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Abstract
1. In animal ecology, energy expenditure is used for assessing the consequences 

of different behavioural strategies, life- history events or environments. Animals 
can also influence energy expenditure through instantaneous behavioural re-
sponses to their external environment. It is therefore of interest to measure 
energy expenditure of free- ranging animals across seasons and at high temporal 
resolutions. Heart rate has historically been used for this, but requires invasive 
surgery for long- term use. Dynamic body acceleration (DBA) is an alternative 
proxy for energy expenditure that is simpler to deploy, yet few studies have 
examined how it performs over extended time periods, or for species using dif-
ferent locomotory modes, especially passive modes like soaring flight.

2. We measured DBA alongside heart rate in free- ranging lesser black- backed 
gulls, a seabird that moves using flapping flight, soaring and walking, and rests 
on both land and water. Our objectives were to compare the relative changes in 
DBA and heart rate among and within behaviours and to examine how acceler-
ometers can be used to estimate daily energy expenditure by comparing DBA to 
time- energy budgets (TEBs).

3. DBA and heart rate were sampled concurrently at 2.5-  and 5- min intervals 
throughout the breeding season, though measurements were not exactly syn-
chronised. Behaviour was identified from accelerometer measurements, and 
DBA and heart rate were averaged over bouts of consistent behaviour. Heart 
rate was converted to metabolic rate using an allometric calibration, after con-
firming its fit using metabolic measurements taken in captivity and values from 
existing literature.

4. Both proxies showed similar changes among behaviours, though DBA overes-
timated costs of floating, likely due to waves. However, relationships between 
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1  |  INTRODUC TION

Living organisms constantly expend energy. Energy is used to fuel 
resting processes such as basal metabolism, thermoregulation, pro-
duction (e.g. growth, body maintenance) and digestion, as well as 
physical activity (e.g. locomotion). The balance between energy gain 
and use determines an individual's ability to survive, grow and re-
produce, and thus energy is considered to be a unifying currency in 
biology (McNab, 2002; McNamara & Houston, 1996; Ricklefs, 1996). 
In animal ecology, determining patterns of daily or seasonal energy 
expenditure can reveal the consequences of inhabiting different en-
vironments or employing different behavioural strategies (Anderson 
& Jetz, 2005; Careau & Garland, 2012), as well as exploring how en-
ergy requirements vary throughout the year or between life- history 
stages (Dunn et al., 2020; Rotics et al., 2016). Organisms can also 
influence their daily energy expenditure (DEE) through fine- scale 
responses to their environment. For example, animals may be able 
to reduce energy expenditure by avoiding landscape features that 
increase locomotion costs (Shepard et al., 2013), or by moving at 
times when environmental conditions facilitate passive movement 
(Gibson, 2003; Shamoun- Baranes et al., 2016). As such, measuring 
metabolic rates of free- ranging animals at both high temporal res-
olutions and continuously throughout the annual cycle provides a 
mechanistic explanation of the internal and external drivers influ-
encing the ecology, behaviour and evolution of species (Tomlinson 
et al., 2014).

Several proxies have been developed to estimate metabolic 
rates in free- ranging animals, including mass loss, isotopic turnover 
(e.g. doubly labelled water technique), heart rate (fh), dynamic body 
acceleration (DBA) and time- energy budgets (TEBs; reviewed by 
Elliott, 2016). Of these techniques, only fh and DBA have the capac-
ity to both detect near- instantaneous changes in energy expenditure 
(i.e. resolutions of several seconds; Bishop et al., 2015), while being 
remotely monitored so that energy expenditure can be continu-
ously measured at seasonal or annual time- scales (Flack et al., 2016; 
Green, Boyd, et al., 2009).

Measuring fh in the wild for long periods typically requires sur-
gical implantation, making it invasive and logistically challenging in 
field conditions. The fh method relies on Fick's equation, which states 
that the rate of oxygen consumption (V̇O2

) is equal to the product of 
heart rate and the O2 consumed by the animal per heartbeat. Heart 
rate is therefore only a partial measure of oxygen uptake from the 
blood, thus the relationship between fh and V̇O2

 in an individual can 
change with, for example, body mass, heart volume, activity mode 
and stress (Green, 2011). As such, derivation of energy estimates 
from fh typically requires species and activity- specific calibrations 
(Green, 2011). When measured alone, fh provides limited informa-
tion regarding activity mode, though coarse identification of rest-
ing and active periods might be possible (Green, White, et al., 2009; 
Pelletier et al., 2007).

Dynamic body acceleration is measured via tri- axial acceler-
ometers, which can be incorporated into existing biologging de-
vices that are typically externally attached and thus require no 
additional effort or invasive protocols to deploy. DBA is the sum 
of the dynamic acceleration along three axes of the body (Wilson 
et al., 2006; Yoda et al., 2001). Acceleration is achieved through 
mechanical work performed by muscles, which should be pro-
portional to the amount of energy being used to move (Gleiss 
et al., 2011; Halsey, Shepard, et al., 2011). As such, DBA does not 
provide information on fluctuations in resting metabolic rate, un-
less these changes are accompanied by some form of acceleration 
(e.g. shivering; Green, Boyd, et al., 2009; Hicks et al., 2017; Wilson 
et al., 2019). Further, the efficiency with which mechanical work 
can be fuelled by chemical energy can differ depending on the 
mode of locomotion, thus behaviour- specific calibrations are likely 
needed (Gómez Laich et al., 2011; Halsey, White, et al., 2011). 
Accelerometers can also detect environmental acceleration (e.g. 
from wind or waves), which may bias energy estimates during pas-
sive forms of locomotion (e.g. soaring flight) or in certain environ-
ments (e.g. waves while floating).

In addition to being applied as a measure for fine- scale 
changes in energy expenditure, DBA has been demonstrated to 

DBA and heart rate were weak within a behaviour mode, possibly due to the lack 
of synchrony between proxy measurements.

5. On daily scales, DBA and TEBs perform comparably for estimating daily energy 
expenditure. Accelerometery methods deviated from a 1:1 relationship with 
heart rate because acceleration could not measure variation in resting metabolic 
costs.

6. We conclude DBA functions well for detecting energy expenditure arising from 
activity costs, including during soaring flight. We discuss scenarios where one 
method (DBA vs. TEBs) may be preferred over the other.

K E Y W O R D S
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be a good predictor of DEE (e.g. Elliott et al., 2013; Jeanniard- du- 
Dot et al., 2017; Stothart et al., 2016). These validation studies, 
comparing average DBA to field metabolic rates determined using 
doubly labelled water, typically conclude that behaviour- specific 
DBA calibrations significantly improve the accuracy of estimating 
DEE in species that use a range of locomotory modes. Instead of 
calculating DBA, acceleration patterns can also be used to iden-
tify different behaviours (e.g. locomotory modes), allowing for de-
tailed partitioning of time between activities. A constant energetic 
cost can then be assigned to each behaviour, either measured in 
captivity or based on biomechanical models or allometric relation-
ships, which can be integrated in time to estimate DEE (i.e. a TEB). 
The TEB approach thus ignores changes in energetic costs within a 
behaviour caused by, for example, changes in speed or body mass 
(Pennycuick, 2008), though circumvents the need for calibration 
relationships to interpret DBA.

The use of accelerometers is rapidly gaining popularity as an 
alternative method for measuring energy expenditure in free- 
ranging animals (Brown et al., 2013; Joo et al., 2020). However, 
while DBA has been successfully validated across a range of taxa 
for walking (Halsey et al., 2009; Wilson et al., 2006), the relation-
ship between DBA and energy expenditure during other modes 
of locomotion has been less extensively explored, particularly for 
flapping and soaring flight (Hicks et al., 2017). Heart rate, having 
equally high temporal resolution and potential to record over ex-
tended time- scales as accelerometers, presents a good standard 
against which we can assess the effectiveness of using acceler-
ation as a proxy for energy expenditure on both fine and daily 
scales (Hicks et al., 2017).

In this study, we concurrently measure acceleration and fh on 
free- ranging lesser black- backed gulls Larus fuscus, a seabird spe-
cies that uses a range of locomotory behaviours (flapping flight, 
soaring flight and walking), and rests on both land and water. Our 
first objective is to examine how DBA corresponds to energy ex-
penditure when measuring both across and within different be-
haviour modes in a wild setting, by comparing it to the fh method. 
This includes two parts: (1a) We compare the relative changes 
within both proxies among different behaviour modes (flapping, 
soaring, walking, floating and resting on land). Here, both soaring 
flight (being a passive vs powered locomotory mode) and floating 
(being susceptible to environmental variation) are of particular in-
terest as DBA may be less able to predict metabolic rate of these 
behaviours. We report average energetic costs of these behaviour 
modes, which can be used in TEB analyses. (1b) We examine the 
relationships between DBA and metabolic rate estimated from fh, 
both separately within a behaviour, as well as across bouts of all 
behaviours. Our second objective is to determine how accelera-
tion data can best be used to estimate DEE. To do so, we com-
pared DEE from DBA and TEB methods to that from the fh method, 
using the average costs per behaviour and relationships between 
DBA and metabolic rate found in objective 1. Finally, we explore 
how variation in resting metabolic rate, based on daily minimum 

fh, influences the relationship between fh- based and acceleration- 
based estimates of DEE.

2  |  MATERIAL S AND METHODS

2.1  |  Capture, tagging and implantation

Four male and two female lesser black- backed gulls were captured 
during incubation using a walk- in trap between 28 and 31 May 
2019 in their breeding colony (Texel, the Netherlands, 53°00′N, 
04°43′E). The birds were colour- ringed and measured, and solar- 
powered GPS trackers with tri- axial accelerometers (13.5 g, 
5CDLe trackers, UvA Bird tracking system; Bouten et al., 2013) 
were attached to the back of the birds using a Teflon ribbon ‘wing 
harness’ (Thaxter et al., 2014). This GPS tagging method does not 
appear to impact breeding productivity (Kavelaars et al., 2018) or 
colony return rates (Thaxter et al., 2016), though nest desertion 
occasionally occurs after capture and handling of both tagged 
and untagged birds. Heart rate (fh) was derived from electrocar-
diograms measured with implantable loggers (15 g, size M Stellar 
implants, TSE systems, www.tse- syste ms.com). Heart rate loggers 
were surgically inserted in the field under full anaesthesia imme-
diately following ringing and GPS attachment (see Appendix S1 for 
implantation methods). The combined weight of the GPS trackers 
and heart rate loggers was 3.2%– 4.6% of body mass.

GPS fixes, including location, altitude, instantaneous speed 
and direction, were recorded every 15 min within the colony and 
every 5 min outside the colony. Acceleration was recorded in 1- s 
segments at 20 Hz every 2.5 min as well as directly following each 
GPS fix. An electrocardiogram (ECG) was recorded for a 4- s interval 
at 500 Hz, with 82% of the data being collected at a 5- min interval, 
and the remainder at a 10- min interval. Because we used separate 
systems, acceleration and ECG measurements could not be exactly 
synchronised. Base stations in the colony were used to remotely 
program recording schedules and download data for both GPS and 
fh systems. Long data gaps sometimes occurred in fh data as a result 
of breaking contact during download.

Five birds resumed incubation following release. The sixth bird 
abandoned its nest and only GPS and acceleration data, but no 
fh data could be recovered due to different transmission ranges. 
Data were collected from the remaining individuals over a period 
of 3– 5 weeks while they were returning regularly to the colony to 
incubate or provision chicks. Air temperatures during this period 
ranged between 11.1 and 32.7°C, within the thermal neutral zone 
for this species (Appendix S2), and sea surface temperatures ranged 
between 12.3 and 18.6°C (ERA5; Hersbach et al., 2018).

All six birds returned to the colony in 2020, demonstrating birds 
can successfully migrate and survive with these devices long term. As 
captured individuals will not re- enter traps during the same breeding 
season, we have been trying to recapture individuals during subse-
quent breeding seasons to remove both devices. Currently, three 

http://www.tse-systems.com
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birds have been successfully recaptured and released following sen-
sor removal.

2.2  |  Energy expenditure

Vectoral dynamic body acceleration (DBA) was calculated as in 
Wilson et al. (2019), and fh was extracted from ECG (full methodol-
ogy in Appendix S3). A calibration for DBA was calculated by walking 
two captive lesser black- backed gulls on the treadmill and used to 
estimate metabolic rate from DBA (see Appendix S4 for full methods 
on estimating energy expenditure in this study, and Appendix S2 for 
full methods and results of captive work). Heart rate was converted 
to metabolic rates using an allometric calibration equation (Bishop & 
Spivey, 2013), the fit of which was confirmed using metabolic meas-
urements of lesser black- backed gulls in captivity and expected val-
ues based on published literature (Appendix S5 and Figure S1).

As fh and DBA measurements could not be exactly synchronised 
in time (see Section 2.1), we identified bouts from periods where 
consecutive accelerometer measurements were classified as the 
same behaviour (flapping, soaring, walking floating and resting) and 
averaged DBA, fh and energy estimated from each proxy over the 
bout (Appendix S4).

2.3  |  Data analysis

Linear models (LMs) were the primary statistical test used to com-
pare among proxies. Typically mixed models are employed to control 
for individual effects; however, due to the low number of individu-
als, estimates of individual random effects were sometimes singu-
lar. Instead, individual was included as a fixed effect, and the data 
were centred over the individual factor so the model intercept 
falls at the group centre (Schielzeth, 2010). For LMs without con-
vergence issues, Akaike's information criterion (AIC; Burnham & 
Anderson, 2010) usually indicated that it was more parsimonious to 
include individual as a fixed factor than a random effect, so we use 
fixed factors throughout for consistency. Instead of reporting pa-
rameters estimated for all levels of the individual factor, we report 
standard deviation around the mean of the individual intercepts. To 
account for potential effects of post- surgical recovery on fh, the four 

days following surgery were excluded from analyses. All analyses 
were performed in R version 4.0.2.

2.3.1  |  Objective 1a. Comparison of DBA to heart 
rate: Relative changes among behaviours

To compare the relative changes in DBA and fh, metabolic rate esti-
mated from heart rate (MRhr) and metabolic rate estimated from DBA 
(MRDBA) among bouts of flapping, soaring, walking, floating and resting, 
the proxies and estimated MRs were used as the response variable in 
a LM with behaviour and individual as fixed factors. Significant differ-
ences between behaviours within a given proxy were assessed for each 
method using Tukey's post hoc test. Comparisons among proxies were 
not tested as DBA and fh did not have the same units, while differences 
in MRhr and MRDBA were not tested as the walking calibration for DBA 
was not expected to be applicable to other behaviours.

2.3.2  |  Objective 1b. Comparison of DBA to heart 
rate: Linear relationships

MRhr of behavioural bouts was modelled as a linear function of DBA, 
behaviour mode and their interaction, using LMs with individual as 
a fixed factor, to assess whether the relationship between DBA and 
energy expenditure changes across behaviours. AIC was used to as-
sess the most parsimonious groupings of behaviours (i.e. whether 
some or all behaviours demonstrate the same DBA– MRhr relation-
ship). To examine the relationship within a behavioural mode, we 
used separate LMs of MRhr as a function of DBA per behaviour, in-
cluding individual as a factor.

2.3.3  |  Objective 2. Using acceleration to 
estimate DEE

To examine how acceleration can best be used to estimate DEE, 
we averaged MRhr over the course of a day (Portugal et al., 2016), 
weighted by the interval between fh measurements, to obtain an aver-
age field metabolic rate, then multiplied by a 24- hr period (DEEhr). We 
then estimated DEE from four acceleration- based methods. Method 

TA B L E  1  Number and median and maximum durations (dur.) of behavioural bouts, along with mean (± standard deviation) heart rates (fh), 
DBA and metabolic rate estimate from fh (MRhr) and DBA (MRDBA), per behaviour. Ratio to resting metabolic rate was based on MRhr and the 
resting metabolic rate measured in the lab (RMRlab = 4.59 W)

Behaviour
No. 
bouts

Med. dur. 
(min)

Max. dur. 
(min)

Mean. fh 
(beats/min) Mean. DBA (g) MRhr (W) MRDBA (W) MRhr:RMRlab

Flap 290 15 119 360 ± 60 0.661 ± 0.052 32.0 ± 11.1 19.0 ± 1.2 7.0

Walking 75 12 49 200 ± 37 0.199 ± 0.036 8.5 ± 3.2 8.2 ± 0.8 1.8

Soar 68 11 88 181 ± 37 0.123 ± 0.038 7.9 ± 3.8 6.4 ± 0.9 1.7

Float 201 15 100 162 ± 44 0.121 ± 0.030 6.6 ± 3.8 6.4 ± 0.7 1.4

Rest 1,108 27 396 160 ± 42 0.028 ± 0.021 6.2 ± 3.4 4.2 ± 0.5 1.3
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1 converts DBA to MR using a single calibration relationship across 
all behaviours (DBAsingle) and method 2 uses behaviour- specific cali-
brations to convert DBA to MR (DBAbehave). The LMs calculated in 
Section 2.3.2 were used for these conversions. Method 3 estimates 
DEE using a TEB differentiating five behaviour modes (TEBbehave), and 
method 4 uses a simplified TEB only differentiating flight, floating and 
resting, such as can typically be reconstructed from GPS data (TEBGPS). 
The mean MRhr for each behaviour calculated in Section 2.3.1 and re-
ported in Table 1 were used in TEBbehave. For TEBGPS, a single cost of 
flight was estimated from the mean of MRhr while flapping and soar-
ing, weighted by the flap– soar ratio over the study (65.9% flapping). 
Walking was combined with resting and assigned the mean MRhr while 
resting. Unclassified accelerometer measurements were excluded. 
Acceleration- based estimates of MR were averaged over the day and 
weighted by the time until the next acceleration measurement and 
multiplied by a 24- hr period. In case of a data gap, only periods when 
both proxies had data were used in daily averages. Days with less than 
12 hr of coverage were discarded.

As both measurement methods contain error, we used major 
axis regression to examine the relationship between each accel-
erometery method and DEEhr. To account for uncertainty in the 
conversion of acceleration to metabolic rate, we used a bootstrap-
ping approach. First, 500 potential calibration parameters (slope 
and intercepts) or behaviour costs (depending on the acceleration 
metric) were simulated using a normal distribution centred at the 
parameter mean and with a standard deviation equal to the stan-
dard error around the parameter mean. These simulated calibra-
tion relationships and behaviour costs were then used to convert 
acceleration to metabolic rate and estimate DEE, resulting in 500 
sets of estimated DEE per acceleration metric. Next, to estimate 
standard error around the regressions, each DEE set was boot-
strapped 500 times resulting in a total of 250,000 resampled data-
sets. The 2.5% and 97.5% quantiles of the slopes and intercept of 

the major axis regressions on these resampled datasets were used 
as 95% confidence intervals.

We also explored how daily minimum fh (as an indicator of varia-
tion in resting metabolic rate), calculated as the mean of the lowest 
three consecutive fh measurements per day, influenced DEEhr, the 
acceleration- based estimates of DEE and their relationship.

Ethical approval for work with animals was approved by 
the Centrale Commissie Dierproeven under licence number 
AVD8020020174225, following the Dutch Animal Welfare Act 
Articles 9, 10 and 11 of animal experiment documents. Access to 
the colony was granted by the Staatsbosbeheer and Regionale 
Uitvoeringdienst Noord- Holland Noord (RUD.241638).

3  |  RESULTS

We collected a total of 1,285 hr of concurrent heart rate- 
accelerometer data. A summary of the individuals, number of bouts 
per individual and their resting and flapping heart rates is given in 
Table S1.

Resting was the most common activity exhibited (63.3% of ac-
celerometer measurements). Floating accounted for 8.7% of mea-
surements, resulting in 71.9% of measurements being taken while 
inactive. Flapping flight was the most common form of locomotion 
(12.8% of measurements), followed by soaring (5.8%), walking (5.6%) 
and mixed flight (1.4%), with 2.4% of segments being unclassified.

3.1  |  Objective 1a. Comparison of DBA to heart 
rate: Relative changes among behaviours

A total of 1,742 behaviour bouts were retained in the analysis. 
During flapping flight, fh was significantly higher compared to other 

F I G U R E  1  Violin and boxplots of (a) heart rate, (b) DBA and (c) metabolic rate estimated from each proxy (heart rate in purple and DBA 
in teal) for different behavioural modes (n = 1,742 bouts). Violin plots outline kernel probability densities and boxplots show median and 
inter- quartile range (IQR) with whiskers denoting 1.5 × IQR. Significant differences based on Tukey's tests per proxy are indicated above 
boxplots, where behaviours with the same letter are not significantly different (p > 0.05). In (c), differences between proxies were not 
tested, indicated by letter case
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behaviours (Tukey's test: p < 0.001 for all comparisons, Figure 1a). 
Heart rates for the remaining behaviours were more similar and 
overlapping. Walking had the next highest fh, followed by soaring, 
while floating and resting had similar fh ranges. Heart rate while 
floating was statistically indistinguishable from soaring (p = 0.17) 
and resting (p = 0.48), but the other behaviours were significantly 
different (p < 0.02). After converting to MRhr, walking remained sig-
nificantly different from resting (p < 0.001), though not from soaring 
or floating (p = 0.61 and p = 0.14), and soaring and floating were not 
statistically different from resting (p = 0.23 and p = 0.12; Figure 1c).

Changes in DBA (and MRDBA) followed a similar pattern to fh 
though with less overlap between behaviours: flapping was no-
ticeably higher than all other behaviours, followed by walking, then 
soaring and resting being lowest (all significantly different with 
p < 0.001, Figure 1b). However, unlike fh, DBA while floating was sig-
nificantly higher than resting (t test: p < 0.001), instead being similar 
to DBA during soaring (p = 0.89).

The mean fh, DBA and metabolic rates of each behaviour mode, 
along with the ratio between MRhr and resting metabolic rate mea-
sured in captivity (RMRlab = 4.59 W, Appendix S2) are reported in 
Table 1. Mass- specific metabolic rates are reported in Table S2. 
Applying the DBA calibration derived while walking to other be-
haviours severely underestimated the costs of flapping flight com-
pared to MRhr (Figure 1c), and mean values while soaring and resting 
were also underestimated (differences of 1.5 and 2 W respectively). 
The lab- derived DBA calibration and MRDBA behaviour estimates are 
not used further for any behaviours in this study.

3.2  |  Objective 1b. Comparison of DBA to heart 
rate: Linear relationships

After reclassifying mixed flight as flapping or soaring (Appendix S4), 
we had 1,772 behaviour bouts. The top LM for predicting MRhr 
based on AIC includes an interaction between behaviour and DBA, 
indicating that the relationship between DBA and MRhr changes de-
pending on the behavioural mode (Table 2). Grouping behavioural 
classes did not increase parsimony, with the top- ranked model in-
cluding all five behavioural modes (Table S3). DBA without any 
behaviour- specific adjustments was positively correlated with MRhr 
(r2 = 0.743, expected given similarity in relative changes among be-
haviours, Figure 1), though this was the lowest performing model. 

The model including just behaviour classification explained slightly 
more variation in MRhr than that with only DBA, suggesting DBA 
did not improve upon using a single cost per behaviour (Table 2). 
Moreover, when the MRhr– DBA relationship was considered sepa-
rately for each behaviour, MRhr and DBA were poorly correlated for 
most behaviours (Figure 2, Table S4). Only resting had a significant 
positive relationship between MRhr and DBA, while other behav-
ioural modes had no significant relationship (Figure 2). Plots of MRhr 
versus DBA per behaviour along with confidence intervals and in-
dividual intercepts are shown in Figure S2 and results of LMs are 
reported in Table S4.

3.3  |  Objective 2. Using acceleration to 
estimate DEE

Sixty- nine bird- days had coverage from both proxies for more than 
12 hr. DEE estimated by any acceleration method increased with 
DEEhr. DBAsingle consistently overestimated DEE relative to DEEhr 
(Figure 3a, Table 3). The other three models, DBAbehave, TEBbehave 
and TEBGPS resulted in similar DEE estimates (Figure 3a). Slopes of 
these models fell between 0.55 and 0.70, underestimating DEE on 
days with high DEEhr and overestimating on days with low DEEhr. The 
TEBGPS model explained less variation in DEEhr than the other accel-
eration methods (i.e. lower r2, Table 3). Confidence intervals around 
DBAbehave were wide due to uncertainty around the behaviour- 
specific calibrations (Figure 3b). These confidence intervals include 
the 1:1 relationship with DEEhr, so this method has potential to pre-
dict DEEs closer to predictions from DEEhr if better calibrations can 
be obtained.

To understand why the acceleration methods had slopes shal-
lower than a 1:1 relationship with DEEhr, we explored the influence 
of daily minimum fh on our DEE estimates. Minimum fh was positively 
correlated with DEEhr (r = 0.29), but not with the acceleration esti-
mates (−0.18 < r < −0.05 for all methods). As such, days with high 
minimum fh tend to be days with high DEEhr, and days with high min-
imum fh tend to fall below the line of equality (i.e. underestimated by 
acceleration) and vice versa (see Figure 3b– d for an example using 
DBAbehave, for other acceleration methods see Figure S3). Thus, the 
limited ability of acceleration methods to detect variation in resting 
metabolic rates partially explains why the slope of the relationship 
between DEEhr and DEE estimated from acceleration is shallower 
than the line of equality.

4  |  DISCUSSION

While the use of DBA as an estimate of metabolic rate in free- ranging 
animals is becoming increasingly popular (Brown et al., 2013; Joo 
et al., 2020), few studies have investigated how well it functions 
across multiple behaviour modes in the wild, particularly at high tem-
poral resolutions (Hicks et al., 2017) and in a species that uses pas-
sive modes of locomotion such as soaring flight (Duriez et al., 2014). 

TA B L E  2  AIC comparison and r2 values of linear models of MRhr 
by DBA and behaviour, with all five behavioural classifications used. 
All models include individual as a fixed factor

Model df ΔAIC r2

MRhr ~ DBA + Behaviour + DBA ×  
 Behaviour + ID

15 0.00 0.766

MRhr ~ DBA + Behaviour + ID 11 14.27 0.763

MRhr ~ Behaviour + ID 10 40.70 0.759

MRhr ~ DBA + ID 7 145.57 0.743
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In this study, we measured DBA alongside fh in five free- ranging 
lesser black- backed gulls. We found DBA generally suggested similar 
relative differences between behaviours as the fh method, except 
during floating, which was overestimated by DBA. DBA was thus 
positively correlated with MRhr when all behaviours are considered 

together. Our results demonstrate that the relationship between 
MRhr and DBA changes between behaviour modes, though varia-
tion between these proxies within a behaviour mode was high and 
behaviour- specific relationships were not statistically significant. 
At a daily scale, DBA performed comparably to TEBs for predicting 

F I G U R E  2  MRhr versus DBA of 
behavioural bouts (n = 1,772). Centred 
intercept and slope of linear models per 
behaviour are represented by coloured 
lines and across all bouts by the dashed 
black line (p < 0.001, r2 = 0.743). Model 
parameters and statistics are reported in 
Table S4
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F I G U R E  3  (a) Major axis regressions of acceleration- based estimates of daily energy expenditure (DEE) versus estimates from heart rate 
(DEEhr). Methods include DBA converted to MR with a single relationship across all behaviours (DBAsingle), DBA converted with behaviour- 
specific calibrations (DBAbehave), a five- behaviour time- energy budget (TEBbehave) and a simplified time- energy budget that could be derived 
from only GPS (TEBGPS). Acceleration methods are distinguished by colour. 95% confidence intervals including uncertainty in conversion 
from acceleration to metabolic rate are identified by the shaded regions with dashed lines. The line of equality is shown with a black line. (b) 
A scatter plot showing the relationship between DEE estimated DBAbehave versus DEEhr. Points are coloured by daily minimum heart rate 
(min. fh). Major axis regression line is shown in pink with 95% confidence intervals shown by the shaded areas, where the darker shaded 
region shows the confidence interval around the regression before accounting for uncertainty in converting acceleration to metabolic rate, 
and the lighter area shows the confidence interval based on our bootstrapping approach. The line of equality is shown in black. (c) Boxplots 
showing distribution of min. fh on days in panel (b) that fall above and below the line of equality. (d) Boxplots showing distribution of min. fh 
on days where DEEhr is below or above the mean DEEhr (858 kJ/day). Scatter plots as shown in (b) for the other three methods can be found 
in Figure S3
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DEE, though neither approach had a 1:1 relationship with fh- based 
estimates. This was at least partially due to undetected fluctuations 
in resting metabolic rates by acceleration- based methods.

4.1  |  Comparison of DBA to heart rate

While accelerometery provides great potential for measuring en-
ergy invested into physical activity in the wild, many studies over-
look the crucial step of determining the relationship between DBA 
and energy expenditure (Halsey & Bryce, 2021). This is particularly 
important for systems where a range of behaviour modes and habi-
tats are utilised, as variation in muscle efficiency and environmental 
noise may result in deviations from a single linear fit (Gómez Laich 
et al., 2011). In our study, the relative changes in both proxies among 
behaviour modes were generally similar, with the exception of float-
ing which was overestimated by DBA. When DBA was converted 
to metabolic rate by extrapolating a linear calibration derived only 
while walking (MRDBA), only the average metabolic rate while walk-
ing corresponded with the average costs estimated from heart rate 
(MRhr). This suggests the relationship between DBA and energy ex-
penditure changes among behaviour modes, thus behaviour- specific 
calibration will be required in species that move using different lo-
comotory modes.

We were particularly interested in whether DBA would properly 
represent energy expenditure while soaring. During soaring flight, 
animals capture rising air with wings held out isometrically, ma-
noeuvring using small adjustments to wing and tail position (Gillies 
et al., 2011). As isometric muscle contractions do not result in accel-
eration, DBA cannot detect all the work done by the animal (Gleiss 
et al., 2011). Instead, much of the measured acceleration is likely 
resulting from air turbulence. However, DBA and fh both showed 
similar relative differences between soaring and other behaviours, 
falling between walking and resting. This suggests that environ-
mental acceleration is similar to energy required to statically control 

wing position, though this may be subject to deviations under dif-
ferent soaring styles (e.g. orographic, thermal and dynamic soaring). 
Two other studies that record DBA and fh simultaneously in obligate 
soaring birds also found a good relationship between DBA and fh 
during flight (Duriez et al., 2014; Weimerskirch et al., 2016).

In contrast, we found that DBA during floating was higher than 
at rest on land, whereas fh was not significantly different between 
floating and resting. Higher DBA is presumably due to added accel-
eration from waves. When environmental acceleration may influ-
ence DBA estimates, calibrating DBA in the environment which it 
is being used could partially correct this bias, for instance we found 
floating has a higher intercept than resting on land. However, this 
cannot account for spatial or temporal variation in environmental 
conditions, such as differences in wave action across various bodies 
of water and weather conditions. From a physiological standpoint, 
it is interesting that we found no significant difference between fh 
on land and on water. Metabolic rates of diving and floating animals 
are often elevated because water has higher thermal conductance 
and a greater specific heat capacity than air, requiring more en-
ergy to maintain body temperature (Bevan et al., 1995; Humphreys 
et al., 2007). Our results suggest that there is no increased thermo-
regulatory cost of resting on water at temperatures above 12℃ in 
lesser black- backed gulls.

Corresponding with similar relative changes in both proxies 
among behaviours, when all behaviour bouts were pooled, we found 
that DBA was positively correlated with MRhr. However, the top 
model for predicting MRhr from DBA of behavioural bouts included 
an interaction term between all five behavioural modes, further in-
dicating that the relationship between MRhr and DBA changes by 
behaviour at the level of a behavioural bout. In line with our re-
sults, previous studies on seabird species have demonstrated that 
DBA tends to be a robust proxy when comparing across different 
behaviour modes, either by comparing it to the high resolution fh 
method (Hicks et al., 2017) or to the lower resolution doubly labelled 
water method (Elliott et al., 2013; Stothart et al., 2016), with the 
general consensus that behaviour- specific calibrations will improve 
estimation of energy expenditure. These studies focus on species 
that primarily dive and use flapping flight, while our study now addi-
tionally adds an animal that can travel using soaring flight.

When comparing behaviour bouts within a single behaviour 
mode we did not find significant positive relationships between 
DBA and MRhr. Due to the imperfect temporal pairing between fh 
and DBA, we cannot conclude whether this is because DBA (or fh) 
do not properly depict changes in energy expenditure within a be-
haviour mode, or because gulls adjust their effort on finer temporal 
resolutions than we could capture with our recording schedules. The 
latter is highly probable given the fluid flap- soar flight style of gulls. 
Even considering this we may still expect some average differences 
in effort between behaviour bouts. For example, gulls commuting 
over sea flap continuously along direct routes, where effort across 
the entire flight bout may vary depending on whether the bird is ex-
periencing head- , tail-  or crosswinds (McLaren et al., 2016), or with 
changes in body mass before and after foraging. The average effort 

TA B L E  3  Summary of major axis regression models of daily 
energy expenditure estimated from acceleration- based methods 
(DBA and time- energy budgets) versus estimated from heart 
rate. DBAsingle is DBA calibrated with a single relationship across 
all behaviours, DBAbehave is calibrated with behaviour- specific 
relationships, TEBbehave is a five- behaviour time- energy budget 
and TEBGPS is a simplified time- energy budget that could be 
reconstructed using only GPS data. 95% confidence intervals result 
from our bootstrapping approach, accounting for uncertainty in 
calibrations and behaviour costs used to convert acceleration to 
metabolic rate

Model
Intercept (95% 
CI) Slope (95% CI)

Model 
r2

DBAsingle 310 (129– 444) 0.86 (0.70– 1.07) 0.54

DBAbehave 195 (−251– 432) 0.70 (0.20– 1.43) 0.56

TEBbehave 249 (114– 350) 0.64 (0.51– 0.81) 0.54

TEBGPS 316 (179– 410) 0.55 (0.43– 0.73) 0.45
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while flapping during a commuting flight may likewise differ from 
the effort during competitive interactions while foraging behind a 
fishing vessel or at a refuse site. Hicks et al. (2017), who also continu-
ously recorded and compared DBA to energy expenditure estimated 
from fh in wild European shags Phalacrocorax aristotelis, found posi-
tive relationships within a behaviour for flapping flight and resting, 
though not diving behaviour. They also had high error around their 
behaviour regression lines, though demonstrated that much of the 
error could be accounted for by the uncertainty around the fh to 
energy expenditure conversion, rather than necessarily originating 
from the DBA method.

Differences in body mass both among and within an individual 
can also influence overall energy expenditure, as well as the rela-
tionship between energy expenditure and both fh and DBA. Work, 
the mechanical equivalent of energy expenditure, is proportional 
to the product of body mass and acceleration (Gleiss et al., 2011). 
Thus, the slope of the relationship between DBA and energy ex-
penditure should increase with body mass (i.e. a heavier mass will 
show a smaller increase in acceleration for a given increase in en-
ergy expenditure compared to a lighter mass; Halsey et al., 2009). As 
we have a small number of individuals with only a single body mass 
measurement each, we cannot properly account for the influence of 
body mass on energetic costs of different behaviours in our study, 
nor for the influence of within- individual fluctuation in body mass on 
calibration relationships which may be an additional source of error 
around those relationships.

Overall, our comparison between DBA and MRhr across be-
haviour bouts suggests that DBA does perform reasonably well as a 
proxy for energy expenditure across a range of behaviour modes, in-
cluding soaring flight. However, DBA overestimated energy expen-
diture when floating on the water, likely as a result of environmental 
acceleration from waves. While within a behaviour mode we did 
not find significant, positive correlations between DBA and MRhr, 
sources of methodological error may be obscuring our ability to de-
tect these relationships. We encourage more validation studies with 
either continuous or synchronised recording of these methodologies 
at high temporal resolutions to determine the degree to which either 
fh or DBA can detect fine- scale variation in energy expenditure for 
various modes of locomotion.

4.2  |  Using acceleration to estimate DEE

On a daily scale, TEBs performed comparably for estimating DEEhr 
as DBA calibrated with behavioural interactions, while the DBA 
model without activity- specific calibrations consistently overesti-
mated DEE. This is in contrast to validation studies comparing DBA 
to energy estimated from doubly labelled water in diving seabird 
species, where DBA predicted total energy expenditure better than 
TEBs, at least when behaviour- specific slope parameters were es-
timated (Elliott et al., 2013; Stothart et al., 2016). The slope of the 
relationship between acceleration- based estimates of DEE and the 
fh estimates was shallower than 1, which we demonstrate is at least 

partially caused by day- to- day fluctuations in resting rates which are 
better detected using the heart rate method. Confidence intervals 
around the relationship between DEE estimated from DBA using 
behaviour- specific calibrations (DBAbehave) and DEEhr were wide and 
included the line of equality. Wide confidence intervals were largely 
due to the uncertainty in the behaviour- specific calibration relation-
ships, so this method has potential to predict DEE closer to DEEhr if 
stronger calibration relationships can be obtained.

A simplified time budget (TEBGPS), where flight mode was 
pooled, had a similar relationship with DEEhr as the complete TEB, 
albeit with more error. This was surprising given the large difference 
in energetic cost between soaring and flapping flight. This suggests 
that gulls were using a relatively similar flap- to- soar ratio through-
out the study. However, when comparing across season or locations, 
flap- to- soar ratio may become less predictable. For example, Flack 
et al. (2016) demonstrated that DBA during migration for white 
storks Ciconia ciconia migrating south of the Sahara was lower than 
those north of the Sahara, corresponding to increased thermal uplift 
facilitating soaring at lower latitudes.

Metabolic rates estimated from DBA without a behaviour- 
specific calibration fell furthest from the line of equality, though its 
slope was similar and even slightly closer to a slope of 1 than the 
other methods. We caution that our finding may not be extrapo-
lated to all systems. For example, Jeanniard- du- Dot et al. (2017) 
found DBA did not correlate with DEE in foraging fur seals unless 
behaviour- specific relationships were applied.

The variation explained by all models at the daily level (r2 = 0.48– 
0.56) was lower than those reported in doubly labelled water stud-
ies (Elliott et al., 2013; Stothart et al., 2016). We demonstrated that 
some of this error was likely related to variation in resting metabolic 
rates which can result from thermoregulation, digestion and pro-
duction costs, though thermoregulatory costs are expected to have 
been constant throughout this study. Error caused by undetected 
variation in resting metabolic rates when using acceleration- based 
methods will be more significant in a bird with low versus high ac-
tivity levels. The gulls in this study spent on average 72% of the day 
in inactive behaviours (resting or floating) and thus DBA may not 
perform as well in our system compared to animals with higher ac-
tivity levels. Additionally, while recording over a longer time period 
should smooth out some of the error arising due to lack of synchrony 
between our proxy measurements (Green, 2011), using a sampling 
approach still likely contributes more error compared to continuous 
measures of DEE that were used in validations with doubly labelled 
water.

Given that detailed TEBs perform comparably to DBA at esti-
mating DEE, there are situations where TEBs may be preferable: (a) 
For studies examining how energy is partitioned among behaviours, 
TEBs can provide a clear link to the underlying cause behind varia-
tion in energy expenditure between individuals, habitats or strate-
gies (Sage et al., 2019). (b) For studies where the accelerometer is 
not located near the centre of mass (e.g. neck collars, mounted to 
tail feathers), DBA accuracy may be decreased (Wilson et al., 2019). 
Additionally, the TEB method can be used to compare energy 
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expenditure across systems where different attachment methods 
have been used (Garde et al., 2021). (c) For species using activities 
which may be unduly influenced by environmental acceleration (e.g. 
floating).

DBA, however, is advantageous because it does not require 
categorising behaviour into discrete categories, leading to un-
known or intermediate behaviours being discarded from TEBs. 
Also, if DBA is used without classifying behavioural modes, which 
typically requires raw acceleration profiles, it can be calculated on 
the tracker, reducing the amount of data collected per bout and 
thus permitting more frequent or longer recording periods (Nuijten 
et al., 2020). Note, however, that this would preclude the use of 
behaviour- specific calibration equations. For studies spanning sea-
sons or years, where body mass of animals may fluctuate system-
atically causing changes in activity costs, DBA should detect some 
of the resulting change in effort. Finally, the accuracy of the TEB 
approach depends on reliable estimates of the costs of various lo-
comotory modes for the species of interest (Elliott, 2016), which 
may not be available for all species.

None of the accelerometery- based methods fully accounted for 
variation in resting metabolic rates, as can be captured using the fh 
method. This is a drawback of all acceleration- based methods, par-
ticularly if the purpose is to quantify an absolute value of energy 
expenditure. However, while activity may be highly unpredictable, 
variation in resting costs such as thermoregulation, digestion and 
production may be more easily modelled and added to activity costs 
measured via acceleration (Gleiss et al., 2011). Further, for questions 
relating to behavioural strategies and decision- making, where fluc-
tuations in resting process may be independent of the behaviour 
being examined, acceleration- based methods are likely still suitable. 
Preferably, the combined use of fh and acceleration presents an 
opportunity to examine changes in both activity and resting costs 
throughout the year and across diverse environmental conditions 
(Bishop et al., 2015; Grémillet et al., 2005).
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