2O + O(1D) ® N2 + O2 
(kb = 0.46 × 10−10 × e20/T cm3 molecule−1 s−1), (R2)

where T is the air temperature and ka and kb are the 
rate constants for the chemical loss reactions (R1, R2).  
The reaction rate constants are taken from the Jet 
Propulsion Laboratory (JPL) synthesis report (Sander 
et al. 2011). The N2O photolysis rate (jN2O) is calculat-
ed from the temperature-dependent absorption cross- 
sections at three wavelength bands of 185 – 200, 200 –  
230, and 230 – 278 nm (Ishijima et al. 2010), which are 
averaged from the JPL publication 10-6, evaluation 
number 17 (Sander et al. 2011). The solar UV flux at 
different layers of the atmosphere is calculated using 
the radiation package termed “mstrnX” that computes 
radiation fluxes and heating rates, which agree well 
with those calculated by line-by-line radiation scheme 
HITRAN2004 (Sekiguchi and Nakajima 2008). A 
climatological 11 year solar cycle is introduced. The 
concentration of O(1D) is calculated online from a 

Table 1. List of forward simulations cases (left column), which have used different combinations of 4 surface 
emission types (column 2 – 5). Global totals (right column) for the two nearest decades are given in TgN yr−1. 
The a priori emission distributions for the cases evvy, egvm and egvn are shown in Section 3.1, where all 
distinct ocean (3) and land (2) flux maps can be found.

Abbreviated 
name

Industrial 
emissions

Natural soil 
emissions

Agricultural soil 
emissions

Ocean/sea-air 
exchange

Global totals 
2000s, 2010s

egvy
egvyl
egvm
egvn
evvy

EDGAR v5.0
EDGAR v5.0
EDGAR v5.0
EDGAR v5.0
EDGAR v5.0

GEIA
GEIA
GEIA
GEIA
VISIT

VISIT
VISIT
VISIT
VISIT
VISIT

Yang–scaled
Yang–low
Manizza–scaled
Nevison
Yang–scaled

16.27, 17.06
15.34, 16.13
16.15, 16.95
16.25, 17.05
15.89, 16.84
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climatological ozone distribution, and the ozone pho-
tolysis rates in the stratosphere (Takigawa et al. 1999).

Figure 2 shows the MIROC4-ACTM simulated 
atmospheric burden (B) and burden change rate, loss 
rates due to jN2O alone and the sum (L) of jN2O + R1 + 
R2, and photochemical lifetimes (= B/L). The control 
transport simulation captures well the long-term mea-
surements from the National Oceanic and Atmospheric 
Administration (NOAA) Global Monitoring Labo-
ratory, and the Advanced Global Atmospheric Gases 
Experiment (AGAGE) networks (Fig. 3). The mean 
atmospheric lifetime of N2O in the MIROC4-ACTM 
is 127.6 ± 4.0 yr for 1990 – 2019, which is within the 
range of the IPCC recommended value of 118 – 131 
yr (Huang et al. 2008; IPCC 2013), and agrees well 
with the Stratosphere–troposphere Processes And their 
Role in Climate (SPARC) recommended steady-state 
lifetime of 123 yr, most likely range 104 – 152 yr (Ko 

et al. 2013). In the MIROC4-ACTM transport sensi-
tivity simulation (UV5,T10), N2O lifetime is shortened 
to 120.7 ± 3.4 yr as the transport barrier around the 
tropopause region is relaxed and the northern polar jet 
strengthened which enabled faster transport of mass 
into the middle to upper troposphere (supplementary 
materials, Fig. S1). However, a comparison with 
balloon-borne cryosampling experiments covering the 
altitudes of 8 – 37 km cannot unambiguously confirm 
the accuracy of the nudging strength (Fig. S2). The 
model transport uncertainty will be addressed later in 
the article using SF6 simulations.

The lifetime of N2O has large implications for the 
estimation of global (and regional) emissions by in-
verse modeling. A simple calculation suggests that, if 
the lifetime is shortened by approximately 7 years, the 
global total N2O emission is required to increase by 
approximately 0.6 TgN yr−1 (ref. Eq. 1 below). Hence, 

Fig. 2. Time evolution of N2O in the global atmosphere of MIROC4-ACTM; burden and rate of burden change (a), 
loss rates (b), and lifetimes (c). These calculations are based on the simulation using emission case evvy (ref. Fig. 
1). Simulations are shown for control and sensitivity (weak nudging—WN) transport cases. The atmospheric N2O 
burden to concentration ratio is estimated to be 4.785 ± 0.005 Tg ppb−1.
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inversion estimated emissions would spread as much 
as 1.1 TgN yr−1 using the ACTMs with mean N2O life-
time covering the IPCC (2013) recommended range.

d (BCTL – BWN) = (E – E) – (BCTL/τCTL – BWN/τWN),

0.6 (simulated)  = − (1537.5/127.6 − 1523.0/120.7)  
= − 12.05 + 12.62 = 0.6. (1)

2.3 N2O observations
The N2O observations are reported in units of dry-

air mole fraction in parts per billion (nmol mol−1, ppb).  
Supplementary Table S1 provides the full list and lo-
cation details of 42 measurement sites used in inverse 
modeling. We have used 35 NOAA flask-air sam-
pling sites (Dlugokencky et al. 1994), five AGAGE 

high-frequency real-time measurement sites (Prinn 
et al. 2018), and two NIES high-frequency real-time  
measurement sites (Tohjima et al. 2000). Measure-
ment calibration scales are adjusted to fit with the 
more dense observation network of NOAA for inverse 
model calculation. The AGAGE measurement scale 
(SIO-16) is higher by 0.55 ppb, and the NIES mea-
surement scale (NIES-96) lower by 0.65 ppb, when 
compared with the NOAA-2006A scale, which was 
adopted by the World Meteorological Organization 
Global Atmosphere Watch program (GAW) as the 
GAW N2O standard scale (Hall et al. 2007). It is worth 
mentioning here that we could fairly successfully 
derive these scale offsets, +0.57 ppb and −0.72 ppb, 
respectively, for AGAGE and NIES data relative to 

Fig. 3. Example time series of N2O from AGAGE and NOAA sites, where measurements have been conducted 
since the late 1970s. Note the common legends for model simulations (top-left panel). Only two model simulations 
are shown here for clarity, the best case for growth rate (ACTM-evvy) and the one with the slowest growth rate 
(ACTM-egvyl). The other three simulations, as listed in Table 1, differ in growth rates as expected from their glob-
al total emissions.



Journal of the Meteorological Society of Japan Vol. 100, No. 2368

NOAA by performing an inversion (methodology 
below) without applying the scale adjustments. The 
inversion estimated scale offset between NOAA and 
AGAGE is in better agreement with the NOAA-2006A  
and SIO-16 scales because of several overlapping sites 
(Mace Head—MHD, Republic of Barbados—RPB,  
Samoa Observatory—SMO, and Cape Grim Observa-
tory—CGO), whereas the NIES sites are unique from 
the NOAA network and inversion estimated scale 
offset comprises bias corrections by inversion and 
measurement scale difference. We also used continu-
ous N2O data from Anmyeondo (AMY), a WMO/GAW  
site (126.32°E, 36.53°N, 47 m), which are reported at 
NOAA-2006A scale. This station is located in the west 
part of South Korea and the airmass is affected by  
local/regional/long-range transport (Lee et al. 2019).

Because of data availability at only a small number 
(< 10) sites before 1996 and after 2020, we decided 
to perform inverse model simulation of N2O only for 
1996 – 2020 so that the global and regional emissions 
can be analyzed for 1997 – 2019 after discarding the 
first and the final years as inversion spin-up and spin-
down years. The new measurement systems since 
the mid-1990s have also improved the measurement 
precision (Fig. 3) and greatly increased observational 
network coverage following the analysis of weekly 
air samples from NOAA’s cooperative global air 
sampling network. A historical perspective of N2O 
measurements is given in the Supplementary Mate-
rial. The MIROC4-ACTM simulation using newly 
developed emission estimations (EDGARv5.0, VISIT, 
Ocean) enabled us to simulate the N2O measurements 
since the late 1970s. The average model–observation 
difference for any given year is within approximately 
1 ppb at the longest-serving N2O measurement sites 
of the AGAGE and NOAA HATS programs, when 
compared with the ACTM-evvy simulation case. The 
ACTM-egvyl case using lower emissions from Yang 
et al. (2020) underestimates the N2O growth rate (blue 
line in Fig. 3). The simulations (ACTM-egvn/egvm/
egvy) using GEIA natural soil emissions overestimate 
N2O growth rate in the years before 1996 (not shown), 
because of higher global totals compared with that 
using VISIT natural soil emissions (ref. Fig. 1).

2.4 Curve fitting and filling data gaps
We have used a curve fitting software that uses 

harmonic fitting and Butterworth digital filter, which 
enables us to derive fitted curve and long-term trend 
lines (Nakazawa et al. 1997). The time derivative of 
the long-term trends gives N2O growth rates and the 
differences of the monthly mean data or fitted line 

from those long-term trend lines give N2O seasonal 
cycles (Fig. 4). We fit both the measured and model 
time series at daily–weekly time intervals with six 
harmonics and by setting a cutoff length of 24 months 
for the digital filter. We also calculate monthly mean 
residual standard deviations (RSDs) from the differ-
ences between measured and fitted data (error bars in 
Fig. 4, upper row). The RSDs are used as a measure 
of the difficulty for the coarse spatial-resolution global 
ACTMs to simulate N2O at the observation sites and 
were used to weight the measurement data for inverse 
model derived flux estimates (next section). The N2O 
growth rates are generally higher during the La Niña 
phase (blue shade) and lower during the El Niño phase 
(red shade) of the ENSO cycle (Fig. 4, lower row)  
(Ishijima et al. 2009). Statistically significant correla-
tions for ENSO and N2O growth rates are found for 
the EIC, −0.35 and −0.40 for observed and ACTM- 
evvy, respectively, because the site is located in the 
area under strong ENSO influence. Phases of the two 
simulations are in good agreement with each other, 
except for the small differences arising from the 
oceanic emission distributions and their transport, 
and systematically lower growth rate is simulated for 
egvyl compared with egvn emission case because of 
lower global totals.

2.5 Inverse modeling of regional fluxes
The source strengths are predicted by the least 

squares solution of the model–measurement differ-
ences, by assuming linear relations between regional 
emission matrix (S) and model–measurement differ-
ence matrix (D), which are defined by the Green’s 
function (G) using unitary regional source to concen-
tration change relationships. The following equations 
are used to predict optimized (inversion) sources and 
associated source error covariance matrices (Cs):

S = S0 + (GTCD
−1G + CS0

−1)−1GTCD
−1 (DObs – DACTM), (2)

CS = (GTCD
−1G + CS0

−1)−1, (3)

where, S0 = regional prior source matrix, CS0
 = prior 

source error covariance matrix (diagonal only), DObs = 
measurement data matrix, DACTM = chemistry-transport 
model simulations using a priori emissions, and CD = 
measurement data error covariance matrix. We abbre-
viate prior flux uncertainty (PFU) and measurement 
data uncertainty (MDU), which are calculated as the 
square root of CS0

 and CD, respectively.
The G matrix is prepared by simulating monthly 

and unitary emissions from 84 partitions of the globe 
(Fig. 5a) and sampling the signals at the measurement 
sites (Fig. 5b). Each of these monthly pulse (84 × 12 
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= 1008) simulations are run for 47 additional months. 
Although DACTM is simulated using interannually 
varying winds, we have chosen to construct the G 
matrix for only 2011 to save computational resources, 
without compromising significantly the quality of 
inversion results for the estimation of the interannual 
emission variability (based on our sensitivity test for  
CO2 inversions using for annually repeating and in-
terannually varying G matrix; unpublished data). The  
PFU is assigned to each of the 84 regions by their re-
gional total fluxes at monthly intervals (referred to as 
PFU_100 %). Additionally, for testing the stability of 
the inversion model setup, we have varied the regional 
PFU values as 25, 50, 200, and 400 % of their regional  
total fluxes. Table 2 shows the mean of PFUs for 84 
regions. For the MDU, we have used the monthly 
varying RSDs for each station plus a constant value to 
account for the measurement accuracy (Table 2).

The seasonally varying MDUs for each site are cal-
culated on the basis of a fixed term (representing  

instrumental uncertainty, in the range of 0.3 – 0.4 ppb) 
and a variable term to account for the site representa-
tion error corresponding to the coarse horizontal reso-
lution of MIROC4-ACTM. The variable term is scaled 
from the RSDs of the measurement time series as  
defined in Section 2.4. Figure 6 shows the 2000 –  
2019 mean values of MDUs in this study. Four differ-
ent cases are implemented in our inversions, and  
labeled MDU_180 % ( 0 2. +RSD), MDU_152 % 
( 0 2. + ⋅RSD 0.5), MDU_93 % ( 0 1. + ⋅RSD 0.3), 
and MDU_112 % ( 0 1. + ⋅RSD 0.1). The %-values 
are calculated on the basis of the mean MDU with re-
spect to the RSDs (Fig. 6). The square root values are 
used to dampen the high contrast in RSDs among the 
sites (a value–judgment).

In total, we have conducted 100 inversions (5 emis-
sions × 5 PFUs × 4 MDUs) using control MIROC4- 
ACTM simulations, and the predicted emissions are 
analyzed here. The five emission cases are egvy, egvyl,  
egvm, egvn, and evvy (Table 1). To evaluate the good-

Fig. 4. Seasonal cycles (SC: upper panels) and growth rates (GR: lower panels) of N2O calculated using digital fil-
tering from the time series at AZR (27.38°W, 38.77°N; left column) and EIC (109.43°W, 27.16°S; right column). 
The monthly mean RSDs are depicted as the error bars on the seasonal cycles (upper panels). The lower panels 
show growth rates (lines) and the ENSO cycle as the colored shading (ENSO and growth rate correlation coeffi-
cients are given within parenthesis in legends). These two sites are selected to show the advantages and limitations 
of data gap filling through the fitting and filtering method applied here.
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ness of fit, we used N2O abundance and emission χ 2 
= [(D − Dpredicted )

2/CD + (S − S0)
2/CS] for each of the 

inversions and the values for the ACTM-evvy case are 
shown in Table 2. The results suggest MDU_93 % and 
PFU_50 % (or PFU_25 %) produced the χ 2 values 

closest to 1, implying no overfitting to the measure-
ment or too loose/strict PFU. Results of the other four 
emission cases yield similar χ 2 for MDU and PFU 
changes as in the case of evvy.

Table 2. Values of χ 2 for the inversion cases which are run by changing PFU and MDU for the ACTM-evvy forward simu-
lation only.

evvy case 
(regional mean PFU, TgN yr−1)

MDU_180 %
0 2. +RSD

MDU_152 %
0 2. + ⋅RSD 0.5

MDU_93 %
0 1. + ⋅RSD 0.3

MDU_112 %
0 1. + ⋅RSD 0.1

PFU_25 % (0.072)
PFU_50 % (0.144)
PFU_100 % (0.288)
PFU_200 % (0.575)
PFU_400 % (0.152)

0.35
0.29
0.22
0.15
0.10

0.47
0.39
0.28
0.19
0.13

1.13
0.87 (best case)
0.58
0.38
0.20

0.80
0.62
0.44
0.30
0.21

Fig. 5. Division of 84 inversion regions (54 land and 30 ocean) (a), 26 analysis regions (15 land and 11 ocean) along 
with the 42 measurement sites used in the inversions (b). Table S1 provides a detailed list of the measurement 
sites.

Fig. 6. Measurement data uncertainties as used in the inversions (ref. Table 2) are shown for the 42 sites.
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3. Results and discussion

Table 3 lists all inversion cases, by detailing the 
global total land and ocean total emissions for the 
decade of the 2000s (2000 – 2009) and the 2010s 
(2010 – 2019). The results for varying MDUs and 
PFUs are given as the ensemble mean and spread of 
five emission cases. As expected from the Bayesian 
inversion framework (Eqs. 2 and 3), the predicted 
emissions differ significantly from the prior emission 
when the MDUs are smaller, i.e., a greater impact of 
the observations on emission corrections (S – S0). By 
contrast, the predicted emissions differ by a greater 
amount when the PFUs are increased, which relaxes 
the constraints on prior emissions, i.e., increases the 
effective degrees of freedom for emission correction. 
A dipole for the land–ocean emission partitioning is 
found for the low to high PFU. Global land emissions 
are greater for PFU_400 % than for PFU_25 %, with 
a compensating lower global ocean emission. Our 
best estimate ( χ 2 = 0.87) of global land and ocean 
emissions for MDU_93 % and PFU_50 % are 12.99 ± 
0.22 TgN yr−1 and 2.74 ± 0.27 TgN yr−1, respectively, 

for the 2000s, 14.30 ± 0.20 TgN yr−1 and 2.91 ± 0.27 
TgN yr−1, respectively, for the 2010s. These values are 
in good agreement with the prior emissions when the 
model ensemble spreads are considered.

3.1 Global distributions of N2O emissions
The latitude–longitude distributions of N2O emis-

sions show that prior emissions over the land between 
the five emission ensembles did not vary much; only 
one ensemble (evvy case; Fig. 7a) used different 
natural soil emissions from the VISIT model, whereas 
all others use emissions from the GEIA inventory. 
Conversely, we used four different oceanic emission 
cases (Table 1)—three varying in flux patterns (Figs. 
7a – c for egvn, egvm, and egvy, respectively) and two 
for the global total emissions (egvy and egvyl). The 
predicted emission distributions suggest an increase 
in emissions over the tropical land regions relative to 
the prior emissions, whereas both the land and ocean 
regions of the middle–high latitudes are predicted 
to have lower emissions than the prior emissions 
(Figs. 7d – f). The predicted–prior emissions over land  
regions show similar patterns for all the ocean emis-

Table 3. Summary of the land and ocean total N2O emissions due to the choices of prior flux uncertainty and measurement 
data uncertainty. The results are averaged over 5 forward model simulations (ref. Table 1) and the spread is given as 1-σ  
standard deviation.

Global Land (TgN yr−1) Global Ocean Global Land (TgN yr−1) Global Ocean 

2000s 2010s 2000s 2010s 2000s 2010s 2000s 2010s

Prior emission

12.58 ± 0.35 13.41 ± 0.28 3.40 ± 0.41 3.40 ± 0.41

Predicted emission, MDU_112 % 0 1. + ⋅RSD 0.1

PFU_25 %
PFU_50 %
PFU_100 %
PFU_200 %
PFU_400 %

12.78 ± 0.24
13.07 ± 0.22
13.41 ± 0.21
13.69 ± 0.22
13.84 ± 0.23

14.09 ± 0.22
14.37 ± 0.20
14.68 ± 0.21
14.91 ± 0.23
14.98 ± 0.25

2.97 ± 0.29
2.65 ± 0.26
2.30 ± 0.25
2.02 ± 0.24
1.89 ± 0.24

3.10 ± 0.30
2.84 ± 0.26
2.56 ± 0.26
2.36 ± 0.26
2.32 ± 0.26

Predicted emission, MDU_93 % 0 1. + ⋅RSD 0.3 Weakly nudged MIROC4-ACTM (UV5, T10)

PFU_25 %
PFU_50 %
PFU_100 %
PFU_200 %
PFU_400 %

12.73 ± 0.25
12.99 ± 0.22
13.33 ± 0.21
13.62 ± 0.22
13.81 ± 0.22

14.04 ± 0.22
14.30 ± 0.20
14.60 ± 0.20
14.85 ± 0.22
14.97 ± 0.24

3.02 ± 0.30
2.74 ± 0.27
2.38 ± 0.25
2.09 ± 0.25
1.91 ± 0.24

3.14 ± 0.31
2.91 ± 0.27
2.63 ± 0.26
2.41 ± 0.26
2.32 ± 0.26

13.10 ± 0.25
13.29 ± 0.21
13.50 ± 0.22
13.68 ± 0.22
13.75 ± 0.25

14.42 ± 0.22
14.59 ± 0.20
14.79 ± 0.21
14.95 ± 0.24
14.99 ± 0.27

3.06 ± 0.30
2.85 ± 0.26
2.61 ± 0.26
2.42 ± 0.26
2.36 ± 0.26

3.19 ± 0.31
3.04 ± 0.27
2.87 ± 0.26
2.73 ± 0.27
2.71 ± 0.28

Predicted emission, MDU_152 % 0 2. + ⋅RSD 0.5 Predicted emission, MDU_180 % 0 2. +RSD

PFU_25 %
PFU_50 %
PFU_100 %
PFU_200 %
PFU_400 %

12.65 ± 0.27
12.85 ± 0.23
13.17 ± 0.21
13.50 ± 0.21
13.74 ± 0.22

13.97 ± 0.23
14.17 ± 0.21
14.47 ± 0.20
14.76 ± 0.21
14.94 ± 0.23

3.10 ± 0.32
2.88 ± 0.28
2.54 ± 0.26
2.21 ± 0.25
1.97 ± 0.24

3.20 ± 0.32
3.03 ± 0.28
2.75 ± 0.26
2.49 ± 0.26
2.34 ± 0.26

12.63 ± 0.27
12.79 ± 0.24
13.09 ± 0.21
13.43 ± 0.21
13.69 ± 0.22

13.93 ± 0.24
14.11 ± 0.21
14.39 ± 0.20
14.69 ± 0.21
14.90 ± 0.23

3.13 ± 0.33
2.94 ± 0.29
2.63 ± 0.26
2.28 ± 0.25
2.02 ± 0.24

3.22 ± 0.33
3.08 ± 0.29
2.82 ± 0.26
2.54 ± 0.26
2.37 ± 0.26
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sion cases. The predicted ocean emissions show the 
greatest corrections over the Southern Ocean region 
for the Nevison emission case (Fig. 7f) and the small-
est for the Yang-scaled emission case (Fig. 7d). The 
inversions using WN forward runs show smaller flux 
corrections in the higher latitudes in both the hemi-
spheres (Figs. 7g – i), compared with those using con-
trol transport (Figs. 7d – f). The land and ocean regions 
in the latitudes north of ~ 40°N show smaller flux 
corrections (no deep-blue colors in Figs. 7g – i), which 
are compensated by an increase in emissions over the 
land south of ~ 40°N). Similarly, the flux corrections 
are milder over the Southern Ocean, as lighter blue 
colors are seen in Figs. 7g – i when compared with 
those in Figs. 7d – f.

3.2 Global total N2O flux variability
Figure 8 shows the time evolution of global land 

and ocean emissions for each of the inversion en-

semble members with varying PFU for MDU_93 %. 
Expectedly, the interannual variability is greater for 
the inversions using greater PFUs, but the phase of 
the variations remained largely consistent between 
the inversions, particularly for the land. Significant 
downward corrections are found for the global ocean 
emissions by the inversions (except for the ACTM-
egvyl case, which had lower emissions). The best esti-
mate case (PFU_50 %) shows that the predicted mean 
ocean emission is lower by ~ 0.5 TgN yr−1 relative to 
the mean ocean prior (Fig. 8g), and the difference is 
as large as ~ 1.0 TgN yr−1 for the PFU_100 % case 
(Fig. 8h). This suggests that the N2O emission distri-
bution by Yang et al. (2020) and also the more severe 
scaling down to 2.67 TgN yr−1 is a better choice for 
the MIROC4-ACTM forward and inversion models, 
with lower emissions from the Southern Ocean region  
(Fig. 7).

Figure 9 shows the global land and ocean N2O 

Fig. 7. Maps of prior N2O emission distributions (top row) and the predicted increments by the inversion relative to 
the prior fluxes (middle row: control transport, bottom row: weakly nudged transport).
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emission anomalies for the MDU_93 % case. The 
monthly anomalies are calculated by subtracting a 
long-term mean seasonal cycle from the monthly 
emissions for 1997 – 2019. Therefore, the time series 
contains both the interannual variability and long-
term trends for the analysis period. The global land 
emissions increased by approximately ~ 1.7 TgN yr−1 
between the first 5 years (1997 – 2001) and final 5 
years (2015 – 2019) of the analysis (70 % greater than 
the prior estimate), whereas the global ocean shows 
marginal or no increase. We found a statistically 

significant correlation between the predicted emission 
variability with the ENSO cycle for both global land 
and ocean ( p < 0.0002). These flux variability, in 
phase for the ocean and land, explain part of the ap-
parent increase in the growth rate during or following 
a La Niña, and the decrease during or following an El 
Niño phase (Fig. 4) (Ishijima et al. 2009; Thompson 
et al. 2014a). The anomalous wet conditions in the 
tropical land during the La Niña promote higher N2O 
emissions under the anaerobic soil conditions with 
the availability of C and N substrates (e.g., Barrat 

Fig. 8. Global land (a – e) and ocean (f – j) N2O fluxes at annual time intervals (case: MDU_93 %, PFU = 25 – 400 %). 
The black lines and the shaded gray regions show mean and 1-σ  standard deviations for the predicted emissions.
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et al. 2021). Nevertheless, large uncertainties remain 
regarding the environmental controls on nitrification 
and denitrification pathways that produce N2O in the 
soil, and the proportion of soil N2O that could escape 
to the atmosphere (e.g., Wang et al. 2021). Note that 
the correlation of prior land emission anomalies, due 
to the VISIT agriculture and natural soil emissions (ref. 
Fig. 8), is less significant for the ENSO (maximum 
correlations lag/lead by approximately 6 months), 
suggesting that a better representation of the climate 
impact on the nitrogen cycle for both the seasonal and 
decadal timescales is needed in the terrestrial ecosys-
tem models.

3.3 Regional N2O fluxes from inverse modeling
Figures 10 and 11 respectively show the regional 

land and ocean emissions and their annual mean 
anomalies. Many of the land regions show large inter-

annual variability and systematic increases in predict-
ed emissions for 1997 – 2019 (colored lines), and the  
systematic increases are in phase with the prior 
emission scenarios for most regions (gray line). This 
suggests the VISIT model, driven by the fertilizer 
input data from FAOSTAT, reasonably well simulates 
the N2O emissions from agricultural activities. The 
notable exceptions are Tropical America and Central 
Africa regions, where the rate of predicted emission 
increases are at least twice as fast as the prior emis-
sion increase rate (Figs. 10d, h). This supports the 
idea of underestimation of the N2O emission factors 
per kilogram of fertilizer into the agricultural land in 
some parts of the world (Thompson et al. 2019). The 
interannual variability caused presumably by natural 
climate variations such as ENSO, are in weaker agree-
ment between the prior and predicted emissions for 
most regions, but exceptionally good covariations seen 

Fig. 9. Global land (a) and ocean (b) flux anomalies are shown by taking 3-monthly moving window averages on 
the anomalies at monthly time intervals. Correlation coefficients (r) between the ENSO index (shaded) and the 
N2O flux anomalies are given within each panel. Note that higher r-values are calculated when the land emissions 
lagged the ENSO index.
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for the Temperate North America and South, East, and 
Southeast Asia regions (Figs. 10b, l – n). As discussed 
in detail earlier (Petrescu et al. 2021), our results con-
firm a reduction in N2O emissions from Europe over 
the period of this analysis. This emission reduction is 
almost entirely caused by the adaptation of new tech-
nology in the chemical industry, which manufactured 
nitric acid for fertilizer production mainly and adipic 
acid for nylon production mainly (EDGAR_v5.0).

The ocean regions of the North Pacific, East Pacific, 
Southern Ocean, and Tropical India Ocean release ap-
proximately 60 % of the global ocean N2O emissions. 
Interannual variations are small for most regions, 
except for the Southern Ocean and North and East 
Pacific. No cause for this interannual variability could 
be proposed here, whereas it is expected that N2O 
ventilation through coastal ocean upwelling will drive 
the interannual variations in emissions. An expansion 
of the oxygen-deficient waters in the coastal ocean 
or increased ocean acidification due to anthropogenic 
activities would drive upward emission trends in 
global N2O emissions (Breider et al. 2019; Naqvi et al. 
2010). Detection of trends in regional N2O emission 
by inverse modeling would be difficult given the 
uncertainties in ACTM simulations, measurement pre-
cision, and limited sampling network, because only a 
small increase is estimated for global total emissions, 
mostly below 0.3 TgN yr−1, between the two decades 
of the 2000s and the 2010s (Table 3).

3.4 N2O flux seasonal cycles
The seasonal cycles in global and regional emis-

sions are important for understanding the drivers of 
the N2O changes in the atmosphere. N2O at the mea-
surement sites varies because of changes in seasonal 
transport (vertical and horizontal including the effects 
of loss in the stratosphere) and surface emissions. 
For N2O, vertical transport (stratosphere–troposphere 
exchange) is one of the major drivers, as the emissions 
of N2O show relatively little variation at regional to 
global scales (Ishijima et al. 2010; Jiang et al. 2007; 
Nevison et al. 2007). However, at the locations of 
strong coastal upwelling, the N2O seasonal cycle is 
observed to be influenced by sea–air fluxes due to 
winds and ΔpN2O (Ganesan et al. 2020; Yang et al. 
2020). Figure 12 shows mean (1997 – 2019) monthly 
variations in global land and ocean using the control 
and transport sensitivity simulations. Inversions using 
both forward simulations suggest that land emissions 
should increase by more than 4 TgN yr−1 relative to 
the prior emissions in the months of May and June. 
The land emissions are suggested to have a broad 
emission peak during May–August by the inversions 
at PFU_100 % instead of the sharper peak in August 
in the prior. The fundamental mode of a priori ocean 
emissions is not revised by the inversions (only sys-
tematic downward emission corrections are seen).

Figure 13 shows the mean seasonal variations 
over the 15 land and 11 ocean regions, which suggest 

Fig. 12. Seasonal cycles of total land and ocean fluxes are shown for two cases of MIROC4-ACTM simulations, 
control transport (a, b), and weakened nudging (c, d).
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that only Temperate North America, Central Africa, 
and East Asia (panels b, h, and m, respectively) are 
the regions where an early peak in N2O emissions is 
estimated by the inversions, compared with the prior 
emission model. The seasonality predicted by our 
inversions is in good agreement with the regional 

study for North America that estimated maximum 
emissions in spring/early summer, consistent with a 
nitrogen fertilizer-driven source (Nevison et al. 2018).  
Additionally, Fig. 7f suggests that emissions over the 
mid-west USA should be higher in the case of ACTM- 
evvy. A closer look at the individual ensemble emis-

Fig. 13. Regional N2O fluxes for 15 land and 11 ocean regions (inversion cases for individual ensemble cases and 
weakly nudged transport are given in Fig. S4 and Fig. S5, respectively). The y-axis range is kept the same for all 
panels to highlight the regions of large emission increments by inversion.
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sion cases (Fig. S4) suggests that the inverse model is 
not able to constrain the seasonal emissions for most 
regions (where the phase of inverted seasonal cycles 
remained close to the priors) because of the lack of 
measurements within the regions or in the downwind 
regions. Because the two sites in Japan (HAT and 
COI) are located downwind of continental East Asia, 
we find that all inversions agree on a common sea-
sonal cycle, despite the differences between the prior  
emission seasonality (Fig. S4m). Similar good agree-
ments in the predicted emission seasonality are found 
for Temperate in North America, Europe, and to some 
extent, Boreal North America (Figs. S4b, f, a, respec-
tively).

3.5 Atmospheric N2O seasonal cycle
We compare the N2O simulations using two emis-

sion cases (egvn and evvy) with observations at four 

selected sites (Fig. 14). These sites are chosen because 
of their unique characteristics and the challenges 
they pose for the chemistry-transport models (e.g., 
Thompson et al. 2014a). We also test the model sim-
ulations using the control transport and weak nudging 
cases (shown by solid and broken lines, respectively). 
Generally, the weak nudging case shows a slower 
rate of N2O increase when compared with the control 
transport case for a given emission, arising because of 
faster upward transport of N2O into the stratosphere 
(Figs. S1, S2), and resulting shorter lifetime. Of par-
ticular interest here are differences in seasonal N2O 
variations; the comparisons suggest the N2O seasonal 
cycles in ACTM-egvn (light blue lines) are apparently 
in a better match with a relatively weak seasonal 
variability as measured at MLO (Fig. 14c), which 
was deeper for ACTM-evvy case (brown lines). The 
seasonal cycle simulations for the two transport cases 

Fig. 14. Examples of the observed and model N2O time series at BRW, AMY, MLO, and SMO. The prior model 
simulations (light blue and orange lines, solid and broken lines are for cases evvy and egvn, respectively) are  
added/subtracted arbitrary offsets for fitting the results on the common y-axis for comparison. Model simulations 
for different heights and more emission ensemble cases are compared with the measurements at MLO in Fig. S3.



Journal of the Meteorological Society of Japan Vol. 100, No. 2380

do not show observable differences at all four sites 
in most years (Figs. 14a, b, d; solid vs broken lines). 
The simulations for three sites, except for SMO, show 
clear differences between the choice of emissions (Fig. 
14a; orange vs light blue lines), which are revised 
by inverse modeling to produce consistent phase and 
amplitude (red/blue lines). However, for MLO, the 
seasonal cycle phase and amplitude did not produce 
an improved agreement with observations, indicating 
that a systematic transport bias rather than emissions 
cause the model error. The agreement between the 
simulated and observed N2O matches well at AMY, 
Korea after inversion, where the regional emissions 
are constrained by the site at HAT, Japan. AMY site 
samples airmass of local emission activities related to 
agriculture, such as rice paddies, sweet potatoes, and 
onions, and long-range transport from mainland China 
(Lee et al. 2020).

Nevertheless, the inversions did not improve the 
model–observation comparison of the N2O seasonal 
cycle at MLO (Fig. 14c). To disentangle the role of 
chemistry (through the stratosphere–troposphere 
ex change) or transport in the troposphere, we have 
conducted SF6 simulations (Fig. 15). The SF6 simu-
lation using weaker nudging (case UV5,T10) does 
not support better stratosphere–troposphere exchange 
in MIROC4-ACTM compared with that used as our 
control simulation (UV1,T5), particularly at MLO. It 
is thus, a possibility that the photochemical loss pro-
cesses involving solar UV radiation [and O(1D)] are 
poorly modeled in ACTM, e.g., a stronger N2O sink in 
the lower stratosphere would bring N2O-depleted air 
to the troposphere at the latitudes of the stratospheric  
“surf-zone”, which moves with the location of the 
subtropical jet streams (Bisht et al. 2021). Bisht et al. 
(2021) showed (their Fig. 2) that the MIROC4-ACTM- 
simulated N2O vertical profile gradient in the lower 
stratosphere is greater or comparable with the ob-
served in most seasons, whereas the vertical gradients 
for SF6, CO2, and CH4 are weaker in the model than 
those observed. This implied that faster troposphere–
stratosphere transport is compensated by a stronger 
sink in the lower stratosphere for N2O (the other three 
species have weaker or no photochemical loss). Be-
cause stratosphere–troposphere exchange is an upper 
tropospheric process, that effect is not corrected by 
the inversions using the measurements mainly at the 
surface. However, an overall increase in N2O emission 
would be predicted by the inversions in the tropical 
latitudes (Fig. 7), which could be evaluated using 
global observations.

3.6  Evaluation of modeled N2O mixing ratios using 
aircraft observations

Finally, we briefly evaluate the inversions using in-
dependent aircraft campaigns, limited to the HIAPER 
Pole-to-Pole Observations (HIPPO) (Kort et al. 2011; 

Fig. 15. Time series of SF6 observed at NOAA 
flask-air sampling sites Barrow (BRW), Mauna 
Loa (MLO), and Samoa (SMO), in comparison 
with those simulated by the two transport simula-
tions by MIROC4-ACTM.
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Wofsy 2011). Table S2 shows that there is a systematic  
bias, with observations being systematically higher 
than the inversion results. This is due to the known 
offsets between the quantum cascade laser spectro-
meter (QCLS) and NOAA flask measurement onboard 
the HIPPO campaigns although the HIPPO QCLS 
measurements are calibrated against the NOAA 2006 
scale (Santoni et al. 2014). Santoni et al. (in their 
Table 4, Fig. 12) calculated NOAA–QCLS biases of 
−0.61, −1.18, −1.15, −1.23, and −1.18 ppb for HIPPO 
1 – 5 campaigns, respectively, and these biases are in 
good agreement with the mean ACTM–QCLS biases 
for all inversions (−0.99, −1.58, −1.23, −1.20, and 
−1.19 ppb, respectively; ref. Table S2). The inver-
sion results also successfully predicted known scale 
differences between NOAA and AGAGE or NIES ob-
servations (by two inversions with and without scale 
adjustments to the NOAA and AGAGE data; Section 
2.3).

The tropical bulge in N2O observed during the 1st 
HIPPO campaign (Kort et al. 2011) and some of the 
latter HIPPO campaigns is still not produced by any of 
the MIROC4-ACTM simulations and the subsequent 
inversions (Fig. S6). This could be due to the greater 
influx of N2O-depleted air through stratosphere–
troposphere exchange as discussed earlier. For all 
other HIPPO campaigns, the model–observation com-
parisons produced meridional gradients satisfactorily, 
within the variabilities for any given 10 – 20° latitude 
bands. The finer-scale meridional variability could be 
obscured due to the coarse model horizontal resolution 
of approximately 2.8° × 2.8°.

The Northern to Southern Hemisphere (NH-SH) 
N2O gradients are better simulated by the MIROC4- 
ACTM control transport simulations (both prior and 
predicted emission cases), compared with the weakly 
nudged transport case that underestimates the gradi-
ents by 19 – 63 % relative to the control case (Fig. 16). 
Between the five ensemble emission cases, the prior 
simulation using Nevison et al. (1995) ocean flux 
produced the smallest NH-SH gradient in all the sea-
sons covered by the [HIPPO campaigns, intermediate 
values using Manizza et al. (2012), and greatest for 
Yang et al. (2020) emission case, which are expected 
from their emission distributions (Figs. 7a – c)]. The 
simulations using predicted fluxes produced rather 
similar NH-SH gradients for all the emission ensemble  
members and PFU sensitivity cases, but the mean gra-
dients are found to be greater by 0.1 – 85 % relative to 
a priori case. For three out of five HIPPO campaigns, 
the predicted model produced better or similar agree-
ment as that for the a priori model. The meridional 

profile during HIPPO-5 is not simulated well by all 
models in the altitude range of 1 – 3 km but very well 
simulated in 4 – 7 km (Figs. S6k, l). The 1-σ  standard 
deviations of the model–observation differences do 
not provide any information on the quality of the 
prior fluxes or the transport sensitivity simulations 
(Table S2). The differences decrease for the predicted 
emission simulations when compared with the prior 
emission simulations.

4. Conclusions

We have conducted forward transport modeling of 
atmospheric N2O (1971 – 2020) using MIROC4-ACTM 
and inverse modeling to estimate N2O emissions 
over the globe using the measurements of NOAA, 
AGAGE, and NIES at 42 sites and MIROC4-ACTM 
simulations. First, the MIROC4-ACTM simulations 
are compared with the long-term (1978 – 2019) records 
of N2O at a few sites of AGAGE and NOAA, which 
led us to conclude that global N2O emissions from 
ocean and land surfaces are fairly well developed in 
recent years for simulating the atmospheric burden 
of N2O. The lifetime of N2O in the MIROC4-ACTM 
control transport simulation is estimated to be 127.6 
± 4.0 yr for 1990 – 2019, but it has a sensitivity to the 
model transport. Our “control” simulations are nudged 

Fig. 16. Northern to Southern (NH-SH) gradients 
in N2O as observed by the five HIPPO campaigns 
and simulated by ACTM for a priori emissions 
(two cases) and predicted emissions. Plots show 
mean and 1-σ  standard deviations over the five 
emission cases (ref. Table S2). Data below 3 km 
are used for calculation, and the NH and SH are 
divided at the equator.
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to Japanese 55-year reanalysis products of U, V, and T 
with Newtonian relaxation times of 1, 1, and 5 days, 
respectively, and a transport sensitivity simulation 
used relaxation times of 5, 5, and 10 days.

More than 100 inversions were performed to ana-
lyze the role of prior flux estimates/uncertainties and 
measurement data uncertainty models as input to the 
inversion model. Using the χ 2-test of corrections to 
the prior fluxes and fitting to the observations, both 
weighed by their uncertainties, we have selected the 
preferred inversion. By inverse modeling, we aimed 
mainly at revisions of global land–ocean partitioning 
of emissions as well as regional emission estimates 
at subcontinental scales. The prior land emissions 
of 12.58 ± 0.35 TgN yr−1 and 13.41 ± 0.28 TgN yr−1, 
respectively, for the 2000s and 2010s, are revised to 
12.99 ± 0.22 TgN yr−1 and 14.30 ± 0.20 TgN yr−1, and 
the prior ocean emissions of 3.40 ± 0.41 TgN yr−1 
are revised to 2.74 ± 0.27 TgN yr−1 and 2.91 ± 0.27 
TgN yr−1, respectively, for the 2000s and 2010s using 
the preferred inversion. The majority of the reductions 
in the ocean emissions occurred over the Southern 
Ocean region, and the land emissions increased pre-
dominantly over the northern tropics and extra-tropics.

We find that N2O shows higher growth rates during 
the La Niña years or in the following months, com-
pared with those during the El Niño years. An analysis 
of the monthly mean emission variabilities shows 
statistically significant correlations with the ENSO 
cycle (maximum correlation at a lag-time of 2 months 
for the land); high emissions during and after La Niña 
years and vice versa for the El Niño years. These 
variabilities originated in the tropical land regions. At 
regional scales, we also find a large increase of N2O 
emissions over Temperate North America; Central and 
Tropical America; Northern and Central Africa; and 
South, East, and Southeast Asia during the 1997 – 2019 
period.

On seasonal time scales, a large modification and 
a broader peak in global land emissions during May–
August is predicted compared with the land prior emis-
sion seasonality in the inversions. The land seasonal  
cycles are revised over Temperate North America, 
Central Africa, and East Asia. These corrections to the 
N2O emission seasonal cycles are fairly independent 
of MIROC4-ACTM transport uncertainties. An earlier 
peak in the Temperate North America emissions could 
be confirmed by the timing of fertilizer application 
on agricultural land and thawing of frozen soil (an 
earlier peak is also estimated for East Asia but no in-
dependent study for a comparison). This information 
would be of potential interest for refining terrestrial 

ecosystem models of nitrogen cycling, such as VISIT, 
which was used as the prior in our study.

The validation of ACTM transport for two different 
nudging strengths remained ambiguous using SF6 time 
series at surface sites or high-altitude balloon observa-
tions of N2O for improved simulation of the seasonal 
cycle at Mauna Loa, whereas the simulations using a 
priori emissions clearly produced a better agreement 
with the observed seasonal cycle at other two remote 
sites (Barrow, Samoa). Finally, the evaluation of 
inversion results using independent measurements of 
N2O, e.g., the HIPPO campaigns, suggests minor im-
provements for the NH-SH gradients and 1-σ  standard 
deviations by the inversions relative to those using 
prior emissions. A systematic bias of approximately 
1 ppb is estimated for the HIPPO observations com-
pared with the NOAA/WMO calibration scale. Further 
development for critical validation of the inversion 
emissions is required.

Supplements

The supplemental document provides a brief history 
of the evolution in N2O measurement systems (the 
1970s to present), Supplementary Table S1, and Sup-
plementary Figs. S1 – S6.

The datasets generated and/or analyzed during the 
current study are available in the JAMSTEC reposito-
ry, https://doi.org/10.5281/zenodo.5875385.

The datasets used and/or analyzed during the cur-
rent study are also available from the corresponding 
author on reasonable request.

All data generated or analyzed during this study are 
included in this published article (and its supplemen-
tary information files). AGAGE data are available at 
https://agage.mit.edu/data. NOAA data are available 
at https://gml.noaa.gov/hats/combined/N2O.html and 
https://gml.noaa.gov/ccgg/flask.html. NIES data are 
available at https://db.cger.nies.go.jp/portal/geds/atmo 
sphericAndOceanicMonitoring, and NIMS data are 
available at the WDCGG (https://gaw.kishou.go.jp).
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