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A B S T R A C T   

Managed grasslands cover about one third of the European utilized agricultural area. Appropriate grassland 
management is key for balancing trade-offs between provisioning and regulating ecosystem services. The timing 
and frequency of mowing events are major factors of grassland management. Recent studies have shown the 
feasibility of detecting mowing events using remote sensing time series from optical and radar satellites. In this 
study, we present a new method combining the regular observations of Sentinel-1 (S1) and the better accuracy of 
Sentinel-2 (S2) grassland mowing detection algorithms. This multi-source approach for grassland monitoring was 
assessed over large areas and in various contexts. The method was first validated in six European countries, based 
on Planet image interpretation. Its performances and sensitivity were then thoroughly assessed in an independent 
study area using a more precise and complete reference dataset based on an intensive field campaign. Results 
showed the robustness of the method across all study areas and different types of grasslands. The method reached 
a F1-score of 79% for detecting mowing events on hay meadows. Furthermore, the detection of mowing events 
along the growing season allows to classify mowing practices with an overall accuracy of 69%. This is promising 
for differentiating grasslands in terms of management intensity. The method could therefore be used for large- 
scale grassland monitoring to support agri-environmental schemes in Europe.   

1. Introduction 

Grasslands play an essential role in global food security, as they 
provide nearly half of the feed requirements of global livestock used for 
meat and milk production (Herrero et al., 2013; O'Mara, 2012). In 
Europe, managed grasslands cover about one third of the utilized agri
cultural area (UAA) and are a major part of the mixed pastoral and 
agricultural system. In addition to food production, grasslands 
contribute to regulating services such as carbon sequestration and water 
storage (Bengtsson et al., 2019; Chang et al., 2021) and they embed a 
rich biodiversity (O'Mara, 2012; Pärtel et al., 2005; Zeller et al., 2017). 
The ecological state and condition of European permanent grasslands, i. 
e. managed grasslands that have not been included in crop rotations for 
at least five years, is, however, threatened by agricultural intensification 
and conversion to annual crops (O'Mara, 2012; Silva et al., 2008). 
Maintaining permanent grasslands is therefore one of the main concerns 
of the European Common Agriculture Policy (CAP). Appropriate and 

spatially optimized management practices integrating knowledge of 
ecological processes are key for creating synergies and balancing trade- 
offs among the food production on one hand and regulating ecosystem 
services and biodiversity of grasslands on the other (Bengtsson et al., 
2019; Chang et al., 2021; Pärtel et al., 2005; Savage et al., 2021). In this 
context, it is of great interest to be able to map and monitor grassland 
management practices at a large scale and with sufficient spatial 
resolution. 

The intensity of mowing practices, i.e. the timing and frequency, is a 
major aspect of grassland management, along with grazing and fertil
isation intensity. Studies showed that the timing and frequency of 
mowing events are positively correlated to forage yield and quality (Čop 
et al., 2009; Savage et al., 2021), while more extensive mowing practices 
maximize regulating ecosystem services and biodiversity (Kleijn et al., 
2009; Pärtel et al., 2005; Savage et al., 2021; Uematsu et al., 2010; Van 
Vooren et al., 2018). Several studies have also highlighted the impact of 
different mowing practices on bird and butterfly species abundance, and 
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on plant diversity (Gerling et al., 2019; Humbert et al., 2012; Johansen 
et al., 2019; Morris and Rispin, 1987; Shahan et al., 2017; Tälle et al., 
2018). Information on mowing events is therefore crucial for grassland 
management mapping and monitoring. It can furthermore be useful for 
habitat modelling. 

Precise data on grassland mowing dates and frequency is, however, 
rarely available at a large scale, and monitoring mowing events through 
traditional field surveys is extremely time consuming. In this context, 
remote sensing can be a great asset. The increasing spatial resolution and 
revisit frequency of available satellite time series – especially with the 
recent Copernicus Sentinel missions – presents a considerable potential 
for large-scale grassland monitoring (Ali et al., 2016; Reinermann et al., 
2020). 

1.1. Optical remote sensing of grasslands 

Optical remote sensing is largely and successfully used in agricultural 
mapping and monitoring (Ali et al., 2016; Reinermann et al., 2020). 
Indeed, the visible and near-infrared (IR) reflectance is strongly related 
to green biomass. Temporal profiles extracted from image time series 
allow to classify crop types (Belgiu and Csillik, 2018; Defourny et al., 
2019) and monitor agricultural practices (Ottosen et al., 2019). In the 
case of grassland management monitoring, most studies use Normalized 
Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) time se
ries to differentiate between their types and intensities (Franke et al., 
2012; Asam et al., 2015; Gómez Giménez et al., 2017; Hardy et al., 2021; 
Stumpf et al., 2020). 

A number of studies have shown the potential of detecting mowing 
events through decreases in NDVI, as this vegetation index derived from 
red and near infra-red (NIR) bands is correlated with green biomass 
(Estel et al., 2018; Griffiths et al., 2020; Kolecka et al., 2018). Although 
they did not validate their results with ground truth data, Estel et al. 
(2018) discriminated the main grassland management patterns in 
Europe using MODIS NDVI mowing detection and livestock statistics. 
Using a validation dataset derived from visual interpretation of image 
time series, Kolecka et al. (2018) showed that 77% of mowing events 
were detected with Sentinel-2 (S2) NDVI. They stressed that the main 
challenge for grassland mowing detection is obtaining dense cloud-free 
time series. While large gaps due to persistent cloud cover can prevent 
the detection of mowing events, unmasked cloudy observations, causing 
an NDVI drop, could result in false detections. Kolecka et al. (2018) 
significantly improved their results by using an optimized blue-band 
based cloud masking algorithm. Griffiths et al. (2020) built 10-day 
composites from the harmonized Landsat S2 (HLS) dataset to reduce 
gaps due to cloud cover. More recently, Schwieder et al. (2022) showed 
that the impact of clear image availability on mowing detection by S2 
and Landsat-8 is limited when at least 16 cloud-free observations are 
available during the season, while the temporal distribution of cloud- 
free observations remains critical. 

1.2. SAR and grassland mapping 

Ensuring regular and frequent observations can be a challenge using 
optical sensors, especially in regions with frequent cloud cover (Kolecka 
et al., 2018; Sano et al., 2007). SAR satellites carry active sensors, 
sending electromagnetic microwaves to the Earth's surface and 
measuring the backscattered signal amplitude and phase. Since active 
sensors are independent of sunlight and their microwaves are able to 
pass through cloud covers, SAR satellites provide regular observations 
through day and night. The backscattering intensity depends on sensor 
parameters (wavelength, polarization and incidence angle) and ground 
parameters (geometry, orientation and dielectric constant of soil and 
objects on the surface). A given signal interacts with objects and surface 
roughness with sizes larger or equal to its wavelength. C-band radars, 
such as Sentinel-1 (S1), have a wavelength of about 5 cm. They pene
trate vegetation covers and interact with structural elements (leaves, 

branches), causing volume scattering. On bare soil or short vegetation, 
the backscattering intensity is influenced mostly by surface scattering. 

Interferometric SAR (InSAR) measures the phase difference between 
two radar observations of the same area, taken from slightly different 
look angles. The interferometric coherence, which is a cross-correlation 
coefficient of two consecutive SAR observations, was initially computed 
to estimate phase noise for interferogram quality assessment. It has, 
however, also been exploited directly to estimate the temporal stability 
of ground targets. InSAR coherence has thereby been used for various 
applications including land cover mapping (Jacob et al., 2020; Strozzi 
et al., 2000), crop monitoring (Blaes et al., 1999; Shang et al., 2020) and 
soil moisture estimation (Barrett et al., 2009; De Zan et al., 2013; Rabus 
et al., 2010; Ulaby et al., 1979). 

The potential of SAR data for detecting mowing events in grasslands 
has been shown in several studies. Although some studies accurately 
detect mowing events based on backscattering coefficient time series 
(Curnel, 2015; Schuster et al., 2011; Taravat et al., 2019), more prom
ising results were obtained using interferometric coherence time series 
(De Vroey et al., 2021; Voormansik et al., 2020; Tamm et al., 2016). 

On tall vegetation, the signal is dominated by volume scattering. Due 
to gradual growth of vegetation and random movements of tall grass in 
the wind, the distribution of scatterers changes between two acquisi
tions, causing temporal decorrelation of the signal and hence lower 
coherence values (Blaes et al., 1999; Monti-Guarnieri et al., 2020; 
Morishita and Hanssen, 2014; Voormansik et al., 2020). InSAR coher
ence is therefore relatively low on grasslands during their growing 
phase. After a mowing event, as the grass is cut short, the soil surface 
scattering, which is more stable over time, dominates the signal (Blaes 
et al., 1999). The coherence is therefore higher. Typical coherence 
profiles, showing lower values during the growing phase and high values 
after the mowing event, have been observed on aggregated time series of 
about 1000 mown grasslands (Voormansik et al., 2020; Tamm et al., 
2016). Most mowing events can be detected in various permanent 
grasslands, based on jumps in smoothed S1 coherence time series (De 
Vroey et al., 2021). One of the main challenges in SAR is the speckle, an 
inherent variance caused by constructive and destructive interference 
between randomly distributed scatterers within a pixel (Lee et al., 
1994). Even homogeneous surfaces such as intensively managed her
baceous covers thereby appear heterogeneous, which makes it chal
lenging to work at sub-parcel level. 

Moreover, InSAR coherence can be impacted by other factors than 
the biomass, such as soil moisture and vegetation water content (Ulaby 
et al., 1979; Barrett et al., 2009; Rabus et al., 2010; De Zan et al., 2013), 
which could hinder mowing detection as well. 

1.3. Scope and objectives 

The various studies discussed here show promising results suggesting 
the feasibility of automated grassland mowing detection through remote 
sensing. One of the keys for developing an accurate and robust mowing 
detection method is the quality and completeness of the reference data. 
Most of the above-mentioned studies, however, lack representative and 
precise reference data for validation and results can therefore rarely be 
generalized. In addition, the extent of the study area is often limited to 
one (or a few) region(s) with similar landscapes and agricultural prac
tices. Moreover, many studies focus on exclusively mown – and often 
intensive – hay meadows. Information on types of grassland manage
ment is, however, rarely available. It should be noted that when 
applying optical or SAR based mowing detection methods on pastures 
and mixed practices (with both mowing and grazing activities), grazing 
was shown to be a confounding factor causing false mowing detections 
(De Vroey et al., 2021; Griffiths et al., 2020). 

In this study, we present a new method combining the completeness 
of the S1 time series and the higher accuracy of S2 in a multi-source 
grassland mowing detection algorithm. The method was developed as 
a module of an open source toolbox, in the frame of the ESA-funded 
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project Sentinels for Common Agricultural Policy (Sen4CAP), to facili
tate the compliance assessment to several CAP subsidy schemes or 
support measures. The development and calibration of the method are 
not discussed extensively in this paper. 

The objective of this paper is to introduce the operational Sen4CAP 
grassland mowing detection method, to validate its performances and to 
assess the potential of this multi-source approach for grassland moni
toring over large areas. The method was first validated in the context of 
the Sen4CAP project in the six countries where it was developed. This 
validation was based on high-resolution image interpretation to rapidly 
build a large reference dataset. The method performances were then 
thoroughly assessed in an independent study area, using a more precise 
and complete dataset collected during an intensive field campaign. In 
addition, the grassland mowing detection by S1 was deeper investigated, 
more specifically regarding the impact of soil moisture on InSAR 
coherence and on the subsequent mowing detections, based on hourly 
precipitation data. 

2. Method 

The mowing detection method of Sen4CAP was developed, cali
brated and refined in six pilot countries with varying climates and 
agricultural practices, namely Spain (ES), Czech Republic (CZ), Italy 
(IT), Lithuania (LT), the Netherlands (NL) and Romania (RO). The 
method consists of two independent object-based change detection al
gorithms based on S1 and S2 time series. Recent studies were considered 
as guidelines for feature and algorithm selection. S2 mowing detection 
was tested with normalized difference vegetation index (NDVI), leaf 
area index (LAI) and fraction of absorbed photosynthetically active ra
diation time series (fAPAR). S1 mowing detection was tested with 
backscattering and coherence in both VV and VH polarization. The 
available mowing date information in the pilot countries respective land 
parcel identification system (LPIS) data sets (i.e. a vector dataset based 
on legal declarations by farmers in each EU country, including parcel 
boundaries and crop types) were used as reference for the development, 
comparison and calibration of the detection algorithms. The resulting 
optimal combination of S1 and S2 features was S2 NDVI and S1 VH 
coherence time series. 

In this paper, we describe and validate the operational grassland 
mowing detection method, available in the Sen4CAP toolbox v3.0 
(Bontemps et al., 2022). 

2.1. Satellite image processing 

From S1, all Interferometric Wideswath (IW) L1C (Single Look 
Complex) images of the season, from S1 A and B satellites, in VH po
larization, from both ascending and descending passes intersecting the 
regions of interest, are downloaded. The SNAP S1-toolbox (ESA, 2022, 
v6.0) is used to process the images. Each image is coregistered with all 
intersecting images acquired six days before. The interferometric 
coherence is computed between consecutive S1 A and B images from the 
same polarization and pass, in order to have a 6-day baseline instead of 
12 (Tamm et al., 2016). The averaging window size is set to 5 × 20 pixels 
(in azimuth × range) for the calculation of the coherence. The pro
cessing chain further includes debursting, multilooking and terrain 
correction. The final resampled and ground projected images have a 
spatial resolution of 20 m × 20 m. 

From S2, all available top of atmosphere L1C images of the season, 
intersecting the regions of interest are downloaded. The atmospheric 
correction and cloud detection are performed using the MACCS ATCOR 
Joint Algorithm (MAJA). The multi-temporal cloud detection method 
implemented in MAJA allows to produce a more consistent and accurate 
cloud and shadow mask compared to the one obtained by the Sen2COR 
algorithm used by ESA (Hagolle et al., 2010; Baetens et al., 2019). The 
resulting L2A images and validity masks are then used to produce cloud 
masked surface reflectance time series. Only images with less than 90% 

cloud cover are used. The NDVI is computed using the standard equation 
applied to S2's red (band 4) and narrow NIR (band 8a) bands. 

The obtained features are then averaged per parcel to build S1 
coherence time series and S2 NDVI time series. A ‘no-touch’ pixel 
sampling approach was applied, taking into account only pixels that are 
completely inside the parcel boundaries. This allows to limit border 
effects, while guaranteeing a sufficient number of pixels per parcel to 
mitigate the speckle of the SAR imagery. 

2.2. Mowing detection algorithms 

The grassland mowing detection method is object-based and applied 
independently on each parcel. Two separate change detection algo
rithms are applied for S1 and S2 time series. Results are merged into a 
single output for each parcel combining detections based on a reliability 
indicator. 

The interferometric coherence is expected to increase after a mowing 
event because of the shorter vegetation, as explained in Section 1.2. The 
S1 algorithm therefore aims at detecting significant increases in coher
ence time series. Due to the growth of the vegetation, the coherence is 
expected to gradually decrease prior to a mowing event (Monti-Guar
nieri et al., 2020; Morishita and Hanssen, 2014; Zalite et al., 2016). 
Therefore, each value coh(t), extracted at time t, is compared to the value 
coh_fit(t - 1), predicted at time t - 1 by linear fit of the six previous values 
[coh(t - 6), …,coh(t - 1)]. This allows to consider a potential slope in the 
coherence profile and detect sudden increases, compared to the previous 
signal trend. The detection is based on a Constant False Alarm Rate 
(CFAR) criterion (Eq. (1)). 

coh(t). > coh fit(t − 1)+ kσ (1) 

The CFAR adaptive threshold (kσ) takes into account the standard 
deviation (σ) of the residual fitting errors, which are assumed to follow a 
Gaussian distribution in absence of a mowing event. The parameter k is 
fixed for a given probability of false alarm (PFA). 

As for the S2-based algorithm, it aims at detecting significant de
creases in the NDVI time series, while taking into account the irregular 
observation frequency due to cloud cover. Each observation NDV IS2(t), 
at time t, is compared to the last available cloud-free observation NDV 
IS2(tcf). The difference between NDV IS2(t) and NDV IS2(tcf) needs to be 
larger than a given threshold (Eq. (2)). 

NDVIS2(t). < NDVIS2
(
tcf
)
− thNDVI (2)  

where thNDV I is the fixed detection threshold. 
In order to guarantee a minimum temporal precision despite the 

large gaps that can occur due to cloud cover, a maximum detection in
terval Δtmax is fixed. If an event is detected in the interval [tcf,t] the 
actual mowing is expected to have occurred no more than Δtmax days 
before the low NDVI value at time t. If the time t - tcf exceeds Δtmax, the 
detection interval in the output is then defined as [t -Δ tmax,t] instead. 
Table 1 shows the values of the detection thresholds and temporal pa
rameters that were defined for the six pilot countries of the Sen4CAP 
project. 

Fig. 1 illustrates the detection of mowing events based on S2 NDVI 
and S1 VH coherence separately, on a grassland parcel in the 
Netherlands. 

Table 1 
Parameters for the S1 and S2 mowing detection algorithm and their calibrated 
values for the Northern (NL, LT, CZ) and Southern (IT, ES, RO) pilot countries of 
the Sen4CAP demonstration.  

Parameter Symbol North South 

Probability of False Alarm (S1) PFA 3.0 × 10− 7 

NDVI absolute decreasing threshold (S2) thNDV I 0.12 0.15 
Minimum time between two detections Δtmin 28 days 
Maximum detection interval (S2) Δtmax 60 days  
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The confidence levels of S1 and S2 detections are estimated through 
a normalization function (Eq. (3)). 

f (x;min,max) = max − (max − min)× e− x (3) 

Where x is the difference coh(t) – coh_fit(t – 1) and NDV IS2(tcf) – NDV 
IS2(t) – thNDV I for S1 and S2 respectively. The limits [min,max] are set to 
fit the confidence levels between separate range intervals ([0,0.5] for S1 
and [0.5,1] for S2). 

The confidence levels of overlapping S1 and S2 detections are then 
trivially merged. The four most confident detections, with a minimum 
interval Δtmin between tstart(1) and tend(2) of consecutive detections, are 
retained. For each retained detection of each parcel, the time interval 
([tstart,tend]), the detection source (S1, S2 or S1 + S2) and the confidence 
level are provided as output. 

2.3. Study areas and reference data 

This paper presents the validation of the grassland mowing products 
obtained in the six pilot countries (ES, CZ, IT, LT, NL, RO) where the 
method was calibrated and a second independent validation based on 
ground truth data collected in Belgium. 

2.3.1. Planet image interpretation 
The validation of the mowing detection method in the six pilot 

countries was based on Planet image interpretation to obtain dates of 
biomass removal on a large set of grassland parcels. 

For each country, a sample of about 100 to 200 parcels was randomly 
selected from the national LPIS datasets to be visually interpreted. The 

random selection was stratified in order to be statistically representative 
of national grassland parcels distribution in terms of management (e.g. 
pastures and meadows, permanent and temporary) and vegetation type 
(e.g. Alfalfa, clover, presence of orchids) with a minimum of five parcels 
per class. An exception to this rule was made in Castilla y Leon (ES), 
because the most abundant class (82%) was ‘grassland pastures’, which 
are mostly managed by grazing and not mowing. The fraction of mown 
grassland parcels in the Spanish sample was increased to 40% in order to 
include enough mowing events for validation. The selected samples, 
forming a total set of 803 grassland parcels across the six countries, are 
described in Fig. 2 and shown in Fig. 3. 

The reference mowing dates were then obtained through visual 
interpretation of daily true-colour Planet images (average resolution: 
3.5 m). For each parcel, the biomass removal intervals were identified, 
corresponding to the time interval between the last available cloud-free 
Planet image on which the grass seems to be tall (start date) and the first 
available cloud-free Planet image on which the grass seems to be short 
(end date) (Figs. 1 and 4 (a)). It is important to note that no clear 
distinction could be made between biomass removal by mechanical 
mowing or by intensive grazing. 

Due to cloud cover, the length of the removal intervals varies, with a 
minimum of one day. A temporal buffer of three days was applied to the 
removal intervals to build the truth intervals for validation in order to 
compensate for the uncertainties inherent to the image interpretation. A 
longer buffer was applied after the removal intervals to take into ac
count potential delayed detections due to grass left on the field to dry 
(Fig. 4 (a)). 

Fig. 1. Detection of mowing events on a grassland parcel in the Netherlands, based on S1 VH coherence and S2 NDVI and illustration of the validation from Planet 
image interpretation. 
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2.3.2. Independent field campaign 
An intensive field campaign was carried out in Wallonia, the 

Southern region of Belgium, to collect more precise and complete 
reference data for a fully independent performance assessment and to 
support a sensitivity analysis of the Sen4CAP mowing detection method. 

The most common grasslands in Wallonia are permanent pastures 
and parcels managed by a relatively intensive combination of mowing 
and grazing. Extensive hay meadows which are strictly mown with no 
grazing activity, have become scarcer over the past decades (DEMNA, 
2010). In most common grasslands, exploitation activities (grazing or 
mowing) start from mid-April. In grasslands of high biological interest, 
supported by the EU CAP, mowing is only allowed after the 16th of June, 
for flowering purposes, and before the 31th of October. 

The field campaign was conducted from the 9th of April to the 19th of 
July 2019. During this period, we monitored 426 permanent grassland 
parcels (Fig. 5), including pastures, mixed practices and extensive hay 
meadows. Each parcel was monitored 11 times through a windshield 
survey. We made the hypothesis that the distance to the road did not 
affect the performance of the mowing detection by remote sensing. 
Visits were made with intervals of 6, 12 or 18 days with the highest 
frequency in May and June, when the first cuts are expected to occur and 
the regrowth would be relatively fast. On each visit, the management 
status of each grassland parcel was registered (‘growing’, ‘recently cut’, 
‘being cut’, ‘grazed’). This resulted in a time series of field observations 

for each parcel. Three types of intervals were defined based on subse
quent field observations:  

• Mowing intervals, corresponding to the time between the last 
observation marked as ‘growing’ (start date) and a ‘recently cut’/ 
’being cut’ observation (end date) (Fig. 4 (b)) ;  

• Grazing intervals, corresponding to a ‘grazed’ observation (end 
date), preceded by any other observation (start date) (Fig. 4 (c)) ;  

• No activity intervals, corresponding to any observation (start date) 
followed by an observation marked as ‘growing’ (end date) (Fig. 4 
(d)). 

This survey resulted in a total of 4260 observation intervals (10 in
tervals for each of the 426 parcels) including 261 mowing intervals. 

2.4. Validation 

The performances of the mowing detection method were evaluated 
based on the different reference datasets and using three quality metrics, 
namely the detection rate, the precision and the the F1-score (Eqs. (4), (5) 
and (6)). 

detection rate =
TP

(TP + FN)
(4) 

Fig. 2. Distribution of parcels per grassland type selected for validation in each pilot country.  
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precision =
TP

(TP + FP)
(5)  

F1score = 2×
precision × detection rate
precision + detection rate

(6)  

where TP, FP and FN are respectively the count of true positives, false 
positives and false negatives. These values are computed by crossing the 
reference datasets with detections at the temporal interval level. Each 
mowing detection is expressed as a temporal interval (tstart - tend), in 
which the mowing probably occurred (i.e. detection interval). The 
reference data are also expressed in temporal intervals (i.e. truth in
tervals) (Sections 2.3.1 and 2.3.2). 

When a detection interval intersects a truth interval, it is considered 
as a true positive (TP). If no truth interval overlaps a detection, it is a 
false positive (FP) and if no detection overlaps a truth interval, it is 
counted as false negative (FN). The remaining intervals are true nega
tives (TN). 

Based on the TP, TN, FP and FN, the overall accuracy can be 

computed as well. It has to be noted that, given the relative rarity of 
mowing events, the overall accuracy is dominated by the numerous TN 
and therefore yields an overoptimistic summary of the performance of 
mowing detection. 

2.5. Topsoil moisture as a potential confounding factor 

In addition to the Sen4CAP mowing detection method validation, the 
impact of topsoil moisture on InSAR coherence was assessed as a po
tential confounding factor for the S1 mowing detection algorithm. This 
was done by estimating topsoil moisture at each S1 acquisition date and 
performing statistical hypothesis and separability tests on coherence 
values obtained in different topsoil moisture classes. 

The antecedent precipitation index (API) (Linsley et al., 1949) was 
used as proxy for topsoil moisture. The API is a weighted summation of 
daily precipitation amounts. Hourly precipitation measurements were 
obtained from 11 weather stations of the Pameseb network of the 
Walloon Agronomic Research Center (CRA–W). The location of the 11 
stations is shown in Fig. 5. Based on these measurements, the API at a 

Fig. 3. Overview of the geographical distribution of parcels selected in the six Sen4CAP pilot countries to validate the grassland mowing detection method with 
Planet image interpretation. 

Fig. 4. Schematic representation of the different truth intervals defined by Planet image interpretation (a) and from the observations made during the field campaign 
on 426 grassland parcels in Wallonia (c-d). 
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time t was computed as follows (Eq. (7)). 

APIt = r×APIt− Δt +PΔt (7)  

where r is a recession coefficient representing the rates of drainage and 
evapotranspiration processes. The commonly used value r = 0.84 was 
applied (Zhao et al., 2019). PΔt is the cumulative precipitation over the 

time Δt, fixed here at one day. 
Coherence time series were extracted for all permanent grassland 

parcels of the LPIS in a 5 km radius around each station, resulting in a 
total of 6966 parcels. The soil in the parcels around a station at time t 
was considered as ‘wet’ if APIt was in the upper quartile (0.75) of the 
station's values and as ‘dry’ if it was in the lower quartile (0.25). Each 

Fig. 5. Extent of the study area in Wallonia with (i) the location of the grassland parcels monitored during the field campaign and (ii) the 11 Pameseb weather 
stations from which hourly precipitation data were obtained. 

Fig. 6. Precision, detection rate and F1-score of the Sen4CAP mowing detection method estimated based on a visually interpreted reference dataset in six countries: 
Spain (ES), Czech Republic (CZ), Italy (IT), Lithuania (LT), the Netherlands (NL) and Romania (RO). The confidence interval of each metric is indicated in orange. 
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six-day interferometric pair of dates at each station could thereby be 
characterized as ‘wet-wet’, ‘dry-dry’, ‘dry-wet’ or ‘other’ if it did not 
correspond to any of these three classes. The coherence values of each 
class were then compared through statistical hypothesis tests and 
separability measures. The tests were performed on S1 data from the 
descending and ascending pass separately, as the different acquisition 
times - respectively around 6 a.m. and 6 p.m. - could alter the impact of 
topsoil moisture on the signal (e.g. dew in the morning). 

3. Results 

3.1. Large extent validation based on Planet imagery 

The main results of the validation in the six pilot countries of the 
Sen4CAP project are shown on Fig. 6. These results show statistically 
significant differences of precision and detection rates among the 
countries. The differences could be related to the type of grassland 
parcels used for validation (cfr. Fig. 2) as well as to the climate and 
landscape characteristics of each country. 

The best F1-score (76%) is achieved in the Netherlands, where the 
precision and the detection rates are equal. Italy and Lithuania have the 
largest detection rate (89% and 79%), but are penalized by a lower 
precision. 

The highest detection rates occur in regions with a large amount of 
temporary grasslands in the validation datasets. This can be explained 
by the larger biomass removal in the usually more productive temporary 
grasslands, but we did not have enough data to rigorously test this hy
pothesis in the scope of this study. 

The highest precision is obtained in Czech Republic and in the 
Netherlands. These two Northern countries also show the most balanced 
and confident performances. On the other hand, the prevalence of 
grazing practices could explain the lower precision obtained in Spain 
and Lithuania (54% and 49% respectively). 

In Spain and Romania, the drying of grass in the summer also needs 
to be considered as a confounding factor for Planet image interpretation 
as well as for the mowing detection algorithms, especially if grasslands 
are managed through mixed grazing and mowing practices. In Italy, the 
drought, although present, seems to have less impact on the mowing 
detection performances. This can be explained by the prevalence of 
temporary grasslands, which are generally mown (not grazed) earlier in 
the season and therefore less affected by drought. The Southern coun
tries (RO, ES, IT) are all characterized by a larger confidence interval, 
compared to the Northern countries (CZ, NL, LT). An additional analysis 
on the parcel size revealed no significant effect on the mowing detection 
performances across the pilot countries (Bontemps et al., 2021). 

3.2. Field based validation and performance assessment 

In the 426 permanent grasslands observed during the field campaign 
across Wallonia, the Sen4CAP mowing detection method reached an 
overall accuracy of 97% and a F1-score of 58%. This independent vali
dation showed a high detection rate of 83%, but the precision was rela
tively low, with only 44% of the detection intervals being true positives 
(i.e. actual mowing events). 

A more detailed analysis of the false positives reveals potential 
sources of error (Table 2). First of all, almost half of the false positives 
overlapped a grazing interval in the reference dataset. In the remaining 
cases, no activity was observed at the time of the detection. When dis
carding all parcels where grazing was observed, and taking exclusively 
mown parcels into account, the precision increases to 73%, as a large part 
of the false positives are removed. The detection rate is also slightly 
higher (85%). This results in a F1-score of 79% and an OA of 99%. 

In terms of detection sources, 54% of the false positives were based 
on S1 only, the remaining being almost equally distributed between S2 
and S1 + S2 (24% and 22% respectively). 

Finally, a majority (64%) of false positives occurred after the 20th of 

June. 
Further analysis of the mowing detection sources shows the 

complementarity of S1 and S2. Fig. 7 (a) shows the precision and detec
tion rate obtained using S2 and S1 algorithms alone, compared to the 
results achieved by the combined algorithms. The precision is highest 
when using S2 alone (59%), compared to 45% with S1 only and 44% 
with both. The detection rate, however, is largely improved, up to 83% 
with the combined detections, compared to 69% for each individual 
algorithm. Fig. 7 (b) shows the distribution of true and false positives per 
detection source when applying the combined algorithms. 80% of de
tections by S1 alone are false positives. The number of detections by S2 
alone is relatively low, with a small majority of false positives. The most 
certain detections are those confirmed by both satellites (72% TP for S1 
+ S2). 

The confidence level computed for each detection provides valuable 
information about their certainty. Fig. 8 shows the precision and the 
number of detections for different confidence level intervals. Most de
tections have a confidence level between 0.4 and 0.6 and between 0.8 
and 0.9. Under a confidence level of 0.4 less than 10% of the detections 
are true positives. Above a confidence level of 0.2, the precision is 
strongly correlated to the confidence level (R2 = 0.94). 

Finally, mowing detection performances were also analysed per 
parcel to assess the ability of the method to identify different types of 
mowing practice observed during the field campaign in terms of fre
quency and precocity of mowing events (ME) (‘no ME’, ‘1 early ME’, ‘1 
late ME’ and ‘2 ME’). Fig. 9 (a) shows the results considering all de
tections. As expected based on previous analyses, most false positives 
occur in parcels that were not mown during the study period, resulting 
in a low fraction (32%) of correctly identified ‘no ME’ parcels. From the 
parcels with 1 early ME and 1 late ME, respectively 58% and 76% are 
identified correctly. Most errors in these classes are due to an additional 
false positive. In the ‘2 ME’ class, 76% of the parcels are identified 
correctly and almost all errors are due to the omission of the first (early) 
ME. 

The same evaluation was performed after filtering out detections 
with confidence levels below 0.5 in order to reduce the number of false 
positives (Fig. 9 (b)). This significantly improves the results on ‘no ME’ 
parcels, as more than twice as many are then identified correctly (69%). 
Although more ME are omitted, performances are also slightly improved 
for parcels with 1 ME (from 58% to 60% for early ME and from 78% to 
83% for late ME). Performances on parcels with 2 ME, however, are 
much lower (24%) as the first ME is often omitted. Given that most 
omissions seem to occur for early ME, which are crucial for grassland use 
intensity assessment, the minimum confidence level could be adapted to 
the time of the season. 

A third test was performed considering early detections with a 
minimum confidence level of 0.4 and late detections with a minimum of 
0.5 (Fig. 9 (c)). This enhances the results on parcels with no ME (67%), 
while maintaining a reasonable detection rate of early events (74%) in 

Table 2 
Detailed analysis of false positives, highlighting potential sources of error for the 
Sen4CAP mowing detection using S1 and S2. Number (n) and fraction (%) of 
false positives per (i) observed activity at the time of detection, (ii) detection 
source of the detection and (iii) detection before or after June 20.  

FALSE POSITIVES (n = 268, commission error = 56%) 

Categories n % 
Field observation 

no activity 139 52% 
grazing 129 48% 

Detection source   
S1 145 54% 
S2 64 24% 
S1 + S2 59 22% 

Timing of the detection   
early event (≤ June 20) 91 34% 
late event (> June 20) 177 66%  
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parcels with ‘2 ME’. With this adaptive minimum confidence level, 69% 
of all parcels are identified correctly in terms of mowing practice, 
compared to 51% when taking all detections into account. 

3.3. Algorithm sensitivity 

In order to assess the sensitivity of the algorithm, it was tested with 
different parameter configurations in the Walloon study area. The 
parameter values defined in Table 1 for Northern countries were used as 
a baseline. We compared the detection rates and precisions obtained when 
increasing or decreasing these parameter values. 

The impact of different PFA and thNDV I values on the detection rate 
and precision are shown in Fig. 10 (a) and (b). When increasing the PFA 
for S1 mowing detection from 3 × 10− 7 to 3 × 10− 6 or 3 × 10− 5 the loss 
in precision is greater than the gain in detection rate, lowering the overall 
performance. When decreasing the PFA to 3 × 10− 8, the precision is 
slightly enhanced, while the detection rate is a bit lower. When changing 
the thNDV I for S2 detection either to 0.10, 0.14 or 0.20, the loss is sys
tematically more important than the gain in precision or detection rate. 
Overall, the changes in performances are relatively small in the range of 
tested threshold values, showing a small sensitivity to the algorithm 
parameter values. 

The analysis of the temporal parameters Δtmax and Δtmin is shown in 
Fig. 11. With a maximum detection interval of 60 days, most detection 
intervals don't exceed 24 days (Fig. 11 (a)), although the region is 
relatively cloudy, meaning a Δtmax of 60 days may be excessively 
cautious. When decreasing Δtmax down to 18 days and thereby reaching 
a higher temporal precision, there is no loss in detection rate (Fig. 11 (b)). 
At a Δtmax of 12 days, however, some detections become false positives, 
since the true mowing event was observed earlier. This results in a lower 
detection rate and precision. The minimum time Δtmin of 28 days between 

Fig. 7. (a) Mowing detection performances (precision and detection rate) of algorithms based on S1 and S2 time series alone compared to the merged approach. (b) 
Distribution of true and false positives per detection source (S1, S2 or S1 + S2) when applying the merged approach. 

Fig. 8. Precision and number of detections per given confidence level.  

Fig. 9. Mowing detection evaluation per type of observed mowing practice, considering (a) all detections, (b) detections associated with a confidence level above 0.5 
and (c) using an adaptive minimum confidence level for early and late detections. For each option, the fraction of correctly estimated parcels is given, along with the 
types of errors that occur (false positives, omissions or both). 
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two consecutive detections, on the other hand, seems to be an adequate 
choice (Fig. 11 (c)). Reducing Δtmin (to 21 or 14 days) or increasing it (to 
35 days) has an overall negative effect on the detection accuracy. 

These different results confirm that the standard set of parameter 
values (Table 1) for the Northern European countries seems most 
appropriate. 

3.4. Impact of soil moisture on interferometric coherence 

The distributions of S1 coherence values of grassland parcels in 
different topsoil moisture classes (‘wet-wet’, ‘dry-dry’, ‘dry-wet’ and 
‘others’) were compared in order to assess the impact of soil moisture on 
coherence (Fig. 12). Although the distributions of the four classes have 
significant overlaps, coherence values are slightly higher in average for 
the ‘dry-dry’ class than for the ‘wet-wet’ or ‘dry-wet’ classes. Coherence 
is also slightly higher for the ‘wet-wet’ class than for the ‘dry-wet’ one. 

The coherence distributions of each class were compared through a 
statistical hypothesis test. The resulting p-values are given in Table 3, 

along with the histogram intersections and the absolute differences 
between the averages (bias). The p-values are extremely low because of 
the large sample sizes (nmin ≈ 11000) used to compute the averages, 
which are indeed different from one class to another. The histogram 
intersections are however high, showing very limited separability be
tween the coherence values of the different topsoil moisture classes. The 
smallest intersection (71%) is between ‘dry-dry’ and ‘dry-wet’. These 
two classes also show the largest bias between their respective average 
coherence values, with coherences higher by 0.06 for the ‘dry-dry’ class. 
As it is more diverse, the ‘others’ class shows the least difference and 
separability with the three extreme classes. Overall, these results show 
that slightly higher coherence values can be expected on grasslands 
during consecutive dry periods. Important precipitations, resulting in 
‘dry-wet’ and ‘wet-wet’ classes, cause slightly lower coherence on 
average, due to signal decorrelation. 

Fig. 10. Sensitivity of the mowing detection algorithm calibration. Impact of two threshold parameters: (a) probability of false alarm (PFA) for S1 detection and (b) 
NDVI decreasing absolute threshold (thNDV I) on detection rate and precision, compared to the calibrated parameter values. 

Fig. 11. (a) Distribution of true and false positives per detection interval category Δt. Impact of (b) maximum detection interval (Δtmax) and of (c) minimum interval 
(Δtmin) between consecutive detections on detection rate and precision, compared to the calibrated parameter values. 
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4. Discussion 

4.1. Complementarity of S1 and S2 

Optical vegetation index time series have been used previously for 
detecting mowing events, providing overall satisfying results (Griffiths 
et al., 2020; Kolecka et al., 2018; Schwieder et al., 2022). These 
methods, however, rely on the availability of cloud-free images before 
and, more importantly, after an event. Depending on the region of in
terest, this condition cannot always be met. During the growing season 
in Belgium for example, there are only 4 to 6 days per month with less 
than 20% cloud cover and 6 to 11 days per month with more than 80% 
cloud cover (Meteoblue, 2021). Such a persistent cover, which is 
frequent in Northern European countries, strongly reduces the actual 
observation frequency of S2. Griffiths et al. (2020) used the HLS dataset 
(from 2016, before Sentinel-2B was launched) and compositing to build 
a regular NDVI time series and obtained promising results. Their biggest 
drawback was however the significant amount of omitted mowing 
events. Schwieder et al. (2022) developed a similar method, based on 
HLS (with the complete Sentinel-2 constellation) and detecting anom
alies, compared to an idealized grassland phenology curve. Their results 
on hay meadows (F1-score 58-67%) are comparable with those obtained 
in this study, on meadows and pastures, when using S2 alone. Their 
detection method however included more conservative detection rules 
and thresholds to avoid false detections (e.g. due to unmasked clouds), 
gaining in precision, but omitting more events. 

SAR imagery represents a great asset for mowing detection in cloudy 
areas, as microwaves are transmitted through clouds. Our results are 

consistent with previous studies, showing that mowing events can be 
detected through jumps in InSAR coherence time series (De Vroey et al., 
2021; Voormansik et al., 2020; Tamm et al., 2016). Detections by S1 are, 
however, less precise than by S2. This was confirmed by our analysis of 
the detection sources in the Walloon study area. The SAR signal can be 
impacted by many factors outside the reduction of biomass, such as soil 
and vegetation moisture. On the descending pass, images are acquired in 
the early morning (around 6 a.m.). Since both passes are used to build S1 
time series for the detection, the effect of morning dew on the SAR signal 
could be a possible explanation to the lower performances. The signal 
decorrelation due to increased soil moisture, thus preventing coherence 
to rise after a mowing event, is a potential cause for omissions (Section 
3.4). Applying a systematic bias correction would, however, require a 
cautious investigation because of the variability of the soil moisture 
impact. Overall, the complex interaction of SAR signal with object and 
surfaces, and the inherent speckle of SAR imagery, make it more chal
lenging to interpret. 

Despite the challenges inherent to SAR based methods, the combi
nation of S1 and S2 detection algorithms in this multi-source method 
significantly increased the detection rate. Some of the events that were 
omitted by S2 due to cloud cover could be detected by S1. Conversely, 
events that were omitted by S1 due to change in soil moisture or other 
confounding factors, could be detected by S2 when a clear image was 
available shortly after the event. 

Moreover, the estimated confidence levels, based on the normaliza
tion of the amplitude of the signal change and used to merge the S1 and 
S2 detections, were shown to be well correlated to the precision of the 
detection. They are consequently a good indicator of the probability of 
occurrence of a mowing event and can be used to screen out detections 
according to the final use, in order to be more or less conservative. 

The complementarity of optical and radar imagery for mowing 
detection was also recently confirmed by Lobert et al. (2021) with a deep 
learning approach. In their study, they compared different combinations 
of S1, S2 and Landsat-8 features in a convolutional neural network 
(CNN). All combinations of optical and SAR features outperformed 
exclusive uses of either optical or SAR features. NDVI and coherence was 
their fifth best performing combination, with a detection rate (recall) of 
85% and a precision of 79%. From a fully independent validation, we 
obtained comparable results on hay meadows in Wallonia, using similar 
input features in a versatile and transparent rule-based change detection 
method. 

Overall, recent studies on automated grassland mowing detection 
seem to show coherent results and conclusions. Multi-source mowing 
detection methods combining optical and SAR data should be further 
investigated and developed. 

4.2. Reference data and validation 

Although previous studies showed the feasibility of mowing detec
tion through satellite remote sensing, they often lacked sufficient precise 
and complete reference data to calibrate and validate their methods 
(Reinermann et al., 2020). Information on mowing dates and practices is 
rarely readily available and collecting it in situ is extremely time 
consuming. 

Image time series interpretation offers a cost effective and less time 
consuming alternative for grassland mowing detection validation, as a 
unique reference dataset or as a complement to smaller samples of re
ported or observed mowing events (Griffiths et al., 2020; Schwieder 
et al., 2022). In this study, the Planet image interpretation approach 
allowed to rapidly gather a large reference dataset (n = 803) to validate 
the mowing detections in six countries along the whole season (April to 
October 2019). However, the reliability of this reference dataset was 
limited for a number of reasons. First, persistent cloud coverage pre
vented the observation of some events in Northern countries. Secondly, 
the absence of the NIR band in the Planet Web Mapping Service avail
able for the Sen4CAP partners limited the certainty of observations due 

Fig. 12. Distribution of S1 coherence (VH ascending) values for different 
topsoil moisture classes in grassland parcels. 

Table 3 
Comparison of S1 coherence (VH ascending) values distributions in different soil 
moisture classes. In each cell, the table shows the statistical t-test p-values (top), 
the histogram intersection (centre) and the bias (bottom) between classes.  

Soil moisture classes dry-dry dry-wet others 

wet-wet < 10− 5 < 10− 5 < 10− 5 

82% 81% 91% 
− 0.03 0.02 − 0.01 

dry-dry  < 10− 5 < 10− 5  

71% 86%  
− 0.06 0.02 

dry-wet   < 10− 5   

84%   
− 0.03  
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to confusion with ploughing events and grassland droughts in the 
Southern countries. Finally, the varying radiometric and geometric 
precision of Planet images, depending on the satellites that acquire the 
data, increased the uncertainty of the interpretation. 

Overall, there is a risk of non independence between the reference 
data and the classification results due to the similarity of criteria used by 
the machine and by the image interpreters. This non independence 
could introduce a bias in the estimation of accuracy indices (Radoux and 
Bogaert, 2020). 

The second validation dataset acquired through an intensive field 
campaign is much more complete, more accurate, and fully independent 
of the classification rationale. This dataset allowed to estimate the 
detection rate and the precision of the mowing detection method with 
more certainty, to test its transferability and evaluate its potential for 
grassland use intensity assessment. While the results of the Planet-based 
validation reflect the ability of the method to detect grassland biomass 
removal, regardless if by mowing or intensive grazing, the field dataset 
of Wallonia allowed to validate the detection of actual mowing events 
(differentiating them from grazing). During the field-based validation, 
mowing detections overlapping grazing intervals were considered as 
false positives, which strongly reduced the computed precision. Half of 
the false positives were confirmed as intensive grazing events. Such 
detections would be considered as true positives in the Planet-based 
validation since there was no distinction between mowing and grazing 
in the reference dataset. 

In addition to - and depending on - the source and quality of refer
ence data, the performances of a mowing detection method can be 
evaluated at different levels. In this study, we used a conservative 
validation approach, which reflects the ability to exactly detect the 
occurrence and the timing of each mowing event and allows to compute 
explicit metrics such as the precision, detection rate and F1-score (Lobert 
et al., 2021; De Vroey et al., 2021; Schwieder et al., 2022). With such an 
approach, a delayed or untimely detection is counted as a false negative 
and a false positive. Therefore, we performed an additional analysis per 
parcel, to assess the ability of the method to identify different types of 
mowing practice in terms of frequency and precocity of ME. Another 
possible approach is to validate the frequency and the exact timing of 
mowing events separately (Griffiths et al., 2020; Schwieder et al., 2022). 
With this approach, a delayed (or untimely) detection is only considered 
as an error in terms of timing, since the mowing frequency is accurate. In 
general, a combination of different levels of performance evaluation 
provides the best and most complete estimation of a methods potential 
and limitations and allows to compare results between studies. 

4.3. Diversity of practices 

Given the diversity of climates, landscapes and grassland manage
ments across Europe, it is challenging to develop a grassland mowing 
detection method that is adapted to all regions. Part of the dissimilarities 
in mowing detection performances between the pilot countries can 
indeed be explained by climate. While more mowing events are omitted 
in Northern regions due to cloud cover, drought can cause false de
tections and reduce the precision of the method in Southern regions. 

The method accurately detects removal of grass biomass and works 
best on permanent grasslands managed as hay meadows. Most studies on 
grassland mowing detection focus on permanent hay meadows. How
ever, from an operational point of view, we wanted to assess its per
formances on diverse grassland management types because precise land 
cover and land use information is not always available. The various 
types of grasslands in the pilot countries, i.e. more or less intensive, 
temporary or permanent, pastures or meadows, vegetation types, etc. 
can also explain part of the discrepancies in the results. 

The performances of the mowing detection method in different 
grassland types could however not be assessed quantitatively, because of 
the limited available information and the lack of uniformity between the 
countries respective LPIS grassland categories. In many cases, the 

categories remain subject to interpretation in terms of management type 
and intensity. For example, in Romania a distinction is made between 
meadows and pastures, while some grasslands are classified more 
generally as permanent grasslands. In Italy and Spain, grasslands include 
leguminous crops. In Czech Republic, the Netherlands and Lithuania, a 
majority of parcels are classified as permanent grasslands, which could 
be either mown or grazed, more or less intensively. 

The field dataset collected in Wallonia was restricted in terms of land 
cover to permanent grasslands dominated by gramineous plants, but 
included all types of agricultural land use, namely pastures, meadows 
and mixed practices. The regular field observations provided more 
precise information about the management of each parcel. This allowed 
to analyse the mowing detection performances with regards manage
ment types. In any case, the SEN4CAP algorithm performed as expected. 
On one hand, under the same conditions, late ME are better detected 
than early ME. Detection may be hindered because of faster regrowth of 
grass in the spring, making it more challenging to spot the smaller 
decrease in biomass. Detecting early mowing events is however crucial 
for grassland use intensity assessment. Increasing the detection rate to 
capture the early ME however implies to sacrifice some precision. On the 
other hand, grazing practices that engender a large biomass removal in a 
short period of time (e.g. intensive rotational grazing) are a major 
confounding factor. Without information about the location of hay 
meadows, increasing the precision in areas with intensive pasture 
therefore requires to sacrifice the detection rate. 

Other practices can potentially prevent the accurate detection of 
mowing events by S1 and S2. For example, when cut grass is left on the 
parcel to dry during a few days after a mowing event, it can influence the 
signal and prevent an accurate change detection. 

Finally, it must also be considered that the management practices 
might not be homogeneous at the parcel-level. Indeed, the full parcel, as 
declared in the LPIS, is not always mown at the same time (e.g. in the 
case of rotating intra-parcel management). In an object-based approach, 
partial mowing of parcels risk being omitted as both mown and unmown 
pixels contribute to the average parcel value, reducing the apparent 
change in the time series. Pixel-based mowing detection approaches 
using optical imagery have shown promising results (Griffiths et al., 
2020; Kolecka 411 et al., 2018; Schwieder et al., 2022). Monitoring 
grasslands at the pixel level allows to account for intra-parcel variability 
in terms of practices, but on the other hand, it causes a salt and pepper 
effect that is avoided in an object-based approach. Moreover, while 
optical pixel-based mowing detection is feasible, the speckle effect 
inherent to SAR imagery would probably be a significant issue for SAR 
pixel-based mowing detection. Furthermore, the combination of S1 and 
S2 mowing detection at pixel level would be more complex and imply a 
resampling step. Another option would be to use S1 and S2 data fusion 
methods simulating optical images (Garioud et al., 2021; He and 
Yokoya, 2018) to work at the pixel level while compensating for cloud 
cover. 

Overall, the multi-source mowing detection method presented here 
detects mowing events with a relatively high accuracy and allows to 
consistently differentiate various mowing practices and grassland use 
intensity trends across different agro-geographical regions. It can be 
adapted by changing the detection threshold parameters to optimize the 
balance between detection rate and precision, depending on the context 
and objective of its use. Furthermore, the final result can be filtered, 
based on the provided confidence level, as it is a good indicator for the 
reliability of the detections. The mowing detection method of Sen4CAP 
could thereby be used for large-scale grassland monitoring and even 
mapping ecological habitat quality. 

5. Conclusion 

This study showed the full potential and limitations of Sen4CAP's 
multi-source mowing detection method based on S1 and S2 time series. 
The exhaustive reference datasets allowed to show the consistency of the 
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algorithm across seven European countries and various types of grass
lands, while highlighting the importance of reference data quality. 
Thanks to the complementary use of S1 and S2, the method reached a 
detection rate of 85% and a precision of 73% (F1-score 79%) for detecting 
mowing events on hay meadows. Furthermore, the detection of mowing 
events along the growing season allows to classify mowing practices 
with an overall accuracy of 69% and should allow to differentiate 
grasslands in terms of management intensity. 

Further efforts are still needed to improve the mowing detection 
accuracy and produce a more precise and thematically more complete 
grassland management map. Nevertheless this adaptive and transparent 
mowing detection method could be implemented in large-scale grass
land monitoring. Combined with ecological modelling tools, it could be 
used to support agro-environmental schemes in Europe. 
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