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Abstract: Strain measurements using fibre Bragg grating (FBG) optical sensors are becoming ever
more commonplace. However, in some cases, these measurements can become corrupted by sudden
jumps in the signal, which manifest as spikes or step-like offsets in the data. These jumps are caused
by a defect in the FBG itself, which is referred to as peak-splitting. The effects of peak splitting
artefacts on FBG strain measurements show similarities with an additive multi-level telegraph noise
process, in which the amplitudes and occurrences of the jumps are related to fibre deformation states.
Whenever it is not possible to re-assess the raw spectral data with advanced peak tracking software,
other means for removing the jumps from the data have to be found. The two methods presented in
this article are aimed at removing additive multi-level random telegraph noise (RTN) from the raw
data. Both methods are based on denoising the sample wise difference signal using a combination of
an outlier detection scheme followed by an outlier replacement step. Once the difference signal has
been denoised, the cumulative sum is used to arrive back at a strain time series. Two methods will be
demonstrated for reconstructing severely corrupted strain time series; the data for this verification
has been collected from sub-soil strain measurements obtained from an operational offshore wind-
turbine. The results show that the proposed methods can be used effectively to reconstruct the
dynamic content of the corrupted strain time series. It has been illustrated that errors in the outlier
replacements accumulate and can cause a quasi-static drift. A representative mean value and drift
correction are proposed in terms of an optimization problem, which maximizes the overlap between
the reconstruction and a subset of the raw data; whereas a high-pass filter is suggested to remove the
quasi static drift if only the dynamic band of the signal is of interest.

Keywords: peak-splitting; FBG; signal reconstruction; denoising; multi-level random telegraph noise;
outlier detection; outlier replacement; operational strain measurements; offshore wind

1. Introduction

Strain measurements using optical fibre Bragg grating (FBG) sensors are based on
interpreting the reflected spectrum of a light pulse which is sent through an optical fibre;
the reflection is caused whenever a light pulse encounters a periodic modulation of the
refractive index (grating) etched into the optical fibre. Theoretically, the reflected spectrum
is narrowbanded and characterized by a single peak centred at the Bragg-wavelength,
which is proportional to the grating period. Deforming the underlying specimen results in
an elongation or compression of the grating and therewith in a shift of the wavelength of
the reflected spectrum. As a result, the time history of the wavelength will resemble the
strain loading of the underlying specimen [1].

However, due to several failure modes, the reflected spectrum can be deformed,
potentially resulting in two or more peaks of comparable amplitudes, which is referred
to as peak-splitting. If reflected spectra containing peak splitting are interpreted using
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an, e.g., industry standard peak picking algorithm [2,3], then an observed shift between
consecutively measured spectral peaks can contain an additional contribution due to
switching back and forth between two or more competing peaks. As a consequence of a
peak switching incident, the measured signal will contain a jump which offsets all points
after the peak switching incident, until the next peak switching incident occurs; effectively
adding a distortion to the signal which shows strong similarities with an additive multi-
level random telegraph noise signal. The occurrence and severity of peak splitting may
depend on, e.g., the fibre deformation state [4–6], grating quality [7], as well as a potential
deterioration of the grating, or the attachment of the grating [8,9], over time.

The usability of FBG measurement data can be severely limited due to the presence
of peak splitting artefacts [10]; this is especially the case for applications which require
a high temporal accuracy, such as fatigue monitoring of civil structures [11–13], which
are extremely sensitive to the presence of peak splitting artefacts. Considering fatigue
monitoring as application, any artificial jump(s) in the strain signal(s) will translate to
artificial load cycles and therewith affect the calculation of the cumulative fatigue damage
over a, e.g., ten-minute measurement interval [14]; as a result, data containing peak splitting
can lead to severe over-estimation of the actually accumulated damage.

Peak splitting has the potential to render a long term operational measurement cam-
paign useless when only the peak wavelengths are stored; saving the raw spectral data can
result in a significant amount of data which needs to be saved, and is typically only practica-
ble for quasi-static load cases allowing low sample rates, or laboratory experiments at high
sample rates with a limited number of experiments [8]. Hence, the presence of peak split-
ting artefacts in data requires additional post-processing routines, in particular whenever a
re-processing of the raw spectral data with peak tracking methods is not possible.

The aim of the post-processing routines presented in this article is to remove spurious
jumps, which range from an arbitrary sequence of single impulses to multi level signal
offsets spanning several seconds. When considering dynamic signals, typically impulsive
distortions, or short duration burst, are considered [15–18]. When dealing with random
telegraph signals (RTS), the focus is often on denoising these signals from different noise
sources [19,20]. When random telegraph signals are considered as the noise source, the un-
derlying signal is often constant or changes step-wise [21]. The application considered
in this article deals with dynamic signals which are corrupted with multi-level random
telegraph noise.

In this article, two methods will be presented which can be used to remove peak split-
ting artefacts from operational FBG (strain) measurements. Both reconstruction methods
consist of a two stage approach applied on the sample wise difference signals, which are
directly related to the wavelength shifts. The goal of the first stage is to detect difference
samples which are attributed to wave-length shifts affected by peak switching, and label
those as outliers. The first method detects outliers based on a threshold filtering rule
which is derived from the histogram of the sample wise differences; the second method
is based on splitting the difference signal into shorter segments, which are subsequently
assessed on outliers. During the second stage, the difference samples identified as outliers
will be replaced by estimates. To conclude the reconstruction, the cumulative sum of the
sample-wise difference signal is computed.

The performance of the reconstruction methods will be verified on FBG strain mea-
surements obtained from an operational offshore wind turbine support structure. The data
sets are selected randomly, and are ordered such that they are increasingly difficult to
reconstruct. The results will be presented in terms of reconstructed time series. The results
show that the proposed methods can be used to successfully reconstruct the dynamic
content of the corrupted strain time series. The results also show that a reconstruction
of the dynamic part of the signal is possible if the magnitude of the difference samples
caused by artificial jumps are larger than the magnitude of the nominal difference samples.
Whether the static and/or low frequent band of the measurement data can be reconstructed
depends on the severity and amount of peak splitting.
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2. Peak Splitting Artefacts in Measurement Data

A fibre Bragg grating (FBG) is a periodic modulation of the refractive index along a
section of an optical fibre. When a broadband light pulse propagates through a grating,
a part of the incident spectrum will be reflected [22]. The reflected narrowbanded spectrum
is characterized by a single peak at its central wavelength, also called the Bragg wavelength.
As shown in Equation (1), for a uniformly spaced grating, this wavelength (λ) is propor-
tional to the grating period (Λ) and the effective index of refraction (ne f f ); both the effective
index of refraction as well as the period of the Bragg grating will be affected by any applied
mechanical strain or temperature [4].

λ = 2ne f f Λ (1)

For a fibre connected to a specimen, the temperature compensated, mechanically in-
duced strain (εm) can be expressed as a function of the wavelength (λ) and temperature (T),
as outlined in Equation (2) [1]; in which κ denotes the gauge factor, λ0 denotes a reference
wavelength, αδ defines the thermal sensitivity of the index of refraction, whereas αsp and α f
denote the thermal expansion coefficient of the specimen and the fibre, respectively, and T0
denotes a reference temperature.

εm(λ, T) =
1
κ

λ− λ0

λ0
−
(αδ

κ
+ (αsp − α f )

)
(T − T0) (2)

When the malfunction referred to as peak splitting is present, the reflected spectrum is
no longer defined by a single central wavelength, but rather by several wavelengths. As a
result, the reflected spectrum will contain multiple peaks around the central wavelength,
hence the term peak-splitting. This is illustrated for two idealised, successively measured,
reflected spectra in Figure 1. Most interrogators will identify whatever peak is highest
and return the corresponding wavelength. If peak switching occurs, i.e., a different peak
becomes the highest and gets picked by the interrogator, the measured wavelength shift
(∆λ) will now contain an additional contribution (∆λPS). Similarly, adding the shift due to
peak switching to the measured wave length, will result in ∆λPS as defined in Equation (3);
this contribution will directly affect the wavelength dependent part of the mechanical strain
as defined in Equation (2), and will result in an instantaneous jump in the strain time series,
which is not physically observable.

λps = λ + ∆λps −→ εm = f (λps, T) (3)

∆λ
∆λ + ∆λPS

∆λPS

t1 t2

Wavelength [µm]

Figure 1. Illustration of peak splitting and switching between two consecutively measured spectra at
time instance t1 and t2, in which ∆λ is the nominal shift and ∆λPS is a contribution due to peak switching.

To illustrate to effect of peak splitting artefacts two different strain measurements are
presented in the left-hand side of Figure 2. The jumps due to peak switching incidents are
clearly visible in both signals. Zoomed-in views of both signals, presented in the right-hand
side of Figure 2, reveal a strong difference between the amplitudes of the jump with respect
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to the local variation of the respective strain signal; when looking at the top right figure,
large jumps are visible which can be clearly separated from the nominal strain variations,
whereas in the lower right figure, the jump amplitudes are closer to the nominal variation
of the strain samples.

The difference between the two signals presented in Figure 2 can be clearly illustrated
by looking at the corresponding sample wise difference signals, which are shown in
Figure 3, and defined in Equation (4); the histograms of the sample wise difference signals
are also shown in Figure 3. Both representations clearly indicate the distribution of the
nominal difference samples as well as the samples which are shifted due to peak switching;
it should be noted that the shifts can result in overlapping or mutually exclusive (separable)
clusters of difference samples, which are indicated by blue and red annotations, respectively.
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Figure 2. Left: two examples of raw strain measurements clearly showing peak switching artefacts
as jumps which offset parts of the signal as well as spikes. Right: the top and bottom figures show
zoomed-in views of the blue and red rectangles, displaying jumps in the separable and overlapping
data set, respectively.
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Figure 3. Left: Sample wise difference signal, showing peak switching incidents as outliers. Right:
Histograms of the sample wise difference signals. Indicating the distribution of nominal difference
samples and shifted difference samples, which can be overlapping or mutually exclusive (separable).
Outlying difference samples in the separable and overlapping data set are indicated by blue and red
annotations, respectively.
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3. Reconstruction Methods

The problem of removing jumps from the original strain time series has been trans-
formed into denoising the corresponding difference time series, as defined in Equation (4);
in which ε ∈ RNx1 represents a single, uniformly sampled, strain time series containing N
samples, ∆ε ∈ RNx1 represents the corresponding sample wise difference signal, and εk
and ∆εk denote the k-th sample taken from the respective time series.

∆εk =

{
εk+1 − εk, 0 < k ≤ N − 1
0, k = 0

(4)

ε̂k =
k

∑
i=0

∆ε̂i + (b + ka) (5)

The difference signals are denoised by applying an outlier detection and replacement
step. The outlier detection methods which will be used to label the samples in ∆ε as a
nominal sample, or outlier, will be presented in Section 3.1. Once the outliers have been
detected, each outlier will be replaced by an estimate—the interpolation based approach
used in this article will be presented in Section 3.2. After the difference signal has been
denoised, the cumulative sum is calculated to obtain the reconstructed strain time series,
as defined in Equation (5); in which ε̂ ∈ RNx1 represent the final reconstructed strain time
series and ∆ε̂ ∈ RNx1 represents the corrected sample wise difference signal. Since the
mean value is lost in the process, a linear error correction, defined by the coefficients a and
b, can be used which adds a mean value and/or drift correction to the signal. Details on
recovering a mean value, as well as the drift correction, are presented in Section 3.3.

3.1. Outlier Detection

The objective of the first stage is to detect and label all difference samples which have a
component which is related to the wavelength shift caused by peak splitting. Two possible
methods for detecting these outliers will be presented in this article. In Section 3.1.1, a
threshold filter will be introduced, which is aimed at differentiating between nominal
samples and outliers using the histogram of the full signal. In Section 3.1.2, a variant of the
Hampel filter will be outlined, which is aimed at detecting outliers in short signal segments
using a segment specific threshold.

3.1.1. Histogram Based Filtering Threshold

Equation (6) describes a sample wise outlier detection scheme. The difference sample
∆εk is compared to a constant threshold value S. If |∆εk| exceeds the value of S the sample
will be labeled as outlier (lk = 1); if the value of ∆εk is in [−S, S], the sample will be labeled
as inlier (lk = 0). Repeating this process for all samples will result in the array l, which
labels all samples as either inlier or outlier.

lk =
{

0, |∆εk| ≤ S,
1, |∆εk| > S.

(6)

An approximate value of S can be determined using Algorithm 1. In a nutshell,
the algorithm is implemented to find the domain of the nominal samples in the histogram
of the difference signal (Figure 3).

In case the difference histogram contains separable clusters, as can be seen in Figure 4,
the task of determining S reduces to detecting discrete gaps in the histogram which separate
the nominal difference samples from shifted samples. These gaps define the domain of the
nominal difference samples and can be used directly to construct the threshold. The algo-
rithm is therefore configured with a threshold th equal to zero. In case the distributions
of nominal and shifted samples do overlap, i.e., when the jumps due to peak-splitting
are of the same order of magnitude as the nominal variations in the signal, S cannot be
derived exactly since the domain of the nominal samples is not defined explicitly; instead,
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the threshold will be set to a relatively low number of samples, e.g., th = 0.01N. Practically
speaking, the value of S will be derived as the average of the bin centres for which the
bin count first drops below th. In other words, the threshold should be chosen such that
all shifted samples will be labelled as outliers, while labelling as few as possible nominal
samples as outliers.

Algorithm 1 Histogram based threshold selection.

br = 10 . Bin resolution [bins/unit]
bc, c← hist(∆ε, nr.bins = range(∆ε)× br) . Bin centres, bin counts
m . Threshold calibration factor
th: . Threshold on bin counts

th =

{
0, non-overlapping,
≈ 0.01× N, overlapping distributions.

S = m× 0.5× (min(bc[(c ≤ th)]) + max(bc[(c ≤ th)]))

The threshold value on the histogram count (th), as well as the bin density (br), which is
used in creating the histogram, have to be calibrated for each application — and potentially
for different loading conditions. The objective is to keep the value of S as large as possible;
however, if the value of S is too large, outliers won’t be detected, whereas an unnecessary
reduction of S will label more physical correct samples as outliers, and put more emphasis
on the outlier replacement methods presented in Section 3.2. The calibration procedure is
straightforward, and the speed of the implementations allows to conduct a sensitivity study.
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Figure 4. Left: separable histograms for two time series, with clear gaps between clusters belonging to
nominal and shifted samples, as well as exact domain boundaries (red lines); set 14 contains 4 outlier
clusters (black), whereas set 0 contains 2 outlier clusters (grey). Right: overlapping histograms for
two time series with obvious overlap between clusters, and estimated domain boundaries (red);
notable difference between the range and the shape of the histogram belonging to set 14 and set 0.

3.1.2. Hampel Identifiers

The Hampel identifier [23] presented in Equation (7), belongs to the class of decision
filters, and uses an adaptive threshold to discriminate a sample as in- or outlier. The thresh-
old value for the k-th sample, Sk, is defined as a statistical measure ( f ) of the corresponding
sliding window (Ww

k ) — as outlined in Equations (8) and (9), respectively. The moving
window defined in Equation (9) is typically truncated if the window does overlap with
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the begin or end of the signal. Note that setting Sk to a constant value will result in the
threshold based decision filter defined in Equation (6).

lk =
{

0, |∆εk| ≤ Sk,
1, |∆εk| > Sk.

(7)

Sk = f(Ww
k ) (8)

Ww
k = {∆εk−w, . . . , ∆εk, . . . , ∆εk+w} (9)

The Hampel identifier used in this article will follow the more conventional definition
and will be defined on non-overlapping signal segments instead of sliding windows.
In Equation (10), the sample wise difference signal ∆ε is reshaped into an array holding
n row-wise segments of length w, of which the i-th element will be represented by Rw

i as
defined in Equation (11). Zero padding can be used to maintain consistent segment lengths
if n× w 6= N.

All samples in a segment are subsequently assessed on being an in- or outlier using
a decision rule as defined in Equation (12); in which i represents the segment number as
function of the sample index k and the segment length w. The segment wise threshold
value, Si, presented in Equation (13), is now defined for each segment instead of each
sample (sliding window).

∆ε ∈ RNx1 reshape−−−−→ ∆ε′ ∈ Rnxw (10)

Rw
i = {∆ε′i,1, . . . , ∆ε′i,w}, i = 1..n (11)

lk =
{

0, |∆εk| ≤ Si,
1, |∆εk| > Si.

, i = bk/wc (12)

Si = f (Rw
i ) (13)

The segment wise threshold will be defined using an unbiased scale estimate of the
standard deviation for Gaussian data which is based on the median absolute deviation
(MAD), as presented in Equations (14) and (15), respectively. This scale estimate has the
desirable characteristic of exhibiting outlier resistance [24,25]. Therefore, it will be used
to formulate the segment-wise threshold levels as defined in Equation (16). However,
the situation can arise in which more than 50% of the samples are outliers; in that particular
case the MAD scale estimate for the standard deviation will represent an estimate of the
standard deviation of the outliers. As a consequence, Sk will be too large, which renders the
filter insensitive to outliers, with the consequence that likely all samples in the segment will
be labelled as inliers. Hence, these types of filter can degenerate on individual segments
containing more than 50% of outliers (or identical samples) [23]. To counter this issue, one
can increase the segment length, or apply an additional median filter on the segment-wise
threshold values (Sk). This median filter replaces all values of Sk which belong to the
segments containing more than 50% of outliers by, e.g., the median of the threshold values
contained within the lowest 96th percent of the values of Sk.

σ̂i = 1.4826× MADi (14)

MADi = med(|Rw
i −med(Rw

i )|) (15)

Si = c× σ̂i (16)

The only required tuning parameters of this method are the length of the segments
(w: Equation (10)) as well as the threshold scale parameter (c: Equation (16)). As outlined,
if the segment is too short it is possible that all, or the majority, of the points are outliers,
potentially resulting in a degradation of performance on a given number of segments. It is
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recommended to choose the segment length such that each segment of the raw data can
be approximated by a linear model. The threshold scale parameter directly influences all
segment thresholds, if this value is too large outliers potentially will remain undetected,
whereas a too small number will result in detecting nominal samples as outliers and
putting more emphasis on the outlier replacement step. It is therefore suggested to perform
a sensitivity study of the reconstruction performance with respect to the segment length as
well as the threshold scale parameter.

3.2. Outlier Replacement

The second step in the reconstruction process is aimed at replacing all identified
outliers in the difference signal by estimates. The outlier replacement step will be explained
for the outlier detection method presented in Section 3.1.1. For each outlier which has to
be replaced, a buffer containing a number of neighbouring outlier-free difference samples
is built which subsequently will be used to determine a replacement via a least squares
regression analysis. The buffer, b ∈ Rnbx1, as shown in Equation (17), holds nb nominal
difference samples which are located at indices i. The linear model in Equation (18) will
be used to construct a local approximation of the difference samples contained in the
buffer. Writing Equation (18) in matrix form for all entries in b results in Equation (19);
in which x̂ represents the vector containing the estimates of model coefficients, and e
represents the residual vector. Solving the model coefficients x̂ using the least squares
method, and substituting the estimated coefficients for a and c in to Equation (18), allows us
to construct an outlier replacement at the desired value of k. Other interpolation strategies
can be found in, e.g., [15].

b =

 ∆εi1
...

∆εinb

 (17)

∆εi = ai + c (18)

b =

 i1 1
...

...
inb 1

[ â
ĉ

]
+ e = Hx̂ + e (19)

x̂ =
(

HTH
)−1

HTb (20)

The concepts explained in this section can be easily extended to the Hampel filter
based outlier detection method presented in Section 3.1.2, with the only difference that the
notion of an outlier specific buffer will now be replaced by a segment specific buffer, which
may contain several outliers. As a consequence, the length of the segment/buffer will not
equal the amount of samples which is effectively used to build the local approximation,
instead the latter will always be based on less samples.

Fitting a linear model is suggested if the shortest relevant period in the signal is larger
than the effective length of the buffer. It should be emphasised that the effective length of
the buffer can exceed nb due to the potential presence of outliers in the direct vicinity of the
target outlier, as illustrated in Figure 5.
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Figure 5. Illustration of the buffer construction (sample selection) with nb = 6 samples for an outlier
at index k, and the effect of outliers on the effective buffer length. Red circles indicate outliers, which
will not be included in the buffer; blue circles indicate nominal difference samples and dashed circles
indicate samples outside the buffer.

3.3. Integration and Drift Correction

After having denoised the difference data, the cumulative sum is used to reconstruct
the strain time signal. A problem arising due to taking the cumulative sum is that errors
in the outlier replacement step can accumulate and cause a drift in the reconstruction.
This drift can be assessed visually once the reconstruction has been performed for the
considered signals.

A practical problem associated with speak splitting is the ambiguity of the signal’s
mean value. The effect of peak splitting on the mean value does not have to be zero, even
though the number and duration of upward jumps and downward jumps are exactly equal.
Furthermore, from the raw signal it cannot be derived with certainty which realisation
of the reconstruction corresponds to the nominal state—as illustrated in Figure 6, which
shows the corrupted raw data, as well as six reconstructions with different mean values.
This figure illustrates that each of the reconstructions does overlap with a part of the raw
signal. Assessing the histogram of the raw signal in Figure 6 (right) shows that most of the
samples fall between 8–16 micro strains, hence shifting the reconstruction by 20 micro strain
would result in a maximization of the overlap between the reconstruction and raw signal.
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Figure 6. Left: subset of the raw and reconstructed time series with different mean values, illustrating
the problem of deriving a mean value from the raw signal. Right: histogram of the full raw signal
illustrating the distribution of samples over the signals range as well as the jumps in the data.

A pragmatic solution for determining a mean, as well as drift correction, can be
obtained by solving the optimization problem presented in Equation (21). To achieve the
latter, the 2-norm of the difference between the raw data (εs), and the reconstructed data
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(ε̂s) with an additional linear trend, is minimized for the parameters of that linear model;
in which x equals the vector containing integer sample numbers belonging to all values of
ε which fall between a lower and upper strain bound, εlb and εub, respectively. The offset
term (b) has to shift the reconstruction to an appropriate mean level, whereas the trend (ax)
has to account for a potential linear drift in the reconstruction. Applying bounds to the
calibration subset is not necessary in every situation, but can be used to define the region
of the raw data which is used to maximize the overlap, and therewith effectively avoid
potential local optima. Figure 7 shows the results of a drift correction with explicit bounds
on the calibration subset. The bounds are selected such that the reconstruction will find an
optimal offset which maximizes the overlap with the majority of the raw signal samples as
indicated by the orange samples/band.

minimize
a,b

‖εs[x]− (ε̂s[x] + ax + b)‖2

with: {x ∈ Z | ε[x] ∈ [εlb, εub]}
(21)
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Figure 7. Raw (union of black and orange) and reconstructed time series (blue) with calibrated mean
value based on optimizing the overlap of the reconstruction with a calibration subset (orange).

The results in Figure 8 have been generated without explicit strain bounds, hence all
samples are used in solving the optimization problem. Besides showing results for an offset
(orange) and a trend optimization (green), this figure also illustrates a reconstruction whose
offset is set to the first value of the raw data (blue).

Figure 8 (left) shows the results at the beginning of the data set, whereas the right figure
depicts the results towards the end of the data set; it has to be noted that the realisation
which is based on an offset equal to the first sample of the raw signal, is random and could
be related to any state as illustrated in Figure 6, whereas the offset and trend optimized
realisations are based on minimizing (the overall) the distance between the raw data and
the reconstruction.

Considering most practical applications, it is not necessary to use the full bandwidth of
the signal. For those cases, it might not be necessary to use the drift correction as proposed
above, instead band-pass or high-pass filtered versions of the reconstructed data can be
used directly on the reconstructions. The latter filtering will remove the mean value as well
as most of the accumulated drift. In order to ensure that this approach is valid, hence only
the mean and the low frequent drift has been removed, it is recommended to compare the
dynamic response of the filtered reconstruction and the raw data on overlapping subsets.

The reconstructions presented in the remainder of this article are not mean and/or
drift corrected, nor filtered, in order to illustrate the quality of the raw reconstructions.
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Figure 8. Raw and reconstructed time series with calibrated mean value using all samples as
calibration subset.

4. Data Description

The FBG strain measurements used in this paper have been obtained from an opera-
tional offshore wind turbine support structure. The measurement data has been selected
randomly over a period of 1 month. Subsequently two data sets containing 15 signals each
have been selected: one containing overlapping difference histograms (Overlapping.hdf5),
and the other containing separable histograms (Separable.hdf5) — as introduced in Figure 4.
The signals in both data set have been sorted on the range of the individual difference
signals — The latter can be used as a simple measure for detecting the presence of peak
splitting in the data. An overview of the included data is presented in Table 1.

The data and software which are used for this article are made available as python
package (py_peak_splitting, codebase: github.com/OWI-Lab/py_peak_splitting, ac-
cessed on 12 October 2021) [26] which is hosted on Github under a CC BY-NC-SA 4.0
License. In addition to real-world measurement data, this python package does include
demonstrations, as well as a module to simulate harmonic signals containing different
types of peak splitting alike artefacts

Table 1. Overview of available signals and signal properties.

Data Set Nr. Signals Nr. Samples (N) Range of Histogram
Widths Range of OTNR’S *

Separable.hdf5 15 60,000 8.25–16.76 0.032–0.072
Overlapping.hdf5 15 60,000 3.22–6.12 0.028–0.079

* OTNR: estimate of the ratio between detected outliers and nominal samples.

5. Results

In this section, the results for the threshold-based reconstruction method as well as the
Hampel filter based reconstruction method will be presented. It is chosen to perform a qual-
itative assessment of the reconstruction accuracy, since no peak splitting free counterparts
to the presented signals are available—the latter would allow to perform a straightforward
deterministic assessment of the reconstruction results. In order to assess and compare
the reconstruction methods qualitatively, the same data subsets will be used for visual
assessments of the reconstruction accuracy. Section 5.1 will compare the results of both
methods for the signals contained in Separable.hdf5, and Section 5.2 will present the results
for the signals contained in Overlapping.hdf5. The data sets will be processed with the
default parameters presented in Table 2. To conclude this chapter, Section 5.3 will present a

https://github.com/OWI-Lab/py_peak_splitting
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brief sensitivity study on the threshold parameter settings for both methods for the case of
an overlapping difference histogram.

Table 2. Default reconstruction settings.

Separable difference histogram: Separable.hdf5
Method th. th. scale buffer/segment fit order

th 0 1 25 1
ha - 3 25 1

Overlapping difference histograms: Overlapping.hdf5
Method th. th. scale buffer/segment fit order

th 0.01N 1 25 1
ha - 1.96 25 1

th: Threshold based reconstruction, ha: Hampel filter based reconstruction

5.1. Separable Difference Histograms

Figure 9 shows the reconstruction results for a separable data set obtained using the
threshold filter-based reconstruction approach outlined in Section 3.1.1—see Figure 4 for
the corresponding raw histogram. The raw signal shows evident jumps, which become
more evident when zooming in on a smaller subset as shown in Figure 9 (right); the latter
also shows the nominal difference samples, which are indicated by blue dots, as well as the
outliers and corresponding outlier replacements, which are indicated by red and green dots,
respectively. The results show that all outlying difference samples are detected, and that
the reconstructed strain time series has been denoised effectively.
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Figure 9. Left: Subset of data set 14 from Separable.hdf5 (dashed), and reconstructions (solid) using
the threshold filter based method. Right: Zoom in on region containing jumps. Nominal difference
samples are indicated with blue dots, outliers and corresponding outlier replacements are indicated
by red and green dots, respectively.

The results in Figure 10 are obtained by using the Hampel filter (Section 3.1.2) as the
outlier detection method in combination with the outlier replacement method outlined
in Section 3.2. The reconstructed time series in Figure 10 shows that the jumps have been
removed effectively.
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Figure 10. Left: Subset of data set 14 from Separable.hdf5 (dashed), and reconstructions (solid) using
the Hampel filter based method. Right: Zoom in on region containing jumps. Nominal difference
samples are indicated with blue dots, outliers and corresponding outlier replacements are indicated
by red and green dots, respectively.

The reconstruction processes, used to generate the results for Figures 9 and 10 have
been repeated on all data sets contained in Separable.hdf5. The results, in terms of the
percentage of replaced samples, as well the range of the raw and reconstructed strain
difference time series, are presented in Figure 11. These results for the threshold based
reconstruction approach show that 3–6% of the samples have been replaced, and that the
range of difference data has been reduced by a factor of∼5. Data set 3, 10 and 11 do deviate
slightly in terms of the range associated with the nominal difference samples—as can be
seen in Figures A2 and A3—which explains the perceived lower range reduction. The
results obtained with the Hampel filter based approach show that the amount of replaced
samples as well as the reduction of the range of the reconstructed difference signals is
similar to the results which have been obtained for the threshold filter based reconstruction
method.
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Figure 11. Reconstruction results using threshold filter based method and Hampel filter based method with
default settings for data contained in Separable.hdf5. Left axis: number of replaced samples per file.
Right axis: range of sample-wise difference signal before (raw) and after reconstruction (rec).

The spread in the replaced difference samples in the right graph of Figure 9, as well as
Figure 10, is significantly lower than the spread in the nominal samples—this observation
generalizes to all other data sets which are presented. Part of this observation is rooted in
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the noisy nature of the measurement data itself, which can mask the underlying difference
signal and reduce the accuracy of the interpolation based replacement approach. As stated
in Section 3.2, the length of the window which is used to create the replacements does have
an influence as well: Too short window/segment lengths (a few samples) can result in
extremely noise sensitive local approximations, potentially resulting in very large recon-
struction errors; adequate window/segment lengths in combination with low signal to
noise ratios can result in the limiting case that the mean value will be used as replacement
and that the information on the ratio diminishes relative to the noise free case; whereas
replacements generated using excessively long windows/segments can result in including
non-local trends.

5.2. Overlapping Difference Histograms

Figure 12 shows the reconstruction results for an overlapping data set obtained using
the threshold filter based reconstruction approach outlined in Section 3.1.1—see Figure 4
for the corresponding raw histogram. In contrast to Figures 9 and 10, the jumps are less
evident and closer to the nominal difference samples, as can be seen in Figure 12 (right).
The results show that the reconstructed strain time series appear to show less peak splitting
artefacts (left), and that outlying difference samples are detected (right). However, a few
errors can be noted, for example, between sample number 5715 and 5725 (indicated by the
red annotations) it appears that the upward jumps corresponding the downward jumps
are not labelled as outliers, resulting in a slight upward bump since the negative difference
samples have been detected and replaced.
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Figure 12. Left: Subset of data set 14 from Overlapping.hdf5 (dashed), and reconstructions (solid) using
the Threshold filter based method. Right: Zoom in on region containing jumps. Nominal difference
samples are indicated with blue dots, outliers and corresponding outlier replacements are indicated
by red and green dots, respectively.

The reconstruction results using the Hampel filter based method are presented in
Figure 13; comparing the latter figure to the results obtained with the threshold based
approach, as presented in Figure 12, shows that both methods produce different results.
Although jumps are clearly removed from the signal, it can be concluded that the reconstruc-
tion does not track the raw signal as well as the threshold based approach. Furthermore
the signal appears to have a slightly compressed range, indicating that perhaps too many
outliers have been selected. The differences between both approaches can be brought back
to the segment wise threshold values which are defined using the scale estimate of the
standard deviation per segment, as defined in Equation (15). Furthermore, the segment
wise sample replacement can affect the results in case the buffer contains a high number of
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outliers, which will reduce the number of nominal samples which are used to construct the
outlier replacements.

In order to generate the results in Figure 13, the segment wise threshold levels de-
fined in Equation (16) are processed using an additional median filter—as outlined in
Section 3.1.2. In case this additional filtering is omitted, the results in Figure 14 are ob-
tained. The red annotation in this figure highlights undetected outliers, which fall onto
a segment consisting of more than 50% of outliers; the latter causes the segment specific
MAD to increase significantly and therewith rendering the Hampel identifier insensitive
to outliers.

The threshold filter-based reconstruction process used to generate the results for
Figure 12 has been repeated on the data contained in Overlapping.hdf5. The results are
presented in Figure 15 and show that 2.8–7.9% of the samples have been replaced. Further-
more, the range of difference data has been reduced by a factor of ∼2.5. The histograms of
the difference signals from data set 9 and 10, as shown in Figure A1, deviate from the other
data sets; these sets exhibit clear gaps between the distributions belonging to the nominal
samples as well as the shifted samples — however, in contrast to the separable case, these
gaps are not defined by intermediate bin counts with a value of zero. As a result of having
a more clear separation between nominal and shifted samples, the threshold found with
Algorithm (1) will be lower, resulting in a lower range of the reconstructed difference signal.
It should be noted that this overlap can potentially be eliminated by increasing the bin
density, allowing us to use the approach defined for separable histograms; however, this
comes at the risk of introducing more gaps in the nominal distribution, which can be related
to, e.g., resolution limits/quantization effects.
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Figure 13. Left: Subset of data set 14 from Overlapping.hdf5 (dashed), and reconstructions (solid) using
the Hampel filter based method. The segment wise threshold levels are processed using an additional
median filter. Right: Zoom in on region containing jumps. Nominal difference samples are indicated
with blue dots, outliers and corresponding outlier replacements are indicated by red and green
dots, respectively.

The Hampel filter-based reconstruction process used to generate the results for Figure 13
has been repeated on all data sets contained in Overlapping.hdf5. Comparing the recon-
struction results presented in Figure 15 show that significantly more samples have been
replaced by using the Hampel filter based reconstruction method, which also suggests that
the threshold settings could be increased to improve performance.
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Figure 14. Left: Reconstruction results as presented in Figure 13 without applying a median filter
on the segment wise threshold levels. Right: The last 25 samples contain more than 12 outliers,
effectively resulting in a threshold level which will be leave all outliers undetected—as indicated by
the red annotations.
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Figure 15. Reconstruction results using threshold filter-based method and Hampel filter-based method with
default settings for data contained in Overlapping.hdf5. Left axis: number of replaced samples per file.
Right axis: range of sample-wise difference signal before (raw) and after reconstruction (rec).

5.3. Threshold Sensitivity for Overlapping Difference Histograms

The influence of the threshold amplitude on the reconstruction result generated with
the threshold filter based method are shown in Figure 16; the reconstructed time series for
different threshold values are presented in the upper figure, whereas the raw difference
histogram as well as the derived threshold values are shown in the lower figure.

The results clearly show that reducing the threshold level too much will remove
physically important information which is lost during the replacement step; this can be
seen for the reconstruction using th.scale = 0.5, which completely loses track of the raw
signal between sample number 6100 and 6300. Increasing the threshold too much, as for
th.scale = 2, will render the outlier detection insensitive to some jumps, as can be seen
between sample number 6045 and 6085, where the purple signal does follow the raw signal
(black) during an upward jump. The reconstruction created with th.scale = 1.25 shows
slightly improved tracking of the quasi-static contributions of the raw signal in comparison
with the default reconstruction. When only the dynamic part of the signal is of interest, the
signals can be high- or band-pass filtered, which will reduce the difference between both
signals significantly.
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Looking at the sensitivity of the reconstruction results generated with the Hampel filter
based method in Figure 17, confirms a similar finding; setting the threshold scale parameter
to low will result in significant loss of information, a scale parameter of th.scale = 2.5
does improve the results, whereas increasing this factor to th.scale = 3 would lead to
the reintroduction of small jumps as can be seen around sample 6260 (indicated by the
blue arrow). The results show that the jumps can been removed effectively provided the
threshold scale parameter has been appropriately calibrated.
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Figure 16. Sensitivity study on reconstruction results using threshold filter based method with default
settings for data contained in Overlapping.hdf5. Upper: reconstructed and raw strain time series;
first sample of subset has been re-centred at zero to more clearly show the effect of drift. Lower:
Histogram of the raw difference signal with vertical lines indicating the selected threshold levels
which are used for the reconstruction.
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Figure 17. Raw strain time series (black) and Hampel filter-based reconstructions at different levels of
the threshold scale parameter. The lower the scale parameter the more samples will be detected as
outliers, hence the more emphasis is put on the outlier reconstruction method.

6. Conclusions

As demonstrated in this article, the proposed methods can effectively remove peak
splitting artefacts from severely damaged data. Considering practical applications which
are focused on the dynamic part of the measurement data, the results show that the effects
of peak splitting artefacts can be reduced to a degree where the measurement data is usable
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for further processing and research applications. However, the reconstruction process is
insensitive to the signals original mean value and can add a drift to the reconstruction. Both
effects can be reduced by adding an linear trend to the reconstruction whose parameters are
optimized such that the overlap between the reconstruction and the raw data is maximized.

Both methods are effective in case the jumps due to peak switching are significantly
larger than the strain difference values measured due to the response of the system. The rea-
son for this is that the outlier detection is fairly straightforward in this case. Small dif-
ferences between both methods can arise due to the outlier replacement step, which use
slightly different data subsets to perform the replacements using interpolation. For the
threshold filter-based method, a buffer is used which has a fixed length containing the near-
est nominal difference samples, whereas the Hampel filter based approach uses a segment
of a fixed length, which can contain multiple outliers, which can reduce the number of
samples which are available to estimate the replacements.

In case the jumps due to peak switching are closer, or overlap, with the nominal
strain differences, the methods do show slight differences. Qualitative results indicate that
the threshold filter based method slightly outperforms the Hampel filter-based method.
However, the results of the threshold sensitivity assessment show that both methods can
remove jumps from the data when parameters are appropriately calibrated. When using the
Hampel filter based method, it is advised to apply an additional median filter on the derived
segment thresholds in order to filter out thresholds which are derived from segments.
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Appendix A. Selected Histograms

Figure A1 displays a number of histograms which have been selected from the Over-
lapping.hdf5 data set. The histograms displayed in this section are chosen such that they
represent the complete data set in terms of the spread in histogram shapes. The histograms
corresponding to set 2 and 14 match the image sketched of an overlapping histogram—see
Figure 4 for comparison. In contrast to the latter histograms, the ones created for data set
9 and 10 show nearly separated clusters. All histograms have been determined using the
default bin resolution setting, which has been set to: 0.1µ strain.

Figure A2 shows some representative difference histograms from data contained
in Separable.hdf5 and Figure A3 shows the corresponding zoom in around the nominal

https://github.com/OWI-Lab/py_peak_splitting
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cluster of difference samples. It can be seen that the nominal clusters from data set 3, 10
and 11 are relatively wider than data set 14. Furthermore, it can be seen that data set 10
has no difference samples which belong the the smallest three percent of samples in its
nominal cluster.
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Figure A1. Histogram of sample wise strain difference signals for four overlapping cases, including
inter percentile ranges (IPR).
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Figure A2. Histogram of sample wise strain difference signals for four separable cases, including
inter percentile ranges (IPR).
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Figure A3. Zoom in on histogram of sample wise strain difference signals for four separable cases,
including inter percentile ranges (IPR). The distribution of the nominal samples of set 14 is represen-
tative for the other data sets which which are not shown in this figure.
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