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Fjord sediments are increasingly used as high-resolution archives of climate and
environmental change, including variations in glacier mass balance and terrestrial
hydrology. To accurately interpret such sediment records, it is crucial to comprehend
sediment transport processes and determine sediment provenance. With this in
mind, our main objective is to identify cost-effective parameters that can be used
to reconstruct relative variations in the origin of sediments deposited in the Baker-
Martínez fjord system, which is located between the Northern (NPI) and Southern
(SPI) Patagonian Icefields. We focus on estimating the proportions of sediment derived
from each icefield, taking advantage of the clearly distinct lithologies that underlie NPI
(Patagonian Batholith) and SPI (Eastern Andean Metamorphic Complex) glaciers. The
magnetic susceptibility and inorganic geochemistry of 21 surface sediment samples
collected along the fjord system and that of suspended sediment samples from the
four main rivers that discharge at its heads were investigated. Results indicate that
sediments derived from the NPI are characterized by higher magnetic susceptibility
and log(Ti/Al) values than those from the SPI, reflecting the mafic nature of the
batholith. In fjords that receive contributions from both the NPI and SPI, magnetic
susceptibility and log(Ti/Al) primarily reflect sediment provenance. In fjords receiving
sediment from only one icefield, however, these parameters are positively correlated
with grain size and reflect the progressive settling of particles from the surficial plume.
Our results suggest that magnetic susceptibility and log(Ti/Al) can be used to reconstruct
sediment provenance within the Baker-Martínez fjord system, but that only log(Ti/Al) can
provide quantitative estimates of the proportions of sediment derived from each icefield.
Ultimately, applying these provenance indicators to long sediment cores from the Baker-
Martínez fjord system could allow reconstructing relative variations in sediment input
from each icefield, which may in turn be interpreted as changes in river discharge and/or
glacier mass balance.

Keywords: grain size, river suspended sediment, Patagonia, fjord sediment, Northern Patagonian Icefield,
Southern Patagonian Icefield
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INTRODUCTION

Fjord sediments constitute valuable and high-resolution
paleoenvironmental archives due to high accumulation rates of
particles of glacial and fluvial origin (Syvitski and Shaw, 1995;
Bianchi et al., 2020). Patagonian fjord sediments in particular
are increasingly recognized as high-resolution archives of past
climate and environmental changes (Lamy et al., 2010; Caniupán
et al., 2014; Bertrand et al., 2017; Ríos et al., 2020). During the last
decade, these archives have been extensively used to reconstruct
changes in seismic activity (St-Onge et al., 2012; Van Daele
et al., 2013; Piret et al., 2018; Wils et al., 2020), volcanic activity
(Fontijn et al., 2014; Wils et al., 2018), precipitation (Lamy et al.,
2010; Bertrand et al., 2014) and glacier variability (Bertrand
et al., 2012a, 2017; Kilian and Lamy, 2012). However, accurately
interpreting such sediment records requires a comprehensive
understanding of terrestrial sediment transport processes and of
the provenance of the sediments deposited in these fjords.

In fjords, terrestrial sediment transport is directly linked to
river and/or glacier dynamics (Syvitski and Shaw, 1995; Bianchi
et al., 2020; Hogan et al., 2020). When sediment-laden freshwater
is discharged into a saline fjord, the freshwater mass forms a
buoyant, hypopycnal plume that transports most of the fine-
grained suspended sediments seaward. On the contrary, the
coarse bedload sediments settle relatively quickly near the river
mouth or glacier front (Syvitski and Shaw, 1995). Settling of
the suspended sediments from the hypopycnal plume occurs in
response to a decreasing flow velocity and increasing salinity,
which enhances flocculation, palletization and/or agglomeration
(Syvitski and Shaw, 1995). Variations in this hydrodynamic
system, due to e.g., seasonal variations in meltwater discharge,
affect the flow velocity of the hypopycnal plume and its ability
to transport suspended sediment, resulting in temporal changes
in sediment grain size throughout the fjord system (Powell and
Molnia, 1989; Cowan and Powell, 1990; Syvitski and Shaw, 1995;
Bianchi et al., 2020).

Identifying sediment provenance is often an essential
prerequisite for paleoclimate and paleoenvironmental
reconstructions, since most fjords contain terrigenous sediments
supplied by multiple sources. However, studies that evaluate
the effectiveness of provenance tracers in Patagonian fjords are
currently lacking. Recently, Liu et al. (2020) showed that bulk
mineralogy and major and rare earth element geochemistry
could be used to qualitatively reconstruct the provenance of
Patagonian river sediments, whereas Nd and Sr isotopes allowed
for quantitative provenance analysis. Likewise, Villaseñor et al.
(2019) successfully used Nd and Sr isotopes to reconstruct
Pleistocene glacial silt provenance to the continental slope
at 46◦S. Measuring Nd and Sr isotopes is, however, time-
consuming and expensive, which limits its application on
fjord sediment cores to a handful of pre-selected samples.
A much more cost-effective provenance indicator that has
shown promising results along the Chilean continental margin
is bulk inorganic geochemistry. Some elemental ratios, such
as Fe/Al, Mg/Zr, Ti/K, and Ba/Al for instance, have proven to
be reliable provenance indicators of sediments derived from
different sources along the southern Andes (Klump et al.,

2000; Lamy et al., 2001; Stuut et al., 2007; Siani et al., 2010).
Whether these indicators are also applicable to Patagonian
fjord sediments has, however, not yet been evaluated. In
proximal environments, some of these elements are known
to be closely related to grain size (Bertrand et al., 2012b; Liu
et al., 2019), which may limit their use as provenance tracers
(Weltje, 2012).

With this in mind, the research objective of this paper is to
identify cost-effective physical and geochemical parameters that
can be used to reconstruct relative variations in the origin of
sediments deposited in the Baker-Martínez fjord system (Chilean
Patagonia, 48◦S). This fjord system is particularly promising
to reconstruct past glacier variability, as it is located between
the Northern (NPI) and Southern Patagonian Icefields (SPI).
In addition, the distinct lithologies underlying both icefields,
i.e., the Patagonian Batholith (NPI) and the Eastern Andean
Metamorphic complex (SPI), suggest that compositional tracers
could permit telling apart sediments derived from these two
icefields. Previous studies highlighted the magnetic (Michelena
and Kilian, 2015) and geochemical (Pankhurst et al., 1999;
Faúndez et al., 2002; Augustsson and Bahlburg, 2003; Liu et al.,
2020) differences that exist between the Patagonian Batholith
and Eastern Andean Metamorphic Complex. Therefore, we
focus on magnetic susceptibility and inorganic geochemistry,
as these parameters are widely applicable and relatively easy
to measure on both discrete samples (e.g., handheld magnetic
sensors and ICP or XRF-based techniques) and on sediment
cores (e.g., core logging and XRF core scanning). Both
parameters are also relatively cheap to analyze and could
thus complement lower-resolution isotope-based reconstructions
(Revel-Rolland et al., 2005; Meyer et al., 2011; Bonneau et al.,
2017).

SETTING

The∼150 km long, W-E oriented Baker-Martínez fjord system is
located between the NPI and the SPI, and it is subdivided into two
parallel channels: Martínez in the north and Baker in the south
(Figure 1). Both channels are interconnected near their heads via
Troya Channel, and distally via Sierralta Channel. Each also has
a series of tributary fjords, i.e., Steffen and Mitchell for Martínez,
and Jorge Montt and Steele for Baker (Figure 1).

The Baker-Martínez fjord system has a hyperhumid maritime
climate with a steep west–to–east precipitation gradient,
due to the interaction of the southern westerlies with the
Andes orographic high (Garreaud et al., 2013). Annual
precipitation decreases from >2,000 mm/year over the icefields
to <500 mm/year at the Chile–Argentina border (Figure 1;
Fick and Hijmans, 2017). The mean air temperature of ca.
8◦C remains relatively stable with longitude, but decreases with
latitude (Sagredo and Lowell, 2012; Garreaud et al., 2013). Due to
the cold climate and to the relatively recent deglaciation, physical
weathering dominates and chemical weathering is relatively
negligible (Kaiser et al., 2005; Bertrand et al., 2012b).

Freshwater enters the Baker-Martínez fjord system from
four glacier-fed rivers, i.e., Baker, Pascua, Huemules and
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FIGURE 1 | Location of the Baker-Martínez fjord system in Chilean Patagonia with indication of the main geological units of the studied watersheds (Segemar, 2003;
Sernageomin, 2003; Gómez et al., 2019), icefields (NPI and SPI; Northern and Southern Patagonian Icefield), mountain glaciers, and main rivers discharging in the
fjord system. The mean annual precipitation (in mm) gradient is represented by purple dashed isohyets (Fick and Hijmans, 2017).

Frontiers in Marine Science | www.frontiersin.org 3 May 2021 | Volume 8 | Article 612309

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-612309 May 10, 2021 Time: 17:43 # 4

Troch et al. Baker-Martínez Fjord Sediment Provenance

Bravo, and from Jorge Montt Glacier (Figure 1). Baker and
Huemules rivers receive meltwater from NPI outlet glaciers,
whereas Pascua River is mostly fed by the SPI. Bravo River
is not connected to any icefield but it receives meltwater
from isolated mountain glaciers. Baker, Pascua, and Bravo
rivers have a nivo-glacial regime with glacial contributions
during summer, whereas Huemules River is strictly proglacial
(Aiken, 2012; González et al., 2013; Lara et al., 2015). Mean
annual discharge varies by one order of magnitude across
the four river watersheds: 1,133 m3/s (Baker), 753 m3/s
(Pascua), 121 m3/s (Huemules), and 112 m3/s (Bravo) (Pantoja
et al., 2011; Dussaillant et al., 2012; Pryer et al., 2020).
Jorge Montt Glacier has an estimated mean annual discharge
of ca. 129 m3/s, based on a negative mass balance of
−2.20 ± 0.38 Gt/year (Foresta et al., 2018) and a mean
annual precipitation of 3,752 mm (Boisier et al., 2018).

This estimate is in agreement with those from Mernild
et al. (2017) (ca. 100 m3/s) and Moffat et al. (2018)
(25–150 m3/s).

The hypopycnal plumes corresponding to the main freshwater
sources flow in a westward direction through the Baker-Martínez
fjord system toward the Gulf of Penas (Pérez-Santos et al., 2014;
Ross et al., 2014). Consequently, the heads of Martínez and
Baker channels receive meltwater and sediment from the NPI
and SPI, respectively, before merging in the Troya Channel
(Figure 2). Average spring-summer suspended sediment
distributions quantified by MERIS-ENVISAT (2005–2011;
González et al., 2013) and Landsat 8 (2016; International
Initiative on Water Quality, 2019) satellite data reveal that
NPI-derived meltwater and sediment can reach the distal
part of Baker Channel through Troya and Sierralta channels
(Figure 2). Water and sediments from the head of Baker

FIGURE 2 | Location of the fjord surface sediment samples in the Baker-Martínez fjord system and of the river suspended sediment samples collected in the four
main rivers that discharge into the fjord system. The fjord surface sediment dataset (n = 21) is split into six subsets based on sample location. The colored lines
connecting the fjord samples represent the four subsets of the fjord sample dataset with n > 1. Note that sample St4 is located downstream of the confluence of
Baker and Martínez channels, and thus belongs to both the distal Baker Channel and distal Martínez Channel datasets (stippled lines). The background turbidity data
is derived from Landsat 8 satellite images from 08-01-2016 and 31-01-2016 (satellite data source: USGS) by the International Initiative on Water Quality (2019). See
Table 2 for the exact location of the sampling sites.
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Channel, on the other hand, do not seem to cross over to the
Martínez Channel.

Lithogenic particles constitute the majority (84.8–97.2 wt%)
of the sediments deposited in the Baker-Martínez fjord
system. The rest is composed of organic matter (0.4–3.8 wt%),
biogenic opal (1.1–10.2 wt%) and calcium carbonate (0–
2.5 wt%) (Rebolledo et al., 2019). Most of the lithogenic
particles are derived from bedrock erosion by NPI and
SPI glaciers, and are transported to the Baker-Martínez
fjord system by the aforementioned glacier-river systems.
Although some of the watersheds are <10% glaciated,
e.g., the Baker River watershed, the glacier-covered areas
contribute significantly more water and sediments to the
fjords than the drier regions (Figure 1; Dussaillant et al.,
2012; Liu et al., 2020). In addition, suspended sediment data
from the outflow of lakes General Carrera, Cochrane, and
O’Higgins indicate that these lakes act as efficient sediment
traps (HidroAysén, 2010; Vandekerkhove et al., 2020).
Consequently, sediments from the upper Baker and upper
Pascua river watersheds rarely reach the Baker-Martínez fjord
system (Figure 1).

The regional geology mainly consists of two lithological units
(Figure 1 and Table 1; Gómez et al., 2019): the Patagonian
Batholith, which is mainly composed of granite, granodiorite,
diorite, tonalite, and gabbro, under and around the NPI
(Pankhurst et al., 1999; Hervé et al., 2007; Michelena and
Kilian, 2015) and the Eastern Andean Metamorphic Complex,
which is mainly composed of metamorphosed sandstone and
mudstone, under and around the SPI (Faúndez et al., 2002;
Augustsson and Bahlburg, 2003; Hervé et al., 2008). The
relative proportions of these two lithologies vary considerably
across the four watersheds (Table 1). The Eastern Andean
Metamorphic Complex varies from ∼100% in the Bravo and
lower Pascua river watersheds to 50% in the lower Baker River
watershed, and the Patagonian Batholith varies from 100% in
the Huemules River watershed to 36% in the lower Baker
River watershed (Figure 1 and Table 1). Three additional
lithologies occur in the easternmost reaches of our study
region, i.e., Mesozoic and Cenozoic volcanic rocks, Miocene
sedimentary rocks, and fluvioglacial deposits derived from
Quaternary glacier advances (Kaplan et al., 2005; Boex et al., 2013;
Davies et al., 2020).

MATERIALS AND METHODS

This study makes use of fjord surface sediment samples
to evaluate the applicability of magnetic susceptibility and
inorganic geochemistry as tracers of sediment provenance
within the Baker-Martínez fjord system (Figure 1). Sediment
grain size was also analyzed to estimate the influence of
differential sediment settling from the hypopycnal plume on
magnetic susceptibility and inorganic geochemistry (Snowball
et al., 1999; Sandgren and Snowball, 2001; Bertrand et al.,
2012b; Bloemsma et al., 2012; Lipp et al., 2020). In addition,
suspended sediments from the four main rivers flowing
into the Baker-Martínez fjord system were sampled at the

TABLE 1 | Surface area of the four studied river watersheds and Jorge Montt
Glacier, and areal proportions of the corresponding bedrock lithologies
(Gómez et al., 2019).

Watershed Surface area (km2) Bedrock lithology

PB (%) EAMC (%) Other* (%)

Lower Baker River 8,425 36 50 14

Bravo River 1,894 1 99 0

Lower Pascua River 1,125 0 100 0

Huemules River 1,102 100 0 0

Jorge Montt Glacier 500 0 100 0

All parameters were calculated using ArcMap and the UTM18S projection. The
Patagonian Batholith (PB) and Eastern Andean Metamorphic Complex (EAMC) are
assumed to be the bedrock underlying the NPI and SPI, respectively (Figure 1;
Gómez et al., 2019). *Other lithologies include Mesozoic and Cenozoic volcanic
rocks, Miocene sedimentary rocks and fluvioglacial deposits (Figure 1; Segemar,
2003; Sernageomin, 2003; Gómez et al., 2019).

river mouths to characterize the physical and geochemical
properties of the sediments reaching the fjord system
(Figure 1). River sediments are preferred over bedrock samples
since they integrate all the lithologies available within their
respective watersheds.

Sampling
Twenty-one fjord surface sediment samples (Figure 1 and
Table 2) were collected during five different campaigns
carried out in the Baker-Martínez fjord system between 2013
and 2017: (1) CIMAR 20 Fiordos (November 2014), (2)
COPAS Sur-Austral 2014 (October 2014; Rebolledo et al.,
2019), (3) University of Washington field expedition to Jorge
Montt Fjord (March 2013; Boldt, 2014), (4) PISCES 17
(February 2017), and (5) Ghent University field expedition
to the Baker-Martínez fjord system (February 2017). These
sediment samples were obtained using grab samplers or
by sub-sampling the upper 1–2 cm of Rumhor, gravity,
or Kasten cores.

River Water samples (RW19, Table 2) were collected
in February 2019 (austral summer) at the mouths of the
Baker, Pascua, Huemules and Bravo rivers (Figure 1).
The upper 20 cm of the water column was sampled
using a bucket from a boat. Between 100 and 155 L of
water was collected per site, stored in pre-rinsed LDPE
cubitainers (10 or 20 L), and filtered using a 90 mm diameter
PES membrane (pore size 0.22 µm) within 48 hours
of collection. The volume (weight of water) of filtered
water was recorded to calculate the suspended sediment
concentration of each sample.

Magnetic Susceptibility
Volume-specific magnetic susceptibility was measured on all
samples using a Bartington MS2G single-frequency (1.3 kHz)
sensor connected to a Bartington MS3 meter. Samples were
packed into 1 mL plastic vials and the volume-specific values
were divided by sample weight measured with a Mettler
Toledo ME104T (0.1 mg) balance to calculate mass-specific
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TABLE 2 | Location of the fjord and river sediment sampling sites.

Fjord/river Station Campaign* Latitude Longitude

Fjord surface sediment samples

Martínez Channel St96 CF20 −47.773 −74.226

Irene CO14 −47.811 −74.063

St97 CF20 −47.774 −74.015

E3 CO14 −47.813 −73.956

St98 CF20 −47.823 −73.844

St12 CF20 −47.788 −73.635

E1 CO14 −47.785 −73.610

Steffen Fjord St14 CF20 −47.768 −73.694

GS17-04 UGent17 −47.643 −73.688

Troya Channel St11 CF20 −47.881 −73.742

Baker Channel St4 CF20 −47.789 −74.534

St5 CF20 −47.913 −74.484

St6 CF20 −47.982 −74.274

St7 CF20 −47.960 −74.018

St8 CF20 −47.995 −73.778

St9 CF20 −48.025 −73.586

St10 CF20 −48.174 −73.355

E13 CO14 −48.195 −73.337

Jorge Montt Fjord JM7 UW13 −48.203 −73.502

JM1 UW13 −48.228 −73.502

Mitchell Fjord S8 PI17 −47.907 −73.503

River suspended sediment samples

Baker River RW19-04 UGent19 −47.796 −73.492

Bravo River RW19-05 UGent19 −47.957 −73.193

Pascua River RW19-06 UGent19 −48.225 −73.323

Huemules River RW19-07 UGent19 −47.628 −73.668

*CF20: CIMAR 20 Fiordos (November 2014).
CO14: COPAS Sur-Austral 2014 (October 2014, Rebolledo et al., 2019).
PI17: PISCES 17 (February 2017).
UGent17: Ghent University field expedition to the Baker-Martínez fjord system
(February 2017).
UGent19: Ghent University field expedition (February 2019).
UW13: University of Washington field expedition to Jorge Montt Fjord (March 2013;
Boldt, 2014).

magnetic susceptibility values (Sandgren and Snowball, 2001).
All magnetic susceptibility measurements reported in this article
are mass-specific.

Inorganic Geochemistry
Major (Al, Ca, Fe, K, Mg, Mn, Na, P, Si, and Ti) and trace (Ba,
Sr, and Zr) element concentrations were measured on the fjord
surface and river suspended sediment samples by Inductively
Coupled Plasma-Atomic Emission Spectrometry (ICP-AES).
Here, we evaluate the ability of the lithogenic elements Al, Fe,
K, Mn, Ti, and Zr to reconstruct sediment provenance. The other
elements were not considered as provenance indicators as their
concentrations within fjord sediments are affected by variations
in productivity (Ca, Mg, P, Si, Ba, and Sr) or salinity (Na) (Boyle,
2001; Raitzsch et al., 2010; Bertrand et al., 2012b; Faust et al., 2014;
Liguori et al., 2016; Liu et al., 2020). All samples were prepared
using the Li Metaborate fusion technique to ensure the complete
dissolution of sediment, including refractory minerals such as
zircon (Murray et al., 2000). ICP-AES analysis was performed

at Ghent University (Varian 720-ES) and Université Libre de
Bruxelles (Thermo Scientific iCAPTM 7000). Sample preparation
consisted in mixing 200± 0.5 mg of Li-metaborate/Li-tetraborate
(80:20 wt%) or Li-metaborate/Li-bromide (98.50:1.50 wt%) with
50 ± 0.5 mg of sediment in a Pt:Au crucible. To fuse the
mixture, the crucible was placed in a muffle furnace for 12 min
at 1,050◦C. The resulting glass bead was allowed to cool down
for 2 min. It was then transferred into a 50 mL beaker
containing 25 mL of ultrapure HNO3 (5%). This solution was
magnetically stirred for 60 to 90 min to dissolve the glass bead.
Afterward, the solution was filtered (0.45 µm GHP membrane)
and 5 mL was pipetted into a centrifuge tube containing 35 mL
of ultrapure HNO3 (5%). The dilution factor (∼4,000×) was
calculated from the precise weight of sediment used for fusion.
The inorganic geochemical data is presented as Supplementary
Material (Supplementary Table 1).

Element concentrations were analyzed in terms of Al-based
log-ratios (Weltje and Tjallingii, 2008; Bertrand et al., 2012b;
Weltje, 2012). Al is useful as a normalizer since it occurs in
comparable concentrations in most plutonic and metamorphic
rocks (Calvert et al., 2001; McLennan et al., 2003), and is
relatively independent of grain size and provenance (Bertrand
et al., 2012b). This is confirmed for Patagonian bedrock and
river sediments by Liu et al. (2019, 2020). The precision on all
elemental ratios was better than 1%, except for K/Al (better than
2%), and Zr/Al (better than 4%) (Bertrand et al., 2012b).

Grain Size
Grain size was determined on the terrigenous fraction of the
sediment using a Malvern Mastersizer 3000 laser diffraction
particle size analyzer. To isolate the terrigenous fraction, samples
were treated with boiling H2O2 (2 mL, 30%), HCl (1 mL, 10%)
and NaOH (1 mL, 2 N), to remove organic matter, carbonates
and biogenic silica. The samples were then boiled with (NaPO3)6
(1 mL, 2%) to prevent flocculation and continuous ultrasounds
(10%) were used during analysis. A stirrer (2,500 rpm) kept
the samples in suspension. The grain-size distributions were
measured three times during 12 s per sample. The mode of the
distributions was calculated using the Mastersizer 3000 v3.62
software. The grain size of sample RW19-05 (Bravo River) could
not be analyzed due to a limited sample amount.

Statistical Analysis
Principal component analysis was carried out using XLSTAT
2016 after log-transforming the variables. Magnetic susceptibility
and inorganic geochemistry were used as active variables, and
the fjord surface sediment samples as active observations,
to construct the principal component model. The grain-
size mode was then projected as a supplementary variable,
and the river suspended sediment samples as supplementary
observations, in the principal component biplot.

To facilitate data interpretation, the fjord surface sediment
dataset (n = 21) was split into six subsets based on
sample location: (1) head of Martínez Channel and Steffen
Fjord (n = 4), (2) head of Baker Channel and Jorge
Montt Fjord (n = 5), (3) distal part of Martínez Channel
(n = 6), (4) distal part of Baker Channel (n = 5), (5)
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Troya Channel (n = 1), and (6) Mitchell Fjord (n = 1)
(Figure 2). Note that sample St4 is located downstream of
the confluence of Baker and Martínez channels, and thus
belongs to both the distal Baker Channel and distal Martínez
Channel datasets.

RESULTS

River Suspended Sediment
Concentrations
Suspended sediment concentrations measured in summer 2019
vary by a magnitude of ∼50 over the four studied rivers.
Huemules (57.2 mg/L) and Baker (35.8 mg/L) rivers have
significantly higher suspended sediment concentrations than
Pascua (5.2 mg/L) and Bravo (1.1 mg/L) rivers.

Magnetic Susceptibility
Magnetic susceptibility varies by a factor of ∼seven between the
four river suspended sediment samples (Figure 3). Suspended
sediments from NPI-fed rivers, i.e., Huemules and Baker, have
distinctly higher values (508 and 609 . 10−6 m3/kg, respectively)
than those from the SPI-fed Pascua River (294 . 10−6 m3/kg).
On the extreme end of the spectrum, suspended sediments
from Bravo River have a magnetic susceptibility of 2,137 .
10−6 m3/kg (Figure 3).

A similar contrast in magnetic susceptibility is discernible
between samples from the heads of the Baker-Martínez fjord
system. Fjord surface sediment samples from the head of
Martínez Channel and Steffen Fjord have relatively high values
between 603 and 990 . 10−6 m3/kg, whereas samples from the
head of Baker Channel and Jorge Montt Fjord have significantly
lower values varying between 249 and 284 . 10−6 m3/kg

FIGURE 3 | Spatial variability in the magnetic susceptibility of the fjord and river sediment samples. The colored lines between the fjord samples represent the four
subsets with n > 1 (Figure 2). In the bottom panel, the fjord samples are plotted according to longitude. The provenance end-members are defined by the RW19-07
(NPI) and RW19-06 (SPI) river sediment samples.
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(Figure 3). In Mitchell Fjord, the surface sediment sample has
a significantly lower magnetic susceptibility (399 . 10−6 m3/kg)
compared to the suspended sediment sample from the river
that flows into it (Bravo River; RW19-05; 2,137 . 10−6 m3/kg;
Figure 3).

The relation between magnetic susceptibility and distance
differs between channels (Figure 3). Whereas the magnetic
susceptibility of the surface sediment samples is highly variable
and does not have a clear trend with distance in Martínez
Channel, it consistently increases westward in Baker Channel.

Inorganic Geochemistry
The principal component analysis of the fjord surface sediment
samples (Figure 4) shows two principal components explaining
85% of the variance (PC1: 52%, and PC2: 33%). The
first principal component mostly reflects the compositional
difference between proximal (negative loadings) and distal
(positive loadings) samples. The second principal component,
on which magnetic susceptibility and log(Ti/Al) have the
highest loadings, mostly separates the Martínez Channel
samples (top two quadrants), from those from Baker Channel
(bottom quadrants).

The river suspended sediment sample from Pascua River
(RW19-06) has a geochemical composition similar to the fjord
samples from the head of Baker Channel, and those from
Huemules and Bravo rivers (RW19-07 and RW19-05) to the fjord
samples from the head of Martínez Channel. The sample from
Baker River (RW19-04) is similar to the fjord samples from the
distal part of Martínez Channel (Figure 4).

Grain Size
The river suspended sediment samples have a unimodal grain-
size distribution with a mode that is consistently between
3.60 to 3.64 µm (Figures 5A, 6). The proximal fjord surface
sediment samples (<5 km from the river mouth) also display
a fine silt mode but its exact value (4–7 µm) is consistently
higher than that of the river suspended sediment samples
(Figures 5B, 6). In addition, most of the proximal fjord surface
sediment samples have a second mode in the medium silt to
fine sand fraction (15–100 µm; Figure 5B). The distal fjord
surface sediment samples (>5 km from the river mouth) have
a grain-size mode and distribution that are comparable to
those of the river suspended sediment samples, with a mode
averaging at 3.73 ± 0.48 µm (Figures 5C, 6). In the distal
sections of both the Martínez and Baker channels, the grain-
size mode decreases toward the Pacific Ocean, however, the
grain-size mode of the most westward sample deviates from this
trend (Figure 6).

DISCUSSION

Magnetic Susceptibility and Inorganic
Geochemistry as Provenance Tracers
This section evaluates whether magnetic susceptibility and/or
inorganic geochemistry can be used to trace sediment

FIGURE 4 | Principal component biplot of the magnetic susceptibility and
geochemical composition (active variables) of the fjord surface sediment
samples (active observations) and projected river suspended sediment
samples (supplementary observations). The grain-size mode is projected in
the biplot (supplementary variable).

provenance, i.e., to distinguish between sediments derived
from the NPI and from the SPI. In addition to analyzing
the fjord surface sediment samples, the four river suspended
sediment samples are considered as potential provenance end-
members, hereafter referred to as “NPI end-member” and “SPI
end-member.”

The first requirement for inorganic geochemical elements
to work as reliable provenance indicators is the absence of
biological control on their concentrations. For the surface
sediment samples from the Baker-Martínez fjord system, this
lack of biological control is shown by the lack of significant
correlation between the Al-based log ratios of Fe, K, Mn, Ti,
and Zr and organic carbon, biogenic opal and CaCO3 contents
(Supplementary Table 2).

In the principal component biplot of the fjord surface
sediment samples (Figure 4), the first principal component
(PC1, 52%) seems to reflect variations in distance within the
fjords, to which grain size is associated. The second principal
component (PC2, 33%) differentiates the sediments at the head
of Martínez Channel and Steffen Fjord from those at the head
of Baker Channel and Jorge Montt Fjord. This suggests that
PC2 is able to differentiate sediments of NPI origin (PC2 > 0)
from sediments derived from the lithologies underlying the SPI
(PC2 < 0). The PC2 scores of the Huemules (RW19-07) and
Pascua (RW19-06) river suspended sediment samples, which
represent rivers entirely fed by the NPI and SPI, respectively,
confirm this differentiation (Figure 4). Therefore, we suggest
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FIGURE 5 | Grain-size distributions of (A) the river suspended sediment
samples, (B) the fjord surface sediment samples located less than 5 km from
a river mouth, and (C) the fjord surface sediment samples located more than
5 km from a river mouth. The distributions shown in blue represent the
average grain-size distribution of each group.

that PC2 reflects sediment provenance. The observation that
magnetic susceptibility and log(Ti/Al) both have high PC2
loadings (≥0.86) and low PC1 loadings (≤0.41) (Figure 4)
additionally suggests that these two variables can serve as
provenance tracers.

The contrast in magnetic susceptibility between sediments
derived from the lithologies underlying the NPI and SPI is
clearly visible in the values measured on the river suspended
sediment samples and on the fjord surface sediment samples
from the heads of Martínez and Baker channels (Figure 3).
Samples from the rivers originating from NPI outlet glaciers
(Baker River; RW19-04, and Huemules River; RW19-07) and
those from the fjords in which these rivers discharge (head
of Martínez Channel and Steffen Fjord) have consistently
higher values than their SPI counterparts (Figure 3). This
difference in magnetic susceptibility reflects the igneous nature
of the bedrock underling the NPI (Patagonian Batholith)
compared to that of the metamorphic basement under the SPI
(Eastern Andean Metamorphic Complex). This is supported
by (a) the generally higher abundance of magnetic minerals
in magmatic rocks compared to metamorphosed sedimentary
rocks (McEnroe et al., 2004; Direen et al., 2008), and (b)

their distinct magnetic signatures on lithospheric magnetic
anomaly maps (Maus et al., 2008; Michelena and Kilian, 2015).
Although titanomagnetite, pyrrhotite, and ilmenite are generally
considered as the main magnetic carriers in the Patagonian
Batholith plutonic suite (Michelena and Kilian, 2015), it is
unlikely that these dense and refractory minerals are transported
in suspension in the regional rivers and fjords (Bertrand et al.,
2012b). These minerals may, however, also occur as inclusions
in fine-grained plagioclase (Scofield and Roggenthen, 1986;
Andrews, 2008; Andrews et al., 2010), which can then be
transported in suspension, as previously suggested for northern
Patagonian fjord sediments (Ghazoui, 2011; Bertrand et al.,
2012b). Alternatively, hornblende and biotite, which are relatively
abundant in the Patagonian Batholith (Pankhurst et al., 1999;
Sernageomin, 2003; Hervé et al., 2007) could also contribute
to the high magnetic susceptibility of suspended sediments
derived from the NPI.

As suggested by the principal component analysis results
(Figure 4), log(Ti/Al) is one of the most powerful variables
to differentiate between sediments derived from the NPI and
SPI. The higher log(Ti/Al) signature of NPI-derived sediments
is clearly supported by the composition of the Huemules
(RW19-07) and Baker (RW19-04) river suspended sediments
samples, and by that of surface sediment samples from the
head of Martínez Channel and Steffen Fjord (Figure 7).
Sediments derived from the SPI (RW19-06; Pascua River, and
surface sediment samples from the head of Baker Channel
and Jorge Montt Fjord) have consistently lower log(Ti/Al)
values (Figure 7).

The geochemical distinction between sediments derived from
the NPI and SPI is most probably related to the geochemical
composition of the Patagonian Batholith and Eastern Andean
Metamorphic Complex lithologies that are effectively eroded
to produce the river sediments transported in suspension and
eventually deposited into the fjords (Figure 1 and Table 1; Liu
et al., 2020). Although the Patagonian Batholith contains granite,
granodiorite, diorite, tonalite, and gabbro, the geochemistry
of RW19-07 (Huemules River) suggests that the composition
of the Patagonian Batholith-derived sediment that reaches the
Baker-Martínez fjord system is best represented by diorite
and tonalite (Supplementary Figure 1A), in agreement with
the occurrence of diorite and tonalite in the Baker and
Huemules river watersheds (Parada et al., 1997; Pankhurst
et al., 1999). This is supported by the composition of RW19-
04 (Baker River), which also plots among the diorite and
tonalite samples (Supplementary Figure 1A). Likewise, the
Eastern Andean Metamorphic Complex consists of meta-
sandstone and -mudstone, and the geochemistry of RW19-
05 (Bravo River) and RW19-06 (Pascua River) suggests that
the metamorphosed mudstones best represent the Eastern
Andean Metamorphic Complex-derived sediment reaching the
Baker-Martínez fjord system (Supplementary Figure 1B). This
observation likely results from the grain size of the sediment
produced by erosion of metamorphosed mudstone (fine) vs.
sandstone (coarse), resulting in a higher contribution of
sediment of meta-mudstone origin. Hence, we suggest that the
NPI end-member is best represented by diorite and tonalite
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FIGURE 6 | Spatial variability in the grain-size mode of the fjord and river sediment samples. The colored lines between the fjord samples represent the four subsets
with n > 1 (Figure 2). In the bottom panel, the fjord samples are plotted according to longitude.

from the Patagonian Batholith, and the SPI end-member
by metamorphosed mudstones from the Eastern Andean
Metamorphic Complex.

Our results suggest that the sediment derived from the
NPI is more magnetic and richer in Ti than the sediment
from the SPI (Figure 8). These differences result from the
nature of the bedrock effectively eroded by NPI vs. SPI glaciers
(Figure 1). Since the Huemules River directly originates from
the NPI, sample RW19-07 was used to define the NPI end-
member. Likewise, sample RW19-06 from Pascua River was
used to define the SPI end-member. Sample RW19-04 from
Baker River was not used to define the NPI end-member
since Baker River also drains the Eastern Andean Metamorphic
Complex in the eastern non-glaciated part of the watershed
(Figure 1 and Table 1; Liu et al., 2020), and is therefore not
entirely representative of the NPI. Sample RW19-05 was not
considered as a provenance end-member since the suspended

sediment concentration in Bravo River (1.1 mg/L) is too low
to accurately represent sediment transport toward the Baker-
Martínez fjord system.

Spatial Variations in Grain Size and Its
Influence on the Provenance Tracers
In this section, we evaluate whether grain size variations limit the
ability of magnetic susceptibility and inorganic geochemistry, i.e.,
log(Ti/Al), to track sediment provenance throughout the Baker-
Martínez fjord system. To serve this purpose, the grain-size mode
was projected in the principal component biplot of the fjord
surface sediment samples (Figure 4). The results clearly show that
grain-size mode has a strong loading on PC1 (loading = −0.87)
but not on PC2 (loading = 0.24), suggesting that sediment
provenance across the Baker-Martínez fjord system is relatively
independent of grain size variations.
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FIGURE 7 | Spatial variability in log(Ti/Al) of the fjord and river sediment samples. The colored lines between the fjord samples represent the four subsets with n > 1
(Figure 2). In the bottom panel, the fjord samples are plotted according to longitude. Error bars are smaller than the size of the symbols. The provenance
end-members are defined by the RW19-07 (NPI) and RW19-06 (SPI) river sediment samples.

Although variations in magnetic susceptibility and log(Ti/Al)
across the entire Baker-Martínez fjord system seem to reflect
sediment provenance (section “Magnetic Susceptibility and
Inorganic Geochemistry as Provenance Tracers”), variations in
these two indicators within specific fjords appear influenced by
grain size, as suggested by the spread of these samples along PC1
(Figure 4). The positive within-fjord relations between magnetic
susceptibility and grain-size mode are confirmed for Martínez
Channel and Steffen Fjord (r= 0.91; p< 0.01; n= 10) and for the
head of Baker Channel and Jorge Montt Fjord (r= 0.79; p= 0.11;
n = 5). In these two cases, coarser samples are more magnetic
and grain size seems to be the primary factor controlling their
magnetic susceptibility values, in agreement with the findings of
Snowball et al. (1999), Sandgren and Snowball (2001), Bertrand
et al. (2012b), Shin et al. (2020), and Piret et al. (2021). In
the distal part of Baker Channel, however, the relation between

magnetic susceptibility and grain-size mode is negative and
insignificant (r = −0.68; p = 0.21; n = 5), which suggests that,
for these samples, provenance plays a more important role in
determining magnetic susceptibility than grain size.

A similar influence of grain size on log(Ti/Al) can be observed
in Martínez Channel and Steffen Fjord (r = 0.62; p = 0.05;
n = 10) and for the head of Baker Channel and Jorge Montt
Fjord (r = 0.92; p < 0.05; n = 5). In these two cases, log(Ti/Al)
is positively correlated with grain-size mode, in agreement with
the results of Bertrand et al. (2012b) who suggest that Ti/Al
in Patagonian fjord sediments is primarily controlled by grain
size and hydrodynamic sorting of minerals. As with magnetic
susceptibility, the relation between log(Ti/Al) and grain-size
mode is weakly negative and insignificant in the distal part of
Baker Channel (r = −0.48, p = 0.41; n = 5), where grain size is
relatively stable (Figure 6). This again suggests that, in the distal
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FIGURE 8 | Log(Ti/Al) vs. magnetic susceptibility of the fjord and river
sediment samples. The green and blue rectangles represent sediments
derived from the Northern (NPI) and Southern (SPI) Patagonian Icefields,
respectively. RW19-05 is considered as an outlier (RESULTS section
“Magnetic Susceptibility”) and was thus not included. Error bars are smaller
than the size of the symbols.

part of Baker Channel, provenance plays a more important role
than grain size in controlling log(Ti/Al).

To summarize, within fjords fed by meltwater from one
icefield, such as Martínez Channel, the head of Baker Channel
and Steffen and Jorge Montt fjords, magnetic susceptibility and
log(Ti/Al) are controlled by grain size. However, in fjords where
sediments are derived from both icefields, i.e., the distal part
of Baker Channel, magnetic susceptibility and log(Ti/Al) are
primarily driven by sediment provenance.

Sediment Provenance Quantification
Throughout the distal part of Baker Channel, magnetic
susceptibility and log(Ti/Al) of the fjord surface sediment
samples increase westward (Figures 3, 7), from values roughly
halfway between the end-members toward values similar to the
NPI end-member, whereas the grain-size mode decreases by
∼1 µm (Figure 6). These increasing trends can only be explained
by the mixing, in different proportions, of sediments derived
from the NPI and SPI.

A linear mixing model based on log(Ti/Al), with RW19-
07 (Huemules River) and RW19-06 (Pascua River) as NPI
and SPI end-members, was applied to quantitatively estimate
the NPI vs. SPI sediment contributions to the distal part of
Baker Channel (Figure 9). Magnetic susceptibility was not
included in the model since the samples in the distal part

of Baker Channel exceed the end-member limits (Figure 3),
suggesting that factors other than provenance influence the exact
magnetic susceptibility values. Therefore, the ability of magnetic
susceptibility to differentiate between sediments derived from the
NPI and SPI remains qualitative.

The provenance quantification results suggest that the fjord
sediment samples from the distal part of Baker Channel derive
from both the NPI and SPI, and that the NPI is the dominant
source (60–85%) throughout the fjord (Figure 9). The higher
relative input of NPI-derived sediment is in agreement with
(1) the larger drainage area of the Huemules and lower Baker
river watersheds, which are the main contributors of NPI-related
sediment to the Baker-Martínez fjord system, compared to the
lower Pascua River watershed and Jorge Montt Glacier (Table 1),
(2) the higher combined mean annual discharge of Huemules
(121 m3/s) and Baker (1,133 m3/s) rivers vs. Pascua River
(753 m3/s) and Jorge Montt Glacier (129 m3/s) (Pantoja et al.,
2011; Pryer et al., 2020), (3) the higher suspended sediment
concentrations in Huemules (57.2 mg/L) and Baker (35.8 mg/L)
rivers compared to Pascua River (5.2 mg/L), and (4) the satellite-
derived average spring-summer suspended sediment distribution
throughout the Baker-Martínez fjord system (Figure 2).

The provenance quantification also suggests that the
proportion of NPI-derived sediments increases westward from
60 to 85% throughout the distal part of Baker Channel (Figure 9).
The first location at which mixing between the two sources can
occur is around Troya Channel, probably slightly to the west of
station St8, as suggested by the surface turbidity map (Figure 2).
The high amount of NPI-derived sediments at St8 and St7
suggests the presence of an effective southward transport of
suspended sediments from Martínez Channel to Baker Channel,
especially in summer when river discharge and suspended
sediment concentrations are maximum (Aiken, 2012; Amann
et al., Submitted). Although the proportion of NPI vs. SPI-
derived sediment does not significantly change between stations
St8 and St6, the proportion of NPI-derived sediment increases
to about 80% at stations St5 and St4, suggesting an additional
input of NPI-derived sediment via Sierralta Channel and the
western end of Martínez Channel (Figure 9), in agreement with
variations in surface turbidity values (Figure 2).

It is worth mentioning that the proportions of NPI and
SPI-derived sediments shown in Figure 9 are relative, i.e., an
increase in sediment input from one of the sources results in an
apparent decrease in the contribution of the other source. This
comment is valid for both spatial changes inferred from surface
sediment samples, and for temporal changes inferred from
sediment cores. Interpreting changes in sediment provenance to
the distal part of Baker Channel through time therefore requires
considering possible changes in the two sources. In addition,
an increase in the input of sediments derived from the Eastern
Andean Metamorphic Complex could also be caused by processes
independent of meltwater input, such as intense precipitation in
the eastern part of the lower Baker River watershed (Figure 1).
This would complicate the interpretation of the provenance
tracers in terms of variations in meltwater input since sediment
derived from the eastern part of the lower Baker River watershed
is compositionally similar to SPI-derived sediments.
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FIGURE 9 | Relative contributions of NPI- and SPI-derived sediments to the distal part of Baker Channel, as estimated by linear mixing based on log(Ti/Al). NPI
sediments mostly originate from the Huemules and lower Baker River watersheds, whereas SPI sediments mostly represent sediment input from Jorge Montt Glacier
and from the lower Pascua River watershed. RW19-07 and RW19-06 were used to define the NPI and SPI end-members.

A limitation of our study is that the sediment end-members
were entirely defined using single river suspended sediment
samples collected in summer. Although summer corresponds to
the peak in meltwater contribution and sediment input (Amann
et al., Submitted), this characterization of the sediment sources
does not take into account the possible seasonal changes in
the composition of the sediment reaching the fjords. The good
agreement between the composition of the river suspended
sediments and that of the fjord surface sediment samples from
the heads of Martínez and Baker channels, which represent year-
round sedimentation (Figure 7), however, suggests that seasonal
variations in sediment composition are limited and/or that most
of the fjord sediments are supplied during the meltwater season
in summer. Collecting river suspended sediment samples during
all four seasons and over multiple years could contribute to a
more accurate definition of the end-members, and ultimately
to a more robust quantitative mixing model. The magnetic
and geochemical contrasts between the end-members, however,
are unlikely to change since they reflect the clear lithological
differences that characterize the NPI vs. SPI watersheds.

CONCLUSION

Our results suggest that magnetic susceptibility and log(Ti/Al)
can be used as provenance tracers to differentiate NPI- from SPI-
derived sediments throughout the Baker-Martínez fjord system,
but that only log(Ti/Al) can provide quantitative estimates of the
proportions of sediment derived from each icefield. The ability of
these tracers to distinguish between sediment derived from each
icefield reflects the high magnetic susceptibility and Ti content of
the igneous rocks underlying the NPI, compared to the weakly
magnetic and Ti-poor metamorphic bedrock that underlies the
SPI. Within fjords fed by meltwater from only one icefield,
e.g., Martínez Channel, the head of Baker Channel and Steffen
and Jorge Montt fjords, variations in magnetic susceptibility
and log(Ti/Al) are mostly driven by changes in grain size,
which in turn reflect the progressive settling of sediment
from the hypopycnal plume. In fjords receiving sediments
from both icefields, such as the distal part of Baker Channel,
magnetic susceptibility and log(Ti/Al) can serve as qualitative and
quantitative tracers of sediment provenance, respectively.
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We suggest that log(Ti/Al), and to a lesser extent magnetic
susceptibility, can be applied to long sediment cores from the
Baker-Martínez fjord system to reconstruct relative variations
in sediment input from each icefield, which may in turn
be interpreted as changes in river discharge and/or glacier
mass balance. To do so, sediment cores must come from a
fjord receiving sediment from both sources, such as the distal
part of Baker Channel, and grain size must remain relatively
stable. Although the results presented here are specific to the
Baker-Martínez fjord system, they suggest that cost-effective
parameters such as sediment inorganic geochemistry, can be
used to reconstruct sediment provenance with a relatively good
precision, if the main processes affecting the concentration of
each element are adequately understood.
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