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Abstract: The treatment of inflammatory and immune-related diseases due to dysfunctioning of
the immune system necessitates modulation of the immune response through immunomodulatory
compounds. Marine environments are considered as a new frontier for health benefit product
implementations. Marine biodiversity is still a low explored resource, despite it is expected to
represent an important platform for chemical bioactive compounds. Within the phylum Mollusca,
gastropods are known to synthetize mucus, the latter presenting relevant bioactive properties, e.g.,
related to immunomodulant molecules able to activate the innate and acquired immune system. This
study proposes a bioprospecting of the immunomodulant activity of mucus isolated from seven
common gastropod species from the Gulf of Naples (Mediterranean Sea). Results showed that not
all mucus displayed a significant cytotoxic activity on the two human cancer cell lines A549 and
A2058. On the other hand, the mucus from Bolinus brandaris was strongly bioactive and was therefore
thoroughly investigated at cellular, molecular, and protein levels on the human monocytes U937
line. It can conclusively induce monocyte differentiation in vitro and significantly stimulate natural
immunity response.

Keywords: immunomodulation; marine biotechnology; gastropods’ mucus; monocytes’ differentiation

1. Introduction

Immune system dysregulation is often related to inflammatory diseases and chronic
illnesses such as obesity, diabetes, cancer, rheumatoid arthritis, and neurodegenerative and
autoimmune diseases [1]. Chronic inflammation might be a problem for human health,
being the major cause of immune-mediated diseases such as bowel disease or type 1
diabetes mellitus [1], which in turn have a high cost for society [2]. In 2011, this has been
estimated in the USA as being about $100 billion per year. The discovery and development
of new immunotherapeutic agents that reprogram and maintain/restore immune system
homeostasis is therefore a medical and societal requirement. Oceans contain the world’s
widest biodiversity in terms of animal and plants species [3]. The adaptive strategies against
hostile and competitive oceanic environments, especially for benthic species, promote the
greatest and most unique chemo-diversity along the marine biodiversity axis. This resource
therefore constitutes an opportunity for human health-related biotechnology, as known
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since antiquity [4]. Indeed, a plethora of marine compounds show significant antiviral,
analgesic, antitumor, or anti-inflammatory activities [5]. Many marine compounds are also
immunomodulant [5], i.e., known to influence the immune system by either affecting the
functions of immune cells or affecting antibody secretion to control infection and to maintain
immune homeostasis [6]. For example, the marine dinoflagellate Karenia brevis (Davis) G.
Hansen & Moestrup produces a number of bioactive compounds with therapeutic potential,
including brevenal, which attenuates bronchoconstriction and increases tracheal mucosal
velocity in sheep [7]. Brevenal was patented as a treatment for COPD, cystic fibrosis, and
asthma [8].

Mucus is among the most intriguing substances secreted by animals, allowing them
to adhere to the substratum [9] as well as acting as the first defence line against negative
external forcing [10]. Indeed, mucosal properties evolved to facilitate the colonization of
skin surfaces to specific microbial communities, allowing organisms to live in symbiosis
with their hosts and contributing to organismal defences [10,11]. This biomechanism repre-
sents a physical and chemical barrier to harmful microorganisms as well as against external
agents [12–16]. The study of epithelial mucus from the marine biota revealed the presence
of bioactive and antimicrobial compounds [17], provided with potential immunomodulant
activity which can activate the innate and acquired immune system [18]. Thus, the recog-
nized mucus bioactivity might be a resource for human health [13], enhancing immune
response against neoplastic cells and thus avoiding cancer diseases [19] and recognizing
bacterial and viral pathogens that compromise health status [20].

Among invertebrates, the class Gastropoda Cuvier, 1797 (phylum Mollusca Cuvier,
1797) possesses epithelial gland cells through which they secrete mucus, accounting in
this clade for two main functions: facilitating active locomotion, somehow lubricating
the muscular foot, but mostly protecting and hydrating the mollusc epidermis under
various stress conditions, which include desiccation but also infections or intrusions by
viruses, bacteria, parasites, and predators [21]. Gastropod mucus typically contains mostly
water, mucin-like molecules (protein-polysaccharide complex), electrolytes, epithelial and
blood cells, and a wide range of molecules [22]. Its consistency, viscosity, and elasticity
depend on the mucoprotein content and diversity associated with carbohydrates [22].
Indeed, the molecular weight of mucins or mucin-like glycoproteins ranges from 200 kDa
to 200 MDa [23].

This study proposes a bioprospecting of the “mucus” immunomodulant activities of
some marine gastropods. In particular, seven different species of macro-gastropods were
selected from the Gulf of Naples (Mediterranean Sea) and eco-sustainably provided as
by-catch product of commercial fishing activities. Firstly, the morphological taxonomic
assignment of the seven species was confirmed by molecular tools. Then, the bioactivity of
mucus on human cancer cell lines and monocytes was carried out. The most active mucus
was finally targeted for further biological assessment focusing on the immunomodulatory
activity capacity of the mucus through the expression of the key genes involved in specific
stimulation of human monocytes.

2. Materials and Methods
2.1. Sampling

Molluscan samples were obtained from by-catch of commercial fishing activities held
in the Gulf of Naples (central-western Mediterranean Sea) (Table 1). Shallow-water (≤50 m)
samples were collected using trammel nets (1 m in height and ∼550 m in length; net
consisting of an inner panel of 4.8 cm stretched mesh between two panels of 25 cm stretched
mesh) fishing passively for 12–14 h, and deep-water (≥50 m) samples using bottom trawl
nets (3 m high, 4 m wide mouth, 40 mm mesh size) towed for 3–4 h at ∼2.5 knots. A
variable number of specimens (according to the species) was brought alive at Stazione
Zoologica Anton Dohrn (SZN, Napoli, Italy) and subsequently kept for a week in the local
aquarium facilities to let them acclimatize.
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Table 1. Taxa analyzed in the present study, with sampling depth range (in meters), coordinates (lati-
tude and longitude), primers used (P), temperature of annealing (in degrees) (T), base pairs amplified
(bp), voucher code (SZN Laboratory of Benthos-Napoli: SZN_B_), and GenBank accession number.

Taxon Depth Range Coordinates P T bp Voucher GenBank

Caenogastropoda

Aptyxis syracusana
(Linnaeus, 1758) 20–30 m 40.8181 N,

14.1195 E
dgLCO-1490
dgHCO-2198 45 701 1387ML49E ON926803

Bolinus brandaris
(Linnaeus, 1758) 75–150 m 40.8067 N,

14.1401 E
dgLCO-1490
dgHCO-2198 45 683 1183ML113B ON926804

Euthria cornea
(Linnaeus, 1758) 20 m 40.8181 N,

14.1195 E
dgLCO-1490
dgHCO-2198 42 697 1168ML10B ON934996

Galeodea echinophora
(Linnaeus, 1758) 100–350 m 40.7503 N,

14.1128 E
LCO-1490
HCO-2198 45 682 248ML107D ON926805

Monoplex corrugatus
(Lamarck, 1816) 50–100 m 40.8067 N,

14.1401 E
LCO-1490
HCO-2198 45 608 464ML19A ON930589

Naticarius stercusmuscarum
(Gmelin, 1791) 100–250 m 40.7503 N,

14.1128 E
dgLCO-1490
dgHCO-2198 42 684 460ML18D ON926806

Vetigastropoda

Bolma rugosa
(Linnaeus, 1767) 20–30 m 40.8181 N,

14.1195 E
dgLCO-1490
dgHCO-2198 42 663 2894ML197A ON926807

2.2. Morphological and Molecular Identification of Mollusca

Morphological identification of the sampled material was performed with magnifying
lens and a Zeiss Axio Zoom.V16 microscope (Carl Zeiss, Oberkochen, Germany), paying atten-
tion to diagnostic shell characters and following the most recent guides on the molluscan biota
of the Mediterranean Sea [24,25]. Then, soon after the mucus collection (see below), identifica-
tions were also confirmed through a DNA-barcoding approach. To do so, total genomic DNA
was extracted from muscle samples using the DNeasy® Blood & Tissue kit (Qiagen, Hilden,
Germany), following the manufacturer’s protocol. A partial sequence of the cox1 mitochon-
drial gene was amplified from one specimen per species using both the primers developed by
Folmer et al. [26] (LCO-1490 (forward) 5′-GGTCAACAAATCATAAAGATATTGG-3′; HCO-
2198 (reverse) 5′-TAAACTTCAGGGTGACCAAAAATCA-3′) and their degenerated version
by Meyer [27] dgLCO-1490 (forward) 5′-GGTCAACAAATCATAAAGAYATYGG-3′; dgHCO-
2198 (reverse) 5′-TAAACTTCAGGGTGACCAAARAAYCA-3′] (Table 1). The polymerase
chain reactions (PCRs) were conducted in 25 µL volume reaction, containing 2.5 µL of Roche
buffer (10×), 2.5 µL (2 mM) of dNTPack Mixture (Roche), 1 µL of each forward and reverse
primers (10 µM), 0.25 µL (5 U/µL) of Roche Taq DNA polymerase, 1 µL of DNA (15 ng/µL),
and sterilized distilled water up to 25 µL. Amplifications were performed with the following
conditions: initial denaturation at 95 ◦C (5 min), followed by 39 cycles of denaturation at 95 ◦C
(1 min), annealing at 42–45 ◦C (1 min) depending on the species (Table 1), extension at 72 ◦C
(1 min), with a final extension at 72 ◦C (5 min). The successful PCR products were purified
and Sanger sequenced through an Automated Capillary Electrophoresis Sequencer 3730 DNA
Analyzer (Applied Biosystems, Waltham, MA, USA), using the BigDye® Terminator v3.1 Cycle
Sequencing Kit (Life Technologies, Carlsbad, CA, USA). Chromatograms for each sequence
were then quality checked, assembled, and edited using Sequencher v.5.0.1 (GeneCodes, Ann
Arbor, MI, USA). The identity of sequences obtained was finally checked through the Basic
Local Alignment Search Tool (BLAST; www.ncbi.nih.gov/BLAST/, 31 May 2022) [28].

Sequenced samples were fixed in 99.9% ethanol and preserved in the collection of
the Laboratory of Benthos-Napoli (SZN), under the voucher codes reported in Table 1.
Updated taxonomy and nomenclature follow the World Register of Marine Species [29].

www.ncbi.nih.gov/BLAST/


Cells 2022, 11, 2340 4 of 13

2.3. Mucus Collection

After the one week acclimatization period, three live specimens per species were
selected among those who survived the sampling, isolated from the other samples, and
placed in 150 × 15 mm plastic Petri dishes filled with 0.22 µM Millipore filtered natural
sea-water. Then, once the muscular foot was exposed (about each 30 min), specimens were
gently stung in their soft parts with laboratory tips to let them secrete mucus through
mechanical stimulation. The mucus from the three specimens was finally collected time by
time with a glass Pasteur pipette, transferred into a single 2 mL vial in ice, centrifuged at
10,000 rpm for 3 min before separating supernatant and filtering, and frozen [30].

2.4. Human Cell Lines Viability

The cytotoxic effect of the gastropods’ mucus was tested on lung adenocarcinoma
cell line (A549) and human melanoma cell line (A2058) cells grown in DMEM F12, sup-
plemented with 10% (v/v) fetal bovine serum (FBS) and 100 units mL−1 penicillin and
100 µg mL−1 streptomycin.

All cell lines were incubated in a 5% CO2 humidified chamber at 37 ◦C for growth.
A2058 and A549 cells (20 × 103 cells well−1) were seeded in a 96-well plate and kept
overnight for attachment. The next day, the medium was replaced with fresh medium
containing lyophilized mucus. The concentrations tested for the samples were 1, 10 and
100 µg mL−1. Cells were treated for 48 h, and adherent cells were then examined for
viability. Cells were incubated with 10 µL (10 µg mL−1) of MTT (3-[4,5-methylthiazol-2yl]-
2,5-diphenyl-tetrazoliumbromide). After 3 h of incubation, medium was removed, and the
resultant formazan crystals were dissolved in isopropyl alcohol (100 µL). Absorbance inten-
sity was measured with a microplate reader, at 570 nm. All experiments were performed
in triplicate, and the number of viable cells was calculated as the ratio between mean
absorbance of the sample and mean absorbance of untreated control cells and expressed as
percentage viability.

2.5. Size and Morphology of Human Monocytes

Human monocytes (U937) (2 × 106 cells) were seeded in 6-well plates. Samples were
incubated with the seven gastropods’ mucus for 48 and 72 h. BD FACSVerse flow cytometry
(BD Biosciences, Franklin Lake, NJ, USA) equipped with 488 nm argon laser and standard
filter set was used to assess the changing of morphology and size of U937 after 48 and
72 h and to investigate the cytotoxic effect of Bbm in samples incubated for 24 h with
three different concentrations of this mucus (1, 10 and 100 µg mL−1). The combination
of Forward Scatter (FSC, commonly used as an indicative of cell size) and Side Scatter
(SSC, used as an indicative of composition and/or complexity of the cells) was used to
identify monocyte population. Acquisition was performed with BD FACSuite software.
Data analysis and graphs were performed with FCS Express 6 Flow v 6.06.0025, DeNovo
Software, Pasadena, CA, USA.

2.6. RNA Extraction and Real Time qPCR

To study the immunomodulatory activity of the Bolinus brandaris’ mucus (Bbm), U937
cells (human monocytes) were grown in RPMI medium, supplemented with 10% (v/v)
FBS, 100 units mL−1 penicillin and 100 µg mL−1 streptomycin. U937 were incubated in
a 5% CO2 humidified chamber at 37 ◦C for growth. U937 were seeded in 6-well plate
(10 × 106 cells well−1) and treated with 10 µg mL−1 of Bbm for gene expression analysis.
RNA extraction was performed after 2 h of treatment; U937 cells were washed by adding
cold PBS and rocking gently. Cells were lysed by adding 1 mL of Trisure Reagent. RNA
was isolated according to the manufacturer’s protocol. RNA concentration and purity was
assessed using the nanophotomer NanodroP (Euroclone). RNA (200 ng) was subjected
to reverse transcription reaction using the RT2 first strand kit (Qiagen) according to the
manufacturer’s instructions. Real-Time qPCR was performed in triplicate using the RT2

Profiler PCR Array kit (RT2 Profiler™ PCR Array Human Innate & Adaptive Immune
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Responses, Qiagen) to analyse the expression of inflammation cell signaling genes in the
U937 cells. Plates were run on a ViiA7 (Applied Biosystems 384 well blocks), Standard
Fast PCR cycling protocol with 10 µL reaction volumes. Cycling conditions used were
1 cycle initiation at 95.0 ◦C for 10 min followed by amplification for 40 cycles at 95.0 ◦C for
15 s and 60.0 ◦C for 1 min. Amplification data were collected with ViiA 7 RUO Software
(Applied Biosystems, Waltham, MA, USA). Ct values were analysed with PCR array data
analysis online software (http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.
php, accessed on 30 April 2022, Qiagen).

2.7. ELISA Assay

In order to assess the effect of Bbm on the release of IL-6, U937 cells (2 × 106 cells)
were seeded in 6-well plates (TPP Techno Plastic Products AG, Trasadingen, Switzerland)
and kept overnight for attachment. U937 cells were treated with 10 µg mL−1 of Bbm and,
after 24 h, media were collected from control (no Bbm) and treated cells. After incubation,
cell media were collected and used to evaluate the release of cytokines, by sandwich ELISA
detection, using Human IL-6 Standard ABTS ELISA Development Kit (cat. No. 900-K16,
PeproTech, London, UK), according to manufacturer’s protocol. The absorbance was
measured at 405 nm (with wavelength correction set at 650 nm) using Microplate Reader:
Infinite® M1000 PRO (Ex: 320 nm, Em: 420 nm, TECAN, Männedorf, Switzerland). IL-6
levels were expressed in ng mL−1 of medium (using IL-6 standard curve).

2.8. Immunoarray Analysis

The regulation of the proteins involved in the inflammation process was investigated
through an antibody array performed using RayBiotech® C-Series Human Inflammation
Array C3 (code: AAH-INF-3, RayBiotech, Peachtree Corners, GA, USA). For this aim,
U937 cells (2 × 106 cells−1) were seeded in 6-well plates (TPP Techno Plastic Products
AG, Trasadingen, Switzerland). For the detection of proteins, cells were treated for 24 h
at a concentration of Bbm of 10 µg mL−1. After incubation, cell medium was collected
from control and treated cells. Protein concentration and purity were assessed using the
NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
1 mL of sample was used to perform the antibody array, according to the manufacturer’s
protocol. Blots were analyzed using ImageLab software (Bio-Rad, Hercules, CA, USA) and
results are shown in terms of relative expression.

2.9. Statistical Analyses

All experiments were performed in triplicate. GraphPad Prism 8.0 was used for
statistical analysis. Student’s t-test was used to compare the differences between two
groups. Statistical differences of multiple groups were determined by two-way analysis
of variance (ANOVA) followed by Tukey’s or Sidak’s post hoc test. The mean ± standard
deviation of the mean (SD) was used to express the data. A p-value of less than 0.05
was considered statistically significant and the statistical differences were represented as
follows: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and **** p ≤ 0.0001.

3. Results
3.1. Species Identification

Over the seven species, six of them belonged to the subclass Caenogastropoda Cox,
1960, namely Aptyxis syracusana (Buccinoidea: Fasciolariidae), Bolinus brandaris (Muricoidea:
Muricidae), Euthria cornea (Buccinoidea: Tudiclidae), Galeodea echinophora (Tonnoidea:
Cassidae), Monoplex corrugatus (Tonnoidea: Cymatiidae), and Naticarius stercusmuscarum
(Naticoidea: Naticidae), whereas one belonged to the subclass Vetigastropoda Salvini-
Plawen, 1980, namely Bolma rugosa (Trochoidea: Turbinidae) (Table 1). The morphological
taxonomic assignment was confirmed by DNA barcoding. Aptyxis siracusana showed a
100% similarity with the single mitochondrial cytochrome c oxidase subunit 1 gene locus (cox1)
sequence of this species available in GenBank (KT753968) and based on a sample from

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php
http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php
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Tunisia (Mediterranean Sea) [31]. Bolinus brandaris showed high (99.12–99.24%) similarity
with the two cox1 sequences of this species available in GenBank (DQ280020 and EU827194)
and based on samples from unspecified localities [32,33]. Euthria cornea showed a 98.89%
similarity with the single cox1 sequence of this species available in GenBank (MW077006)
and based on a sample from Corse (France, Mediterranean Sea) [34]. Galeodea echinophora
showed a 100% similarity with the two cox1 sequences of this species available in GenBank
(KP716635 and MH581337) and based on samples from Valencia (Spain, Mediterranean Sea)
and the Mediterranean Sea [35,36]. Bolma rugosa showed high (98.94–99.69%) similarity
with the two cox1 sequences of this species available in GenBank (AM049372 and KT207824)
and based on samples from Gulf of Naples (Italy, Mediterranean Sea) and Chafarinas
Islands (Spain, Mediterranean Sea) [37,38]. Naticarius stercusmuscarum showed a 100%
similarity with the single cox1 sequence of this species available in GenBank (EU332644)
and based on a sample from Giglio Island (Italy, Mediterranean Sea) [39]. Within all these
BLASTn queries, other non-conspecific taxa showed similarities ≤93.77%, thus well over
the barcoding gap commonly accepted in molluscs (~3%) (e.g., [40]). Therefore, molecular
results confirmed the morphological identifications for six species. On the other hand, no
cox1 sequences were available for M. corrugatus, and thus its partial cox1 sequence was
first deposited in GenBank based on the present sample. The BLASTn query also showed
a maximum similarity (94.73%) with a sequence (MH581346) of the congeneric species
Monoplex krebsii (Mörch, 1877) deposited by Strong et al. [36], thus excluding contamination,
or eventually misidentification.

3.2. Human Cell Viability Assessment

Mucus from the different species did not display the same bioactivity capacity on the
cancer cell lines (Figure 1A,B). Interestingly, none of the mucus tested is cytotoxic for normal
human cells U937 (Figure 1C). By contrast, the Bolinus brandaris mucus (Bbm) enhanced
the metabolic capacity of normal cells, indicating a potential immunostimulant effect
(Figure 1C). Interestingly, Bbm mucus displayed significant cytotoxic effect (p ≤ 0.0001) on
the two cancer cell lines, with an IC50 ≤ 1 µg mL−1 and ~10 µg mL−1 for the A549 and
A2058 cell lines, respectively. The other mucus did not exert significant cytotoxic activity on
the human cancer cell lines, except for a few exceptions at the highest mucus concentration
(Figure 1A,B).

3.3. Morphological Changes of Monocytes

In order to assess the effect of the mucus on human monocytes, U937 cell samples
were incubated for 48 and 72 h with gastropod mucus from the seven species indicated in
Table 1 and analyzed by flow cytometer. The results demonstrated that only cells incubated
with Bolinus brandaris exhibit an effect on size (FSC-H: Figure 2A) and morphology (SSC-H:
Figure 2B), with a significant differentiation in terms of 9 cells’ subpopulation. These
results are more significant at 48 h than those at 72 h of incubation. On the other hand,
the mucus from the other gastropod species did not show any difference either in size
or in morphology both at 48 and 72 h. Furthermore, in all samples, cells concentration
increased about 40% after 72 h of incubation (with respect to 48 h). Finally, to assess the
cytotoxic effect of Bbm, samples were incubated with different concentrations of mucus (1,
10 and 100 µg mL−1). Results showed that only the highest concentration induced both a
strong morphological effect and a decrease in cell concentration of about 78% compared to
untreated cells or to cells treated with low concentration of Bbm.
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Statistical significance is calculated through Dunnett test and is indicated by **** (p ≤ 0.0001), *** (p 
≤ 0.0005), ** (p ≤ 0.005), and * (p ≤ 0.05). Values are expressed as mean ± standard deviation. 
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granularity, or internal complexity) was used to discriminate human monocyte population P1 (in red)
in all the dot plot. In (A), it is represented the control (untreated cells). (B) represented cells incubated
with 100 µg mL−1 of Bbm respectively. P2–P9 indicate the changes in morphology and size of the
monocyte population when in contact with the highest Bbm concentration.

3.4. Bbm-Induced Gene Expression in U937 Cells

The molecular effects induced by the Bolinus brandaris mucus on U937 cells were
investigated through the analysis of the expression level of 84 genes involved in the Human
Innate and Adaptive Immune Responses. Twenty-six genes were up-regulated whereas
one gene displayed a significant down-regulation (Figure 3).
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Bbm did also affect the pro-inflammatory and immunomodulatory factors, such as In-
terleukins 12 beta and 6 (IL-12B and IL-6), Low density lipoprotein receptor-related protein
1 (LRP1), V-rel reticuloendotheliosis viral oncogene homolog B (RELB), Thrombospondin 1
(THBS1), Toll Like Receptors 2 and 7 (TLRs 2 and 7), tumor necrosis factor (TNF), which
were all up-regulated (Figure 3). Yet, the Vascular cell adhesion molecule 1 (VCAM1) was
overexpressed by Bbm indicating the involvement of vasodilator factors for the recruitment
of immune system cells in the immunomodulatory activity.
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3.5. Bbm-Induced Interleukin IL-6 Release in U937 Cells

Since the IL-6 gene was one of the most overexpressed genes of U937 treated with Bbm,
the production of IL-6 by U937 cells stimulated was estimated displaying a concentration
of 3.5 ng mL−1 vs. 2.6 ng mL−1 in the control (Figure 4).
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Figure 4. The effect of Bbm on serum-released interleukin 6 (IL-6) in human monocytic cells (U937).
Values are expressed as average of IL-6 concentration (ng mL−1) determined by ELISA in culture
medium of cells treated with 10 µg mL−1 of Bbm and untreated cells (Control) for 24 h. n = 3;
* p ≤ 0.05 (Student’s t-test analysis).

3.6. Bbm-Induced Inflammation Mediators Release in U937 Cells

The inflammatory mediators, IL-8, MIP-1β, sTNF-RII and TIMP-2, were significantly low-
ered in the medium of the U937 cell line treated with Bbm compared to the untreated condition
(Figure 5A,B), with IL-8 and MIP-1β release down-expressed by 35 and 25%, respectively.
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Figure 5. (A) Human inflammation array analysis of the conditional medium from U937 cells
treated with 10 µg mL−1 of Bolinus brandaris mucus (Bbm). (B) Relative expression levels of the four
inflammation cytokines, IL-8, MIP-1β, sTNF-RII and TIMP-2. Statistical significance is calculated
through Sidak’s test and is indicated by **** (p ≤ 0.0001), *** (p ≤ 0.0005), ** (p ≤ 0.005). Values are
expressed as mean ± standard deviation.

4. Discussion

In the present study, the mucus was isolated and lyophilized from seven different
gastropod species. In general, the mucus antiproliferative activity on lung adenocarcinoma
(A549 cell line) and melanoma (A2058) depends on the concentration, but not all mucus
displays significant bioactivity in inducing cell death in cancer cell lines. This probably
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depends on the different bioactive molecules contained in the mucus from the different
species, as highlighted in the literature [4] and refs therein. The most bioactive mucus is that
obtained from B. brandaris, with a significant antiproliferative effect already at the minimum
concentration tested (1 µg mL−1), together with an increase in metabolically active cells
in the human monocytes U937 line. This species has been reported since antiquity to
have different human health benefits, depending on the parts of the animal considered
and was prescribed by clinical homeopaths as remedy [4] and refs therein. Our results
demonstrate that Bbm leads to an immunomodulation of innate immunity for the control of
the adaptive immune response at various levels avoiding inflammatory storm, as revealed
for instance by the overexpression of Toll like receptors (TLRs). In particular, TLR2 and
TLR7 are targeted by Bbm, indicating cell stimulation for a more efficient recognition of
pathogens or part of them, such as lipoproteins and other microbial cell wall components.
These signals lead to the activation of innate immunity [41]. The activation of TLRs then
induce an increase in gene expression of the transcription factors that regulate inflammatory
and immune responses, such as chemokines CCLs. Chemokines, including CCL2, CCL3,
CCL7 and CCL11, are up-regulated. This gene family is regulated at transcriptional
level during inflammation and encodes for small, structurally related, chemoattractant
molecules. Chemokines are also involved in the recruitment of the inflammatory competent
cells to target tissues (e.g., monocytes, macrophages, eosinophils and basophils), regulating
cell trafficking. Besides chemotaxis, chemokines are also involved in the regulation of
T cell differentiation, apoptosis, cell cycle, angiogenesis, and metastatic processes [42].
Furthermore, chemokines can control the generation of soluble inflammatory products
such as free radicals and cytokines [43]. The other chemokine, CXCL8, activated by Bbm,
encodes for a key mediator of inflammation (IL-8). This protein is a chemotactic factor
that guides the neutrophils to the site of infection. This chemokine acts, together with
CXCL1, CXCL2 and CXCL10 (also up-regulated), as a potent angiogenic factor, recruiting
endothelial cells [44]. Other angiogenic molecules, such as the glycoprotein THBS1, is up-
regulated by Bbm; this molecule mediates cell-to-cell and cell-to-matrix interactions. The
gene encoding for a cytokine that can induce cell death in no-self cells and cancer cells [45] is
also up-regulated, together with LRP1, with which the former interacts, activating apoptotic
cell death [46]. The interaction with IL-6 can trigger the activation of netosis [47]. The
Bbm-induced activation of genes related to the host defence in U937, such as CD1A, CD1B,
and IFNG, is essential in the inflammatory cascade triggered by the innate immunity before
the activation of the secondary immunity. This response causes the release of secondary
mediators responsible for the plethora of symptoms associated with inflammatory diseases.
Among all involved mediators, IL-6 has a central role in these mechanisms, being a cytokine
that acts in inflammation and maturation of B cells. IL-6 is released at the sites of acute and
chronic inflammation, where it induces a transcriptional inflammatory response through
the interleukin 6 receptor alpha. The up-regulation of the IL-6 gene, and the increase in Il-6
cytokine synthesis, confirms the inflammatory response induced by Bbm, which starts the
innate immunity response by triggering signalling for the lymphocyte recruitment, also
demonstrated by the size changes observed by FACS analysis of the naive monocytes U937.

Indeed, MIP-1β produced by macrophages and monocytes after proinflammatory
injuries [48] is significantly down expressed. It plays a crucial role in immune responses
towards infection and inflammation. It also induces the synthesis and release of other
pro-inflammatory cytokines such as interleukin 1 (IL-1), IL-6 and TNF-α from fibroblasts
and macrophages.

Bbm induces a slight decrease in sTNF-RII release in U937. Interestingly, when the
soluble Tumor necrosis factor receptor II (sTNF-RII) increases in blood and plasma serum, it
seems to be associated with a higher risk in cancer diseases, and it has been also associated
with overall pathogenicity and mortality [49]. This sTNF-RII decrease in U937 might be
paralleled with the significant antiproliferative activity of Bbm on the cancer cell lines. Bbm
also induces a decrease of Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) expression
indicating an involvement of Bbm in the cell cycle promotion in human monocytes, as
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also demonstrated by the FACS analysis. TIMP-2 expression is induced by cytokines
and chemokines and proliferation (βFGF and EGF) and differentiation (retinoic acid and
NGF) factors [50]. The role of TIMP-2 in the innate immunity is represented by structural
changes influencing leukocyte transmigration from the capillaries to areas of injury in the
renal tubule [50], changes in endothelial permeability and modulation of the inflammatory
response [51], apoptosis (cell death) [52], and finally loss of cell–cell adhesion and sloughing
of tubular epithelial cells.

5. Conclusions

Blue biotechnology is considered an opportunity for the sustainable development
of new products through the exploration and exploitation of marine organisms. Among
marine invertebrate resource and diversity, gastropods are known to produce and secrete
mucus, often displaying bioactive properties. The bioprospecting conducted in our study
reports that from seven species inhabiting the Gulf of Naples, Bolinus brandaris secretes
mucus with human health potential and induces a modulation of innate immunity for the
control of the adaptive immune response. This might be of great biotechnological interest,
as immune system dysfunction is a very important issue in human health protection.
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