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ABSTRACT

A feed-forward neural network is used to create a monthly climatology of the sea surface fugacity of CO2

(fCO2) on a 18 3 18 spatial resolution. Using 127 880 data points from 1990 to 2011 in the track-gridded

database of the Surface Ocean CO2 Atlas version 2.0 (Bakker et al.), the model yields a global mean fCO2

increase rate of 1.50matmyr21. The rate was used to normalize multiple years’ fCO2 observations to the

reference year of 2000. A total of 73 265 data points from the normalized data were used to model the global

fCO2 climatology. The model simulates monthly fCO2 distributions that agree well with observations and

yields an anthropogenic CO2 update of 21.9 to 22.3 PgCyr21. The range reflects the uncertainty related to

using different wind products for the flux calculation. This estimate is in good agreement with the recently

derived best estimate by Wanninkhof et al. The model product benefits from a finer spatial resolution

compared to the product of Lamont–Doherty Earth Observatory (Takahashi et al.), which is currently the

most frequently used product. It therefore has the potential to improve estimates of the global ocean CO2

uptake. The method’s benefits include but are not limited to the following: (i) a fixed structure is not required

tomodel fCO2 as a nonlinear function of biogeochemical variables, (ii) only one neural network configuration

is sufficient to model global fCO2 in all seasons, and (iii) the model can be extended to produce global fCO2

maps at a higher resolution in time and space as long as the required data for input variables are available.

1. Introduction

It has been estimated that the global ocean absorbs

nearly half the total emissions of anthropogenic carbon

dioxide (CO2) from the atmosphere (Sabine et al. 2004;

Jacobson et al. 2007; Gruber et al. 2009; Takahashi et al.

2009). The surface ocean shows much more CO2 vari-

ability spatially than the atmosphere, as is shown in

Komhyr et al. (1985) and Takahashi et al. (2009); hence,

it is import to accurately quantify the oceanic CO2 dis-

tribution in order to improve our understanding of the

ocean carbon sink. Meanwhile, in spite of many years’

efforts by researchers to measure the sea surface CO2

partial pressure (e.g., Feely et al. 1987; Inoue et al. 1995;

Cooper et al. 1998; Bates et al. 1996; Wong et al. 1999,

2010; Murphy et al. 2001; González-Davila 2003; Keeling

et al. 2004; Midorikawa et al. 2006; Luger et al. 2006;

Schuster and Watson 2007; Borges et al. 2008), in situ

measurements are still insufficient in most parts of the
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oceans because of technical and financial restrictions.

This circumstance has motivated the search for robust and

reliablemethods to interpolateavailableCO2 data spatially

and temporarily to obtain basinwide (e.g., Zeng et al. 2002;

Lefèvre et al. 2005; Chierici et al. 2006; Sarma et al. 2006;

Jamet et al. 2007; Friedrich and Oschlies 2009; Telszewski

et al. 2009; Takamura et al. 2010; Landschützer et al. 2013;
Nakaoka et al. 2013) and global ocean CO2 maps

(Takahashi et al. 2002, 2009). Conventional interpolation

methods model CO2 as a function of a number of bio-

geochemical variables. Recently, self-organizing maps

(SOM), a type of artificial neural network, gained popu-

larity in mapping the surface ocean CO2 (Lefèvre et al.
2005; Friedrich and Oschlies 2009; Telszewski et al. 2009;

Nakaoka et al. 2013; Landschützer et al. 2013). Using an

artificial neural network differs distinctively from con-

ventional statistical methods in that it is not required to

formulate the model structure a priori.

In thisworkwe introduce a newconcept formapping the

surfaceocean fCO2 (fugacity of CO2) using a feed-forward

neural network (FNN). As an artificial neural network, an

FNN models and interpolates data nonlinearly, whereas

a SOMestablishes discrete estimates using a categorymap

of limited size that associates a target variable with de-

pendent variables (e.g., Telszewski et al. 2009). Previous

studies applied a SOM to confined physical areas where

biogeochemical variables were assumed to be able to in-

terpret the fCO2 distribution well in a season. The concept

is to exclude the temporal and spatial variables from the

dependent variables of fCO2 so that scattered, multiple

years’ observations can be pooled together to train a neu-

ral network. The new concept of our model includes the

dependence of fCO2 on time and space in the first place

and considers biogeochemical variables as proxy variables

for complementing insufficient observations. We gain two

benefits from the new concept: (i) the model simulates

observations faithfully where and when observations are

sufficient and (ii) the monthly global climatology can be

modeled by just one neural network.

2. Method

a. Model equations

Our analysis is based on a well-understood relation-

ship stating that the fCO2 is a nonlinear function of time

and space, which in our model are represented bymonth

(MON), latitude (LAT), and longitude (LON), that is,

fCO25F(MON, LAT, LON). (1)

Available observations are scarce with respect to the

biogeochemical properties of the surface ocean; hence,

a direct interpolation would include abnormally large

uncertainties in many areas. One way to improve a direct

interpolation is to include proxy variables that connect

fCO2 variability with time and space to extend the model

to unobserved areas. Following the works of Lefèvre
et al. (2005), Friedrich and Oschlies (2009), Telszewski

et al. (2009), Landschützer et al. (2013), and Nakaoka

et al. (2013), we choose sea surface temperature (SST),

sea surface salinity (SSS), and chlorophyll-a concentra-

tion (CHL) as proxy variables. Therefore, our basic

model has the form of

fCO2 5F(MON, LAT, LON, SST, SSS, CHL).

(2)

We exclude the mixed layer depth (MLD) used by

Telszewski et al. (2009), Nakaoka et al. (2013), and

Landschützer et al. (2013), because openly available

MLD data are scarce and our preliminary analysis using

World Ocean Atlas 1994 (WOA94) data (http://www.

nodc.noaa.gov/OC5/WOA94/mix.html; Monterey and

Levitus 1997) indicates that MLD (not shown here) has

the least effect on fCO2 compared to SST, SSS, and

CHL.

The MON and LON variables cannot be used directly

because of their periodical properties. Therefore, we

replaced each with two of its transformations, resulting

in an updated model equation of the form

fCO25F(CMON, SMON, LAT, CLON, SLON, SST, SSS, CHL), (3)

where

CMON5 cos
�p
6
MON

�
,

SMON5 sin
�p
6
MON

�
,

CLON5 cos
� p

180
LON

�
, and

SLON5 sin
� p

180
LON

�
.

b. Neural network

Figure 1 illustrates the neural network used to model

Eq. (3). It is a typical FNN having a layered structure

and including three layers known as input, hidden, and

output layers (Svozil et al. 1997). In our study, the input

layer consists of eight neurons with one neuron corre-

sponding to one independent variable inEq. (3); the output

layer has only one neuron whose output gives the scaled
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fCO2; and the number of neurons in the hidden layer is

empirically determined, which will be discussed later.

A neuron in the input layer takes the value of an in-

dependent variable and passes it to all neurons in the

hidden layer without any transformation. A neuron in the

hidden layer adds a bias to the weighted sum of all inputs

(outputs from its upstream neurons in the input layer)

and uses the transformed sum as an input for the output

neuron, that is,

x5 b1 �
M

i51

wiyi,upstream

y5
1

11 e2x
, (4)

in which M is the total number of input neurons. The

neuron in the output layer transforms its inputs in the

same way.

The sigmoid function is chosen because it increases

monotonically from 0 to 1 for x from 2‘ to 1‘ and the

derivative of y with respect to x has a simple form that

affiliates the so-called error backpropagation algorithm

(Rumelhart et al. 1986) for neural network training. The

training algorithm adjusts the bias and weighting factors

according to the negative gradient of the error cost

function:

g5$E(w)

E(w)5
1

2
�
P

l51

(dl 2 yl)2 , (5)

in which P is the total number of training patterns

(a pattern comprises a set of observations for fCO2 and

the proxy variables), y is the output of the FNN, and d is

the target variable (i.e., the scaled fCO2). We used the

Levenberg–Marquardt method (Wilamowski and Yu

2010) to minimize the error cost function.

c. Neural network training

It is well known that, given a sufficiently large number

of hidden neurons, an FNN can approximate any finite

function (Hornik 1991; Blum and Li 1991). That indicates

that if the fCO2 values are unique in all training patterns

and correspond to unique values of MON, LAT, LON,

SST, SSS, and CHL, Eq. (3) can be fitted accurately with

a larger number of hidden neurons. An FNN configured as

such remembers all training patterns and thus loses the

capability of filtering out erroneous information in the

source data. Unfortunately, there is no theoretically ap-

proved method for choosing the right number of hidden

neurons (Svozil et al. 1997). Our criterion for selecting the

number is that the standard deviation of the difference

betweenmodel outputs andobservations (std1) is no larger

than the standard deviations of repeated fCO2 observa-

tions averaged over all months and grid boxes (std2) by

20%, that is, jstd12 std2j/std2, 0.2. At the experimental

stage, we tried 4, 8, 16, 32, 64, and 128 hidden neurons.

Eventually we settled on 32 according to the criterion.

d. Flux calculation

We further calculate the sea–air CO2 flux as a function

of the partial pressure of CO2 (pCO2) using

F5 kp(pCO
seawater
2 2 pCOair

2 )

kp 5 kwk0 , (6)

where kp is the gas transfer coefficient, kw is the gas

transfer velocity, and k0 is the solubility of CO2 in sea-

water. We use the formulation of Wanninkhof (1992) for

the coefficient kw (cmh21) with the scaling factor of

Takahashi et al. (2009); that is,

kw5 0:26u2(Sc/660)20:5 , (7)

where u (m s21) is the wind speed 10m above the sea

level and Sc is the Schmidt number, which varies with

SST (8C; see Wanninkhof 1992):

Sc5 2073:12 125:62SST1 3:6276SST2

2 0:043 219SST3 . (8)

The solubility k0 (mol L21 atm21) is a function of tem-

perature T (K) 5 SST 1 273.15 and SSS (Weiss 1974):

k05258:09311 90:5069(100/T)

1 22:2940 ln(T/100)1 SSS[0:027 766

2 0:025 888(T/100)1 0:005 057 8(T/100)2] . (9)

Wemultiplykwby7.03 to convert its unit to (mmonth21)

and k0 by 0.001 to convert its unit to (molm23matm21),

so that Eq. (6) gives flux in (molm22month21).

The conversion between fCO2 and pCO2 is done by

the following formulation (see Weiss 1974):

fCO2 5pCO2 exp

�
Ps

B1 2d

RT

�
, (10)

FIG. 1. The feed-forward neural network.
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where R 5 82.057 46 (cm3 atmmol21K21), Ps is the sea

level air pressure used to substitute the equalibrator

pressure, and B and d are the virial coefficients for CO2.

Coefficient B (cm3mol21) is given by

B521636:751 12:0408T2 3:279 57e22T2

1 3:165 28e25T3 (11)

and d (cm3mol21) by

d5 57:72 0:118T . (12)

3. Data

a. CO2 data

We extracted monthly fCO2 data from the track-

gridded database of the Surface Ocean CO2 Atlas

(SOCAT) version 2.0 (http://www.socat.info/; Pfeil

et al. 2013; Sabine et al. 2013; Bakker et al. 2013). The

database has a 18 3 18 spatial resolution and includes

global measurements from 1970 to 2011. We excluded

some data points using four criteria: (i) year before

1990, (ii) fCO2 values smaller than 200 matm or larger

than 600 matm, (iii) ocean depth smaller than 1000m,

and (iv) salinity smaller than 30.0. The first criterion is for

reducing the uncertainty of normalizing fCO2 to the ref-

erence year of 2000 for comparison with the global CO2

maps of Takahashi et al. (2009). The second criterion is

for reducing the potential effect of extremedata points on

the extrapolation of the FNN. The last two criteria are for

identifying seawater in open oceans.

We obtained 127 880 data points or patterns from

multiple years’ data for training the FNN to estimate the

global mean increase rate of fCO2. The rate was then

used to normalize multiple years’ fCO2 to obtain the

monthly fCO2 climatology, which comprises the means

of repeated observations in the same months and same

grid boxes. From the climatology, we obtained 73 265

data points for training the FNN to model the global

fCO2 climatology. Figure 2 shows the composite sam-

pling map of SOCAT in 1990–2011.

We prepared more CO2 data for training the FNN to

evaluate the difference between the results of the FNN

and Takahashi et al. (2009). In addition to the four

criteria, we excluded data points in the equatorial Pa-

cific, 108N–108S, in the El Niño periods, which were
selected according to the National Oceanic and Atmo-
spheric Administration (NOAA)’s analysis (http://www.

cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/

ensoyears.shtml), resulting in 71 287 data points. Unless

specifically stated in latter discussions, our FNN model

results refer to those obtained by using the first CO2

dataset.

b. Proxy variable data

The monthly SST data of 1990–2011 were extracted

from the NOAA optimum interpolation (OI) version 2

product (http://www.esrl.noaa.gov/psd/data/gridded/data.

noaa.oisst.v2.html; Reynolds et al. 2002). We calcu-

lated the SST climatology using SST in that period. The

SSS climatology was extracted from the World Ocean

Atlas 2009 (WOA09) product (http://www.nodc.noaa.

gov/OC5/WOA09/netcdf_data.html; Antonov et al.

2010). The WOA09 SSS covers the period of June 1890–

December 2008. The CHL climatology was calculated

using the Moderate Resolution Imaging Spectro-

radiometer (MODIS)Aqua and Sea-viewingWide Field-

of-view Sensor (SeaWiFS) climatology (http://oceancolor.

gsfc.nasa.gov/cgi/l3). The 9-km gridded satellite data

were binned into 18 3 18 grid boxes. Themean of the two

CHLs was used as the CHL climatology for our model.

At the time we obtained the data,AquaCHL covers the

period of July 2002–July 2013 and SeaWiFS CHL from

September 1997 to December 2010.

c. Data for flux calculation

The requiredmonthlywind speed and air pressurewere

calculated using the National Centers for Environmental

Prediction Final Operational Global Analysis (NCEP-

FNL) data (http://rda.ucar.edu/datasets/ds083.2/) of the

years 2000–11, as the data before July 1999 are unavailable.

The product has a spatial resolution of 18 3 18 and a tem-

poral resolution of 6h. We used the atmospheric pCO2 in

the database (http://www.ldeo.columbia.edu/res/pi/CO2/)

of Takahashi et al. (2009) in order to compare with their

flux results. For estimating the global flux, we filled our

unmodeled grid boxes, in which CHL is unavailable, using

their seawater pCO2 values. The unmodeled area size is

about 6% of our modeled area size.

FIG. 2. Samplingmap of all observations included in the SOCAT

version 2.0 database. (a)–(d) Observations in grid boxes are used in

Fig. 5 to compare observed and modeled seasonal variations.
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d. Data scaling

Equation (4) indicates that data used as input can

take any real values. However, an FNN usually ini-

tializes bias and weight parameters randomly in a pre-

determined range for generalizing its use with all kinds

of inputs; therefore, scaling input data speeds up the

convergence within the training process. We scale the

values y of an input variable by their mean and standard

deviation s as

y05
y2 y

s
, (13)

so that they have a zero mean and a standard deviation

of one. The observed fCO2 is scaled using

y05 0:11 0:8
y2 ymin

ymax2 ymin

. (14)

This confines the scaled fCO2 to between 0.1 and 0.9.

The reason for the confinement is that Eq. (4) results in y

values within the range of 0–1 and that a small change in

y near zero or one requires a very large change in x,

which will slow the convergence of training.

Before being scaled by Eq. (13), chlorophyll is trans-

form by

y0 5 log10(11 y) . (15)

The transformation helps to reduce the strongly skewed

CHL values; that is, a majority number of CHL values

are very small. The skewed distribution potentially leads

to a trained FNN to have neuron parameters more op-

timized toward fitting small CHL well, thus weakening

its prediction power for large CHL.

4. Results and discussions

a. CO2 increase rate

As the surface ocean CO2 concentration varies in re-

sponding to changes in biogeochemical conditions and

to the increase of atmospheric CO2 concentration, the

increase rate of the surface ocean CO2 showed geo-

graphical differences (see the summary in Takahashi

et al. 2009). A constant CO2 increase rate was usually

used to normalize multiple years’ CO2 data to a reference

year (e.g., Takahashi et al. 2009; Nakaoka et al. 2013).

Instead of adopting an available rate for our fCO2 data

normalization, we used the FNN to estimate the global

mean rate by repeating the following procedures until

the error in Eq. (5) became stable: (i) modeling Eq. (3)

with the fCO2 and SST of 1990–2011 and the climatol-

ogy of SSS and CHL; (ii) linearly fitting the difference

between the modeled and observed fCO2 against time

(year) to estimate the annual increase rate; and (iii)

adjusting the observed fCO2 by the rate and then going

to procedure (i) with the adjusted fCO2 as the target.

The procedures are equivalent to treating the fCO2

increase rate as an error term in the FNN modeling and

treating the seasonal and spatial variations of fCO2 as an

error term in linear fitting. By recursively trying to guess

the variations, removing the variations to guess the trend,

and detrending the observed fCO2 to guess the variations

again, the procedures effectively reduced the seasonal

and spatial variations of CO2 in the residue. As a result,

the trend signal became stronger with the increasing

number of iterations. At first, a direct linear fit of the

observed fCO2 resulted in a rate of 0.855matmyr21 and

a correlation coefficient of 0.144. After the first recursion,

the FNN improved the correlation to 0.332 and gave

a global mean rate of 1.085matmyr21. The magnitude of

improvement decreased with the number of iterations.

The mean FNN error became stable after repeating

procedures (i) to (iii) 5 times. Finally, the FNNgave a rate

FIG. 3. Linear fit of fCO2 against time. (a) Fitting the observed

fCO2 with time yielded an increase rate of 0.855matmyr21 and

a correlation coefficient of 0.144. (b) Fitting the fCO2 difference

(observation 2 model) yielded an increase rate of 1.502matmyr21

and a correlation coefficient of 0.443. The trend was enhanced be-

cause of the subtraction of modeled seasonal and spatial variability.
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of 1.502matmyr21 and a correlation coefficient of 0.443

(Fig. 3). The stabled increase rate is consistent with pre-

viously used values (e.g., Takahashi et al. 2009).

b. Nonlinear fitting

The annual increase rate of 1.502matmyr21 was used

to normalize monthly fCO2 of 1990–2011 to the reference

year 2000. The FNN was further trained by using the

normalized fCO2 and the climatology of SST, SSS, and

CHL. To evaluate the predictive performance, we ran-

domly took 90% of the 73 265 patterns for training use

and the remaining 10% for validation. By using a different

random seed, we could test cases with different sub-

samples. The results are all similar to those shown in

Fig. 4. The linear regression of modeled fCO2 versus ob-

served fCO2 in the training samples gives a slope of 0.784

and a correlation coefficient of R5 0.886. The mean and

standard deviation of the bias (FNN – SOCAT) are20.01

and 15.8 matm, respectively. Considering the mean stan-

dard deviation of repeated observations of 13.2matm,

these values indicate that the bias is negligibly small and

that the FNNmodels the nonlinear relationship of Eq. (3)

well. For the validation subsamples, the slope and cor-

relation coefficient are 0.767 and 0.871, respectively; and

the mean and standard deviation of the bias are 20.16

and 16.0matm, respectively. The validation results fur-

ther indicate that the FNN model is acceptable for in-

terpolating fCO2 to unsampled areas. Finally, we used all

samples to train the FNN in order to produce global fCO2

maps. It yields a slope of 0.778, a correlation coefficient of

0.882, and a mean and standard deviation of the bias of

20.01 and 15.4 matm, respectively.

Including space and time variables in the model yields a

good representation of the seasonal cycle of fCO2. Figure 5

shows four examples for the western Pacific near the

meridian line of 1458E, where the volunteer cargo ship

observation of the National Institute for Environmen-

tal Studies supplies every monthly observation data

(Nakaoka et al. 2013). They reveal three seasonal pat-

terns shared by other oceans: (i) temperature-driven

seasonality of low fCO2 in winter and high fCO2 in

summer (Fig. 5a), (ii) fCO2 drawdown by biological

activities from spring to summer (Fig. 5b), and (iii)

second fCO2 drawdown by biological activities in au-

tumn (Fig. 5c). In many areas in the tropical zone from

about 208S to 208N, persistently high temperature, and

low biological activity lead to less pronounced seasonal

changes with high fluctuations (Fig. 5d). The coupling of

CO2 variability with temperature and biological activities

is in good agreement with previous findings (e.g., Bates

2001; Takahashi et al. 2002; Zeng et al. 2002).

c. Comparisons

For the convenience of discussion, we use FNN1 and

FNN2 to represent the FNN trained with and without data

points in the El Niño periods (see section 3b), respectively.
Similarly, we use OBS1 for SOCAT observations nor-

malized to the year 2000 and OBS2 for the same data but

without data points in the El Niño periods. Andwe use the
name T09 for the Lamont–Doherty Earth Observatory

(LDEO) climatology of Takahashi et al. (2009), who in-

terpolated themonthly pCO2 to obtain global distributions

based on a lateral, two-dimensional advection–diffusion

transport for surface ocean. The distributions of the annual

FIG. 4. Modeled fCO2 vs observed fCO2. (a) Fitting for the training samples yielded a slope of 0.785 and a cor-

relation coefficient of 0.886. (b) Fitting for validation samples yielded a slope of 0.776 and a correlation coefficient

of 0.883. The solid line is the linear regression line, and the dashed line is the line of slope 1 passing through the

origin. The color bar indicates the number of points in 18 3 18 grid boxes.
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mean of fCO2 difference among models and observations

are shown in Fig. 6. Monthly statistics of the fCO2 differ-

ences are listed in Table 1.

Our model results show small monthly-mean biases

(within 1.5matm) compared to the observations (Table 1).

The overall bias of both FNN1andFNN2 is zero. TheT09

results also show small monthly-mean biases (within

1.1matm), but a small negative overall bias (0.4matm)

and a larger overall uncertainty (17.5matm) compared

with FNN1 and FNN2 (15.4matm). Between FNN2 and

T09, small monthly-mean differences (within 0.5matm)

occur in April, November, and December (Table 1). Re-

latively large monthly-mean differences (up to 4.2matm)

occur in other months. Annually, the mean difference

is about 0.9 6 15.8 matm.

Large differences between FNN2 and T09 occur

near the equator and in areas where observations are

relatively scarce (Fig. 6a). Compared to the observa-

tions, large differences seem to be associated with un-

dersampling and large CHL uncertainty for the FNN

and the T09 models (Figs. 6b,c). As shown in Fig. 5d,

the observed fCO2 in the tropical area includes large

variability throughout the year, while the amplitude

of the seasonal variation is relatively small. As a re-

sult, both the FNN2 and T09 models show relatively

large differences against OBS in the equatorial areas

(Figs. 6b,c).

We put both modeled and observed fCO2 for

September, when theT092FNN2difference is the largest,

in Fig. 7. The T092FNN2 difference fluctuates at

the basin scale in most areas (Fig. 7a). T09 shows partic-

ularly high fCO2 unlike FNN2 in the zone near 308S and

near the Antarctic. By comparing both models’ results

(Figs. 7b,c) with the observations (Fig. 7d), it becomes

clear that a large T092FNN2 difference is likely caused

by T09’s overestimation and FNN2’s underestimation.

In contrast, the T09 fCO2 is generally smaller than the

FNN2 fCO2 in the equatorial areas. We attribute the

discrepancy to the model uncertainty caused by rela-

tively large fCO2 fluctuation in the same month.

Nevertheless, both the FNN and T09 models yield

results that agree generally well with observations

FIG. 5. Seasonal changes of modeled (dark line) and observed (cross symbol) fCO2, sea surface temperature (blue line), and

chlorophyll-a (green line). (a)–(d) Positions of the panels are shown in Fig. 2.
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throughout the year (Fig. 8). Our monthly climatology

maps, which include El Niño data points, illustrate
clear seasonal fCO2 variations. The FNN product has

the benefit of a finer spatial resolution compared to the

T09 product, but it has the disadvantage of larger areas

of missing data because of missing CHL inputs.

We evaluated the uncertainty of the FNN caused by

using different proxy variable data. As the evaluation on

a second dataset did not meaningfully change the con-

clusions, the results are not shown here.

d. CO2 flux

The gas transfer coefficient kp in Eq. (6) is primarily

a function of wind speed (Takahashi et al. 2009); hence,

the flux calculation can differ significantly depending on

the wind product used. By applying the wind speed from

a different wind product to the pCO2 of T09,Wanninkhof

et al. (2013) yielded a global sea–air CO2 flux of

21.18PgCyr21, which is 15% less negative than that of

T09 (21.38PgCyr21). Using the wind and pCO2 data

of T09, our formulation also yields a global air–sea CO2

flux of 21.39PgCyr21 even though different SST and

SSS data were used (Table 2). However, when the T09

wind was replaced by the NCEP–FNL wind (see section

3c), we yielded a global flux of21.04PgCyr21 for the T09

pCO2, which is about 25% less negative. Being aware of

this uncertainty, we present our flux estimate as the range

resulting from both wind data. For comparison reasons,

we filled 6% of the areas, where there were no direct

estimates from the FNN, by T09CO2 data to estimate the

CO2 flux in this study. Fluxes thus calculated are sum-

marized in Table 2.

Overall, our results suggest a global sea–air CO2 flux

ranging from 21.31 to 21.66 PgC yr21 by including the

El Niño periods (FNN1) and from 21.22 to

21.57 PgC yr21 by excluding those periods (FNN2).

They are about 15%–25% more negative than the esti-

mate in T09 when the same wind product is used. Av-

eraging zonally, the Southern Ocean south of 208S
contributes the most (about 21.17 PgC yr21) to the

total flux, while the northern oceans north of 208N
contribute roughly two-thirds the amount (about

20.75 PgC yr21). In contrast, the equatorial zone from

208S to 208N appears to be a prominent source with

a net flux of 0.61 PgC yr21. The relative zonal contri-

butions agree well with the numbers obtained by

Takahashi et al. (2009).

As the FNN uncertainty caused by data points in the

El Niño periods is small, we report our model flux
based on the FNN1 results. By adding a correction of
20.2 PgC yr21 for undersampling (Wanninkhof et al.

2013) to the direct estimate, we obtain a net annual CO2

uptake of 21.5 to 21.9 PgC yr21 for the global ocean.

Furthermore, by including an estimate for the riverine

CO2 flux of 0.4 PgC yr21 to the oceans (e.g., Jacobson

et al. 2007), we yield an anthropogenic CO2 uptake of

21.9 to 22.3PgCyr21. These values are in good agree-

ment with the best estimate for the anthropogenic CO2

uptake by Wanninkhof et al. (2013).

FIG. 6. Distribution of annual mean differences of fCO2 among

models and observations: (a) T092 FNN2, (b) FNN22OBS2, and

(c) T092OBS2. Both FNN2 and OBS2 do not include data points

in the El Niño periods.
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5. Conclusions

Our global fCO2 climatology derived from a feed-

forward neural network, including the time and space

variables, reveals a great potential to produce an fCO2

product for the modeling community. The model gen-

erally simulates the seasonal variation of fCO2 well and

yields monthly distributions that are in good agree-

ment with observations. Our product also agrees well

with the LDEO product (Takahashi et al. 2009), but it

TABLE 1. Monthly differences of fCO2 (matm) among models and observations. The range is the mean standard deviation of differences in

grid boxes.

Month FNN1 2 OBS1 FNN2 2 OBS2 T09 2 OBS2 T09 2 FNN2

Jan 20.8 6 16.6 20.1 6 16.6 20.8 6 18.1 21.8 6 16.6

Feb 1.1 6 15.2 1.3 6 15.1 20.2 6 16.8 22.2 6 16.2

Mar 20.0 6 14.9 21.2 6 15.7 21.3 6 16.9 21.3 6 15.5

Apr 20.5 6 14.0 20.6 6 14.2 20.6 6 16.9 0.5 6 14.0

May 20.5 6 15.5 0.2 6 14.6 20.3 6 17.2 1.3 6 15.7

Jun 1.0 6 16.9 1.5 6 17.3 21.0 6 20.0 1.5 6 16.6

Jul 0.5 6 15.7 20.2 6 15.8 1.1 6 17.9 3.6 6 16.6

Aug 20.5 6 15.8 20.9 6 16.0 20.4 6 17.2 3.4 6 16.5

Sep 21.0 6 14.3 20.3 6 14.2 20.2 6 15.8 4.2 6 16.6

Oct 0.3 6 14.8 0.3 6 14.4 20.0 6 16.9 2.2 6 14.4

Nov 1.3 6 14.8 0.8 6 15.1 20.8 6 17.9 0.5 6 13.9

Dec 21.2 6 15.8 21.2 6 15.7 20.2 6 18.1 0.4 6 15.9

Avg 20.0 6 15.4 20.0 6 15.4 20.4 6 17.5 0.9 6 15.8

No. points 73 265 71 287 71 917 346 351

FIG. 7. Comparison between models and observations for September: (a) T09–FNN2 fCO2 difference, (b) T09 fCO2 distribution,

(c) FNN2 fCO2 distribution, and (d) OBS2 distribution.
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has a much higher spatial resolution. Our method has

the advantage of not having to define a fixed model

relationship between fCO2 and its dependent vari-

ables. Its advantage over the SOM method (e.g.,

Telszewski et al. 2009) is that the interpolation of fCO2

is continuous, whereas an SOM establishes discrete

estimates using a category map. Regarding the method of

Landschützer et al. (2013) that uses both SOM and

FNN, our method is much simpler in that only one

neural network configuration is sufficient to model the

global fCO2 in all seasons, whereas Landschützer et al.
(2013) focused their method on the interannual vari-

ability of the Atlantic Ocean carbon sink. We achieved

this by including transformed time and space as input

parameters. The model is robust and can be extended to

produce global fCO2 with a higher resolution in time and

space as long as required data for input variables are

available.

FIG. 8. Distributions of fCO2 in February, May, August, and November. (a),(d),(g),(j) The FNN1 maps exclude areas when and

where CHL was not available. (b),(e),(h),(k) The OBS1 maps include all the points extracted on the conditions discussed in section 3a.

(c),(f),(i),(l) The T09 maps have a 48 3 58 spatial resolution and exclude data from El Niño years. (The FNN model results can be
downloaded from http://db.cger.nies.go.jp/ged/Open-Data/JTECH-D-13-00137/.)

AUGUST 2014 ZENG ET AL . 1847

Brought to you by University of Maryland, McKeldin Library | Unauthenticated | Downloaded 09/21/22 02:36 PM UTC

http://db.cger.nies.go.jp/ged/Open-Data/JTECH-D-13-00137/


Our anthropogenic CO2 uptake estimate agrees well

with the best estimate ofWanninkhof et al. (2013), but it

appears to be about 15%–25% larger than the estimate

of Takahashi et al. (2009). The uncertainty caused by

including or excluding data in the El Niño periods is
small compared to the difference between models. The
difference caused by using different wind products can
be as large as the difference between models and pro-
vides the largest CO2 flux uncertainty of our method.
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