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Abstract: The design of monopile foundations for offshore wind turbines is most often driven by
fatigue. With the foundation price contributing to the total price of a turbine structure by more than
30%, wind farm operators seek to gain knowledge about the amount of consumed fatigue. Monitoring
concepts are developed to uncover structural reserves coming from conservative designs in order
to prolong the lifetime of a turbine. Amongst promising concepts is a wide array of methods using
in-situ measurement data and extrapolating these results to desired locations below water surface
and even seabed using models. The modal decomposition algorithm is used for this purpose. The
algorithm obtains modal amplitudes from acceleration and strain measurements. In the subsequent
expansion step these amplitudes are expanded to virtual measurements at arbitrary locations. The
algorithm uses a reduced order model that can be obtained from either a FE model or measurements.
In this work, operational modal analysis is applied to obtain the required stress and deflection
shapes for optimal validation of the method. Furthermore, the measurements that are used as
input for the algorithms are constrained to measurements from the dry part of the substructure.
However, with subsoil measurement data available from a dedicated campaign, even validation for
locations below mud-line is possible. After reconstructing strain history in arbitrary locations on the
substructure, fatigue assessment over various environmental and operational conditions is carried
out. The technique is found capable of estimating fatigue with high precision for locations above and
below seabed.

Keywords: real-world measurement data; fatigue; virtual sensing; offshore wind energy; monopile

1. Introduction

Offshore wind is a rapidly growing source of renewable energy and one of the key
technologies to reach global climate goals. In recent years, the industry has evolved from
one that was subsidy-driven to one that is (nearly) subsidy-free. As a side effect, the
substructure designs have become increasingly optimized, favoring the more cost-effective
monopile. In practice, this optimization implies, in particular for monopiles, that the
as-designed fatigue life is a near perfect match with the intended operational life of 20
to 25 years. This makes monitoring of fatigue life progression a key component in any
discussion on optimized maintenance or life time extension.

Fatigue loading of offshore wind turbine monopile substructures is caused by the
interaction between environmental loads and the structural dynamics of the offshore wind
turbine itself [1]. The design of these substructures is driven by this interplay of loads
and structural dynamics. An optimized design aims to match the fatigue life of particular
welded connections with the intended operational life, leaving little residual life after the
project has ended. Typically, the first welds of the monopile beneath the seabed are most
fatigue critical along with various welds of secondary steel on the transition piece.

From an operations and maintenance perspective, the accurate monitoring of the
health of these welds could allow to validate the design and update the remaining life
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time expectancy. In general, one possible strategy to monitor the fatigue life of these welds
is to record the strain histories near the weld of interest, calculate the fatigue rates, and
determine consumed life [2]. However, this implies the ability to measure strain histories
close to the location of the weld. For some locations on the transition piece, this is directly
feasible using strain gauges. However for most locations on the monopile and on the
transition piece, it is often not possible to install strain gauges due to limited accessibility
(in particular for submerged and sub-soil parts) or due to the harsh environment (e.g., near
the splash zone). Even when sensors are originally installed, the limited accessibility means
that maintenance after failure is near impossible and useful life of the sensors is often less
than the lifetime of the turbine.

As a desire to find a reliable way to monitor the fatigue progression of critical welds,
an idea was developed to reconstruct strain histories without the need for an actual sensor,
i.e., virtual sensing. Two key line of thoughts exist, one being that a model-driven approach
is followed in which a (detailed) numerical model of the offshore wind turbine is used to
estimate loads under the actual environmental conditions. This strategy closely follows
the design process and is commonly referred to as the digital twin [3]. A digital twin
strategy relies on the ability to model and simulate loads on a fully-assembled structure.
To avoid this specialist’s ability is to work with a data-driven philosophy that starts from
acceleration and/or strain measurements on easily-accessible locations on the wind turbine
itself. These measurements are extrapolated to critical locations using a (small) subset of
design information [4–7]. Some variations exist to this solution, varying in the required
measurements and design information. Hybrid schemes, where acceleration measurements
are combined with a digital twin are also being considered.

In this paper, a data-driven virtual sensing approach using accelerometers on the
turbine tower and strain gauges on the transition piece is utilized in order to predict strains
of the substructure. Aside from the measurements, the method only requires the (strain)
deflection shapes of the first and second mode and the strain distribution under thrust
loading. These shapes can be obtained either from a FE model or from measurements.
Within this paper, the technique has been calibrated and validated using measurement
data obtained on an offshore wind turbine on a monopile foundation.

2. Materials and Methods

Measurement data from offshore wind turbine foundations are scarce in academia, in
particular on the monopile itself. Section 2.1 briefly describes a measurement campaign
conducted on a wind farm in the Belgian North Sea over three years together with key
challenges to provide reliable acceleration and strain data. In order to learn about fatigue
progress on critical locations of the turbine substructure, recorded measurements are
extrapolated via virtual sensing technique modal decomposition and expansion (MDE).
In Section 2.2, the theory behind MDE is laid out along with necessary steps to assess
fatigue. Then the technique is applied to the specific boundary conditions of the mentioned
measurement campaign in methodology Section 2.3.

2.1. Measurements of the Nobelwind Campaign

Between early 2017 and the end of 2019, the Nobelwind offshore wind farm in the
Belgian North Sea hosted a measurement campaign on three of their turbines. The three
turbines were selected with the goal to maximise the range of recorded vibrations and wind
conditions. As a result, the turbines in the shallowest and deepest water were selected
along with two on opposite edges of the farm and one at a corner of the farm. The basic
measurement setup of all three turbines was the same seen in Figure 1, deviating only
in the position of the sensors below water level to accommodate for different monopile
(MP) designs and soil conditions. All sensors are separated into three separate systems
for data acquisition. System I contains accelerometers on three levels of the turbine tower.
Also included is one level of electrical strain gauges on the transition piece (TP). A second
strain gauge level on the TP features its own system. On the MP, four lines of fiber Bragg
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grating strain sensors (FBG) constitute system III. Each of these optical fibers is grated
at several levels with a focus on the area around the mudline. This dataset provides
unique insights in the sub-soil strain response. While accelerometers could be installed and
maintained freely, the optical fibers had to be mounted on the MP prior to their installation
in 2017 and remained there after the completion of the measurement campaign. While
not all fiber lines survived pile-driving, the majority of sensors recorded strains over a
time of three years. For more details see [8]. The measurement data is complemented by
environmental/operational data, e.g., wind speed, yaw angle, so-called SCADA data once
every 10 min.

Figure 1. Measurement setup with independent sub-systems. ACC: Accelerometer, SG: Resistive
strain gauge, FBG: Optical strain gauge.

While the separation of measurements into independently working sub-systems was
necessary for practical considerations. It also posed a challenge, as clock drift occurred
between the three systems. It is therefore not guaranteed that measurement data of the
three systems is recorded at the same time instance. In order to correctly combine data
from the different systems and assess the accuracy of the proposed expansion methodology,
it was essential that the clock-drift was resolved in post-processing. Therefore, a strategy is
developed modifying timestamps of systems II and III to regain a global measure of time
which is explained in [9].

A second challenge was presented by a particular failure mode of FBG sensors. In
normal operation, a FBG sensor reflects a single wavelength indicating the degree of strain
it is experiencing [10]. However, when the grating is damaged, multiple wavelengths
may be reflected by the sensor, this issue is referred to as peak-splitting. Since the current
interrogator does not distinguish between multiple reflections, recorded fiber measure-
ments can contain random jumps between a physical and erroneous strain level as seen in
Figure 2 and introduce errors in any derived fatigue metric.
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The goal of this research is to learn about fatigue progress by reconstructing strain
history, validating the predictions using the FBG measurement data. Figure 2 therefore
also contains the same time series estimated via virtual sensing (see Section 2.2.1). While
easy to spot with the eye, the difference between the measurement and the virtual sensing
result is non-negligible and FBG signals with peak-splitting should be omitted from any
further analysis. The amount of measurement data collected in the three years makes some
kind of automated anomaly detection necessary, which is described in detail in [11]. The
current approach ensures that the FBG data used for validation within this paper is free
of peak splitting and guarantees the physicality of the measurements. Also note, that this
contribution only uses the data of one turbine.

Figure 2. An example of a polluted measurement compared to the virtual sensing strain estimate.
The noisy peaks and sudden discrete jumps in strain are the result of the FBG reading jumping
between two wavelengths.

2.2. Virtual Sensing

The goal of this research is to learn about fatigue progress in critical locations. For
monopile foundations, usually a weld close to mudline will accumulate the most damage
and thus drive design. A direct measurement, as available at Nobelwind, is very rare, and
is hard to maintain so alternatives are desired.

Virtual sensing is an approach to use a limited set of measurement data to synthesize
measurement data in unmeasured locations employing some mathematical model. For the
application to critical welds on monopiles, accessible locations on the tower are used for
instrumentation while critical locations on the TP/MP are estimated. The two common
virtual sensing techniques using response measurements are Modal Decomposition and
Expansion (MDE) [12–14] and the Kalman Filter [15]. Kalman filter estimates states based
on the dynamic modes and frequencies of a structural model and can include damping
and noise to the model. In contrast, MDE uses the modal superposition principle and
only relies on a set of mode shapes for strain estimation. A comparative study of Kalman
filter-based methods and MDE on an operational wind turbine on a monopile foundation
concluded comparable accuracy for both techniques [16].

2.2.1. Modal Decomposition and Expansion (MDE)

The core of MDE is the modal superposition principle, i.e., a linear subspace projection
into a space spanned by the characteristic mode shapes. It is assumed that a time dependent
combination of n mode shapes can describe any vibration of a linear mechanical system:

~am(t) =
n

∑
i=1

~φi,mqi(t), (1)

where ~φi,m ∈ Rnm×1 is the vector with the components of mode shape i at measurement
location m and qi(t) is the time dependent participation or modal coordinate of φi. The
first step of MDE, i.e., modal decomposition, is to start from measured vibrations at m
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locations: ~am(t) and solving for all n modal coordinates qi, here stacked into~q(t), assuming
the mode-shapes are defined:

~q(t) =
(

ΦT
mΦm

)−1
ΦT

m~am(t) = Φ†
m~am(t). (2)

in which Φm ∈ Rnm×n is the matrix concatenating the mode shapes. Interestingly, the
pseudo-inverse operation •† implies a least-square regression.

Modal expansion starts from assuming modal coordinates ~q are valid for the entire
structure. An estimation of strain~ε can thus be done for any location by combination with
the associated mode shape components:

~ε
p
dyn(t) = ΦεpL−1

{
1
s2L{~q(t)}

}
, (3)

where Φε,p ∈ Rnp×n is the mode shape matrix of n strain mode shapes at estimation
locations p. L{•} and L−1{•} are the Laplace transformation and the inverse Laplace
transformation, respectively. Strain is the spatial derivative of displacement. Assuming
vibration measurement ~am(t) is an acceleration signal, a double integration is required
which is performed on the estimated modal coordinates in the Laplace domain, resulting
in the 1/s2 operation in Equation (3). However, a poor signal/noise ratio of accelerometers
and numerical instabilities close to 0 Hz can result in erroneous displacement estimates. As
such [16] proposes to use a lower bound fb for the acceleration data. The lower bound fb is
situated well below the first structural mode, while sufficiently high to avoid exaggerated
low frequency contributions. From the high-pass filtered acceleration data, the dynamic
contribution of the strain extrapolation~εp

dyn is obtained through Equation (3).
In the literature, different concepts [4,6] are found to account for strain accumulated

below fb within a quasi-static band. They commonly mimic the idea of MDE by applying
pseudo mode shapes to measurement data. This research uses the concept in [6] and
modifies it to conform to a fully data-driven approach which is described in Section 2.3.2.

2.2.2. Fatigue Calculation

Virtual sensing estimates strains in inaccessible locations to monitor fatigue progress.
While earlier work of the authors focuses on the correct reconstruction of single measure-
ments in time and frequency domain [9], fatigue performance of the technique mainly
relies on a high estimation quality of specific conditions long-term. In fact, the accurate
reconstruction of more damaging conditions, e.g., high wind speed is preferred over a
stable fit between strain signals over the entire range of environmental and operational
conditions. Consequently only damage-related quality indicators are used to evaluate the
long-term performance of MDE.

Given a stress signal with multiple stress magnitudes si, each occurring ni times. The
Palmgren–Miner rule defines the caused damage D as a ratio with the cycles to failure
Ni for each si (see Equation (4)). Assuming the curve of Ni curve being a m-th order
polynomial, Equation (4) can be rewritten using the negative inverse slope m and the
intercept of curve and N axis a:

D = ∑
i

ni
Ni

=
1
a ∑

i
nism

i . (4)

In order to obtain all si, ni pairs of a signal, i.e., the fatigue spectrum, it is passed
through a rainflow cycle counting algorithm. To compare the caused damage between
different signals, a fatigue spectrum is condensed into a single value, the damage equivalent
stress range (DES). It is calculated as the single stress range seq that with a pre-defined
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number of cycles neq = 107 causes the same damage as the actual fatigue spectrum.
Substituting ni, si in Equation (4):

D =
neq

Neq
=

1
a

neqsm
eq, (5)

and solving for seq:

seq =
(neq

aD

)− 1
m
=

(
neq

∑i nism
i

)− 1
m

, (6)

gives the main quality indicator used in this publication. When the DES is applied to
virtual sensing, usually the fatigue of a measured and a predicted signal are benchmarked.
Therefore, the absolute error β on DES:

β = seq,p − seq,m, (7)

is defined, where index m indicates the DES of a measurement and p is the DES of a virtual
sensing result respectively. The absolute error is useful to conclude about the performance
of MDE over different data sets of a single sensor. Conversely, the percentage error δ in
Equation (8) is used to analyze the bias of the estimation model:

δ =
seq,p − seq,m

seq,m
. (8)

Within this contribution, DES/seq, β, and δ are used to compare short-term strain
signals, i.e., 10-min recordings. Additionally, various measurements of a single sensor are
appended to obtain lumped values for mentioned parameters used to evaluate fatigue
performance between different sensors.

2.3. Methodology

After introducing the general concept of MDE in Section 2.2.1 and providing mea-
surement data as described in Section 2.1, this section provides information about the
synthesis of both. Considering measurement sensors of different heading are used to
estimate strain in an arbitrary direction the Fore-Aft (FA)/Side-Side (SS) system is used as
an intermediary step to assemble the estimations. Following [6], a dual-banded version of
MDE is used. This way, dynamic and quasi-static bending moments in the FA/SS direction
at target height are reconstructed according to Sections 2.3.1 and 2.3.2 respectively, before
the combined bending moment is transformed into the strain of an arbitrary direction in
Section 2.3.3. The availability of measurement data over the entire length of the MP in
this specific case might raise the question as to why an estimation algorithm is required
altogether. However even if turbines would be covered with sensors, sensor failure or low
measurement quality could be reasons to look for redundancy. In addition, common strain
sensors have a life expectancy of only a few years making an estimation algorithm desired
for fatigue assessments and life time extrapolation of the turbine.

2.3.1. Estimation of Dynamic Bending Moments

Modal decomposition and expansion method relies on a set of mode shapes. These
can be obtained either from (updated) numerical (FE) models of the assets or directly from
measurements. The first option is preferred giving a set of continuous mode shapes over
the entire structure. The latter extracts mode shape values at measurement locations via
operational modal analysis (OMA). The availability of measurement data over the entire
length of the MP in this specific case however favors the data-driven approach avoiding any
errors in the numerical model. Considering acceleration data is used to estimate dynamic
strains, the mode shape matrix will contain different quantities. In [17], acceleration and
strain measurements on a hull girder of a slender ship are used in combination to obtain
displacement mode shapes via OMA. The research shows a better accuracy of mode shapes
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from combined data over mode shapes from strain as long as data are normalized properly.
In this work, acceleration and strain data are first transformed from sensor direction into
the FA/SS system. Therefore, a linear transformation matrix in R2 is applied to two
acceleration signals of perpendicular orientation. Before applying OMA to the combined
data, accelerations are integrated into displacements and strains transformed into dynamic
bending moments. Mode shapes are obtained from data in side-side direction using the
PolyMAX algorithm [18] and are assumed valid around the circumference. As seen in
Equation (2), the number of considered modes is limited by the number of measurement
locations. Due to the low frequent nature of strain only the first two bending modes
are used and the effect of modal truncation on the fatigue estimate is assumed small.
The inclusion of higher modes could even have a detrimental effect, considering the
deteriorating signal/noise ratio of strain gauges for higher frequencies. Measurements of a
single 10-min interval under rated power with a wind speed of vw = 14.5 ms−1 are used to
obtain the set of mode shapes for all estimations. This simplification thus assumes linearity
over the entire load spectrum. MDE in the time domain requires real mode shapes, thus the
imaginary part of the mode shapes are ignored. As the system is relatively lightly damped,
this imposes little drawback. Figure 3 shows the resulting mode shapes.

Figure 3. Dynamic mixed mode shapes of the wind turbines’ first two modes obtained via OMA.
Both the water level and seabed level are indicated by horizontal lines.

Excitation from wind and wave is (partially) situated below the first natural frequency
of the turbine structure resulting in quasi-static deflections. Due to the loading being
in fact not or only partially dynamic, mapping to a set of dynamic mode shapes is a
known problem. In [4], the MDE technique is applied to a tripod structure in order to
reconstruct the full-field strain history. Strain from wave loading is reconstructed by a set
of so-called Ritz-vectors, i.e., operational deflection shapes (ODS), which can be obtained
from numerical models or via frequency domain decomposition [19]. The conceptional
difference to dynamic modes is the dependence of ODS on the input location of exciting
force. Looking back at Equation (3), this equation is agnostic of the position of any force,
and this information has to be carried within Φε. Which actually means that Φε are more
closely related to operational deflection shapes (ODS) than to pure mode shapes.

Due to the issues of exaggerating noise at very low frequencies, the accelerometers
are only considered above fb = 0.1 Hz in the dynamic band. As a result, the slow-varying
wind thrust has to be estimated separately, which is covered in Section 2.3.2. Conversely,
wave loading is closely spaced to the first natural frequency and has to be mapped by the
MDE method. Fortunately the extraction of mode shapes from measurements via OMA
partially resolves as the experimentally-found mode shapes are also influenced by the
localized presence of the wave loading. Figure 4 illustrates the accurate reconstruction of
the dynamic bending moment below the first natural frequency f1, also indicating vibration
from rotor harmonics f1 p and f3 p. Finally, note the low spectral density beyond the second
mode f2 confirming the choice to limit the method to the first two modes.
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Figure 4. PSD of dynamic bending moment and corresponding estimation in FA direction at height =
−31 m LAT and wind speed = 15.8 ms−1.

2.3.2. Estimation of Quasi-Static Bending Moments

Displacement or its spacial derivative strain is a low frequent phenomenon. While
considerable acceleration may be present at higher frequencies, the impact on strain will
be limited. With fatigue being correlated to the strain history, emphasis is placed on the
accuracy of virtual sensing in the quasi-static band below fb. A single level of strain gauges
on top of the TP is used to estimate strain for this frequency band. The boundary frequency
to the dynamic band is chosen to 0.1 Hz in an attempt to separate low frequent wind
thrust from wave and rotor excitation. Filtering is performed by a forth-order Butterworth
filter. With the first bending mode occurring outside the quasi-static band, MDE cannot
be applied directly. As explained in Section 2.3.1 an ODS ~φqs ∈ Rnm×1 is used instead
to estimate the quasi-static bending moment due to wind thrust. In [20], ~φqs is found by
subjecting a FE model with a horizontal force on the nacelle corresponding to the wind
pressure and extracting the static deflection shape. Instead of employing a FE model in
this work, ~φqs is derived from bending at 0 Hz. Therefore, strain measurements of all
levels are used to calculate bending moments in the Fore-Aft direction, i.e., Mtn. The
searched pseudo mode shape is found by calculating 10-min averages of these bending
moments over a period of one year. While the bending moments vary with varying
environmental conditions, the ratio of bending moments between different heights show
little dependency from environmental conditions, e.g., wind speed which is illustrated in
Figure 5. Pseudo-mode ~φqs is found by taking the ratio between the bending curves of the
different measurement locations. Calculating ~φqs for different wind speed ranges shows a
stable ratio for wind speeds above cut-in as seen in Figure 6.The remaining spread between
the shown curves is explained rather with measurement uncertainty over physical reason.
Therefore, it was decided to use an averaged ~φqs instead of a mode shape dependent on
the environmental condition avoiding an over-fit of the model. Below cut-in wind speed,
measured quasi-static strains are more affiliated to the off-center center of gravity of the
nacelle and random measurement noise and can be neglected. The expansion step is
basically scaling the quasi-static pseudo mode shape with the measured bending moment
at the TP Mqs:

~Mp
qs(t) = ~φqs Mqs(t), (9)

where index p indicates unmeasured locations.
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Figure 5. Bending curves at the various instrumented water depths to extract the QS mode shape.

Figure 6. Extracted QS mode shape for different wind speeds. Both the water level and seabed level
are indicated by horizontal lines.

2.3.3. Full-Field Strain Reconstruction

Quasi-static and dynamic bending moments are calculated in the FA/SS direction
of desired height and superimposed subsequently. The final step is the transformation
of the estimated Mtn, Mtl in an arbitrary direction accompanied by back-transformation
into strain. Bending moments from the FA/SS system are transformed into M1, M2
by rotating the coordinate system into arbitrary direction α by employing the R2 linear
transformation matrix: {

M1
M2

}
=

[
cos(α) sin(α)
−sin(α) cos(α)

]{
Mtl
Mtn

}
. (10)

The normal strain is found by:

ε =
R

EIc
M2, (11)

considering a bending strain at location 1 in a coordinate system with axes 1, 2 is caused by
orthogonal bending moment in direction 2. R describes the inner radius of the MP, Ic is the
area moment of inertia, and E is the Young’s modulus. A look into sample time series as
shown in Figure 7–9 confirms a high prediction accuracy. Aligned with the wind direction,
(see in Figure 7), shows more low-frequent oscillations coming from variations in the thrust
loading. The good performance is largely a result of a well-calibrated quasi-static band.
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Figure 7. Bending from strain measurement and corresponding estimation in the FA direction for
height = −17 m LAT.

Conversely, in the SS direction, i.e., cross-wind, oscillations are primarily driven by the
first mode. The near perfect fit between measurement and estimation in Figure 8 confirms
quality of the mode shapes obtained via OMA.

Figure 8. Bending from strain measurement and corresponding estimation in the SS direction for
height = −17 m LAT.

When transforming into a strain of any arbitrary direction, contributions from both
FA and SS are mixed in a ratio depending on the prevailing wind direction and the chosen
direction as illustrated by Figure 9. Note, that neglecting the acting normal force N
in Equation (10) leads to an offset of the strain after transformation compared to the
reference system.

Figure 9. Strain measurement and corresponding estimation for a specific location on the monopile
(here aligning with a sensor location for validation) at −17 m LAT. As the contribution of the normal
force N is omitted, an offset appears but dynamic strains are correctly represented.

3. Results

Virtual sensing is applied to long-term acceleration and strain data from tower and
TP to estimate strain of arbitrary direction on the substructure. This section describes the
validation of MDE accomplished by the use of acceleration measurements on the tower
to reconstruct dynamic strain and strain measurements on the top of the TP (17 m LAT)
to estimate quasi-static strain. Validation sensors are chosen on the bottom of the TP and
on the submerged and sub-soil parts of the MP. Then estimations are bench-marked with
measurements in terms of fatigue. While earlier publications are focused on the accurate
reconstruction of 10-min timestamps [11], the long-term fatigue performance is investigated
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here. Therefore, in line with the S/N curve D with m = 3, loga = 11.687 for free corrosion
as defined in [21], m = 3 with no stress concentration factor is assumed for the calculation
of DES at all locations for the sake of simplicity.

3.1. Validation Data

Three validation sets are composed with a total number of 25,405 samples to represent
the full spectrum of environmental and operational conditions. One set contains mostly
rotating conditions from two subsequent summer periods. To investigate how seasonal
effects influence the accuracy of MDE, another validation set with data from one winter is
added. A third set covers exclusively parked conditions. All sets contain data from a total
of 13 different sensors as listed in Table 1 which will be benchmarked with corresponding
predictions in the following section. Figure 10 shows that all three validation sets contain
a wide range of environmental conditions. A big portion of samples is recorded during
idling and run-up states of the turbine. These samples show the biggest diversity in wind
direction. The summer set features most of those low wind conditions. Conversely, samples
from rated conditions usually occur for wind directions between 200 and 300 deg. While
samples with high wind speed can be found in every validation set, the biggest share of
rated conditions is recorded in the winter set.

Table 1. Number of samples in each validation set per sensor location.

Zone Sensor Name Samples Summer Samples Winter Samples Parked

dry

TP 5.0 m 35 deg 2831 1117 326
TP 5.0 m 95 deg 2831 1117 326
TP 5.0 m 155 deg 2831 1117 326
TP 5.0 m 215 deg 2831 1117 326

submerged

TP 5.0 m 275 deg 2831 1117 326
MP −17.0 m 50 deg 149 130 55

MP −17.0 m 230 deg 376 105 23
MP −17.0 m 320 deg 345 175 66

sub-soil

MP −31.0 m 140 deg 112 135 56
MP −31.0 m 230 deg 169 227 92
MP −35.0 m 230 deg 318 204 74
MP −38.0 m 140 deg 364 154 61
MP −38.0 m 230 deg 389 190 66

total: 16,377 6905 2123

Figure 10. Wind distribution for estimated timestamps.
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Table 1 gives information about the number of samples per sensor and per validation
set. By far, most samples are taken during the summer periods with the parked set
consisting of only 8.5% of the total number of samples. A share of the FBG measurement
data on the MP is corrupted by peak splitting as described in Section 2.1 and cannot be used
to evaluate the quality of virtual sensing without additional pre-processing. Samples for
the monopile were handpicked to not contain peak splitting, resulting in a lower number
of samples per sensor for MP locations while sensors on the TP are electrical strain gauges
and are thus not affected. Due to the small number of samples, estimation is forfeit at
sub-soil levels −40 m and −44 m.

3.2. Fatigue Assessment

This section focuses on the damage accumulation of virtual sensors and analyzes
the accuracy of a fatigue estimation. To be able to compare damage inflicted by different
fatigue spectra throughout this section, the metric damage equivalent stress range (DES)
is used (see Section 2.2.2). In Figure 11, the distribution of measured DES versus wind
speed of all sensors combined is shown. Fatigue damage clearly correlates with wind
speed, however the relationship appears to be not strictly linear. For low wind speed, i.e.,
idling and run-up conditions, the DES grows steadily and for rated conditions, the fatigue
increase slows down. Similar findings are described in [22] for joints of jacket foundations.

Figure 11. Damage equivalent stress range (DES) of measurements from all sensors and validations
sets combined over wind speed.

The comparison of stress ranges from measurements and estimations is illustrated
in Figure 12 in terms of absolute error and in Figure 13 for relative error. As indicated by
the increased fatigue at a higher wind speed, the absolute error β grows with wind speed.
The average error being slightly bigger than zero for low wind also grows with wind
speed, revealing a bias of the estimation. The standard deviation grows proportionally
but also indicates different behavior for extreme wind speed: First, before cut-in mean
error and standard deviation appear independent from wind speed. Secondly, for wind
speeds exceeding 20 ms−1 both parameters are unstable due to a lack of samples. These
two regions can also be found in Figure 13 describing the relative error δ. Conversely to β
the mean relative error δ and its standard deviation σ are elevated below cut-in dropping
to a stable level for run-up and rated wind speeds before becoming unstable for high wind
speed as described above. Fatigue is slightly overestimated over the entire range of wind
speeds and estimations at low wind smaller than 7 ms−1 appear more prone to outliers.

The worse performance of MDE at low wind speed is mainly due to two effects: First,
the signal to noise ratio is generally worse where absolute values of measurements are
smaller. Comparing a noisy measurement with a MDE estimation results in a worse fit
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while this is no shortcoming of the estimation model but of the measurement. Second, as
described in Section 2.1, SCADA data, e.g., yaw angle are updated once every 10 min. The
estimation procedure includes the transformation of measurements into a FA/SS system
before extrapolating the data. Low wind speeds generally entail more frequent yawing
action, resulting occasionally in input data that is not transformed properly.

Figure 12. Absolute error on DES of all sensors and validations sets combined over wind speed.

Figure 13. Relative error on DES of all sensors and validations sets combined over wind speed.

The error on fatigue clustered for the three validation sets already revealed general
trends of the estimation model. Adding information from Table 1 helps to understand
that those trends are mainly experienced by the TP sensors. Due to the small portion of
validation data from MP sensors, MP specific effects are hard to spot in the previous figures.
Therefore, the relative error per sensor and validation set is analyzed in Figures 14 and 15.
Box and whisker plots illustrate the spread of data by height of the box consisting of 50%
of the data and whiskers showing the quartiles. If outliers are detected, these are shown
separately. TP sensors in Figure 14 show good performance by only slightly overestimating
fatigue with an error of max. 7.05% for the sensor at 5 m oriented towards 35 deg. Sensors
on the TP are set up in opposing pairs and these pairs behave similarly in terms of relative
error δ. Both worst performing sensors are in direction 35/215 deg while remaining sensors
on the dry part of the structure show a mean error of less than 3% on DES. Analyzing data
spread per TP sensor and validation set reveals different effects: On one hand, the box
height increases from summer over winter to the max. value in the parked set. So the 50%
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of data closest to δ are estimated with the least uncertainty in summer and with the highest
level of uncertainty in the parked set. Again going back to Table 1 leads to the assumption
that an increase in number of samples for the parked set has the potential to diminish
this uncertainty compared to the other validation sets. On the other hand, whiskers are
comparable in height over all sensors and sets, however, by far, most outliers are found for
the summer periods. Outlier conditions are assumed to be subject to yawing actions, which
can reduce the estimation quality due to the current low sampling rate of SCADA data.
In terms of mean error, δ sensors behave in a stable condition over all validation sets and
mean error of opposing sensors is similar. Appendix A Figure A3 shows that the higher δ
of sensors at 35/215 deg is coming from a slightly worse performance at a low wind speed
while a general estimation bias is shared by all TP sensors. Overall, it is found that DES
on the TP is slightly overestimated with the error being mainly influenced by the sensor
location and behaving very stable for different validation sets.

Figure 14. Relative error on DES per sensor on the TP for each validation set.

The MP features sensors on the submerged part, i.e., −17 m and sub soil. In general,
submerged sensors perform better than sub-soil sensors while both show a higher variance
of the relative error on DES compared to the dry part of the turbine structure. It is striking
that contrarily to TP sensors, no MP sensor shows a similar behavior in terms of mean
error or data spread over different validation sets. The summer periods show consistently
the largest variations for both δ and data spread. Consulting Table 1 allows one to draw
conclusions between box height/δ and number of samples. For the TP, it is shown that a
high number of samples reduces the data spread, which is illustrated by the box height.
In contrast to TP sensors, no positive correlation is found here, so even sensors with most
samples do not have more stable error characteristics, e.g., shrinking box height, smaller
whiskers, etc. Addressing the variance in estimation accuracy, it is important to stress that
MP sensors all have unique sets of samples. For MP sensors, low wind conditions show
significant spread on δ as seen in Appendix B, meaning that sensors with a large number
of samples in low wind perform worst. This trend is most significant for summer clusters
of sensors at −38 m. Thus differently to TP sensors, error characteristics are not simply
driven by the sensor location but also by the validation set, i.e., considered environmental
and operational conditions. Interestingly, Figure A4 shows that MP sensors except sub-soil
sensors at level −38 m estimate strain with a smaller estimation bias than TP sensors. It is
envisioned that a different distribution between samples of high and low wind speed has
the potential to reduce δ on the MP. The observed variations of δ and σ are also assumed to
converge or to stabilize with a higher number of samples.
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Figure 15. Relative error on DES per sensor on the MP for each validation set clustered into zones.

Table 2. Accumulated relative error on DES over all samples per sensor.

Sensor Name δ [%] Zone

TP 5.0 m 35 deg 7.05 dry
TP 5.0 m 95 deg 2.96 dry

TP 5.0 m 155 deg 2.59 dry
TP 5.0 m 215 deg 6.50 dry
TP 5.0 m 275 deg 1.40 dry

MP −17.0 m 50 deg 0.69 submerged
MP −17.0 m 230 deg 0.86 submerged
MP −17.0 m 320 deg 5.27 submerged
MP −31.0 m 140 deg 5.05 sub soil
MP −31.0 m 230 deg −4.80 sub soil
MP −35.0 m 230 deg −1.66 sub soil
MP −38.0 m 140 deg −2.62 sub soil
MP −38.0 m 230 deg −8.97 sub soil

While the sample-wise error analysis emphasizes the error coming from low wind
conditions, the accumulated fatigue remains small (see Appendix A). To obtain more
representative values for δ, Table 2 calculates the relative error on DES for all samples per
sensor combined. At the TP, again sensor at 5 m oriented towards 35 deg performs worst
with δ of 7.05%. In contrast, MP sensors perform much better than in the sample-wise
analysis. Most notably, sensor −38 m 140 deg, which was earlier named as one of the worst
performing sensors, reaches an error of only −2.62% on DES.

Figure 16 shows fatigue spectra of the worst-performing TP sensor and a sub-soil
sensor close to the location of max. bending. Fatigue spectra of all sensors are gathered in
Appendix C. Low wind conditions accumulate cycles of small stress ranges while conditions
with strong wind and wave activity lead to the small number of cycles on top of Figure 16.
In general, three different areas can be distinguished: The area of small cycles, where the
number of cycles is underestimated. On one hand, a systematic underestimation is expected
due to simplifications in the estimation model, e.g., modal truncation. On the other hand,
noise in strain measurements will lead to an increased nonphysical cycle number. Then
the area of intermediate cycles, which shows a mostly good fit between measurement and
estimation. Finally, an area of large cycles can be distinguished. While only assembling a
small number of cycles, the importance for fatigue is not to be underestimated. For instance,
the shown MP sensor contains 71.1% of samples in the area of small cycles accounting for
17.6% of DES while less than 1% of cycles compose the area of large cycles accounting for
69.2% of DES.
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Figure 16. Full fatigue spectrum of measurement (solid) and estimation (dashed).

To illustrate deviations in the large cycles in detail, Figure 17 shows a zoom into
the fatigue spectra of sensors in the dry zone, submerged zone, and sub-soil zone. The
measurement spectrum of the TP sensor is shifted upwards resulting in a simple scaling
of larger stress cycles. This represents the estimation bias found in the sample-wise
analysis. The worst performing sub-soil sensor at −38 m shares both orientation and error
characteristic. In Section 2.3.1, it was described that mode shapes are obtained at one
specific orientation and assumed valid circumferentially. This simplification combined
with measurement variability is held responsible for the observed error and a correction
of the corresponding mode shape components in Φ1 can partially resolve it. Conversely,
submerged and sub-soil sensors in Figure 17 show a more randomized error characteristic
and no general bias. It appears that the error on fatigue mainly originates in the mismatch
of a small number of large cycles. Considering the small number of samples for MP sensors,
it is assumed that the relative error can be reduced by increasing the number of samples
and is only partially due to systematic failures. Sensor −17 m 230 deg in the center plot of
Figure 17 shows a slightly better fit for medium-sized stress ranges and catches the small
number of large cycles, better resulting in an error on DES of only −0.86%.

Figure 17. Zoom into fatigue spectrum of measurement (solid) and estimation (dashed), Left: Sensor
of the dry zone. Center: Submerged sensor. Right: Sub-soil sensor.

4. Conclusions

This contribution presents a full-field strain reconstruction technique for offshore
wind turbines on monopile foundations validated on real-world measurement data based
on a data-driven and strongly simplified estimation model. The model is dual-banded
combining a small set of acceleration measurements and the first two structural modes in
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the dynamic band and the static deflection shape of the turbine with a single level of strain
measurements in the quasi-static band. After setting up the model, measurement data from
the Belgian offshore wind farm Nobelwind is used to extrapolate strain measurements
to submerged and subsoil locations on the turbine structure. The estimation accuracy is
gauged over 25,405 samples taken from a multitude of environmental and operational
states over the course of one year. While the model performs best for intermediate wind
speeds between 7 ms−1 and 20 ms−1, increased variance is found for low and strong wind.
Fatigue assessment of 13 locations placed on the dry, submerged, and sub-soil part of the
structure on multiple levels and orientations shows a max. error on fatigue of 8.97% while
the majority of sensors in all zones estimate fatigue with an error of less than 4%. It is
shown that the worst performing sensors on TP and MP point in the same direction and
share an estimation bias. While measurement variability cannot be ruled out as plausible
cause, it is envisioned that additional validation data could help tune connected mode
shape components to reduce the error on fatigue even further.
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Appendix A. Damage Equivalent Stress Ranges

Figure A1. Sample-wise damage equivalent stress ranges for sensors on the TP with measurement
(dot) and estimation (cross).

Figure A2. Sample-wise damage equivalent stress ranges for sensors on the MP with measurement
(dot) and estimation (cross).



Energies 2021, 14, 7576 19 of 21

Appendix B. Relative Error δ on DES

Figure A3. Relative error δ on DES for sensors on the TP.

Figure A4. Relative error δ on DES for sensors on the MP.
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Appendix C. Fatigue Spectra

Figure A5. Zoom into fatigue spectra for sensors on the TP with measurement (solid) and estimation
(dashed).

Figure A6. Zoom into fatigue spectra for sensors on the MP with measurement (solid) and estimation
(dashed).



Energies 2021, 14, 7576 21 of 21

References
1. Vorpahl, F.; Schwarze, H.; Fischer, T.; Seidel, M.; Jonkman, J. Offshore wind turbine environment, loads, simulation, and design.

Wiley Interdiscip. Rev. Energy Environ. 2012, 2, 548–570. [CrossRef]
2. Mai, Q.A.; Weijtjens, W.; Devriendt, C.; Morato, P.G.; Rigo, P.; Sørensen, J.D. Prediction of remaining fatigue life of welded joints

in wind turbine support structures considering strain measurement and a joint distribution of oceanographic data. Mar. Struct.
2019, 66, 307–322. [CrossRef]

3. Tygesen, U.T.; Jepsen, M.S.; Vestermark, J.; Dollerup, N.; Pedersen, A. The true digital twin concept for fatigue re-assessment of
marine structures. In Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering,
Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2018.

4. Skafte, A.; Kristoffersen, J.; Vestermark, J.; Tygesen, U.T.; Brincker, R. Experimental study of strain prediction on wave induced
structures using modal decomposition and quasi static Ritz vectors. Eng. Struct. 2017, 136, 261–276. [CrossRef]

5. Ziegler, L.; Cosack, N.; Kolios, A.; Muskulus, M. Structural monitoring for lifetime extension of offshore wind monopiles:
Verification of strain-based load extrapolation algorithm. Mar. Struct. 2019, 66, 154–163. [CrossRef]

6. Iliopoulos, A.; Weijtjens, W.; Van Hemelrijck, D.; Devriendt, C. Fatigue assessment of offshore wind turbines on monopile
foundations using multi-band modal expansion. Wind Energy 2017, 20, 1463–1479. [CrossRef]

7. Henkel, M.; Häfele, J.; Weijtjens, W.; Devriendt, C.; Gebhardt, C.; Rolfes, R. Strain estimation for offshore wind turbines with
jacket substructures using dual-band modal expansion. Mar. Struct. 2020, 71, 102731. [CrossRef]

8. Henkel, M.; Noppe, N.; Weijtjens, W.; Devriendt, C. Sub-soil strain measurements on an operational wind turbine for design
validation and fatigue assessment. J. Phys. Conf. Ser. 2018, 1037, 052032. [CrossRef]

9. Henkel, M.; Weijtjens, W.; Devriendt, C. Validation of virtual sensing on subsoil strain data of an offshore wind turbine. In
Proceedings of the 8th IOMAC—International Operational Modal Analysis Conference, Copenhagen, Denmark, 13–15 May 2019.

10. Tosi, D. Review and analysis of peak tracking techniques for fiber Bragg grating sensors. Sensors 2017, 17, 2368. [CrossRef]
[PubMed]

11. Henkel, M.; Fallais, D.; Weijtjens, W.; Devriendt, C. Full-field strain estimation on an offshore wind support structure for fatigue
monitoring. In Proceedings of the 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure,
Porto, Portugal, 30 June–2 July 2021.

12. Skafte, A.; Tygesen, U.T.; Brincker, R. Expansion of Mode Shapes and Responses on the Offshore Platform Valdemar. In Dynamics
of Civil Structures; Springer Nature: Berlin/Heidelberg, Germany, 2014; Volume 4, pp. 35–41. [CrossRef]

13. Hjelm, H.; Brincker, R.; Graugaard-Jensen, J.; Munch, K. Determination of Stress Histories in Structures by Natural Input Modal
Analysis. In Proceedings of the IMAC XXIII, Orlando, FL, USA, 31 January–3 February 2005.

14. Baqersad, J.; Niezrecki, C.; Avitabile, P. Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary
excitations using 3D point tracking and a modal expansion technique. J. Sound Vib. 2015, 352, 16–29. [CrossRef]

15. Lourens, E.; Papadimitriou, C.; Gillijns, S.; Reynders, E.; Roeck, G.D.; Lombaert, G. Joint input-response estimation for structural
systems based on reduced-order models and vibration data from a limited number of sensors. Mech. Syst. Signal Process.
2012, 29, 310–327. [CrossRef]

16. Maes, K.; Iliopoulos, A.; Weijtjens, W.; Devriendt, C.; Lombaert, G. Dynamic strain estimation for fatigue assessment of an
offshore monopile wind turbine using filtering and modal expansion algorithms. Mech. Syst. Signal Process. 2016, 76, 592–611.
[CrossRef]

17. Hageman, R.; Drummen, I. Modal analysis for the global flexural response of ships. Mar. Struct. 2019, 63, 318–332. [CrossRef]
18. Guillaume, P.; Verboven, P.; Vanlanduit, S.; Van Der Auweraer, H.; Peeters, B. A poly-reference implementation of the least-squares

complex frequency-domain estimator. In Proceedings of the IMAC XXI, Kissimmee, FL, USA, 3–6 February 2003; Volume 21,
pp. 183–192.

19. Brincker, R.; Zhang, L.; Andersen, P. Modal identification of output-only systems using frequency domain decomposition.
Smart Mater. Struct. 2001, 10, 441–445. [CrossRef]

20. Iliopoulos, A.; Shirzadeh, R.; Weijtjens, W.; Guillaume, P.; Van Hemelrijck, D.; Devriendt, C. A modal decomposition and
expansion approach for prediction of dynamic responses on a monopile offshore wind turbine using a limited number of
vibration sensors. Mech. Syst. Signal Process. 2016, 68, 84–104. [CrossRef]

21. DNV. RP-C203 Fatigue Design of Offshore Steel Structures; Technical Report; Det Norske Veritas AS: Belum, Norway, 2012.
22. Häfele, J.; Hübler, C.; Gebhardt, C.G.; Rolfes, R. A comprehensive fatigue load set reduction study for offshore wind turbines

with jacket substructures. Renew. Energy 2018, 118, 99–112. [CrossRef]

http://doi.org/10.1002/wene.52
http://dx.doi.org/10.1016/j.marstruc.2019.05.002
http://dx.doi.org/10.1016/j.engstruct.2017.01.014
http://dx.doi.org/10.1016/j.marstruc.2019.04.003
http://dx.doi.org/10.1002/we.2104
http://dx.doi.org/10.1016/j.marstruc.2020.102731
http://dx.doi.org/10.1088/1742-6596/1037/5/052032
http://dx.doi.org/10.3390/s17102368
http://www.ncbi.nlm.nih.gov/pubmed/29039804
http://dx.doi.org/10.1007/978-3-319-04546-7_5
http://dx.doi.org/10.1016/j.jsv.2015.04.026
http://dx.doi.org/10.1016/j.ymssp.2012.01.011
http://dx.doi.org/10.1016/j.ymssp.2016.01.004
http://dx.doi.org/10.1016/j.marstruc.2018.09.012
http://dx.doi.org/10.1088/0964-1726/10/3/303
http://dx.doi.org/10.1016/j.ymssp.2015.07.016
http://dx.doi.org/10.1016/j.renene.2017.10.097

	Introduction
	Materials and Methods
	Measurements of the Nobelwind Campaign
	Virtual Sensing
	Modal Decomposition and Expansion (MDE)
	Fatigue Calculation

	Methodology
	Estimation of Dynamic Bending Moments
	Estimation of Quasi-Static Bending Moments
	Full-Field Strain Reconstruction


	Results
	Validation Data
	Fatigue Assessment

	Conclusions
	Damage Equivalent Stress Ranges
	Relative Error   on DES 
	Fatigue Spectra
	References

