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Abstract: Characterizing urban expansion patterns is of great significance to planning and decision-
making for urban agglomeration development. This study examined the urban expansion in the
entire Yangtze River Delta Region (YRDR) with its land-use data of six years (1995, 2000, 2005,
2010, 2015, and 2018). On the basis of traditional methods, we comprehensively considered the
four aspects of urban agglomeration: expansion speed, expansion difference, expansion direction,
and landscape pattern, as well as the interconnection of and difference in the expansion process
between each city. The spatiotemporal heterogeneity of urban expansion development in this region
was investigated by using the speed and differentiation indices of urban expansion, gravity center
migration, landscape indices, and spatial autocorrelations. The results show that: (1) over the 23 years,
the expansion of built-up land in the Yangtze River Delta Region was significant, (2) the rapidly
expanding cities were mainly located along the Yangtze River and coastal areas, while the slowly
expanding cities were mainly located in the inland areas, (3) the expansion direction of each city
varied and the gravity center of the urban agglomeration moved toward the southwest, and (4) the
spatial structure of the region became more clustered, the shape of built-up land turned simpler, and
fragmentation decreased. This study unravels the spatiotemporal change of urban expansion patterns
in this large urban agglomeration, and more importantly, can serve as a guide for formulating urban
agglomeration development plans.

Keywords: urban expansion; spatiotemporal pattern; gravity center migration; Yangtze River Delta Region

1. Introduction

As the world population and economy continue to grow, urban agglomerations have
become a new trend in global urbanization. Managing and quantifying the expansion of
urban agglomerations is a major challenge in this century [1,2]. Urban agglomerations
are usually characterized by different population sizes [3], economic structures [4], land-
scape patterns [5], and road network densities [6,7]. These, together with many other
factors, often result in a series of severe social and environmental problems [8] and geo-
hydrological risks [9], ranging from increased temperatures [10,11] to polluted air [12],
polluted water [13], and flood risk [14]. Around 1899, the urban expansion of Bamenda
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Town gradually invaded and transformed the hillside system, resulting in an increased
dislocation of the relationship between human settlements and the environment [15]. The
urban expansion of Dakar, Senegal, and the Greater Concepcion Metropolitan Area, Chile,
was through the occupation of land that was irregular and unsuitable for natural processes
and was often accompanied by poor urban management, leading to the out-of-control ur-
banization process and triggering the risk of natural disasters such as floods [16,17]. In this
context, researchers have paid heed to urban agglomerations and their associated issues,
among which is their urban expansion patterns. A good understanding of their urban
expansion patterns can facilitate the formulation of urban agglomeration development
plans by decision makers.

Research on urban spatial clusters began as early as the 1920s, using megalopolis [18],
urban agglomeration [19,20], city group, and city cluster to describe such urban spatial
organization [21]. Urban agglomerations were initially defined as a central city and several
surrounding towns [22]. The study on Chinese urban agglomerations began with the con-
cept of urban agglomerations proposed by Zhenhua [23]. He defined urban agglomerations
as the aggregation of multiple cities with different economic structures, different popula-
tion sizes, and different characteristics. Many cities in the world have experienced rapid
expansion, gradually developing into urban agglomerations, e.g., the Guwahati urban
agglomeration [24], Ranchi urban agglomeration [25], the Kolkata agglomeration [26], the
Yangtze River Delta urban agglomeration [27], the Pearl River Delta [28], and the Beijing-
Tianjin-Hebei urban agglomeration [29], though of different sizes. As such, the studied
spatial scales have gradually shifted from individual cities to urban agglomerations [30,31].
Some scholars have started to examine the impact of urban agglomerations on habitat
quality [32], carbon emissions [33], and other social issues.

The methods for characterizing urban expansion and measuring urban form [34] in-
clude urban growth typologies [35], standard deviational ellipses [36], concentric rings [37],
and landscape indices [38]. Urban growth typologies have been used to portray the mor-
phologies of urban expansion. Standard deviational ellipses have been used to summarize
the spatial characteristics of all geographical features, such as dispersion, directional trends,
and central trends. Concentric rings can highlight the differences in areas at differing dis-
tances from the city center and have usually been used to analyze urban land density [39].
Landscape indices have been used to examine how urban expansion is related to structural
changes in land-use practices. Although each method helps to understand one aspect of
urban expansion, separately performing these analyses was not comprehensive. In China,
some scholars have performed a comparative analysis on the urban expansion pattern of
megacities [40,41], while others have analyzed the urban agglomeration in the Yangtze
River Delta based on the trend of the “land–population” coordination [42]. However,
studies of urban expansion covering the entire YRDR in terms of expansion rate, expansion
differentiation, expansion direction, and landscape patterns are still lacking. Moreover,
most of the current research focuses on the horizontal comparison and analysis of the urban
spatial pattern in different time sections, but the research on the interconnection of and
difference in the expansion process between each city is insufficient.

The YRDR has been considered to be the largest regional economy in China [43].
The regional economic collaborative development in the YRDR is critical to enhancing
the comprehensive strength of the urban agglomeration [44]. According to the “Outline
for the Integrated Development of the Yangtze River Delta Region” released on 13 May
2019 (hereinafter referred to as the Outline), the YRDR has undergone zoning adjustments.
Therefore, studies of the spatiotemporal variations in urban expansion occurring as per the
Outline can function as references for the government to formulate rational policies and
realize regional sustainable development.

We monitored the urban expansion pattern, urban expansion direction, urban ex-
pansion spatial autocorrelation, and urban expansion landscape pattern of the cities in
the YRDR using land-use data from 1995 to 2018 with a range of methods, namely urban
expansion speed index, urban expansion differentiation index, gravity center migration,
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landscape indices, and spatial autocorrelation analysis. The specific objectives are (1) to
examine the spatial correlation in the expansion rate of built-up land, (2) to analyze the
similarities and differences in the expansion processes of the cities, (3) to identify the direc-
tion of the expansion of built-up land by gravity center migration, and (4) to characterize
the urban spatiotemporal evolution and landscape patterns.

2. Materials and Methods
2.1. Study Area

One of the most developed and densely populated industrial regions in China [45], the
YRDR, is located (27.20◦N–35.33◦N, 114.90◦E–123.17◦E) in the eastern part of the country
and has an area of approximately 357,282 km2, which is approximately 3.7% of China’s
whole territory (Figure 1). The YRDR consists of Shanghai, which is the core city, and
40 other cities, of which 13 are in Jiangsu Province, 11 are in Zhejiang Province, and 16
are in Anhui Province. The name and abbreviation of each city are shown in Appendix A
Table A1. The YRDR lies in the middle and lower reaches of the Yangtze River and has
a long history of agriculture. The YRDR has a variety of geomorphic features, including
plains, terraces, hills, and mountains [46]. The topography is low in the northeast and
middle, and high in the southwest; meanwhile, the geomorphic types of it belong to the
North China Plain, Yangtze River Plain, Jiangnan Hills, and Southeast Hills from the north
to the south [47]. In 2018, the total GDP of the YRDR was 21.14 trillion CNY (Chinese yuan),
which accounted for 23.48% of the national GDP, and the total population was 225 million,
which accounted for approximately 16.14% of the entire country’s population.
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2.2. Data Sources

This study used land-use data at a 30 m spatial resolution covering the years 1995,
2000, 2005, 2010, 2015, and 2018, and the YRDR administrative division’s vector data. All
the data were geo-registered with ArcGIS to the WGS-84 coordinate system. Accessed on
15 January 2021, the land-use and land cover data (LULC) data were part of the 1:100,000
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remote sensing and monitoring of land-use status database of the Resource and Environ-
mental Science Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/
accessed on 15 January 2021) [45]. This land-use status database has two main characteris-
tics. The first characteristic is high data resolution and continuous data time, which can
cover the 6 periods studied. The second characteristic is the high accuracy of the dataset,
which conforms to the research requirements of this study [48,49]. The land-use types were
clipped and reclassified into cropland, forestland, grassland, water bodies, built-up land,
and other types of land (sandy land, Gobi, saline land, swamp, bare land, bare rock texture,
other unused lands), and vectorized LULC data to extract built-up land (Figure 2).
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2.3. Methods

This study describes the urban expansion process of the Yangtze River Delta Region
from four aspects: urban expansion pattern analysis, urban expansion direction analysis,
urban expansion spatial autocorrelation analysis, and urban expansion landscape analysis.
A technical flowchart of this study is presented in Figure 3.

https://www.resdc.cn/
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2.3.1. Speed Index and the Differentiation Index of Urban Expansion

We calculated two indices: urban expansion speed index (UESI) and differentiation
index (UEDI). The former is the rate of the annual changes in built-up land and allows for
effective comparisons between the ranges and speeds of changes over different periods in
the same spatial unit [50]:

UESIi =
Ut2

i −Ut1
i

Ut1
i × ∆t

× 100%, (1)

where Ut1
i and Ut2

i represent the built-up land of spatial unit i at times t1 and t2 respectively,
and ∆t indicates the length of time between the times t1 and t2.

Representing the intensity of changes in land-use types during a specified period in
a spatial unit, UEDI is the ratio of the change in the quantity of a land-use type to the
quantity of the base period of the land-use type in the whole research area. It allows for
comparisons of the speeds of the urban land expansion of different spatial units, as well as
for analyses of regional differences and hotspots of urban land expansion [51]:

UEDIi =
|Ut2

i −Ut1
i | × Ut1

|Ut2 −Ut1 | × Ut1
i

, (2)

where Ut1
i and Ut2

i represent the built-up land of spatial unit i at times t1 and t2 respectively,
while Ut1 and Ut2 represent the built-up land in the whole research area at times t1 and t2,
respectively [52].

2.3.2. Gravity Center Migration (GCM)

The “center of gravity” of a city is a reference point for urban development and ex-
pansion that occurs in the same direction as that of migration [53]. GCM is usually used
to analyze the dynamic evolution and spatial changes of social, economic, and ecological
indicators, such as land-use type, urban evolution, population, and economic develop-
ment [54]. Comparisons of GCMs in different periods allow for analyses of the directions
and trends of changes in urban expansion [55]. In this study, the displacement of a spatial
barycenter was used to examine the direction of urban expansion within the YRDUA. The
calculation of GCM is based on changes in the coordinates of the gravity center:



Remote Sens. 2021, 13, 4484 6 of 19

Xt =
∑n

i=1 Cti × Xi

∑n
i=1 Cti

(3)

Yt =
∑n

i=1 Cti × Yi

∑n
i=1 Cti

, (4)

where Xt and Yt are the gravity center’s coordinates in year t, Cti is the area (ha) of the i-th
patch in year t, Xi and Yi are the gravity center coordinates of the i-th patch, and n is the
number of patches.

2.3.3. Landscape Indices

Expressed in landscape metrics, landscape patterns include the types, quantities, and
spatial distributions of landscape units [56]. Applied extensively to quantify different
spatial characteristics of built-up land areas, landscape metrics can reveal the structural
changes in land-use practices [57]. Therefore, comparing the landscape metrics in different
periods would effectively reflect the manner and process of urban expansion. We selected
six landscape metrics (Table 1) from class-level metrics [58]. We analyzed and compared
the effects of urban expansion in the YRDR and calculated the landscape metrics with
FRAGSTATS 4.2 software (http://www.umass.edu/landeco/research/fragstats/fragstats.
html accessed on 17 May 2021).

Table 1. Landscape indices used in this study.

Metrics Acronym Units Description

Largest Patch Index [58] LPI Percent The percentage of the landscape comprised of the largest patch.
Number of Patches [59] NP None The number of patches of landscape classes.

Patch Density [60] PD Number per km2 The extent of subdivisions in or the fragmentation of the patch type.
Clumpiness Index [61] CLUMPY Percent The aggregation degree of the landscape.

Landscape Shape Index [62] LSI None The complexity of urban growth.
Patch cohesion index [63] COHESION None The physical connectedness of the corresponding patch type.

2.3.4. Spatial Autocorrelation

To analyze the characteristics of the spatial distribution aggregation and differentiation
of the regional urban built-up land expansion speed index (Appendix A Table A2), spatial
autocorrelation in spatial statistics was used for two different approaches to scale spatial
pattern analysis: global and local spatial autocorrelation [64]. Spatial autocorrelation
reflects the overall distribution characteristics, such as the average degree of association,
spatial distribution patterns, and significance, of attribute values in space [65]. Moran’s I
range between −1 and 1 for global spatial autocorrelation is used to measure aggregate,
discrete, and random regional attribute values quantitatively. Values of less than, equal to,
and greater than 0 signify a negative correlation, an independent random distribution, and
a positive correlation, respectively [66]. Global spatial autocorrelation can only examine the
overall spatial autocorrelation of the study area but cannot determine the agglomeration or
dispersion effects in a local area [43]. Therefore, Moran’s I for local spatial autocorrelation
analysis was used. It and its local variant Ii are respectively defined as:

I =
n

∑n
i=1 ∑n

j=1 wij
×

∑n
i=1 ∑n

j=1 wij(xi − x)
(

xj − x
)

∑n
j=1(xi − x)2 (5)

where n is the total number of units, xi and xj are the values of points i and j respectively, x
is the average value of all units, and wij is the spatial weight matrix of spatial units i and j
(when unit i and unit j are topologically adjacent with a common edge, wij = 1, otherwise
wij = 0) [66].

Ii =
(xi − x)

∑n
i=1(xi − x)

n

∑
j=1

wij(xi − x), (6)

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
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The meaning of the letters in Formula (6) is the same as of those in Formula (5).
A cluster map of the local indicators of spatial association (LISA) can show four

different patterns: High-High (HH), Low-Low (LL), High-Low (HL), and Low–High
(LH) [63]. A spatial unit that is an HH or LL agglomeration zone indicates that its UESIi and
those of the surrounding cities around are high or low, respectively. An HL agglomeration
zone indicates that its UESIi is high, but those of the surrounding cities are low. An LH
agglomeration zone indicates that its UESIi is low, but those of the surrounding cities are
high. A scatter plot of Moran’s I would also have four quadrants that indicate its values for
all geographic units.

3. Results
3.1. Spatiotemporal Patterns of Urban Expansion at the Regional Scale

Urban land use in the YRDR continued to experience rapid urban expansion in the
late 1990s (Figure 4). The urban area increased monotonically by 18,413.180 km2 and
the percentage of the entire urban agglomeration nearly doubled from 8.3% to 13.5%.
The expansion speed reached its peak in 2005–2010. The average annual increase was
800.57 km2, respectively. Over the study period, the expansion speed exhibited a “peak-to-
peak” trend and the YRDR land area increased steadily.
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3.2. Spatiotemporal Patterns of Urban Expansion at the City Scale

The magnitude of urban expansion varied greatly by city. The values for the UESI are
shown in Appendix A Table A2. To reveal the expansion of the interconnections between
the cities, we used global and local spatial autocorrelation to explore the correlations
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of the index. Moran scatterplots for these data are presented in Figure 5. Moran’s I of
the UESIs are 0.2207, 0.8509, 0.4375, 0.3903, 0.1982, and 0.8614 in 1995–2000, 2000–2005,
2005–2010, 2010–2015, 2015–2018, and 1995–2018, respectively. All the results demonstrate
significant positive correlations with neighboring regions. Throughout this period, the
spatial correlation showed a “peak-trough-peak” trend. The Moran scatterplot has four
quadrants. The HH quadrant shows small spatial differences between the cities, thus
indicating spatial diffusion effects, whereas the LH quadrant indicates spatial transition
characteristics. The LL quadrant indicates spatial aggregation effects in a slowly growing
region. The HL quadrant shows that the attribute levels of the region itself are high, but
those of the surrounding regions are low, thus indicating spatial polarization characteristics.
The quadrant distribution of each city in the Moran scatterplot is shown in Figure 6.

A LISA map of the UESI for each city at the 0.05 significance level in different periods
is shown in Figure 7. The “hot” spots and “cold” spots of urban expansion in the YRDR
have continued to move spatially. The cities, LS and HZ, were “hot” cities with high
stability during 1995–2018. The gradual shift of “hot” cities from the southern to the middle
part of the urban agglomeration is indicative of urban expansion, and the intensity of urban
land use is also increasing. The “cold” cities are mainly located in Anhui and northern
Jiangsu Provinces.
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Figure 5. Moran scatterplots of UESIs for the YRDR in different periods: (a) 1995–2000, (b) 2000–2005, (c) 2005–2010,
(d) 2010–2015, (e) 2015–2018, and (f) 1995–2018.



Remote Sens. 2021, 13, 4484 9 of 19Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 6. Moran scatterplots of urban distributions in the YRDR:(a) 1995–2000, (b) 2000–2005, (c) 2005–2010, (d) 2010–
2015, (e) 2015–2018, and (f) 1995–2018. 

A LISA map of the UESI for each city at the 0.05 significance level in different periods 
is shown in Figure 7. The “hot” spots and “cold” spots of urban expansion in the YRDR 
have continued to move spatially. The cities, LS and HZ, were “hot” cities with high sta-
bility during 1995–2018. The gradual shift of “hot” cities from the southern to the middle 
part of the urban agglomeration is indicative of urban expansion, and the intensity of ur-
ban land use is also increasing. The “cold” cities are mainly located in Anhui and northern 
Jiangsu Provinces. 

Figure 6. Moran scatterplots of urban distributions in the YRDR: (a) 1995–2000, (b) 2000–2005, (c) 2005–2010, (d) 2010–2015,
(e) 2015–2018, and (f) 1995–2018.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 7. Local indicators of spatial association (LISA) cluster maps of UESI for each city in different periods: (a) 1995–
2000, (b) 2000–2005, (c) 2005–2010, (d) 2010–2015, (e) 2015–2018, and (f) 1995–2018. 

3.3. Differentiation Characteristic of the Urban Expansion 
To compare the differences in the expansion of different cities, we calculated the 

UEDI of each city at various stages and used the natural breakpoint classification method 
to classify the status of development into five levels: slow-speed, low-speed, medium-
speed, rapid-speed, and high-speed development. The high-speed expansion area gradu-
ally shifts from the middle of the YRDR to the south, mainly in Zhejiang and southern 
Jiangsu Provinces. The urban land expansion in the northwest and northeast of the region 
shows a slow trend. Most cities in Anhui Province and northern Jiangsu Province have 
slow- or low-speed development. Their UEDIs show obvious development gaps between 
the cities (Figure 8). 

Figure 7. Local indicators of spatial association (LISA) cluster maps of UESI for each city in different periods: (a) 1995–2000,
(b) 2000–2005, (c) 2005–2010, (d) 2010–2015, (e) 2015–2018, and (f) 1995–2018.



Remote Sens. 2021, 13, 4484 10 of 19

3.3. Differentiation Characteristic of the Urban Expansion

To compare the differences in the expansion of different cities, we calculated the UEDI
of each city at various stages and used the natural breakpoint classification method to
classify the status of development into five levels: slow-speed, low-speed, medium-speed,
rapid-speed, and high-speed development. The high-speed expansion area gradually
shifts from the middle of the YRDR to the south, mainly in Zhejiang and southern Jiangsu
Provinces. The urban land expansion in the northwest and northeast of the region shows
a slow trend. Most cities in Anhui Province and northern Jiangsu Province have slow-
or low-speed development. Their UEDIs show obvious development gaps between the
cities (Figure 8).
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From 1995 to 2000, the cities with rapid urban expansion were located in the central
and southern parts of the urban agglomeration, roughly presenting an S-shaped area with
SU as the starting point and WZ as the ending point. SU, WX, MAS, NJ, CU, JH, LS, and
WZ had the fastest expansion. From 2000 to 2005, with SH-SU-WX-HU-HZ-QZ as the
dividing line, the YRDR was divided into one part with medium-, low-, and slow-speed
development and another part with rapid-speed development. All five types of expansion
levels showed obvious agglomeration characteristics. From 2005 to 2010, the high- and
rapid-speed development areas, except for LS, were concentrated in the middle of the
urban agglomeration. From 2010 to 2015, the expansion of NT, HS, XC, and cities in the
provinces of Zhejiang maintained a steady trend, whereas the expansion of CU, WH, and
HU in Anhui Province began to accelerate. NT, WH, XC, HS, and TZ had the fastest
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expansion. From 2015 to 2018, the levels of slow-, low-, and medium-speed expansion
were relatively scattered, and cities in the province of Zhejiang maintained a high-speed
development. However, only HU and LA in Anhui province, NJ, ZJ, and CA in Jiangsu
province, and SH are in high-speed development.

The overall difference pattern of expansion in the YRDR during the entire study period
of 1995–2018 is clearly defined, with slow-, low-, and medium-speed development in the
north, and rapid- and high-speed development in the south, with NT-SU-HU-HZ-HS as
the dividing line. The areas along the coastal development zone developed faster.

3.4. Migration of the Gravity Center of Urban Built-Up Land

At the city scale, the gravity centers of the YRDR were located in CU (118.146◦E–
118.229◦E, 32.287◦N–32.316◦N) during the 23 years of the study period (Table 2). Figure 9
illustrates the built-up land gravity center for each district at six different times. Although
the gravity centers of the built-up land shifted southeast, southwest, and northwest, the
overall focus has been southwest because of the rapid development of built-up land in the
southern part, especially in Zhejiang Province, of the urban agglomeration. Before 2005, the
GCM distances were smaller and the migration directions were southeast. The maximum
GCM distance in 2005–2010 reached 7626.807 m and the migration directions changed from
southeast to southwest, indicating that the gravity centers of built-up land growth at this
time had shifted to the southwest of the urban agglomeration. The growth was relatively
rapid, with the annual offset distance reaching its peak of 1525.361 m/year. In 2015, the
centers of built-up land growth shifted to the northwest of the urban agglomeration with
an annual offset distance of 564.079 m/year. The focus of urban growth in 2018 returned to
the southeast of the urban agglomeration and has maintained a high expansion rate. At
the city scale, the direction of the GCMs of 15 cities (AQ, CA, CI, HZ, JH, LS, MAS, QZ,
SX, TL, WZ, WX, WH, XC, and ZJ) was southwest, which was consistent with the GCM of
the entire YRDR. The direction of the GCMs of seven cities (BB, FY, HS, LYG, LA, NT, and
SU) was northwest and of six cities (BZ, NJ, SH, SQ, SZ, and YC) was southeast, whereas
five cities (HF, JX, TZ, YZ, ZS. HU, HA, HB, HN, and NB) in the northeast showed obvious
expansion toward the south. Only CU, TA, and XZ showed different expansion directions
toward the west, north, and east, respectively.

3.5. Landscape Patterns of Urban Built-Up Land

The landscape pattern indices of each city in the YRDR during 1995–2018 are shown
in Figure 10. The PD and NP of most urban built-up areas experienced negative changes.
The LSI of each city shows a decreasing trend, indicating that the landscape shape of the
built-up land tended to become simplified. Nevertheless, the LPI of the built-up land of
each city revealed that the largest patch areas, especially in SH and SU, of built-up land
had increased. However, CLUMPY and COHESION showed similar trends during this
period, indicating an aggregation or a clumping of urban patches.

Table 2. Changes in built-up land gravity centers from 1995 to 2018.

Year Longitude (◦) Latitude (◦) Direction (◦) Distance (m) Rate (m/year)

Yangtze River
Delta

1995 118.214 32.316
2000 118.226 32.313 Southeast 13.279 1227.763 245.553
2005 118.229 32.311 Southeast 52.816 377.295 75.459
2010 118.151 32.290 Southwest 18.007 7626.807 1525.361
2015 118.123 32.298 Northwest 17.246 2820.397 564.079
2018 118.146 32.287 Southwest 27.985 2489.969 829.990
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Figure 10. Landscape indices of built-up land from 1995 to 2018: (a) NP, (b) PD, (c) LPI, (d) LSI, (e) CLUMPY, and
(f) COHESION.

4. Discussion

Using the land-use data of six periods (1995, 2000, 2005, 2010, 2015, and 2018), we
analyzed the spatiotemporal evolution characteristics of the past 23 years of the urban
agglomeration in the Yangtze River Delta Region (YRDR) and examined spatial expansion
intensity, expansion differentiation, GCMs, landscape patterns, and spatial autocorrelations
of urban land use.

4.1. Expansion Rates and Differences

Having examined the Beijing-Tianjin-Hebei urban agglomeration, this study found
that the expansion rate of Beijing during 1995–2000 was 2% [67], whereas the expansion
rates of eight cities in the YRDR had been higher: CU (2.6%), JH (4.9%), LS (3.1%), MAS
(3.7%), NJ (2.8%), WZ (3.8%), and WH (2.2%). The highest expansion rate in the Pearl River
Delta urban group was GZ (14.1%) during 2000–2005 [19]. The expansion rate of SZ was
2.6% during 2005–2010 [19]. During 2000–2005, 5 cities in the YRDR had higher expansion
rates than did GZ, and during 2005–2010, 29 cities in the YRDR had higher expansion rates
than did SZ. The expansion rates of SH (1.8%), NB (3.04%), and HZ (3.7%) were lower
than that of Beijing (5.1%) [52], but 17 cities had expansion rates higher than that of GZ
(1.9%) [19] during 2010–2015. These comparisons show that the expansion intensities of
the cities in the YRDR were higher than in the Pearl River Delta but similar to those in the
Beijing-Tianjin-Hebei Delta.

The expansion rates between the cities have obvious spatial autocorrelations. Most
cities in the YRDR are located in the HH and LL clusters, which indicate homogeneous
expansion rates and positive spatial autocorrelations. The HL and LH aggregation zones
indicate heterogeneous expansion rates and negative spatial autocorrelations. The LISA
cluster map revealed the morphological characteristics of “small agglomeration and large
dispersion” and the overall low degree of agglomeration among the cities. In terms of
time, the YRDR had significant spatial hotspots during the four stages of urban expansion.
Consistent with the findings of [67], the expansion hotspots are dynamically shifting
and show a volatility expansion with Shanghai as the core and the expansion hotspots
distributed in Zhejiang, Jiangsu, and Anhui Provinces.

In terms of the expansion difference index, the small- and medium-sized cities have
faster growth rates, whereas the larger cities have lower growth rates [68]. The high-speed
expansion area is gradually shifting from the middle of the YRDR to the south, mainly to
Zhejiang and southern Jiangsu Provinces. The built-up land expansion in the northwest
and northeast of the region shows a slow trend. Most cities in Anhui and northern Jiangsu
Provinces exhibit slow- or low-speed development. The main reasons for the temporal
and spatial differences in built-up land expansion in the YRDR are policy factors such
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as administrative divisions, economic levels, industrial structures, and other social and
economic factors, which have guided the expansion speeds and directions of built-up land.

4.2. Expansion Directions

The characteristics of the GCMs indicate that there are differences in the development
of the cities in the YRDR, but they do not provide information concerning controlling
factors. The different levels of development have driven the transformations of the statuses
of the cities in the entire YRDR. Eventually, the gravity center of the urban agglomeration
moved to the southwest, where the natural and locational conditions are superior while
the economic and social development is more rapid. The specific functions of each city are
gradually highlighted and the interactions between cities are strengthened. On the whole,
the center of gravity of the YRDR will continue to move toward the southwest. An in-depth
analysis of the locational and movement trends of the center of gravity would have an
important and theoretical guiding significance, as well as practical operational implications
for future strategic plans that would continue the rapid development of the YRDR.

4.3. Landscape Patterns

Except for ZS, LS, SX, TZ, WZ, CI, JH, XC, QZ, and NT, the PDs of the cities in
the YRDR decreased during 1995–2018, indicating decreasing landscape heterogeneity
of built-up land. NP also shows a decreasing trend, which indicates that the number
of landscapes is decreasing because the plaques between these urban built-up areas are
gradually being filled, gathered, and merged into one plaque, thus decreasing the overall
number of plaques but increasing the area of built-up land [69]. The landscape patterns
of built-up land have shown lower degrees of fragmentation as the cities developed. This
finding also appears in [70,71] but contradicts the characteristics of the landscape patterns
in the Pearl River Delta [72]. Except for LS, WZ, ZS, TZ, QZ, LYG, YC, TL, and CI, the LSIs
of the cities in the YRDR decreased to reveal that the shape of the landscape was gradually
becoming simpler. This situation may be the result of the cities in the YRDR being less
disturbed by the external environment and their internal stability remaining relatively
strong. COHESION increased from 1995 to 2018, implying that the degrees of reunification,
extension, and connectivity of built-up land are gradually improving. The gradual increase
in land use during this period in the YRDR has gradually connected the cities to form more
concentrated and compact urban patches. The changes in CLUMPY imply slight changes
in the aggregated distribution of built-up land. The values of CLUMPY for SH, SU, WZ,
HZ and NT have maintained high levels, indicating that high urban land intensification
has mainly been due to terrain and economic factors. The various cities are relatively
independent. The LPI can be regarded as a contiguous area in the primary urban area of a
city and shows that the expansion of urban built-up areas is manifested in a coordinated
expansion model centered on the main urban area and surrounding districts. Such an
expansion is conducive to the gradual transformations of the cities from a single-center
development model to a multi-center coordinated development model.

4.4. Innovations and Limitations

Current research on long-term serial urban expansion covering entire urban agglomer-
ations is relatively lacking when compared to research on individual cities. Incorporating
the urban agglomeration scale, this study combined different methods, such as urban
speed indices and differentiation indices of urban expansion, GCM, landscape indices, and
spatial autocorrelations, to fully quantify the expansion of urban agglomerations. How-
ever, the driving force that influences the expansion of urban agglomerations should be
explored further. The expansion mode of different core areas within a city, the similarities
and differences of the expansion of landscape patterns, and the impact of anthropogenic
modifications on the pristine environment are worthy of further study.
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5. Conclusions

Using the land-use data of six periods, we summarized the spatiotemporal evolution
patterns of built-up land with urban speed indices and the differentiation indices of urban
expansion, gravity center migration, landscape indices, and spatial autocorrelations. The
key findings and main conclusions are as follows:

• The built-up land area of the Yangtze River Delta Region continues to increase with an
expansion of nearly double in size, from 29,600.715 to 48,013.895 km2. The expansion
speed of the Yangtze River Delta Region shows a significant spatial agglomeration
trend. The degree of agglomeration first increases, then decreases with time. The
high-speed expansion areas are mainly concentrated in the middle and south of the
Yangtze River Delta Region. This is mostly affected by the differences in the levels of
development of the cities in the Yangtze River Delta Region.

• There are significant differences in the expansion direction of built-up land in the
Yangtze River Delta Region, as each city has a different impact on the entire area.
Eventually, the center of gravity is moving toward the faster-developing southwestern
region. An in-depth analysis of the locational and movement trends of the center
of gravity would have an important and theoretical guiding significance, as well as
practical operational implications for future strategic plans that would continue the
rapid development of the Yangtze River Delta Region.

• During 1995–2018, the spatial structure of the Yangtze River Delta Region tended
to cluster, the shape of built-up land became simpler, compactness improved, and
fragmentation decreased. Cities with rapid expansion had simpler shapes and more
compact structures, whereas cities with slower expansion had more complex shapes
and higher fragmentation.

Providing a reference for a clearer understanding of the urbanization level of urban
agglomerations, the findings of this study would be helpful to understanding the temporal
and spatial evolution of cities, as well as the characteristics of landscape patterns at the
scale of urban agglomerations. Such an understanding would help to provide a scientific
basis for the planning, construction, and sustainable development of urban agglomerations.
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Appendix A

Table A1. Full names and abbreviations of 41 cities in the YRDR.

City Name Abbreviation City Name Abbreviation City Name Abbreviation

Anqing AQ Jiaxing JX Suqian SQ
Bengbu BB Jinhua JH Suzhou SZ
Bozhou BZ Lishui LS Taizhou TZ

Changzhou CA Lianyungang LYG Tongling TL
Chizhou CI Luan LA Wenzhou WZ
Chuzhou CU Lishui LS Wuxi WX
Fuyang FY Maanshan MAS Wuhu WH

Hangzhou HZ Nanjing NJ Xuzhou XZ
Hefei HF Nantong NT Xuancheng XC

Huzhou HZ Ningbo NB Yancheng YC
Huaian HA Quzhou QZ Yangzhou YZ
Huaibei HB Shanghai SH Zhenjiang ZJ
Huainan HN Shaoxing SX Zhoushan ZS

Huangshan HS Suzhou SU

Table A2. Urban expansion speed indices of the YRDR.

City 1995–2000 2000–2005 2005–2010 2010–2015 2015–2018 1995–2018

AQ 0.572 1.481 4.749 1.298 1.187 2.207
BB 0.412 0.154 1.331 1.671 0.201 0.851
BZ 0.436 0.134 0.966 0.997 0.865 0.702
CA 1.558 3.062 7.179 0.814 3.388 4.072
CI 0.938 0.918 10.794 2.527 2.181 4.448
CU 2.654 0.329 1.951 2.935 0.821 2.107
FY 0.705 0.311 0.979 0.651 1.353 0.804
HZ 1.519 8.216 3.677 3.721 4.059 6.047
HF 1.636 1.210 4.130 1.892 2.110 2.657
HU 0.173 5.873 5.245 3.475 5.535 5.453
HA 0.141 0.172 3.598 0.317 1.008 1.105
HB 0.376 0.870 2.252 1.327 4.230 1.832
HN 0.704 0.665 1.449 0.765 2.085 1.154
HS 1.503 0.945 16.122 5.288 −3.300 5.725
JX 0.995 6.883 2.829 1.858 3.088 4.014
JH 4.908 22.429 3.560 2.516 6.272 13.752
LS 3.170 17.715 10.437 3.027 19.221 21.892

LYG −0.110 0.190 3.354 0.180 −3.386 0.273
LA 0.335 0.619 1.562 1.660 3.324 1.504

MAS 3.785 0.687 5.024 2.704 −1.111 2.996
NJ 2.547 1.993 6.694 0.378 2.917 3.623
NT 0.935 2.408 15.322 5.508 −1.033 6.782
NB 1.754 14.744 1.732 3.049 1.234 6.321
QZ 0.385 24.404 3.714 4.466 9.032 13.791
SH 1.150 5.501 5.418 1.808 3.994 4.750
SX 1.730 13.251 3.220 3.502 3.128 7.373
SU 4.307 7.141 11.761 1.008 2.195 8.401
SQ 0.255 0.079 3.590 0.363 0.727 1.077
SZ 0.977 0.303 0.712 0.764 1.427 0.843
TZ 0.940 13.164 2.894 7.325 9.443 10.802
TA 0.915 1.359 6.728 1.591 1.746 3.024
TL 0.559 0.940 7.401 2.472 −6.099 1.538
WZ 3.878 14.769 2.364 3.430 7.519 10.140
WX 2.226 4.824 7.256 0.672 0.911 4.331
WH 1.639 0.734 6.584 6.125 −2.293 3.537
XZ 0.988 0.017 3.895 0.331 0.989 1.363
XC 1.651 0.788 7.951 6.823 −2.108 4.242
YC 1.061 0.557 2.170 0.937 −4.674 0.347
YZ 0.279 0.985 7.018 0.522 2.141 2.476
ZJ 1.663 0.979 6.293 0.982 3.032 3.085
ZS −2.880 8.704 1.921 0.190 34.233 7.632
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