
1.  Introduction
Turbulent stirring in the ocean disperses tracers and suspended material over time. The eddies, jets, and fronts that 
characterize this turbulent motion occur at a range of spatial and temporal scales. Since ocean models have a finite 
resolution, structures with spatial s cales of the order of the grid resolution or smaller are not resolved explicitly. 
Current state-of-the-art global ocean models use nominal 1/48° grid resolutions (Fox-Kemper et al., 2019; Su 
et al., 2018), resolving the mesoscale and part of the submesoscale spectrum. Still, computational constraints 
limit the simulation length of models at such resolutions to only a few years. Many of the latest generation of 
Earth system models that are used for CMIP6 use ocean grid resolutions of 1° and 1/4° (Hewitt et al., 2020). 
The models at 1° do not resolve any mesoscale eddies. While the 1/4° models are eddy-permitting in parts of the 
ocean, much higher resolutions are required to resolve the first baroclinic Rossby radius at higher latitudes, such 
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as in the Southern Ocean, where it is 𝐴𝐴  (10 km) (Chelton et al., 1998). Parameterizations of mesoscale eddies 
therefore remain vital to ocean modeling.

The spreading of tracers due to unresolved eddies is typically parameterized as a diffusive processes, with the 
evolution of a tracer concentration C governed by the advection-diffusion equation:

��
��

+ � ⋅ �� = � ⋅ (� ⋅ ��),� (1)

where 𝐴𝐴 𝐮𝐮 is the resolved, large-scale velocity, and K is the diffusivity tensor. This practice traces back to Boussin-
esq's concept of eddy viscosity (Boussinesq, 1877) and G.I. Taylor's work on diffusion (Taylor, 1922), and is still 
ubiquitous in ocean modeling (Fox-Kemper et al., 2019). Much research has focused on determining and formu-
lating K in order to best represent ocean eddies. This includes aspects like the isopycnal or isoneutral orientation 
of eddies in the ocean interior (Redi, 1982), their advective effect (Gent & McWilliams, 1990; Griffies, 1998; 
Haigh et al., 2021), their diffusivity strength (Abernathey et al., 2013; Griesel et al., 2014; Nummelin et al., 2020; 
Wolfram et al., 2015), and their anisotropy (Bachman et al., 2020; Le Sommer et al., 2011).

Spreading of tracers and suspended material can also be investigated through the Lagrangian framework. Through 
Lagrangian particle simulations, we can study the pathways of fluid parcels and suspended material forward and 
backward in time (van Sebille et al., 2018). The Lagrangian framework is an especially useful alternative for the 
Eulerian framework in studying tracer transport when dealing with point sources (Spivakovskaya et al., 2007; 
Wagner et al., 2019). Lagrangian simulations use Eulerian ocean model fields to advect virtual particles. This 
means that Lagrangian simulations also require parameterizations to represent missing dispersion due to the un-
resolved scales in the Eulerian input data.

The simplest Lagrangian sub-grid scale dispersion model consists of adding a random walk onto a particle's 
successive locations. It can be shown that this method is consistent with the advection-diffusion Equation (1) 
(Heemink, 1990; Spagnol et al., 2002; Visser, 1997), hence it is often referred to as “diffusion” in Lagrangian 
literature. It is the simplest member of a hierarchy of stochastic parameterizations that is Markovian in nature, and 
we will refer to it here as Markov-0 (Berloff & McWilliams, 2002). “Markovian” relates to the Markov property 
that each successive displacement in the random walk is independent from the previous.

One shortcoming of Markov-0 is that, just like the eddy diffusion approximation in Eulerian models, it assumes 
that eddies have infinitely short time scales. Put differently, it assumes that there is no autocorrelation in the 
turbulent velocity of the Lagrangian particles. This assumption does not hold true for mesoscale eddies, which 
transport Lagrangian particles coherently (Berloff & McWilliams, 2002; Haller & Yuan, 2000). Eddy coherence 
leaves an imprint on the Lagrangian velocity autocorrelation, which can be separated into an exponentially de-
caying part and an oscillatory part that is the result of phase differences between the eddies and background flow 
(Klocker, Ferrari, & LaCasce, 2012; Veneziani et al., 2004). Due to this imprint, Markov-0 is only accurate at time 
scales when the autocorrelation has decayed away, meaning t ≫ TL. Here, TL is the Lagrangian timescale, equal 
to the e-folding timescale of the exponential decay of the autocorrelation (LaCasce, 2008). TL may vary between 
timescales of a day (Koszalka et al., 2013) to several weeks (see Section 4.2), depending on the characteristics 
of the ocean domain at hand. If one is concerned with timescales equal to or smaller than TL, Markov-0 is inad-
equate for parameterizing subgrid-scale dispersion. Regardless, this is often the only scheme for parameterizing 
subgrid-scale dispersion implemented in community Lagrangian modeling frameworks (van Sebille et al., 2018).

Parameterizations higher in the hierarchy of stochastic models add Markovian noise not on particle locations, 
but on their velocities (Markov-1), accelerations (Markov-2), or even hyper-accelerations (Markov-3) (Berloff 
& McWilliams, 2002; Griffa, 1996; Rodean, 1996; Sawford, 1991). In doing so, these models are capable of 
better representing dispersion at shorter timescales (for which t ≫∕  TL), and they can be informed by statistical 
variances in velocity, acceleration, and hyper-acceleration, respectively, as well as the timescales over which the 
autocorrelations of these quantities decay. Further improvements have been formulated that include the looping 
of particles due to eddy coherence (Reynolds, 2002; Veneziani et al., 2004), as well as the relative dispersion 
between different particles (Piterbarg, 2002).

Previous ocean applications of this hierarchy of stochastic models in the Lagrangian framework have been re-
stricted to the horizontal plane (e.g. Haza et al.  (2007); Koszalka et al.  (2013)). However, dispersion through 
stirring in the interior occurs primarily along sloping surfaces of neutral buoyancy (McDougall, 1987), which are 
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closely related to isopycnals (surfaces of constant potential density). Spivakovskaya et al. (2007) therefore inves-
tigated an isopycnal formulation of the random walk dispersion model. Shah et al. (2011) and Shah et al. (2013) 
further investigated how the spurious diapycnal flux due to numerical integration can best be minimized.

In this study, we discuss, implement, and test an isoneutral formulation of the Markov-1 subgrid-scale dispersion 
model. We compare the Markov-0 and Markov-1 models when applied to coarse-resolution and coarsened model 
output data. Specifically, we apply these parameterizations to a channel model of the Southern Ocean, with scales 
and model settings comparable to contemporary global and basin-scale ocean models. This allows us to also as-
sess the spurious dianeutral flux associated with interpolating discrete ocean model output fields.

Furthermore, we also consider an anisotropic, shear-dependent formulation of the diffusive/Markov-0 model, for-
mulated by Le Sommer et al. (2011) (LS hereafter), which accounts for anisotropy due to shearing and stretching 
brought about by mesoscale eddies. Our aim here is to show how one of the many enhancements proposed to the 
Eulerian diffusion parameterization can be extended to an isoneutral Lagrangian formulation.

This study focuses on how the isoneutral form of the Markov-1 model, as well as the anisotropic and shear-de-
pendent form of the Markov-0 model, can best be implemented, and to which qualitative differences they lead 
in the dispersion of Lagrangian particles when compared to a dispersionless case and the isotropic Markov-0 
parameterization. We also assess errors of the parameterizations in terms of spurious diffusivities. We aim to 
use sensible orders of magnitude for the model parameters, but parameter estimation is not our final goal. We 
are chiefly concerned with formulating an isoneutral form of the Markov-1 model, laying the groundwork for 
isoneutral subgrid-scale Lagrangian models beyond the isotropic diffusive/Markov-0 parameterization. Higher 
order stochastic models beyond Markov-1 and extensions thereof will be left out of the scope of this paper. These 
should nonetheless benefit from the ideas discussed here. The advective effect of eddies as captured by the 
Gent-McWilliams parameterization (Gent & McWilliams, 1990) is also not considered.

In Section 2, we give isoneutral formulations of the Markov-0 and Markov-1 parameterizations, as well the ani-
sotropic LS formulation of the Markov-0 parameterization. Then, in Section 3, we implement and apply these pa-
rameterizations to Lagrangian simulations in an idealized situation, and in Section 4 to ocean model data output. 
We assess the performance qualitatively and quantitatively. Qualitatively, we compare individual particle trajec-
tories and the dispersion of particles in a tracer-like patch with the dispersion in a fine-resolution eddy-resolving 
model. For the Markov-1 model we also look at the Lagrangian timescale and associated asymptotic diffusivity, 
to assess to which extent we can reproduce these profiles in a fine-resolution setting. Quantitatively, we investi-
gate the spurious dianeutral diffusivity of the different models. These models should keep particles restricted to 
neutral surfaces, but since we use discrete model output, spurious dianeutral fluxes will occur due to interpolation 
and other numerical aspects. We wrap up this study with concluding remarks in Section 5.

2.  Lagrangian Isoneutral Subgrid-Scale Models
2.1.  Markov-0 (Diffusion)

When we interpret the (Eulerian) advection-diffusion Equation 1 as a Fokker-Planck equation that gives the prob-
ability distribution of particle locations over time (Heemink, 1990), this yields a stochastic differential equation 
(SDE) describing the evolution of Lagrangian particle positions x as

�� =
[

�(�) + ∇ ⋅�(�)
]

�� + �(�) ⋅ ��(�).� (2)

Here, V is computed from K as 𝐴𝐴 𝐊𝐊 =
1

2
𝐕𝐕 ⋅ 𝐕𝐕

𝑇𝑇  , meaning that the random noise on the particle position is propor-
tional to the elements of the diffusivity tensor. This requires K to be symmetric and positive-definite. dW(t) is 
a vector whose elements correspond to independent Wiener increments in each respective coordinate direction. 
These Wiener increments are normally distributed random variables 𝐴𝐴  (0, 𝑑𝑑𝑑𝑑) with zero mean and variance dt 
(see also Appendix A from Shah et al. (2011)).

The ∇ · K-term in (Equation 2) ensures the well-mixed condition (WMC) when the diffusivity tensor is not 
spatially uniform, and follows the interpretion of Equation 1 as the Fokker-Planck equation corresponding to the 
SDE (2) (Heemink, 1990). Simply put, the well-mixed condition ensures that a particle distribution that is initial-
ly mixed, stays mixed. This condition is also essential for the forward- and backward-in-time formulations of the 
model to be consistent. The WMC is extensively discussed by Thomson (1987).
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The stirring of tracers and dispersion of particles occurs primarily along sloping neutrally buoyant surfaces (Mc-
Dougall, 1987). Due to uncertainty about its strength, spatial variation, and anisotropy of eddy stirring, the eddy 
diffusivity is often pragmatically chosen to be a homogeneous and isotropic in the neutral plane, with its strength 
expressed by the “diffusivity” constant κ (with units m2  s−1). Redi (1982) showed that a diffusivity tensor with 
these characteristics can be written in geopotential (“z-”) coordinates in terms of the slopes of the locally neutral 
plane:

𝐊𝐊Redi =
𝜅𝜅

1 + 𝑆𝑆
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝜖𝜖𝜖𝜖
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦 −(1 − 𝜖𝜖)𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 (1 − 𝜖𝜖)𝑆𝑆𝑥𝑥

−(1 − 𝜖𝜖)𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 1 + 𝑆𝑆
2
𝑥𝑥 + 𝜖𝜖𝜖𝜖

2
𝑦𝑦 (1 − 𝜖𝜖)𝑆𝑆𝑦𝑦

(1 − 𝜖𝜖)𝑆𝑆𝑥𝑥 (1 − 𝜖𝜖)𝑆𝑆𝑦𝑦 𝜖𝜖 + 𝑆𝑆
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,� (3)

where ϵ ≡ κdia/κ denotes the ratio of dianeutral (diabatic) to isoneutral diffusivity, and Sx and Sy are the slopes of 
the neutral surfaces. When the neutral surfaces are aligned with the isopycnals, which is the case for an equation 
of state that is linear in salinity and potential temperature, these slopes are found as

�� = −
��
��

/

��
��

, �� = −
��
��

/

��
��

.� (4)

Cox  (1987) showed that the diffusivity tensor (3) can be simplified when these slopes are small (say 
𝐴𝐴 |𝑆𝑆| =

√
𝑆𝑆

2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦 < 10−2 , which is generally the case in the ocean), and when ϵ is small compared to unity, so 

that it reduces to

�Redi, approx = �

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 ��

0 1 ��

�� �� � + |�|2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.� (5)

Particle trajectories can then be computed by integrating Equation 2. A κ that is constant in space and time corre-
sponds to the idealized case of homogeneous and stationary turbulence. The model has the Markovian property 
that successive spatial perturbations V · dW(t) are uncorrelated. This in turn causes successive particle velocities 

𝐴𝐴 𝐯𝐯 =
𝜕𝜕𝐱𝐱

𝜕𝜕𝜕𝜕
 to be uncorrelated as well, which is unrealistic at short timescales (i.e., t ≫∕  TL; LaCasce, 2008).

2.2.  Anisotropic Shear-Dependent Markov-0

While the tensors (3) and (5) assume that the diffusivity is isotropic and uniform in the isoneutral plane and time, 
the transport and stirring by eddies leads to effective diffusivities that are highly inhomogeneous and anisotropic 
(McWilliams et al., 1994; Nummelin et al., 2020; Sallée et al., 2008). In ocean modeling, the effects of eddies 
on momentum transfer are represented by an eddy viscosity. To account for the inhomogeneous effect of eddies 
on the momentum transfer, the eddy viscosity is often parameterized using the Smagorinsky parameterization 
(Smagorinsky, 1963), which relates the strength of the viscosity to the local shear of the flow based on closure of 
the momentum equations. This parameterization can also be used for tracer diffusion (Le Sommer et al., 2011), 
and has been applied for spatially-dependent (horizontal) random walk dispersion to parameterize eddies in La-
grangian studies (Nooteboom et al., 2020).

Le Sommer et al. (2011) derived an anisotropic and shear-dependent diffusion parameterization, related to the 
Smagorinsky parameterization, that also accounts for the anisotropy in effective diffusivity due to the shearing 
and stretching effect from the resolved scales on the unresolved scales. This parameterization, here abbreviated 
as LS, was originally proposed for parameterizing the submesoscale using resolved mesoscale motions, but Num-
melin et al. (2020) suggest that the LS parameterization can be applied to coarser models in which the mesoscale 
is not resolved.

The isoneutral diffusivity tensor from the LS parameterization is given by
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𝐊𝐊LS =
ℎ
2

2
(1 + 𝛿𝛿

2
)

⎡
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⎢
⎣
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⎥
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⎦

,� (6)

with 𝐴𝐴 𝐴𝐴 =

√
𝑟𝑟2 + 𝑎𝑎2 + 𝑎𝑎 and 𝐴𝐴 𝐴𝐴 =

√
𝑟𝑟2 + 𝑎𝑎2 − 𝑎𝑎 . Here, 𝐴𝐴 𝐴𝐴 =

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 is the rate of shear strain and 𝐴𝐴 𝐴𝐴 =

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 the 

rate of normal strain, both in the horizontal plane. The underlying assumption is that the largest contribution 
to the isoneutral dispersion falls within the horizontal plane. The h-term is the horizontal filter size over which 
the parameterization acts, and 𝐴𝐴 𝐴𝐴 =

[
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

]
∕
√
𝑟𝑟2 + 𝑎𝑎2 is a non-dimensional divergence parameter. The filter 

size h is related to the size of the grid and it should be tuned through an O (1), model-dependent constant C that 
depends on the underlying advection scheme, so h2 = Cdx ⋅ dy. A fixed dianeutral diffusivity ϵκ can be set if we 
approximate it as a vertical diffusivity and add it to KLS,33.

This parameterization can readily be used in Lagrangian simulations by using KLS (6) for the Markov-0 model 
(2). The parameterization is inherently local, with each of the parameters computed on the location a Lagrangian 
particle (or grid cell, in the Eulerian case).

2.3.  Markov-1

Next in the hierarchy of stochastic subgrid-scale dispersion models is the Markov-1 model, also known as the 
random acceleration or Langevin model (Berloff & McWilliams, 2002). The Markov-1 model adds a random 
forcing on particle velocities, which should be proportional to the velocity variance associated to the unresolved 
eddies. The model's governing equations are.

�� =
[

�(�) + �′] ��,� (7a)

𝑑𝑑𝐮𝐮
′ = [−[𝜽𝜽

−1
(𝐱𝐱)] ⋅ 𝐮𝐮′ + 𝐚̃𝐚(𝐱𝐱,𝐮𝐮′)]𝑑𝑑𝑑𝑑 + 𝒃𝒃 ⋅ 𝑑𝑑𝐖𝐖(𝑡𝑡).� (7b)

The particle location x evolves through integration of the resolved mean flow 𝐴𝐴 𝐮𝐮(𝐱𝐱) and a turbulent fluctuation u′. 
This fluctuation evolves through the stochastic differential Equation (7b). The deterministic part of this equation 
consists of two terms: a fading-memory term, which ensures an exponential decay in the autocorrelation of the 
particle's velocity, regulated through the fading-memory time tensor θ (with time as its dimension), and a drift 
correction term 𝐴𝐴 𝐚̃𝐚 , which ensures the well-mixed condition. The stochastic forcing term consists of the Wiener 
increment dW and the random forcing is related as b bT = 2σθ−1. Here, σ is the velocity variance tensor, which 
relates to the strength of the velocity fluctuations u′ that are to be simulated:

𝜎𝜎𝑖𝑖𝑖𝑖 = ⟨𝑢𝑢′
𝑖𝑖
𝑢𝑢
′
𝑗𝑗
⟩,� (8)

where the angled brackets denote ensemble averages over Lagrangian trajectories.

The drift correction term is given by

𝑎̃𝑎𝑖𝑖 =
1

2

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑘𝑘

−
𝜎𝜎𝑖𝑖𝑖𝑖

2
(𝑢𝑢𝑘𝑘 + 𝑢𝑢

′

𝑘𝑘
)
𝜕𝜕[𝜎𝜎−1]

𝜕𝜕𝜕𝜕𝑘𝑘

𝑢𝑢
′
𝑗𝑗
.� (9)

See Berloff and McWilliams (2002) for further details and derivations.

The nonsingular velocity variance tensor σ and the fading-memory time tensor θ are the free parameters in the 
Markov-1 model. They can be estimated from velocity fields in which the turbulent velocity is resolved. For the 
velocity variance, this is clear from Equation 8. The velocity variance tensor may be anisotropic, inhomogene-
ous in space, and evolving over time. An obvious and useful simplification is to use a single, average velocity 
variance parameter ν2 that characterizes the entire system (Koszalka et al., 2013). In this case σ is diagonal with 
its values equal to ν2. Alternatively, the velocity variance may be a probability distribution rather than an aver-
age value in order to account for the variance in ν2 found within different regions of a fluid domain (Berloff & 
McWilliams, 2003).
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The fading-memory time tensor θ determines the strength of the exponential decay of the turbulent velocity u′. 
The elements of θ are found by integrating the Lagrangian autocorrelation Rij(τ) over all time lags τ:

𝜃𝜃𝑖𝑖𝑖𝑖 =
∫

∞

0

𝑅𝑅𝑖𝑖𝑖𝑖(𝜏𝜏)𝑑𝑑𝑑𝑑𝑑� (10)

where

𝑅𝑅𝑖𝑖𝑖𝑖(𝜏𝜏) = ⟨𝑢𝑢′
𝑖𝑖
(𝑡𝑡)𝑢𝑢′

𝑗𝑗
(𝑡𝑡 + 𝜏𝜏)⟩∕(⟨𝑢𝑢′2

𝑖𝑖
⟩ ⟨𝑢𝑢′2

𝑗𝑗
⟩)1∕2.� (11)

Like the turbulent velocity, the Lagrangian autocorrelation exhibits spatial variation in the ocean, and its aniso-
tropy can be strongly affected by the presence of jets (Griesel et al., 2010). Still, it is also useful to characterize 
the fading-memory time of the entire system by an average value. In a homogeneous, stationary situation without 
boundary effects, the fading memory tensor is diagonal with its values equal to the Lagrangian integral time TL.

We characterize the dispersion of particles by the single-particle (sometimes called “absolute”) dispersion tensor:

𝐷𝐷𝑖𝑖𝑖𝑖(𝑡𝑡𝑡 𝐱𝐱(0)) = ⟨(𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖(0))(𝑥𝑥𝑗𝑗(𝑡𝑡) − 𝑥𝑥𝑗𝑗(0))⟩.� (12)

Berloff et al. (2002) note that while the dispersion tensor in the ocean may evolve in a nonlinear manner, it can 
be described by different power laws at intermediate timescales:

𝐷𝐷𝑖𝑖𝑖𝑖(𝑡𝑡) ∼ 𝑡𝑡
𝛼𝛼𝑖𝑖𝑖𝑖 .� (13)

Single-particle dispersion in the ocean is initially ballistic, meaning D(t) ∼ t2 for t ≪ TL. At longer time-scales, it 
becomes approximately linear in time, that is, D(t) ∼ t. Since such behavior is equivalent to that of a diffusive pro-
cess, this is also referred to as the diffusive limit. Unsurprisingly, dispersion simulated by the Markov-0 model is 
purely diffusive. The Markov-1 model, however, is able to also simulate the initially ballistic behavior of particles 
dispersion. For time scales longer than those characterized by the elements of θ, the Markov-1 model essentially 
behaves diffusively (Rodean, 1996). In this limit, assuming homogeneity, stationarity, and absence of boundary 
effects, we can relate the absolute diffusivity, velocity variance and Lagrangian integral time as

𝜈𝜈
2
𝑇𝑇𝐿𝐿 = 𝜅𝜅𝜅� (14)

At intermediate time-scales, αii can take on other values than 1 and 2, which is referred to as anomalous dispersion 
(LaCasce, 2008). While the dispersion regimes other than the ballistic and diffusive cannot be simulated by Mark-
ov-1, the higher order Markov-2 and Markov-3 models, or modifications of Markov-1 are able to account for such 
behavior, such as the oscillatory component of the Lagrangian autocorrelation (Berloff & McWilliams, 2002; 
Reynolds, 2002; Veneziani et al., 2005). However, we limit ourselves here to Markov-1 for its simplicity, as each 
modification or higher model in the hierarchy includes more free parameters.

We now formulate an ad-hoc three-dimensional, isoneutral version of the Markov-1 model in the case of homo-
geneous and stationary turbulence without boundary effects. First, we assume that the turbulent velocity per-
turbations should remain primarily restricted to the local neutral plane, in which it is isotropic. In isoneutral 
coordinates this yields

𝝈𝝈iso =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜈𝜈
2

0 0

0 𝜈𝜈
2

0

0 0 𝜂𝜂𝜂𝜂
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and 𝜽𝜽iso =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑇𝑇𝐿𝐿 0 0

0 𝑇𝑇𝐿𝐿 0

0 𝜀𝜀𝜀𝜀𝐿𝐿

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.� (15)

Assuming there is some dianeutral velocity perturbation 𝐴𝐴 𝐴𝐴
2

dia
 (≪ν2), we define 𝐴𝐴 𝐴𝐴 ≡ 𝜈𝜈

2

dia
∕𝜈𝜈2 . Similarly, assuming a 

separate dianeutral Lagrangian integral time TL,dia, we define ɛ ≡ TL,dia/TL.

Then, we simply transform σ and θ from isoneutral coordinates to geopotential coordinates in analogy to Redi's 
formulation of the isoneutral diffusivity tensor (Redi, 1982). This yields:
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𝝈𝝈geo =
𝜈𝜈
2

1 + 𝑆𝑆
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝜂𝜂𝜂𝜂
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦 −(1 − 𝜂𝜂)𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 (1 − 𝜂𝜂)𝑆𝑆𝑥𝑥

−(1 − 𝜂𝜂)𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 1 + 𝑆𝑆
2
𝑥𝑥 + 𝜂𝜂𝜂𝜂

2
𝑦𝑦 (1 − 𝜂𝜂)𝑆𝑆𝑦𝑦

(1 − 𝜂𝜂)𝑆𝑆𝑥𝑥 (1 − 𝜂𝜂)𝑆𝑆𝑦𝑦 𝜂𝜂 + 𝑆𝑆
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,� (16)

and

𝜽𝜽geo =
𝑇𝑇𝐿𝐿

1 + 𝑆𝑆
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + 𝜀𝜀𝜀𝜀
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦 −(1 − 𝜀𝜀)𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 (1 − 𝜀𝜀)𝑆𝑆𝑥𝑥

−(1 − 𝜀𝜀)𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦 1 + 𝑆𝑆
2
𝑥𝑥 + 𝜀𝜀𝜀𝜀

2
𝑦𝑦 (1 − 𝜀𝜀)𝑆𝑆𝑦𝑦

(1 − 𝜀𝜀)𝑆𝑆𝑥𝑥 (1 − 𝜀𝜀)𝑆𝑆𝑦𝑦 𝜀𝜀 + 𝑆𝑆
2
𝑥𝑥 + 𝑆𝑆

2
𝑦𝑦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.� (17)

Note that in order for these tensors to be nonsingular, η and ɛ should be nonzero, meaning that σgeo and θgeo have 
nonzero diapycnal contributions. We thus have to specify η and ɛ in a way such that they are small enough to 
prevent large dianeutral excursions.

While the diffusivity tensor (Equation 3) can be simplified (Equation 5) by the assumption that slopes are small, 
this assumption cannot be applied to the tensors σgeo (Equation 16) and θgeo (Equation 17), since the terms that 
are scaled out in the small-slope assumption become dominant in the inverses of σgeo and θgeo, which are used in 
Equation 7 and Equation 9 and when computing b.

A key assumption of Redi's diffusivity tensor Kredi is that the neutral surfaces are stationary and locally flat. 
“Locally” here is related to the length scale associated to the displacement of a particle over one timestep. The 
assumption is that when a particle is advected, the neutral slope at the particle's original location x0 at time t0 is 
approximately equal to the neutral slope at the particle's new location x1 after a timestep dt. Any difference in 
the orientation of the neutral surface over successive timesteps will lead to some dianeutral movement, but as 
long as neutral surfaces are locally flat, this dianeutral movement is limited and the new local slopes are used for 
computing the next neutral displacement.

For Markov-1, the situation is more complicated. In this case, the stochastic velocity perturbations of a particle 
at time t0 and location x0 are oriented parallel to the local neutral plane. However, since particle velocities (Equa-
tion 7b) are autocorrelated, the curvature of the neutral surface at a particle's initial location x0 can influence a 
particle's velocity over several timesteps, as the particle is displaced away from x0. This influence decays expo-
nentially with the e-folding timescale ɛTL. Thus if a neutral surface curves at spatial scales that are similar to or 
smaller than the length scale L over which a particle travels within the timescale ɛTL, the signal of the turbulent 
velocity perturbation at t0 influences the particle's net turbulent velocity, causing a dianeutral velocity contribu-
tion, and therefore a dianeutral displacement. To combat this dianeutral movement, the Lagrangian autocorre-
lation in the dianeutral direction should rapidly decay away at each timestep. Put differently, ɛTL should be so 
small that a neutral surface can be approximated as flat over the length scale L. While ɛTL should be larger than 
zero to avoid singularity of θ, one ad-hoc workaround to rapidly extinguish the signal of velocity perturbations 
at previous timesteps is to set

𝜀𝜀𝜀𝜀𝐿𝐿 = 𝑑𝑑𝑑𝑑𝑑� (18)

This workaround comes at a price: if the neutral surface curves, the Lagrangian decorrelation of an initially iso-
neutral signal may occur more quickly than is prescribed by θ, since the initially isoneutral perturbation becomes 
dianeutral over time, which causes it to decay rapidly due to (18). This effect increases when more curvature is 
covered by a Lagrangian particle as it moves in space and time. Properly retaining autocorrelations on curved 
surfaces is a complicated matter (Gaspari & Cohn, 1999), so here we take a pragmatic approach by assuming 
that the change in isoneutral curvature is small enough for practical use to warrant our ad-hoc formulation of a 
three-dimensional Markov-1 model.

Finally, when ɛ is fixed by Equation 18, η can be chosen in such a way that the effective dianeutral diffusivity in 
the limit t ≫ TL is controlled as:
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𝜖𝜖𝜖𝜖 = 𝜂𝜂 𝜂𝜂
2
𝜀𝜀 𝜀𝜀𝐿𝐿.� (19)

This means that if we indeed assume homogeneity, stationarity, and a lack of boundary effects, the parameters 
necessary for Markov-1 model may be determined by specifying the Lagrangian integral time TL and an effective 
diffusivity κ, which fix ν2 through Equation 14, and by specifying the dianeutral diffusivity ratio ϵ, fixing ɛ and 
η (through Equation 18 and Equation 19).

3.  Numerical Implementation
3.1.  Discretization

To use the Markov-0 and Markov-1 models numerically, we need to discretize SDEs Equation 2 and Equation 7. 
The simplest SDE discretization is Euler-Maruyama scheme, which can be seen as a stochastic version of the 
Euler-forward scheme. Given a general stochastic differential equation

𝑑𝑑𝐗𝐗 = 𝛼𝛼(𝐗𝐗, 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝛽𝛽(𝐗𝐗, 𝑡𝑡)𝑑𝑑𝐖𝐖(𝑡𝑡),� (20)

with α(X, t) signifying the deterministic forcing strength and β(X, t) the stochastic forcing strength, the Eul-
er-Maruyama scheme approximates the true solution for X by the Markov chain Y as

𝑌𝑌
𝑘𝑘

𝑛𝑛+1
= 𝑌𝑌

𝑘𝑘

𝑛𝑛 + 𝛼𝛼
𝑘𝑘Δ𝑡𝑡 +

𝑚𝑚∑

𝑗𝑗=1

𝛽𝛽
𝑘𝑘𝑘𝑘𝑘Δ𝑊𝑊 𝑗𝑗

,� (21)

where superscripts denote the kth component of the m-dimensional vectors X and Y and subscripts denote dis-
crete time indices. ΔW is an m-dimensional vector of discretized Wiener increments, which are normally distrib-
uted, 𝐴𝐴  (0,Δ𝑡𝑡) , with zero mean and variance Δt. See Kloeden and Platen (1999) or Iacus (2008) for more details 
on numerical SDE schemes. The expressions for α and β can be readily identified in Equation 2 and Equation 7b. 
In the case of Markov-1, an additional numerical integration is necessary for Equation 7a. For consistency with 
the Euler-Maruyama scheme, this can simply be the Euler-Forward discretization.

We implemented the Markov-0 and Markov-1 schemes in the Parcels Lagrangian framework (Delandmeter & van 
Sebille, 2019). All Lagrangian simulations in this paper are carried out with Parcels (van Sebille et al., 2020).

3.2.  Idealized Test Case

We assess the validity of the isoneutral subgrid-scale models using an idealized, stationary density field for 
which we can compute the isoneutral slopes exactly, assuming that here the neutral surfaces align with the isop-
ycnals. We do not consider any actual fluid dynamical setup, meaning there is no background flow 𝐴𝐴 (𝐮𝐮 = 0) . This 
three-dimensional idealized test case is an extension of the two-dimensional test case from Shah et al. (2011), 
and is given by

𝜌𝜌(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜌𝜌0

[
1 −

𝑁𝑁
2
𝑧𝑧

𝑔𝑔
+ 𝐴𝐴𝑥𝑥 sin (𝑘𝑘𝑥𝑥𝑥𝑥) + 𝐴𝐴𝑦𝑦 sin (𝑘𝑘𝑦𝑦𝑦𝑦)

]
,� (22)

with ρ0 a reference density, N the Brunt-Vaisala frequency, g the gravitational acceleration, A the amplitude of 
the wave-like neutral surfaces, and k their wavenumber (subscripts denoting direction). The z-coordinate of the 
neutral surface corresponding to the density ρ* is then found as

𝑧𝑧iso(𝜌𝜌
∗
, 𝑥𝑥𝑥 𝑥𝑥) =

𝑔𝑔

𝑁𝑁2

[
1 −

𝜌𝜌
∗

𝜌𝜌0
+ 𝐴𝐴𝑥𝑥 sin(𝑘𝑘𝑥𝑥𝑥𝑥) + 𝐴𝐴𝑦𝑦 sin(𝑘𝑘𝑦𝑦𝑦𝑦)

]
.� (23)

We use a similar choice of parameters as (Shah et al., 2011), which is representative of the large-scale ocean:

�0 = 1025 kg m−3, �2 = 1 × 10−5s−2, � = 10 m s−2,

�� = 1 × 10−3, �� = 1.1 × 10−3, �� = �� =
2
�
× 1 × 10−5m−1.

� (24)
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This choice of parameters leads to a maximum slope of max (|S|) ≈ 10−3, which is a typical value for neutral 
slopes in the ocean, and for which the small-slope approximation (Equation  5) is valid (Mathieu & Deleer-
snijder, 1998). Although we may not use this approximation in the Markov-1 model due to singularity, as ex-
plained in Section 2.3, it is useful to compare the small-slope approximation of Markov-0 (Equation 5) with its 
full formulation (Equation 3).

3.3.  Spurious Diffusivity

We can compare the spurious dianeutral diffusivities induced by numerical errors in the discretized Markov-0 
and Markov-1 models. We limit this analysis for brevity and refer the reader to Shah et al. (2011) for an extensive 
discussion of numerical errors introduced by Markov-0. The models considered here have an equivalent effective 
diffusivity (Equation 14) in the limit t ≫ TL. We initialize 12,800 particles on a neutral surface, using a regular 
xy-grid, with the z-coordinates computed from Equation 23 and ρ* = 1,027.5 kg m−3. We found that results are 
insensitive to adding more particles. We take into account the periodic topology of the neutral surfaces to make 
sure crests and troughs are sampled evenly. Then, we numerically integrate the particles for 90 days using several 
choices of integration timestep Δt. The particle displacements are computed by using the exact density field (22) 
and its spatial derivatives. From the vertical departure of the particles from the neutral surfaces, we can compute 
an effective spurious vertical diffusivity,

𝜅𝜅𝑧𝑧𝑧spurious =
(⟨𝑧𝑧 − 𝑧𝑧iso⟩)2

2𝑇𝑇int

,� (25)

where the angled brackets denote a particle ensemble average and Tint is the total integration time. We use this as an 
approximation of the spurious dianeutral diffusivity introduced by the numerical approximation of Equation 20.

In the Markov-0 model, we set κ = 1,000 m2 s−1 and ϵ = 0, such that the only dianeutral movement of particles 
is due to numerical errors. We test both KRedi and KRedi, approx. We cannot test Markov-0 using KLS, as we do not 
consider a fluid setup with flow from which its parameters are computed.

For Markov-1, we use a value of TL = 20 days, and we determine ν2 = κ/TL = 5.79 × 10−4 m2 s−2, so that the 
effective isoneutral diffusivity in the diffusive limit equals the one used for Markov-0 (see Equation 14). We 
also need to specify the nonzero dianeutral fading-memory time and velocity variance in the Markov-1 model 
to guarantee that Equation 16 and Equation 17 are nonsingular. To ensure rapid decorrelation of u′ in the local 
dianeutral direction, we set 𝐴𝐴 𝐴𝐴 =

Δ𝑡𝑡

𝑇𝑇𝐿𝐿

 (Equation 18). In order to avoid θ being singular, we also need a nonzero η. 
However, here we are interested in the dianeutral movement induced by numerical errors, rather than what is 
specified by the algorithm. Here we need to make a trade-off: we found that if η gets very small (η ≲ 10−10), this 
causes instabilities due to the multiplication of very small and very large terms (inverses of η) when computing 
the drift correction term (Equation 9). This may not necessarily lead to a spurious diapycnal diffusivity, but we 
found that it can lead to particle accumulation is specific areas. We choose η = 10−8; a value for which we do not 
observe noticeable instabilities with the drift correction term. For small choices of dt, this choice of η will cause 
the “spurious” diapycnal diffusivity to equal the expected diapycnal diffusivity (computed using Equation 19), 
while for larger timesteps the spurious diffusivity is dominated by numerical errors.

Figure 1 shows that the spurious dianeutral diffusivity after 90 days of integration is much smaller for Markov-1 
than for Markov-0. Recall that both use the same Euler-Maruyama discretization scheme (Equation 21). The 
difference in dianeutral diffusivity is due to the fact that the expected turbulent displacement for a single time-
step in Markov-1 is E (‖u′‖ Δt) = νΔt (see Equation 7), while that in Markov-0 is 𝐴𝐴 𝐴𝐴(𝐕𝐕 ⋅ 𝑑𝑑𝐖𝐖) =

√
2𝜅𝜅Δ𝑡𝑡 , (see 

Equation 2) where E denotes the expected value and ‖ ⋅ ‖ the vector norm. The turbulent excursion of Markov-1 
in one timestep is therefore much smaller than that of Markov-0 over the range of Δt investigated here, and thus 
Markov-1 introduces less dianeutral movement as the neutral surfaces curve. Also note that over this range of Δt 
and with our choice of κ, ɛ and η, as dt increases, the diapycnal diffusivity diverges from the theoretical diapycnal 
diffusivity imposed through η. This divergence is caused by numerical errors, meaning these start dominating for 
the larger values in our range of dt. We conclude that Markov-1 generally performs significantly better in keeping 
particles on idealized neutral surfaces. Note that the spurious diapycnal diffusivity depends on the slopes of the 
idealized neutral surfaces, determined by Ax, Ay, kx, and ky (Shah et al., 2011).



Journal of Advances in Modeling Earth Systems

REIJNDERS ET AL.

10.1029/2021MS002850

10 of 25

Several studies propose the use of higher order numerical schemes to reduce the spurious dianeutral flux re-
sulting from numerical integration (Gräwe, 2011; Gräwe et al., 2012; Shah et al., 2011) or the use of adaptive 
time-stepping methods (Shah et al., 2013). While higher order schemes, such as the first order Milstein scheme 
(see Kloeden & Platen, 1999), indeed perform better in the idealized configuration, we find that this improvement 
is negligible when applied to discrete ocean model data using commonly used spatial and temporal output resolu-
tions (see Section 4.1), and a Lagrangian timestep of 40 min, indicating that the error introduced by interpolating 
Eulerian data dominates that of the numerical method.

3.4.  Well-Mixedness

The equations for the Markov-1 model, including the drift-correction term (Equation 9), are rigorously derived in 
Berloff and McWilliams (2002). However, since we create an ad-hoc adaption of this model for use in three-di-
mensional isoneutral situations, it is important that we verify whether we did not inadvertently violate the well-
mixed condition. Rather than rigorously proving the WMC, we take a pragmatic approach here and visually 
inspect particle distributions to see if we can find spurious accumulation. We choose pragmatism over rigor of 
proof, because in applications with discrete Eulerian ocean model output, Lagrangian simulations with Markov-0 
and Markov-1 are both affected by numerical errors due to discretization and interpolation. These numerical 
aspects will violate the WMC in any case, hence a pragmatic visual verification of the WMC satisfies our needs.

To visually inspect any spurious particle accumulation, which would indicate a WMC-violation, we integrate 
204,800 particles with the Markov-0 and Markov-1 models for 90 days and investigate particle distributions. 
Figures 2a and 2b shows the initial and final particle distributions on our idealized neutral surfaces for Markov-1. 
We again set TL = 20 days and ν2 = κ/TL ≈ 5.79 × 10−4 m2  s−2, so that the effective diffusivity after 90 days (in 
the diffusive limit) is approximately κ ≈ 1 × 103 m2 s−1. Figures 2c and 2d shows the initial and final particle con-
centrations in the xy-plane, obtained by binning particles and dividing by the area of curved neutral surface per 
bin. We do not observe any distinct zones in which particles accumulate. Since the input to the Markov-1 model 
in this test case solely consists of the σ and θ tensors, whose elements in turn depend on the slopes of the neutral 
surfaces, any spurious accumulation should manifest itself at specific slope levels. Since we do not observe this, 
this indicates that in this stationary situation without background flow the WMC is not violated by our ad-hoc 
isoneutral formulation of Markov-1.

Figure 1.  Spurious dianeutral diffusivities after 90 days in the Markov-0 model (with and without the small-slope 
approximation (Equation 5)), and the Markov-1 model, using several timesteps Δt. For Markov-1, we also plot the diapycnal 
diffusivity that is theoretically imposed through our choice of η. The Markov-1 model has a much smaller spurious dianeutral 
flux for each timestep. Using the small-slope approximation for Markov-0 leads to negligible differences in the spurious 
diapycnal diffusivity.
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4.  Dispersion in an Antarctic Circumpolar Current Channel Model
We also compare the Markov-0 and Markov-1 models through Lagrangian simulations using the output of an 
ocean model. We use two types of Eulerian model fields at a 50 km horizontal spacing: one is the output of an 
ocean model run at this coarse resolution, and the other is a coarsened output of a fine-resolution 5 km model. 
The fine-resolution data serves as an eddy-resolving reference case. While the coarse-resolution data is most rep-
resentative of the coarse models for which Lagrangian subgrid-scale models are useful, the coarsened data allows 
for easier comparison to the fine-resolution reference case.

First, we look at how well Markov-1 reproduces the specified Lagrangian integral timescale and effective dif-
fusivity in the diffusive limit. Then, we qualitatively compare particle trajectories produced by Markov-0 and 
Markov-1 with those produced by advection only. We also compare the spread of a patch of Lagrangian particles, 
in analogy to a tracer patch experiment. Finally, we estimate the spurious dianeutral diffusivities introduced by 
the different models.

In each experiment, we use single values for the isoneutral Lagrangian integral time and isoneutral velocity 
variance. This means that we assume a homogeneous and stationary situation without boundary effects. The sta-
tionarity assumption is valid for the coarsened and coarse fields, but the other assumptions are not. To deal with 

Figure 2.  (a) 204,800 particles on an idealized neutral surface, initialized in a regular xy-grid. (b) the same particles after 90 days of integration with the Markov-1 
model, with TL = 20 days and ν2 = 5.79 × 10−4 m2 s−2. (c) initial concentration computed by binning particles in (a) and dividing by the total area of curved surface 
per bin. We take advantage of the periodicity of the domain and analyze all particles over one wavelength 1/kx = 1/ky = 1,000 km by displacing them as x = x mod 1/kx, 
y = y mod 1/ky. (d) final particle concentration after 90 days of integration. Concentrations in (d) are much less homogeneous than they are initially in (c), but there are 
no clear accumulation patterns coinciding with specific features of the idealized neutral surface.
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inhomogeneity, we could use space-dependent and anisotropic tensors for σ and θ, but since future applications 
are likely to use constant parameters, we choose the pragmatic route and do so as well.

Since we use Eulerian data with boundaries, we need to consider boundary conditions. In a two-dimensional 
stationary and homogeneous setting, perfect reflection satisfies the WMC (Wilson & Flesch, 1993). Although 
neutral surfaces in the Southern Ocean can outcrop at the surface (Marshall & Speer, 2012), we use the assump-
tion that neutral slopes at the lateral boundaries are near-flat, and adopt perfect reflection as our choice as well. 
The isoneutral slopes in certain areas of the model data may be unrealistically large due to spurious effects, so 
we use a tapering scheme based on that of Danabasoglu and McWilliams (1995) to lower or turn off turbulent 
displacements in such regions. Details of the tapering mechanism are found in Appendix A.

4.1.  Eulerian Model Description

We use a simplified model of the Antarctic Circumpolar Current run in MITgcm (Campin et al., 2020; Marshall 
et al., 1997), similar to the channel model used by Abernathey et al. (2011) and Balwada et al. (2018). We use an 
adaptation that is extensively described in MITgcm's documentation, also available at: https://mitgcm.readthe-
docs.io/en/latest/examples/reentrant_channel/reentrant_channel.html. It consists of a zonally re-entrant channel 
that is 1,000 km long in the zonal (x) direction, 2,000 km wide in the meridional (y) direction, and 3,980 m deep. 
The model consists of 49 vertical levels that range from 5.5 m depth at the surface to 149 m at depth. It is forced 
by a constant sinusoidal wind stress and a temperature relaxation at the surface and northern boundary. The 
equation of state is set linearly dependent to potential temperature only, causing the neutral surfaces to coincide 
with surfaces of constant potential temperature. This allows us to compute neutral slopes using Equation 4. To 
break zonal symmetry, a meridional, Gaussian-shaped ridge is placed in the center of the domain, going up to 
2382.3 m m depth. The ridge has a small opening in the center, causing a strong barotropic jet to develop.

The model is spun up for 100 years and run at two horizontal resolutions: once at 5 km resolution (fine-resolu-
tion), at which the mesoscale eddies are resolved, and once at 50 km resolution (coarse-resolution) where eddies 
cannot develop. Daily averages of the output data are used for the Lagrangian simulations. The coarse-resolution 
flow is in steady-state, exhibiting no temporal variability. We also create a coarsening of the fine-resolution 
model in space and time, by taking a yearly time-average of the flow and spatially averaging velocities and tem-
perature fields over 50 km. These coarsened fields thus include the effect of eddies on the mean flow. Snapshots 
and means of the vorticity and speed fields in the fine, coarsened and coarse runs are found in Figure 3. The de-
rivatives of the density field, used for computing the neutral slopes, are computed by means of grid-aware central 
differences using the XGCM package (Abernathey et al., 2021).

4.2.  Parameter Estimation

To use the two Markov models in our experiments, we need to identify κ for Markov-0 (except when using the LS 
parameterization) and TL and ν2 for Markov-1. We can estimate globally representative values from Lagrangian 
quantities of the fine-resolution flow field. To do so, we first compute Lagrangian particle trajectories with the 
fine-resolution model output. We initialize 64,860 Lagrangian particles released regularly spaced apart 20 km 
in the horizontal and 200 m in the vertical, with −200 m ≥ z ≥ −1,600 m in order to stay away from the mixed 
layer and the ridge. We then integrate the trajectories using a fourth order Runge-Kutta scheme, with a timestep 
Δt = 40 min for 180 days.

The Lagrangian integral time is related to the Lagrangian autocorrelation (Equation 11). Figure 4 shows the La-
grangian autocorrelation estimated from particle trajectories in the fine-resolution model. We can clearly see the 
oscillatory and exponentially decaying behavior of the horizontal autocorrelations. Similar to Sallée et al. (2008), 
we approximate the Lagrangian autocorrelation to be decomposable as

𝑅𝑅(𝜏𝜏) = cos(2𝜋𝜋Ω) 𝑒𝑒−𝜏𝜏∕𝑇𝑇𝐿𝐿 ,� (26)

where Ω is the frequency of the oscillation. While the parameters TL and Ω can be estimated using a least-
square fit, we are only interested in approximate values for the parameters. A choice of Ω = 1/75 per day and 
TL = 20 days approximates the autocorrelation functions well enough for our purposes. Bear in mind, though, 

https://mitgcm.readthedocs.io/en/latest/examples/reentrant_channel/reentrant_channel.html
https://mitgcm.readthedocs.io/en/latest/examples/reentrant_channel/reentrant_channel.html
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that we only continue with TL, as Markov-1 cannot reproduce the oscillatory behavior of particle dispersion in 
the ocean.

Having fixed TL, we only need to estimate κ, since this will readily give us an average value of ν2 that reproduces 
the correct diffusivity in the dispersive regime through (14; Koszalka et al., 2013). The absolute diffusivity tensor 
(LaCasce, 2008) is found by integrating the Lagrangian autocovariance:

𝐾𝐾𝑖𝑖𝑖𝑖(𝐱𝐱, 𝜏𝜏) =
∫

𝜏𝜏

0

⟨𝑢𝑢′
𝑖𝑖
(𝑡𝑡0|𝐱𝐱, 𝑡𝑡0)𝑢𝑢′𝑗𝑗(𝑡𝑡0 + 𝜏𝜏|𝐱𝐱, 𝑡𝑡0)⟩𝑑𝑑 𝑑𝑑𝑑𝑑� (27)

To find the isoneutral diffusivities, i and j should coincide with the principal directions of the neutral plane at 
each location. However, since the isoneutral slope in our model is small (generally of order 10−3), we will estimate 
the isoneutral diffusivity from Kxx and Kyy.

Figure 3.  Snapshot of the vorticity (a–c) and speed (d–f) of the fine (a and d), coarsened (b and e), and coarse (c and f) 
model fields used in this study. The fine fields are daily averages, the coarsened fields are 1-year time averages and 50 km 
spatial averages, and the coarse model is in steady state. Dashed lines indicate the position of the meridional ridge.
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Figure 5 shows the horizontal and vertical absolute diffusivities over time. The absolute diffusivity corresponding 
to the diffusive limit, in which Markov-0 is valid, is found at τ ≫ TL, for which the diffusivity should take on 
a near-constant value. Theoretically, it is found by integrating Equation 27 to infinity, but in practice, it can be 
found by integrating past the negative and positive lobes associated with the oscillatory component of the Lagran-
gian autocorrelation, when the diffusivity becomes near-constant (Griesel et al., 2014; Klocker, Ferrari, Lacasce, 
& Merrifield, 2012). From Figure 5, we estimate the isoneutral diffusivity to be similar to the horizontal absolute 
diffusivity, with a value of κ = 1.5 × 104 m2 s−1.

4.3.  Lagrangian Integral Time and Diffusivity From the Markov-1 Model

Now we initialize particles in the same lattice as used in Section 4.2 and apply the Markov-1 parameterization. 
We simulate trajectories by integrating the stochastic differential Equation 7 using the Euler-Maruyama scheme 
(Equation 21) for 180 days, with Δt = 40 min. We set TL = 20 days, and specify ν2 = 8.68 × 10−3 m2  s−2 in order 
to obtain an effective diffusivity of 1.5 × 104 m2  s−1 in the diffusive limit. We also set η and ɛ in such a way that 
the effective dianeutral diffusivity in the limit t ≫ TL is 1 × 10−5 m2  s−1. These settings are used in the remainder 
of this study. Derivatives of Eulerian quantities that are necessary for computing the tensor elements of σ and θ 

Figure 4.  Lagrangian autocorrelations in the fine-resolution model, including an exponentially decaying and oscillatory function (Equation 26) with TL = 20 days and 
Ω = 75 days.

Figure 5.  Absolute diffusivities Kxx, Kyy, and Kzz, in the fine-resolution model, computed through (27).
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(and later K) are computed with central differences and successively interpolated linearly in space. Our aim is 
to see how well the model reproduces the diffusivity and Lagrangian timescale that we specified, to verify our 
ad-hoc dianeutral formulation of Markov-1.

Figure 6 shows the Lagrangian autocorrelation and absolute diffusivity of particles simulated using the Markov-1 
subgrid-scale model using the coarsened field, similar to Figures 4 and 5. Figure 7 provides a similar diagram for 
the coarse field. The exponential decay with an e-folding timescale of 20 days can be clearly seen in the autocor-
relation. There is a clear absence of the oscillatory component, which Markov-1 is unable to simulate.

The absolute diffusivity of 1.5 × 104 m2 s−1 is not fully reproduced. In the x-direction, values reach up to approx-
imately 1.4 × 104 m2 s−1, but in the y-direction, they are much smaller, with a maximum of 1.0 × 104 m2 s−1 and 
a decrease at larger time lags. There are two reasons why values do not reach 1.5 × 104 m2 s−1. First, in regions 
where the slope is unrealistically high, for example, in the direct vicinity of the meridional ridge, turbulent veloc-
ities are tapered to zero (see Appendix A), which decreases the absolute diffusivity computed from the particle 
ensemble. Second, the lateral domain boundaries limit the dispersion of material and therefore also cause a de-
crease in diffusivity, as Dyy cannot grow linearly over long timescales. While the effect of tapering likely plays a 
role for both Kxx and Kyy, only Kyy is affected by boundaries, which causes it to decrease over time. We clearly see 
that Rzz has a much shorter e-folding time than 20 days. This is likely due to the effect of curvature in the neutral 
surfaces, and the rapid decorrelation we impose in the dianeutral directions (Equation 18).

Figure 6.  Lagrangian autocorrelation and absolute diffusivity produced by the Markov-1 model when applied on the coarsened field. The Lagrangian autocorrelation 
in the x-direction best resembles that of an exponentially decaying function with a 20-day e-folding timescale (in red for reference).

Figure 7.  Lagrangian autocorrelation and absolute diffusivity produced by the Markov-1 model when applied on the coarse field (cf. Figure 5). The Lagrangian 
autocorrelation in the x-direction best resembles that of an exponentially decaying function with a 20-day e-folding timescale (in red for reference).
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4.4.  Individual Trajectories

A typical aim of Lagrangian subgrid-scale dispersion models is to construct realistic synthetic particle pathways 
in the absence of turbulent eddies. It is therefore illustrative to plot particle trajectories generated by advection 
using the three model fields (fine, coarsened and coarse) and compare those with trajectories generated by Mark-
ov-0 and Markov-1. To do so, we randomly subsample 100 trajectories that were initialized on the same lattice as 
used in Section 4.2. We again use the Runge-Kutta 4 scheme for advection and Euler-Maruyama for the Markov 
models, a timestep Δt = 40 min, and a simulation time of 180 days. Like in the previous section, we tuned Mark-
ov-1 to produce a diapycnal diffusivity of 1 × 10−5 m s−2, and now we do the same for Markov-0 by setting ϵκ 
accordingly. These parameters will also be used for the remainder of this paper. To more easily identify re-enter-
ing trajectories, we record when particles cross the periodic boundary, so that we can plot particle trajectories as 
unbroken paths by repeating the periodic domain in the zonal direction.

Figure 8 considers 100 trajectories from Markov-0 and Markov-1 in the coarsened case, compared to advection 
using fine-resolution and coarsened fields, which serve as reference. These trajectories are released at different 
horizontal and vertical locations, subsampled from the lattice used in the previous two sections. From the tra-
jectories in Markov-0 we clearly see that there is no autocorrelation in the particle velocities, with the directions 
in which a particle moves rapidly changing between recorded timesteps. Particles simulated with Markov-0 also 
travel much more, as the turbulent displacement in this model is much larger than that of Markov-1 (see the dis-
cussion in Section 3.3). Markov-1 clearly does a better job at simulating the trajectories from the fine-resolution 
reference run. A major difference is that trajectories in the fine run exhibit looping motions. While the trajectories 
in Markov-1 veer over time, it is unable to produce the looping motions that are seen in the fine-resolution run 
(Veneziani et al., 2005). Bear in mind that in the stochastic perturbations between different particles advected by 
Markov-0 and Markov-1 are uncorrelated. Instead, each particle “feels” its own turbulent field.

Figure 9 considers the coarse-resolution case. In this case, the underlying flow field has no eddies. When compar-
ing trajectories produced by the Markov models, we thus have no eddying reference case. In the advection-only 
case, the absence of strong dispersion is clear. One major difference with the results from the coarsened case is 
the absence of any stationary meanders. Trajectories produced by Markov-1 again seem the most realistic when 
compared to Figure 8a, albeit less obviously than was the case for Figure 8d.

Figure 8.  100 randomly subsampled trajectories from 180 days of simulation on (a) fine-resolution and (b) coarsened fields, and using coarsened fields in combination 
with (c) the diffusive parameterization and (d) Markov-1. While the domain is periodic, here we tile it in the zonal direction, to separate particles crossing the zonal 
periodic boundaries. The −3900m isobath is plotted with dashed gray lines, indicating the location of the ridge in the periodic channel.
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4.5.  Tracer Spread

In analogy to studying the spread of a small patch of tracer (Wagner et al., 2019), we qualitatively compare the 
spread of a patch of Lagrangian particles advected in the fine-resolution, coarsened, and coarse-resolution fields 
and apply the Markov-0 and Markov-1 subgrid-scale models to the later two flows. For Markov-0, we use the 
isotropic isoneutral diffusion tensor KRedi, approx (Equation 5) and the LS parameterization KLS (Equation 6). For 
the LS parameterization, we set C = 1.

We initialize a patch of particles initially located at z = −736 m (corresponding to the 25th vertical level) in a 
radius of 50 km centered around (x = 250 km, y = 1,000 km), see Figure 10a.

Figure 10 shows the particle distributions after 180 days of simulation, using advection and the different sub-
grid-scale models on the coarsened flow data. Again, we repeat the domain in the zonal direction, so that we can 
distinguish particles that have crossed the periodic boundary. Figure 10c shows the obvious need for modeling 
subgrid-scale dispersion when turbulent flow features are filtered out.

Figure 9.  Same as Figure 8, but using coarse-resolution fields.
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Figures 10d–10f show similar patterns when compared to one another, albeit with the dispersion in the LS case 
being somewhat weaker, and particles in the Markov-0 case reaching deeper than the others. Note that the dif-
fusivity in the LS parameterization is solely determined by derivatives of the flow fields. The pattern in 10e is 
qualitatively similar to 10b, which bears testimony to the skill of the LS parameterization. Since the particles in 
the parameterizations each experience their own independent turbulent fields, coherent structures and filamenta-
tion as seen in 10b cannot be reproduced by the Markov models.

In both Markov-0 models and in the Markov-1 model, we see some spurious particle accumulation on the left side 
of the ridges (at x = 500 km + n ∗ 1,000 km, with n = 0, 1, 2, … ). In the LS case, these accumulation patterns (or 
patterns where particles are fully absent) occur at other places too. In all cases this is likely due to sharp changes 
in the discrete derivatives used for computing the slopes that are necessary for filling the elements of K, σ, and θ. 
The LS parameterization relies on discrete derivatives of more quantities for computing its tensor elements, since 
these also depend on the shear of the flow (see Equation 6). It is therefore more susceptible to violations of the 
WMC when these discrete derivatives change strongly in space and interpolation is used.

Figure 11 shows the spreading of Lagrangian particles in the coarse model. Again, the isotropic Markov-0 model 
and Markov-1 show a similar spread of particles, with particles in Markov-0 again reaching slightly larger depths. 

Figure 10.  (a) Initial particle positions at z = −736 m, (b–f) show particle locations and depths after 180 days of simulation with Δt = 40 min (b and c) show particles 
advected with the fine-resolution and coarsened model fields, while (d–f) use the diffusion/Markov-0 and Markov-1 models. Particles that fall within the mixed layer 
are not shown (see Appendix B).
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However, the LS parameterization this time produces very different results, with the dispersion being much more 
limited, and the particles being more concentrated. This means that in this case the shear-based parameteriza-
tion leads to much smaller diffusivities in KLS. This makes sense, as the fine-resolution flow field (and thus the 
coarsened flow) is full of baroclinic instabilities that lead to eddies with large shear. The resolution in the coarse 
model is too low for these instabilities to develop. Instead, the flow tends to a much smoother steady-state, with 
less shear. As this yields smoother derivatives in the temperature field (and in the velocity fields in the case of 
LS), this should lead to less spurious accumulation. Indeed we see no clear regions where particles accumulate.

4.6.  Spurious Dianeutral Diffusivity

Two possible causes of spurious dianeutral tracer fluxes are numerical integration and interpolation of discrete, 
time-evolving Eulerian flow fields. The spurious dianeutral flux can be expressed as a diffusivity, and this diffu-
sivity should be as small as possible compared to the vertical diffusivity that is specified to represent dianeutral 
processes. For example, in the Southern Ocean, the average diapycnal diffusivity at 1,500 m depth is estimated to 
be 1.3 ± 0.2 × 10−5 m2 s−1 (Ledwell et al., 2011). It is important to assess how large the dianeutral diffusivities in 
our Lagrangian simulations become, and how they compare to the dianeutral diffusivity that we specify. In this 
section, we will assess these spurious dianeutral diffusivities. In these experiments, we specified an explicit di-
aneutral diffusivity of 1 × 10−5 m2 s−1. Moreover, in the case of the Markov models, we test several values of (ef-
fective) isoneutral diffusivities, keeping TL = 20 days in the case of Markov-1. For Markov-0 combined with the 
LS parameterization, we choose different tuning parameters C at 𝐴𝐴 (1) , which affect the strength of the diffusivity.

We compute the effective dianeutral diffusivity in the case of pure advection using the fine-resolution, coarsened, 
and coarse-resolution fields, and using the Markov-0 and Markov-1 model. This dianeutral diffusivity is approx-
imated as follows: for each particle, we record its initial local water density. Then, after simulating the particle's 
movement for 180 days, at the particle's new horizontal location, we compute the depth ziso of the neutral surface 
corresponding to the original local water density. Comparing this depth with the particle's new depth, we can 
compute a spurious vertical diffusivity (similar to Equation 25). This again assumes that the dianeutral diffusivity 
is closely aligned with the vertical direction. We separate the results for three depth classes on which particles 

Figure 11.  Like 10, with (a) advection in coarse-resolution model, (b–d) using the different subgrid-scale models.
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were released. Particle trajectories that at any point reach depths of −50 m or higher are excluded in these com-
putations, in order to filter out effects related to particles entering the mixed layer (see Appendix B).

The results are found in Table 1 for the coarsened flow and in Table 2 for the coarse-resolution flow. In all cases, 
the effective dianeutral diffusivities are larger than the value of 1 × 10−5 m2 s−1 that we explicitly set, meaning 

Note. The color scale indicates the logarithm of the relative dianeutral diffusivity, when divided by the dianeutral diffusivity 
in the coarsened case per depth class as reference. This indicates the orders of magnitude that the dianeutral diffusivity differs 
from that in the simulations with only advection using coarsened fields. Of the parameterizations, Markov-1 has the smallest 
dianeutral diffusivity, in some cases even smaller than in the simulation with advection only.

Table 1 
Effective Dianeutral Diffusivity (in m2 s−1) for Different Depth Classes With Parameterizations Applied on the Coarsened 
Flow Field, After Numerical Integration for 180 Days, With Δt = 40 Minutes

Note. Again, Markov-1 has the Lowest Dianeutral Diffusivity of the Three Parameterizations.

Table 2 
Same as Table 1, but Using Coarse-Resolution Flow Fields
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that the spurious dianeutral diffusivities due to errors in interpolation and the numerical schemes dominate. This 
is already the case for simulations that only use advection. We found that halving the timestep does not make a 
difference here, indicating that the error in the case of advection is likely not due to the time discretization. In the 
case of advection using fine-resolution data, the distance that a particle covers over the course of one flow snap-
shot, compared to the length of a grid cell, is relatively larger than in the case of coarse-resolution data, where it 
takes longer to traverse the larger cells. The dianeutral error can then be reduced by using more frequent snapshots 
of the data (e.g., 6-hourly snapshots instead of daily), such that temporal interpolation occurs over a smaller time 
window (Qin et al., 2014). This could however come at a large expense in storage, memory and I/O. Here, we are 
solely interested in comparing the errors between different Lagrangian simulations, so we accept that the dianeu-
tral diffusivities are larger than specified. In the coarsened and coarse-resolution fields, we use steady-state flows, 
meaning that the errors are due to spatial interpolation of coarse data, with time-interpolation playing no role.

Both Tables 1 and 2 show that for each experiment Markov-0 produces a much larger spurious dianeutral diffu-
sivity than Markov-1. This corroborates the findings of Section 3.3. A likely explanation is that the isoneutral 
turbulent displacement in each of the models becomes somewhat dianeutral as discrete neutral surfaces “curve”, 
while the displacements in Markov-1 are much smaller than is the case for Markov-0. In the case of Markov-0, 
we see the error increasing as the diffusivity increases. This pattern cannot be seen for Markov-1, where in some 
cases, the error decreases with increasing effective diffusivity. Unfortunately, we do not have an explanation for 
this pattern.

Since the dianeutral diffusivity in the case of Markov-0 can become several orders of magnitude larger than 
is the case for only advection, future studies should be careful with applying this subgrid-scale dispersion pa-
rameterization. Here we implemented the Euler-Maruyama scheme. Higher-order schemes, such as the first or-
der Milstein scheme, are able to greatly reduce the dianeutral error in idealized situations (Gräwe, 2011; Shah 
et al., 2011, 2013). However, we found that the Milstein-1 scheme produces similar dianeutral errors to Eul-
er-Maruyama when applied on our coarsened and coarse-resolution flows, further indicating that the cause of the 
error lies in interpolation combined with large turbulent displacements.

5.  Conclusion
We achieved two main goals: formulating an isoneutral description of the Markov-1 model, and extending an 
anisotropic tracer diffusion parameterization to the random walk dispersion/Markov-0 model. With these goals, 
we aim to improve the parameterization of unresolved isoneutral turbulent motions due to eddies in Lagrangian 
studies.

Because of the inclusion of a velocity autocorrelation, the Markov-1 model is able to produce both the ballistic 
and diffusive dispersion regime, and it produces particle trajectories and dispersion patterns that are more realis-
tic than those produced by Markov-0. Our formulation of Markov-1, inspired by Redi's diffusion tensor, also has a 
much smaller spurious dianeutral flux than Markov-0, due to the smaller turbulent displacement in each timestep. 
Large turbulent displacements in the isoneutral direction in the presence of curvature in the neutral surfaces lead 
to dianeutral excursions. Therefore, our three-dimensional isoneutral formulation of Markov-1 will hopefully be 
useful to the Lagrangian community, with the many benefits of higher order stochastic models beyond Markov-1 
given by previous studies (Berloff & McWilliams, 2002; Griffa, 1996; Veneziani et al., 2004). We also believe 
that the isoneutral formulation of the parameter tensors (Equation 16 and Equation 17) is extendable to the param-
eter tensors of the higher order stochastic models beyond Markov-1, as well as other improvements to this model, 
like the inclusion of looping motions.

Further research into the isoneutral formulation of Markov-1, as well higher order stochastic models, may focus 
on better retaining the velocity autocorrelation on curved surfaces, which remains a complex issue (Gaspari & 
Cohn, 1999). Next to that, it may also further investigate boundary conditions further, as well as how Lagrangian 
particle models can transition from isoneutral dispersion in the ocean interior to horizontal and vertical mixing 
in the mixed layer, which has been left out of this study (see Appendix B). Moreover, future studies employing 
isoneutral dispersion models may benefit from improved computation of neutral surface slopes (Groeskamp 
et al., 2019).
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We hope that future Lagrangian studies using coarse fields, such as the output of coupled Earth system models, 
may also benefit from the LS parameterization, as well as other Eulerian anisotropic parameterizations based on 
closure. This may help automatically determine the strength of the eddy diffusivity in different regions in the 
domain. When applied to the coarsened flow field, the LS parameterization was able to produce particle distri-
butions similar to the isotropic Markov models, meaning that LS may obviate the need for explicit parameter 
estimation in Markov-0. Our discussion of the LS parameterization may inspire further investigation into the 
application of closure schemes in Lagrangian simulations. Similarly, such closures could be further studied for 
the Markov-1 model, although so far Berloff and McWilliams (2003) tested a related closure based on shear with 
negative results.

Appendix A:  Tapering Scheme
We use central differences to compute the neutral slopes Sx and Sy (Equation 4) in the discrete Eulerian model data 
in the experiments in Section 4. Incidentally, the computed neutral slopes can be unrealistically high, for example, 
in the vicinity of the meridional ridge or in the mixed layer (see Appendix B). The buoyancy in the mixed layer is 
mostly uniform, but if we compute neutral slopes in this region, small deviations in the local buoyancy field can 
lead to huge slopes. It is common practice in Eulerian ocean modeling to limit or turn off isopycnal/isoneutral 
diffusion in regions with high slopes, in order to prevent numerical instability. This practice is called “tapering”.

Here we use a tapering scheme similar to that of Danabasoglu and McWilliams (1995) to smoothly decrease the 
values of the Markov-0 diffusivity tensors Kredi, approx and KLS to zero in regions with high slopes. Similarly, for 
Markov-1, we use it to smoothly decrease the perturbative velocity u′ to zero in such regions. At each timestep, 
we respectively multiply Kredi, approx, KLS, or u′ by a taper function ftaper which assumes values between one in re-
gions where the isoneutral slopes are well-behaved and 0 in regions where it is unrealistically high. Danabasoglu 
and McWilliams (1995) choose a taper function

𝑓𝑓taper,DMW(𝑆𝑆) =
1

2

(
1 + tanh

[
𝑆𝑆𝑐𝑐- |𝑆𝑆|
𝑆𝑆𝑑𝑑

])
,� (A1)

where Sc is the slope at which ftaper = 0.5 and Sd an acting distance over which ftaper changes steeply. If we were 
to multiply the perturbative velocity u′ in the Markov-1 model (Equation 7) with such a function, this causes an 
exponential decay of the u′ with an e-folding timescale of Δt/log (f(S)). This can significantly shorten the effec-
tive decorrelation of u′ as set by TL. For example, in a simulation with TL = 20 days and dt = 40 min, if f(S) per-
sistently equals 0.999, this causes u′ to exponentially decay with a timescale of 28 days. In conjunction with the 
exponential decorrelation specified using TL, this leads to an effective decorrelation with an e-folding timescale 
of 12 days. This is why we limit the slope values over which tapering happens smoothly to values that differ from 
Sc by at most 3Sd. We thus use the following taper function

𝑓𝑓taper(𝑆𝑆) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1 |𝑆𝑆| < 𝑆𝑆𝑐𝑐 − 3𝑆𝑆𝑑𝑑

1

2

(
1 + tanh

[
𝑆𝑆𝑐𝑐 − |𝑆𝑆|

𝑆𝑆𝑑𝑑

])
𝑆𝑆𝑐𝑐 − 3𝑆𝑆𝑑𝑑 ≤ |𝑆𝑆| ≤ 𝑆𝑆𝑐𝑐 + 3𝑆𝑆𝑑𝑑

0 𝑆𝑆𝑐𝑐 + 3𝑆𝑆𝑑𝑑 < |𝑆𝑆|

� (A2)

Note that ftaper (Sc  −  3Sd)  ≈  0.998 and ftaper (Sc  +  3Sd)  ≈  0.002. In our simulations in Section  4, we choose 
Sc = 8 × 10−3 and Sd = 5 × 10−4. With these values, tapering occurs only in a fraction of the domain, namely near 
the meridional ridge and in the mixed layer.

Appendix B:  Treatment of the Mixed Layer
By definition, potential temperature is approximately homogeneous in the mixed layer. As neutral surfaces appeal 
to the notion of a strong stratification which inhibits motion in the dianeutral direction, the concept of neutral 
surfaces does not apply in the mixed layer. That is why the experiments in this study focus on the ocean interior. In 
the experiments in Section 4, particles are released well below the mixed layer. Still, since neutral surfaces in the 
Southern Ocean can outcrop to the surface (Marshall & Speer, 2012), particles in our model may be transported 
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to the surface. In Figures 10 and 11, we exclude particles that fall within the mixed layer. Similarly, in the compu-
tation of the spurious dianeutral diffusivities in Section 4.6, we exclude particle trajectories that at any point reach 
depths of −50 m. The actual mixed-layer, marked by a sharp gradient in potential temperature, lies less deep, but 
since it varies in space, we use −50 m as a global approximation for computational efficiency.

Data Availability Statement
Data and Software Availability Statement Lagrangian datasets (CC-BY) and data generation and analysis scripts 
(MIT license) for this research are available at https://doi.org/10.24416/UU01-RXA2PB. This includes MITgcm 
model generation scripts and documentation, data post-processing scripts, Parcels Lagrangian simulation scripts 
and analysis scripts for generating figures and tables.
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