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Acknowledging ecological interactions, such as predation, is key to an ecosystem approach
to fisheries. Trophodynamic indicators are needed to measure the strength of the
interactions between the different living components, and of structural ecosystem changes
resulting from exploitation. We review trophodynamic indicators derived from models, as
well as from emergent patterns such as trophic cascades and regime shifts. From 46
indicators identified in the literature, six (catch or biomass ratios, primary production
required to support catch, production or consumption ratios and predation mortality, trophic
level of the catch, fishing-in-balance, and mixed trophic impact) were selected because of
their ability to reveal ecosystem-level patterns, and because they match published criteria.
This suite of indicators is applied to the northern and southern Benguela ecosystems, and
their performance is evaluated to depict drastic and contrasted ecosystem changes. A few
complementary indicators are suggested as needed to detect the trophodynamic impacts of
fisheries and ecosystem changes. Trends in indicators are sensitive to the choice of trophic
level made for certain species. Trophodynamic indicators appear to be conservative,
because they respond slowly to large structural changes in an ecosystem. Application of the
selected indicators to other marine ecosystems is encouraged so as to evaluate fully their
usefulness to an ecosystem approach to fisheries, and to establish international
comparability.
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Introduction

The Reykjavı́k declaration of 2001, reinforced at the World

Summit on Sustainable Development in Johannesburg in

2002, requires nations to base policy governing exploitation

of marine resources on an ecosystem approach. To fulfil

this challenge, a strategy is needed that is based on the

development of ecosystem-based indicators coupled with

operational frameworks that bridge the gaps between

scientific results, social needs, and a comprehensive and
1054-3139/$30.00 � 2004 International Cou
effective ecosystem approach to fishing (EAF). From an

ecological point of view, this means that interactions

between the different components within marine ecosys-

tems have to be acknowledged, understood, and quantified

(Cury et al., 2003).

The strength of ecological processes such as trophody-

namic interactions, i.e. predation and competition, has been

recognized as being of great importance in fish population

dynamics (Bax, 1998). Trophic interactions raise two

concerns for fisheries management. The first is the decline
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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in the food resource upon which some component of the

ecosystem subsists, necessitating its departure to other

localities or causing its decline (Link, 2002). The second is

the indirect effect of decreasing fish biomass on ecosystem

functioning (e.g. regime shifts). To be useful in tracking

progress towards sustainable development, indicators need

to be closely linked to clear objectives (what is to be

achieved, or what definitely needs to be avoided), and

translated into reference points (Garcia and Staples, 2000).

This review focuses on descriptive and performance

indicators as a tool for cross-system comparisons. We

briefly summarize the important processes and patterns, and

review trophodynamic indicators derived from models of

trophic interaction, as well as from observed patterns. A

selection is then proposed on the basis of the criteria of

Rice and Rochet (2005). Finally, this suite of indicators is

applied to the northern and southern Benguela, two well-

studied ecosystems, and their performance is evaluated.

An extensive, though not exhaustive, review found more

than 200 different indicators of ecosystem status (Rice,

2000). However, the challenge is not to find indicators of

ecosystem status, but rather to evaluate their performance

(Rice, 2003). Potential indicators are obtained mainly from

model outputs or statistical analyses. Trophodynamic

indicators are grouped here according to their linkage to

specific objectives, i.e. indicators used to characterize single

foodweb components (e.g. population, species, functional

group, trophic level) and indicators used to characterize

ecosystem state.

Main quantitative indicators covering aspects of trophic

ecology are presented in Table A1 of the Appendix. Most

indicators are simple or composite (e.g. ratios) measures of

flows of some currency (mass or energy), but some are

based on other metrics, e.g. position in the food chain

(trophic level), number of trophic links (connectance), or

probabilistic considerations (information). Most system

indicators (Table A1, part b, of the Appendix) have been

related to ecosystem maturity (Odum, 1969; Christensen,

1995, 2000), and they depend upon the formulation of the

underlying foodweb model (e.g. aggregation or disaggre-

gation of trophic groups, diverse assumptions about

structural and functional parameters; Rice, 2003).

A selection of indicators

The trophic indicators listed (Table A1 of the Appendix)

were considered with respect to the criteria developed by

ICES (2001), modified by Rice and Rochet (2005). Six were

subsequently selected on the basis of their perceived

suitability for fisheries management purposes. Their ability

to quantify effects of fishing was then evaluated in a pre-

liminary scoring procedure on the basis of the nine criteria

(Table 1). The procedure was to ask participants of the

SCOR-IOC Working Group 119 task force on trophody-

namic indicators to score the different individual indicators,
then to discuss the results collectively to obtain the final

evaluation.

The relative change in species (or functional group)

composition within the catch or surveyed community can be

quantified by means of biomass ratios (preferable to catch

ratios), to characterize ecosystem changes (e.g. piscivor-

ous:zooplanktivorous fish). Such ratios are easily understood

and measurable, and are often, but not exclusively, sensitive

to fishing. However, finding theoretical foundations for

setting reference points is problematic, and these would have

to be defined empirically based on historical data.

The primary production required (PPR) to support

catches (Y) in a system is expressed as a percentage of

the total primary production available in the system during

a given period, and may be computed as

PPRZ
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(for symbols used in equations, see Appendix). PPR can be

used to compare effects of fishing at different trophic levels

(Pauly and Christensen, 1995), quantifying the ecological

expense of fishing in an ecosystem. Considerable un-

certainty (consequently with heavy assumptions) still exists

about the trophic structure of the lower part of the foodweb

(i.e. plankton) in modelled upwelling systems, with

implications for PPR estimates. Therefore, the estimate of

relative PPR is strongly dependent on a realistic estimate of

actual primary production (Jarre-Teichmann and Christen-

sen, 1998), which is often not available on an ecosystem

scale.

The proportion of production by different components,

and the proportion of the total consumption of each prey

taken by each predator group, can be used to quantify the

relative importance of prey or predators (consumers). The

importance of predation and/or fishing mortality relative to

total mortality in any particular group may be helpful in

monitoring changes in trophic structure within or among

systems. Predation mortality is often larger than fishing

mortality (Bax, 1991; Jarre et al., 1991), but their relative

importance may change through time, or differ between

systems. Effects of fishing will be most apparent in cases of

tight trophic coupling, such as between forage fish subject

to heavy fishing pressure and seabird predation (Crawford

and Dyer, 1995).

Trophic level (TL) expresses the position of organisms

within a foodweb. The mean TL of the catch may be

computed for each year, from

TLkZ
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Yik
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The mean TL of fisheries landings can be used as an index

of sustainability. The TL of fish usually increases during
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Table 1. Selected trophodynamic indicators scored according to nine criteria (1-cc, concreteness; 2-tb, theoretical basis; 3-pa, public

awareness; 4-co, cost; 5-mm, measurement; 6-ah, availability of historical data; 7-ss, sensitivity; 8-rs, responsiveness; 9-sp, specificity; see

Rice and Rochet, 2005) in evaluating the capability of ecosystem indicators to measure the impact of fishing (the number of asterisks

represents scores from 1Z low to 5Z high; see Appendix for the symbols used).

Indicator 1-cc 2-tb 3-pa 4-co 5-mm 6-ah 7-ss 8-rs 9-sp Strengths or weaknesses

1. Y or B ratios ***** ** *** Y*** ** Y**** Y* *** ** Y-derived indicator may not reflect

biological dynamics.B* B** B****

2. PPR for Y ** **** * * * * ** ** **** Y-derived indicator may not reflect

biological dynamics.

3. P and Q ** *** * ** ** * ** ** * Reflects dynamics/status of exploited

and non-exploited stocks. Data

requirement may be great.

a) P/Q ratios

b) Q proportion

c) Predation M

4. TL of Y *** *** *** **** *** **** *** *** **** Tracks fishing down the foodweb.

TL may remain constant despite

changes in Y composition and

foodweb changes/collapse.

May be slow to respond to large

ecosystem change.

5. FiB *** **** *** **** *** **** **** **** **** Indicates whether Y-change consistent

with TL being fished.

May miss foodweb collapse at low TL

if high-TL Y is sustained.

Depends on TL and Y in reference year:

consider periods (‘‘regimes’’) separately.

6. TI * **** ** * * ** *** ** ** Takes account of direct and indirect

(often unexpected) effects.

Derived from static model; may not

reflect dynamic effects.
ontogeny, because larvae and juvenile fish are likely to feed

at lower levels than conspecific adults (Pauly et al., 2001).

Fisheries tend first to remove large, slow-growing predatory

fish, so reducing the mean TL of the fish remaining in the

system. Therefore, a decline in TL may occur within

species as well as among species, eventually leading to

declining trends of mean TL in the catches extracted from

an ecosystem, a process now known as ‘‘fishing down

marine foodwebs’’ (Pauly et al., 1998).

The fishing-in-balance index (FiB) is computed as

FiBZlog
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where the subscript 0 refers to the year at the start of

a series, which serves as an anchor (Pauly et al., 2000).

Because production is higher at low TL than at high TL,

catches tend to increase, at least initially, if TL declines (i.e.

when the fisheries start targeting species lower in the

foodweb; Pauly et al., 1998). This process led Pauly et al.

(2000) to suggest the dimensionless FiB index designed,

given an estimate of the transfer efficiency between TL, to
maintain a value of zero when a decrease in TL is matched

by an appropriate catch increase (and conversely), and to

deviate from zero otherwise. An increase in FiB indicates

expansion of a fishery (geographically, or expansion

beyond the initial ecosystem to stocks not previously

exploited, or only lightly exploited) or that bottom-up

effects have occurred, e.g. increased primary productivity

(Pauly and Watson, in press). Conversely, a decrease

indicates geographic contraction of the fisheries, or

a collapse of the underlying foodweb (impairing the

ecosystem functioning), leading to the ‘‘backward-bend-

ing’’ plots of TL vs. catch originally presented in Pauly

et al. (1998). A decrease in FiB will also be observed if

discarding takes place that is not reflected in the reported

catches (Pauly and Watson, in press). FiB requires the

assumption that transfer efficiency is constant (and known

sufficiently well) across trophic levels (Pauly et al., 2000).

Nevertheless, FiB is believed to provide a better indicator

of ecosystem change than catch or catch composition,

because of its integrative nature (Garcia and Staples, 2000).

Mixed trophic impact (TI) is a measure of the relative

impact of a change in the biomass of one component on

other components of the ecosystem (Ulanowicz and Puccia,

1990). The analysis is based on an inputeoutput method



433Trophodynamic indicators for an ecosystem approach to fisheries
used to assess direct and indirect economic interactions

(Leontief, 1951). Through matrix calculations, TI quantifies

the net effects of one species on every other species in

a system, taking into account positive effects of a prey

species on its predator (weighted relative to its proportion

in the diet), negative effects of a predator on its prey

(weighted according to the fraction of the production of

a prey that is consumed by the predator), and the indirect

effects one species may have on another through trophic

interactions. Matrices are constructed of relative net

impacts of each group on every other, scaled between �1

and 1. An assumption is that the trophic structure remains

constant, implying that TI should not be used in a predictive

sense, but rather as a type of sensitivity analysis, to identify

those groups that may have large trophic impacts on others,

and so might be suitable indicators for monitoring fisheries

effects across an ecosystem.

Comparing the northern and the
southern Benguela

General description

The northern and southern Benguela are dynamic and

comparable upwelling systems, in which the fisheries target

largely similar demersal (Cape hakes, Merluccius capensis

and M. paradoxus) and pelagic fish species (sardine,

Sardinops sagax; anchovy, Engraulis encrasicolus; horse

mackerel, Trachurus t. capensis). However, the two

ecosystems have followed very different trajectories since

the 1950s in terms of exploitation, species composition,

structure, and dynamics (Figure 1). A regime shift was

documented in the northern Benguela (Boyer and Hampton,

2001) as the result of overexploitation, whereas the southern

Benguela exhibits variability that appears to be within

natural limits (Cury and Shannon, 2004). Trophic models of

the two ecosystems are available (Shannon and Jarre-

Teichmann, 1999; Shannon et al., 2003; Roux and Shannon,

2004), and were standardized for comparative purposes

according to the methods described by Moloney and Jarre

(2003). Two models were used for each system to describe

the foodwebs under different productivity levels of pelagic

fish (northern Benguela, 1980e1989 and 1995e1999;

southern Benguela, 1980e1989 and 1990e1997), and these

were used as case studies for the application and in-

terpretation of the six selected trophic indicators, to assist in

testing their usefulness.

The detailed recent history is reflected in the time-series of

catches shown in Figure 2a, namely a sequential exploitation

and depletion of the three main stocks in the northern

Benguela (sardine, anchovy, and hake). Few management

measures could be implemented effectively there until

Namibia’s independence and proclamation of a 200-mile

EEZ in 1990. Since independence, hake catches have

recovered only modestly, sardine catches have remained

insignificant, and horse mackerel has continued to dominate
the total biomass landed, as it has since the late 1970s,

although it has declined slowly since the late 1980s. Total

catches have steadily decreased from a peak of O2 million

tonnes in 1968 to around 0.5 million tonnes in the late 1990s.

In the southern Benguela, a bottom-trawl fishery

targeting hake had been established even before 1950,

catches slowly increasing from around 50 000 to 140 000 t

between 1950 and 1977, when a 200-mile Fishing Zone was

proclaimed by South Africa (Payne, 1995). Since then, hake

catches have risen only slightly. Horse mackerel never

dominated the South African catches, though sardine

constituted the bulk of the landed biomass until 1965,

before being replaced by anchovy until the mid-1990s.

Recently, landings of both sardine and anchovy have

increased. The total catch shows fluctuations around 0.5

million tonnes, without a clear trend, from the early 1960s

to the present (Figure 2a). Fisheries have been carefully

managed, for example by maintaining annual pelagic fish

catches well below 25% of estimated annual biomass since

the early 1990s.

Catch ratios

The ratio between demersal and total catch increased in

both systems during the second half of the 20th century

(Figure 2b), but only moderately so in the southern

Benguela (from 20% to 36% between 1950 and 2000;

observed range 16e45%). In comparison, the ratio in the

northern Benguela increased from approximately zero

before 1960 (when catches were mostly sardine, and there

was little local or foreign interest or knowledge of demersal

resources) to 90% in 2000, when catches of small pelagics

were insignificant, and the bulk of the landings was large

horse mackerel (largely demersal, in contrast to small horse

mackerel, which are caught pelagically) and hake targeted

by demersal trawlers. The difference in trends results from

the earlier establishment of a trawl fishery in the southern

than in the northern Benguela.

Mean trophic level (TL) of catch

The trajectory of the mean TL of catches in the northern

Benguela underwent three distinct phases (Figure 2c, d).

From 1950 to 1964, the TL remained around the low value

of 2.7 (corresponding to the TL of sardine). The TL then

increased rapidly to values in excess of 3.8 between 1965

and 1972, following the rapid development of the hake

fishery and the decline of the sardine stock. Finally, from

1972 to 2000, the index remained stable at an average value

of 3.7 (s.d.Z 0.1), without a trend over the past 29 years

(FZ 0.69, pO 0.4). The apparent stability is due to the

continuing decline of small pelagics in the catches, and the

partial replacement of hake by horse mackerel (medium

TL) during a period of general decline in overall catches.

In the southern Benguela, the trajectory displays

a significant dip between 1958 and 1965, when catches
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Figure 1. Historical records of key species abundance and catches in the northern and southern Benguela over the past five decades

(redrawn from Cury and Shannon, 2004).
were dominated by sardine (Figure 2d). From 1966 to 1991,

the TL increased slowly (average slope 0.004 per year), but

significantly (p! 0.005), but declined slightly thereafter.

The rising trend is due to the slowly increasing hake

catches and the replacement of sardine (TLZ 3) by

anchovy (TLZ 3.5) as the dominant small pelagic species.

The slight decline during the 1990s cannot be interpreted as

an effect of ‘‘fishing down the foodweb’’, because hake

catches remained remarkably stable. In fact, the decline

reflects the increasing contribution of sardine following the

successful recovery of that stock during the 1990s.

Fishing-in-balance (FiB) index

The trajectory of the FiB index (Figure 2e) in the northern

Benguela shows a rapid increase between 1960 and 1972,
reflecting the rapid expansion of the pelagic fishery,

followed by an expansion of the trawl fishery and declining

pelagic catches. From 1972 to 2000, the FiB shows a slight

but significant overall decline (with a slope of �0.07 per

annum, r2Z 0.49, p! 0.0001). The main factor contrib-

uting to this negative trend is the overall decline in total

catches (Figure 2a), and the increasing relative contribution

of horse mackerel to the catches.

Because the fishery in 1950, the reference year, was more

developed in the southern than in the northern Benguela,

the amplitude of FiB changes is much smaller in the

southern Benguela. Nevertheless, the increasing trend

apparent between the mid-1960s and 1988 seems to track

the overall increasing catches of anchovy, which peaked in

1987 and 1988. The reverse trend in the 1990s reflects the

increasing contribution of sardine (Figure 2a). FiB plots
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Figure 2. Annual indicators derived from catches in the northern and southern Benguela, 1950e2000: a) catch, b) ratio of demersal

catch:total catch, c) mean trophic level of catch, d) fishing-in-balance index (TEZ 10%), e) trophic level of catch vs. logarithm of catch (t).
were also examined assuming a higher transfer efficiency

(TE) than 10% (even as large as 20%; i.e. including the

12% used in Shannon et al., 2003), as well as a variable TE

each year (according to the average TL of the catch in each

year), but this made virtually no difference and the results

are not included here.

Ratios of catch, biomass, production,
and consumption

For both ecosystems, ratios of production, consumption,

biomass, and catches of the various groupings of small

pelagic fish relative to demersal fish were lower in the
1990s than in the 1980s (Table 2), indicating a decline in

the relative biomass of planktivorous fish and/or an increase

in that of the demersal fish assemblage, according to the

models used. However, in the northern Benguela, catch

ratios of planktivorous:piscivorous fish and small pela-

gicsC small hake:large pelagicsC large hake, increased

as a result of the observed increase over the two decades in

catches of horse mackerel relative to piscivorous hake. The

small increase (4%) in the consumption of small pelagic

fish (excluding small hake) by predators, relative to their

consumption of demersal fish, in the southern Benguela

reflects an increase in biomass of mesopelagic fish off South

Africa between the 1980s and 1990s. Overall, the ratios
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Table 2. Trophodynamic indicators derived from standardized trophic models of the northern and southern Benguela ecosystems for

different periods (pel e pelagics, i.e. clupeids [i.e. sardine, round herring, Etrumeus whiteheadi], anchovy, pelagic goby, other small

pelagic fish, small horse mackerel, mesopelagic fish, chub mackerel; dem e demersals, i.e. all hake, benthic-feeding and pelagic-feeding

demersal fish, large horse mackerel; smf e small pelagic fish and small hake, i.e. clupeids, anchovy, pelagic goby, other small pelagic fish,

small hake, but excluding mesopelagic fish; laf e large hake and large pelagics, i.e. large hake, snoek, Thyrsites atun, tuna, linefish;

pla e planktivorous fish, i.e. clupeids, anchovy, pelagic goby, other small pelagic fish, horse mackerel, mesopelagic fish, small hake;

pis e piscivorous fish, i.e. large hake, snoek, tuna, linefish, pelagic-feeding and benthic-feeding (includes some detritivores) demersal fish,

chub mackerel; pfp e pelagic fish predators, i.e.: seabirds, seals, cetaceans, large pelagic fish, large hake, chub mackerel).

Indicator

Namibia South Africa

1980e1989 1995e1999 % Change 1980e1989 1990e1997 % Change

TL of Y 3.7 3.7 0 3.7 3.8 2

Total Y (t km�2 y�1) 6.0 2.8 �53 3.0 2.5 �18

Total fish B (t km�2) 66 58 �13 32 36 12

B of pfp (t km�2) 6.7 5.7 �16 3.9 4.9 24

PPR to sustain fishery (t km�2 y�1) 983 465 �53 451 455 1

% PPR 17 7 �55 3.8 3.9 2

PPR/Y 165 165 0 148 182 23

P e pel/dem 3.2 3.1 �4 1.9 1.8 �7

Q e pel/dem 4.1 3.9 �5 3.3 3.0 �7

Q e pel/dem by predators 4.4 4.1 �5 1.9 2.0 4

B e pel/dem 2.4 2.4 0 1.6 1.5 �6

P e smf/laf 8.5 8.0 �6 15 10 �30

P e pla/pis 6.8 6.4 �5 4.8 4.4 �9

Y e smf/laf 0.77 0.84 10 3.7 2.0 �44

Y e pel/dem 0.35 0.29 �20 2.3 1.7 �26

Y e pla/pis 2.0 2.3 12 3.2 1.8 �42
indicate a shift towards greater importance of demersal fish

in the Benguela over the time periods modelled.

Primary production required (PPR)
to sustain catches

In the northern Benguela, the PPR to sustain catches

decreased by more than 50% in accordance with the

reduction in catches, as indicated by the similar PPR:catch

ratios in the two periods. By comparison, the PPR in the

southern Benguela was similar in both periods, though

catches were smaller in the later period. This meant a 23%

increase in the ratio of PPR to catch, indicating that catches

were more ecologically expensive in the later period, in

accord with the estimated increased TL of the catch.

Mixed trophic impact (TI)

For the two northern Benguela models, the group display-

ing the largest differences in TI between periods is large

horse mackerel (Figure 3a). Horse mackerel sustain a major

commercial fishery off Namibia and, because they migrate

vertically through the water column, horse mackerel

trophically integrate to a certain extent the pelagic and

demersal systems. More abundant in the 1980s, horse

mackerel had, at that time, larger effects on their
competitors and predators. TI also provides an indication

of changes in the trophic importance of other groups in the

ecosystem. For example, chub mackerel (Scomber japoni-

cus), anchovy, and sardine stocks had all undergone severe

declines by the second period, leading to a reversal from

negative (competition for common prey being the dominant

factor) to positive TI in the second period (large horse

mackerel also feed to some extent on the other three species

which, at low abundance, no longer strongly compete with

horse mackerel for prey).

In the southern Benguela, sardine abundance increased in

the 1990s, reflected in the larger net negative TI on its

competitors (e.g. anchovy, other small pelagic fish, horse

mackerel), and larger positive TI on its predators (e.g.

seabirds, cetaceans, large pelagic fish; Figure 3b).

Predation mortality

For all selected fish groups in the two systems, predation

mortality relative to the sum of predation and fishing

mortality increased between the two periods (Figure 4a).

However, the indicator measures different things in the two

systems. In the southern Benguela, predation mortality

reflects support of a 24% larger biomass of pelagic fish

predators (Table 2) in the 1990s than in the 1980s, whereas

in the northern Benguela, the indicator is a measure of the
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Figure 3. Mixed trophic impact (TI) on selected groups during two periods by a) large horse mackerel in the northern Benguela, b) sardine
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Figure 4. Annual predation mortality rates expressed as (a) a proportion of total mortality on selected fish groups, (b) a proportion of total

mortality attributable to seals and seabirds.



438 P. M. Cury et al.
increased pressure on the fish groups. Predator biomass off

Namibia declined between the two periods (Table 2).

In the northern Benguela, anchovy predation mortality

(relative to total predation and fishing) attributable to seals

and seabirds more than doubled in the later period as

a consequence of a large reduction in stock size and the

collapse of the anchovy fishery (Figure 4b). The decrease in

predation pressure exerted on sardine by seals and seabirds

off South Africa during the 1990s reflects the recovery of

sardine (Figure 4b).

Differences within the region

Many differences between trophic indicators for the two

subsystems appear to be related to the southern Benguela

model not only constituting a typical upwelling region

(west coast), but also a shallow bank with diverse demersal

fish assemblages (Japp et al., 1994). Moreover, large parts

of the northern Benguela shelf are subjected to recurrent

low oxygen conditions, which might be limiting for some

demersal species. The catch of pelagic fish compared with

the catch in the demersal fishery (trawls and longline) is 1.5

times larger in the northern Benguela than in the southern

Benguela. Similarly, ratios of consumption by and of

pelagics vs. demersals are larger in the north. Conversely,

catches of pelagic fish relative to demersal fish, and of

small pelagic fish vs. large hake and large pelagic fish, are

an order of magnitude smaller off Namibia than off South

Africa. The smaller discrepancy between catch ratios of

planktivorous:piscivorous fish arises from the large catch of

large (planktivorous) horse mackerel in trawls. The

importance of horse mackerel in the north also accounts

for inflated catch ratios of planktivores:piscivores in the

north, relative to those in the south (cf. pelagic:demersal

ratios).

Discussion

The dynamics of the northern and southern Benguela

ecosystems documented across different trophic levels show

contrasting trajectories in various components during the

past two decades. Therefore, the available information

should be useful in testing the performance of trophody-

namic indicators. Most of the indicators discussed (total

catches, ratio demersal to total catches, ratio piscivorous to

total catches) display interpretable trends in the northern

Benguela (see also Willemse and Pauly, 2004), compared

with their relative stability in the southern Benguela. This

appears to be a reflection of the better ‘‘health’’ of the

fisheries in south, and may be partly because management

measures were implemented effectively in the south since

the implementation of the 200-mile Fishing Zone in 1977

(more than 13 years earlier than off Namibia). However, the

relative stability over the past 30 years of the mean TL of

the catch in the south hardly reflects the important changes

in the system (fluctuations of the anchovy stock and
catches), suggesting that this indicator specifically is

a conservative one that responds slowly to large structural

change. The absence of a trend in the northern Benguela

during the same period (when the system was subjected to

sequential depletion of its most important stocks) highlights

the bias that results from the use of an indicator based on

catches if an ecosystem has shifted productivity towards

non-exploited species (such as, in this case, pelagic goby,

Sufflogobius bibarbatus, or jellyfish). This being said, in

February 2004, the Conference of the Parties to the

Convention on Biological Diversity (CBD) identified mean

TL of the catch (which they term the Marine Trophic Index,

MTI) as one of eight indicators to be tested immediately for

their ability to measure progress towards achieving

a significant reduction in the current rate of biodiversity

loss by 2010 (CBD, 2004). To emphasize changes in the

relative abundance of higher TL fish, and to reduce bottom-

up effects of productivity changes (reflected in the large

fluctuations of small pelagic fish stocks and catches), Pauly

and Watson (in press) recently proposed that low TL

catches be excluded from global computations of MTI. This

would allow top-down effects of fishing to be identified.

However, for the reasons just discussed, it is also important

to consider changes at the lower TLs (bottom-up effects)

when attempting to track changes (via top-down or bottom-

up forces) in an upwelling ecosystem such as the Benguela.

The relative stability of the mean TL of the catch, despite

the known changes, emphasizes the potential danger of

interpreting a single indicator without analysing the causes

of the observed trajectory, or understanding the dynamics

of the fisheries. The FiB index (in combination with plots of

the TL of catches against catches) seems to capture not only

the historical development of the fisheries in both systems,

but also the differences in the state of the fisheries over time

between the two areas, more accurately than any other

single index derived from catch statistics. One drawback of

the FiB index is that it is heavily dependent on the catches

and their trophic level in the reference year. The absolute

value only has a clear interpretation relative to that

reference year, but if the reference year is changed, the

values also change. This accounts for the difference in the

range of values obtained for the two systems (Figure 2d).

However, the trends in a FiB series are conserved

irrespective of the base year selected. Examining the FiB

separately for sub-periods characterizing different fishing

and/or ecosystem ‘‘regimes’’ is recommended if interannual

changes are to be captured in greater detail.

Quantifying changes in an ecosystem is not straightfor-

ward, and no single trophodynamic indicator can track the

complexity of the observed changes in fisheries and

ecosystems. Although they appear useful for understanding

ecosystem and fisheries dynamics, such indicators tend

to be conservative, because they respond quite slowly to

structural change. Moreover, trends are sensitive to

calculated TL values, emphasizing a need to improve data

collection to better understand fish feeding behaviour. One
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could wonder whether it might have been more informative

to consider abundance and species composition from

research surveys, rather than to compute the indicators

used here. The use of trophodynamic indicators should not

restrain scientists from using single-species metrics, but the

trophodynamic indicators should be valued for improving

evaluation of the dynamics of the whole ecosystem, by

measuring the net effects of the underlying interactions

between species groups. In that sense, they are useful in

considering probable future trajectories of different ecosys-

tem components. In the case of the southern Benguela, the

indicators investigated tell us that the fisheries did not affect

the structure and functioning of the ecosystem to a great

extent, whereas the indicators for the northern Benguela

provide a rather ‘‘optimistic’’ assessment in so far as they

did not adequately depict the perceived ‘‘ecosystem

collapse’’ (Bakun and Weeks, 2004).

Trophodynamic indicators have not been developed to

capture bottom-up forces specifically. We propose that an

environmental version of the FiB would be useful in

quantifying how environmental effects propagate up

through the foodweb. Such an Environment-in-Balance

index (EiB) could constitute an analogue that would

calculate how, for example, an increase in the planktonic

production would propagate up the food chain.

Trophodynamic indicators are still descriptive, and

reference points have not yet been identified, although

historic time-series, even if data quality is not ideal, confirm

massive changes in marine ecosystems. This highlights the

need for long-term retrospective analyses to interpret trends

and values correctly, and to avoid shifting baselines. Any

change in the temporal dynamics or trajectory of an indicator

must be interpreted in the light of other, complementary

indicators, as well as general ecological knowledge.

One way to apply ecosystem indicators in fisheries

management would be to focus on how they can be

implemented in minimizing the adverse effects of fishing,

rather than to focus on the precision of particular reference

points or indicator values (Garcia and Staples, 2000). This

may be a challenge beyond the scope of natural science

alone. As a first step, the opportunity should be seized to

apply the selected indicators to a broad selection of large

marine ecosystems (LMEs), to evaluate fully their useful-

ness for an ecosystem approach to management, and to

establish international compatibility of indicators for

intersystem comparison. This may be a long-term task,

but any step forward should facilitate the evaluation of the

overall effectiveness of indicators used in the context of

local ecosystems under local institutional management

arrangements.
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Appendix. Notation

j.p index for predator
i.n index for prey

k index for year
B biomass
P production
PB population growth rate (in equilibrium

PBZ Z; Allen, 1971)
Y catch
Q consumption

GS proportion of food not assimilated
QB consumption rate (ration) in time
DCji percentage diet composition, DCjiZweight i/P

weight i;
Det flow to detritus
EE ecotrophic (consumption) efficiency

GE gross efficiency

TE transfer efficiency
A assimilation (assimilated consumption)
R respiration
T throughput

F fishing mortality
M2 predation mortality
M0 other mortality

Z total mortality
TL mean trophic level
P production

PP primary production
Asc ascendancy
C development capacity
I information

H statistical entropy
V overhead

Table A1. Trophic indicators used to characterize a) single foodweb components, b) changes in the functioning or structure of the whole

ecosystem and their ability to capture different types of trophic controls (Bu, bottom-up; Td, top-down; Mx, Mixed).

(a) Single foodweb components

Indicator e estimator/source

Application and comments: control (references)

Abundance e numerical, density, B, Y, cpue, ocean colour/surveys, models

Parallel or inverse trends across predatoreprey and TL: Bu-Td-Mx, effect of fishery (Pauly et al., 1989; Aebischer et al.,

1990; Caddy and Garibaldi, 2000; Cury et al., 2000; Carr, 2002; Daskalov, 2002, 2003)

Production e PP and secondary production, recruitment/survey experiments, models

Trends, recruitmenteenvironment relationships, cultivation/depensation effect: Bu (Vinogradov et al., 1976; Cury and

Roy, 1989; Cushing, 1996; Walters and Kitchell, 2001; Carr, 2002)

Proportion of prey in predator’s diet e diet matrix, selectivity, suitability (MSVPA)/stomach content analysis

Selectivity, trophic overlap, prey-switching: mostly Bu (Christensen and Pauly, 1993; ICES, 2002; Jennings et al., 2002)

Consumption e food intake/stomach content analysis, gastric evacuation experiments

State and trends: Td (Overholtz et al., 1991; Bax, 1998; Christensen and Pauly, 1993)

Respiration e experiments, models

Used in efficiencies and system indices; accounting for system’s heterotrophy: Td (Christensen and Pauly, 1993;

Christensen, 1995; Cole et al., 2000)

Throughput e sum of all flows in and out of a group or system/models

Index of system size in terms of flow: mostly Bu (Ulanowicz, 1986; Christensen and Pauly, 1993; Christensen et al., 2000)

Flow to detritus e models

High values may indicate perturbed system: Td-Bu (Vinogradov et al., 1976; Christensen and Pauly, 1993; Grishin, 2001)

Mortality coefficients e natural, predation and fishing mortality/assessment models, tagging experiments

Trends, matrix: Td (Sparholt, 1990; Pope and Macer, 1996; ICES, 2002)

Ecological efficiencies e ratios of flow parameters/models

Td-Bu (Kozlovsky, 1968)
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Ecotrophic efficiency e dominance of removals (consumption, fishing) over production/models

Controls tend to "compete" to dominate each trophic group; if removals dominate then group is Td controlled and vice

versa: Td-Bu (Ivlev, 1945; Kozlovsky, 1968; Christensen and Pauly, 1993)

Transfer efficiency e product of EE and GE/models

Depends on changes in trophic control through EE and changes in food quality and feeding efficiency (behaviour)

through GE: Td-Bu (Kozlovsky, 1968; Pauly and Christensen, 1995; Van Rooij et al., 1998)

Catch ratios e predators:prey or demersal fish:pelagic fish/surveys, landings

Approximation of B ratios, but affected by fishing practices and effort: Td-Bu (Caddy and Garibaldi, 2000; De Leiva

Moreno et al., 2000).

Trophic level e by group or fractional/measurements, models

Overfishing of piscivores results in decreasing TL of Y; compensatory increase in forage may reduce TL: mainly Td

(Lindeman, 1942; Pauly et al., 1998)

Mixed trophic impact e Relative impact of change in B of one group on others/models

Used to simultaneously assess both direct effects of predation and indirect effects of competition, without discriminating

between the two: Td-Bu (Ulanowicz and Puccia, 1990)

(b) Whole ecosystem

Indicator e estimator/source
Application and comments: control (references)

System indicators corresponding to component indicators listed in A1 and their ratios e Total B,

P, R, net system P, flow to detritus, T, mean TE, PP:R ratio, PP:B ratio, R:B (Shrodinger) ratio, B:P ratio (waverage

organism size), Q:P ratio, B:PPC R ratio (B supported)

Indicate ecosystem maturity, complexity, stability, resilience, or changes attributable to perturbation: Td/Bu (Odum,

1969; Christensen and Pauly, 1993; Christensen, 1994, 1995; Vasconcellos et al., 1997; Christensen and Pauly, 1998)

Mean trophic level (of system or of fisheries) e weighted by B or Y of groups/models

Tracks fishing down the foodweb: Td-Bu (Pauly et al., 1998, 2000)

Fisheries’ gross efficiency e ratio of Y:PP/models

Higher in systems fished lower in the foodweb: Td-Bu (Christensen and Pauly, 1993; Christensen et al., 2000)

Utilization of PP e nutrient conservation, EE of primary producers/models

Higher in mature systems: Td-Bu (Christensen and Pauly, 1998; Grishin, 2001)

Connectance index e percentage of realized links relative to possible links/models

Index of structure: linear vs. web-like linkages in the foodweb: Td-Bu (Christensen, 1995; Christensen and Pauly, 1998)

System omnivory index e reflects trophic specialization: distribution of feeding interactions among TL

Higher (specialization decreases) in immature and perturbed systems: Td-Bu (Christensen, 1995; Vasconcellos et al.,

1997; Christensen and Pauly, 1998)

Finn’s cycling index e nutrient throughput cycled-to-total throughput ratio/models

Index of ecosystem maturity, stability, resilience: Td-Bu (Christensen, 1995; Christensen and Pauly, 1998)

Path length e average number of groups that the flow passes through/models

Similar to Finn’s cycling index: Td-Bu (Christensen, 1995; Christensen and Pauly, 1998)

Mutual information e probability of flow among system components; quantifies degree of articulation in network/models

Measure of organization, higher in mature and complex systems: Td-Bu (Odum, 1969; Christensen, 1995; Christensen

et al., 2000)

Ascendancy e product of throughput times information; accounts for both size and organization/models

Measure of ecosystem efficiency; higher in mature and complex systems: Td-Bu (Ulanowicz, 1986; Vasconcellos et al.,

1997; Christensen et al., 2000)

Primary production required (PPR) e energy to support consumption or catches/models

PPR is an index of the ecosystem efficiency similar to H. T. Odum’s notion of ‘‘emergy’’: Td-Bu (Pauly and Christensen,

1995; Christensen et al., 2000; Carr, 2002)

Fishing in balance (FiB) e assesses whether fisheries are ecologically balanced/models

Td-Bu (Pauly et al., 2000)

Dynamic stability e persistenceZ time required for biomass change O10%; resistanceZ 1/relative B change;

resilienceZ resistance/recovery time (to initial state)/models

Comparisons indicate inverse relationships between stability and maturity: Td-Bu (Vasconcellos et al., 1997; Perez-

Espana and Arreguin-Sanchez, 1999).
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