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Antibiotic-resistant bacteria are currently posing a major threat to our society, rendering sev-

eral human and animal infections hard to cure, and this situation is predicted to become even

more precarious in the near future if no adequate measures are undertaken [1]. Bacterial path-

ogens synthesize different compounds and structures that enable them to colonize and damage

their host—i.e., virulence factors. As virulence factors are required for infection, preventing

pathogens from producing them constitutes an important alternative strategy for the control

of bacterial diseases: antivirulence therapy [2]. One of the most intensively studied targets in

this respect is quorum sensing, bacterial cell-to-cell communication in which bacteria coordi-

nate the expression of certain genes in response to the presence of small molecules. In the past

years, several criteria have been proposed to define the quorum sensing phenomenon and the

small molecules involved in it (e.g., discussed in [3–6]). In the current manuscript, I will use

the generic term “quorum sensing molecule” to refer to a small molecule produced by a bacte-

rium under certain conditions that generates a phenotypic response that extends beyond

changes required to metabolize or detoxify the molecule. Various quorum sensing molecules

have been documented to control the production of virulence factors in many bacterial patho-

gens of plants, animals, and humans (for reviews, see [7–10]).

Vibrios (Gammaproteobacteria belonging to the genus Vibrio) are gram-negative, usually

motile rods that are ubiquitous in aquatic environments, and several strains are major patho-

gens of aquatic organisms and humans, causing major environmental, economic, and public

health impacts [11]. These impacts will likely increase given the increased geographical spread

of vibrios as a result of climate change [12]. Moreover, like other bacterial pathogens, vibrios

are acquiring antibiotic resistance, thereby rendering the currently used antibiotic treatments

ineffective [13]. Hence, it should be no surprise that vibrios are among the most intensively

studied model organisms in quorum sensing studies. In fact, the quorum sensing principle

was originally discovered in Vibrio fischeri [14]. Many other gram-negative bacteria (including

other Vibrio species such as V. anguillarum) contain a similar quorum sensing system based

on the production and detection of acylated homoserine lactone (AHL) quorum sensing mole-

cules. These systems consist of a homolog of the V. fischeri LuxI AHL synthase enzyme and a

homolog of the V. fischeri LuxR transcriptional regulator that detects the AHL and subse-

quently binds to the promoter of the quorum sensing target genes and thereby affects expres-

sion of these genes.

In addition to the relatively simple AHL systems, vibrios also contain complex multichan-

nel quorum sensing systems [8,15,16]. These systems rely on the production and detection of
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multiple signal molecules with different chemical structures that are detected by dedicated

membrane-bound receptors that feed a shared signal transduction cascade [17]. During the

past decades, various inhibitors of AHL and multichannel quorum sensing systems have been

reported (for recent reviews, see [9,10]). Although interfering with these quorum sensing sys-

tems shows promise to control disease caused by some Vibrio species (e.g., Harveyi clade vibrios

and V. cholerae [10,18]), it has no impact on the virulence of other species (e.g., V. anguillarum
[15,19]). Therefore, it is important to identify additional targets for antivirulence therapy. Inter-

estingly, more quorum sensing molecules are still being discovered, thereby increasing the pos-

sibilities for the development of novel virulence-inhibitory therapies. Here, I will focus on three

quorum sensing molecules that were recently documented to control the virulence of vibrios:

indole, cyclo(L-phenylalanine-L-proline) (cyclo(Phe-Pro)), and 3,5-dimethylpirazin-2-ol

(DPO). These quorum sensing molecules share one particular feature—i.e., they are derived

from amino acids.

Impact of indole on the virulence of bacterial pathogens

Although different bacteria have been known for quite some time to produce indole from tryp-

tophan during stationary phase (Fig 1A), the appreciation of indole as a quorum sensing mole-

cule is of relatively recent origin. The compound controls various virulence-related phenotypes

(most notably, biofilm formation and motility) in human, animal, and plant pathogens [20].

Indole affects biofilm formation in V. anguillarum, V. campbellii, and V. cholerae, and this

was linked to the production of exopolysaccharides (which are a major constituent of the

extracellular matrix in biofilms). In V. cholerae, biofilm levels increased in the presence of

higher indole concentrations [21], whereas in the other two species, the opposite effect was

Fig 1. The amino acid–derived quorum sensing molecules indole (A), cyclo(Phe-Pro) (B), and DPO (C) and enzymes involved in

their biosynthesis. Pathways that have not been fully characterized are also indicated (unknown). cyclo(Phe-Pro), cyclo(L-

phenylalanine-L-proline); DPO, 3,5-dimethylpirazin-2-ol.

https://doi.org/10.1371/journal.ppat.1007815.g001
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observed [22,23]. This might reflect differences in the lifestyles of these bacteria. Indeed, when

compared with marine vibrios, various regulatory responses have been reported to be opposite

in V. cholerae (e.g., the down-regulation of virulence factors and biofilm formation by the mul-

tichannel quorum sensing system [15]). In fact, an impact of indole on biofilm formation

seems to be a general feature that is not limited to vibrios, and other bacteria (such as Acineto-
bacter oleivorans, Agrobacterium tumefaciens, Escherichia coli, and Pseudomonas aeruginosa)

also showed altered biofilm formation (either increased or decreased) in the presence of indole

[24–27]. In addition to affecting biofilm formation, indole also decreased the (expression of

genes involved in) flagellar motility of V. campbellii and V. cholerae [21,23], which is also con-

sistent with observations in other bacteria such as E. coli [28], Salmonella enterica serovar

Typhimurium [29], and P. aeruginosa [25]. Apart from biofilm formation and motility, other

virulence factors have been reported to be affected by indole in specific Vibrio species as well

(Table 1), and most importantly, the addition of indole decreased the virulence of vibrios in

invertebrate and vertebrate host infection models [22,23]. Finally, many other vibrios, includ-

ing (but not limited to) V. mediterranei, V. nigripulchritudo, V. orientalis, and V. parahaemoly-
ticus, are known to produce indole [20]. However, a phenotypic response to indole has not yet

been documented in these species.

Despite the fact that indole has a quorum sensing function in various species, thus far, an

indole receptor has not been definitively identified for any bacterium, although some candi-

dates have been proposed (e.g., the transcriptional regulator SdiA in E. coli) [38]. However,

several connections with other components of the virulence regulatory network have been

described. One common theme seems to be that indole signaling and the stress sigma factor

RpoS are interconnected [21–23]. Furthermore, in V. campbellii, indole decreases the activity

of the multichannel quorum sensing system [23], whereas no such effect was observed in V.

cholerae [21]. Indole has also been reported to interfere with AHL-based quorum sensing in a

number of gram-negative bacteria (including A. oleivorans, Chromobacterium violaceum, P.

aeruginosa, P. chlororaphis, and Serratia marcescens)—probably by interfering with the stabil-

ity and folding of LuxR-type AHL receptors [26,39].

cyclo(phe-pro) as virulence-regulating quorum sensing molecule

Cyclic dipeptides (or 2,5-diketopiperazines) are bioactive molecules produced through the

combination of two amino acids by nonribosomal peptide synthetases or cyclodipeptide

synthases in a wide range of organisms [40]. Vibrios belonging to the species V. cholerae, V.

harveyi, V. parahaemolyticus, and V. vulnificus produce the cyclic dipeptide cyclo(Phe-Pro)

Table 1. The impact of the amino acid–derived quorum sensing molecules indole, cyclo(Phe-Pro), and DPO on virulence-related phenotypes in vibrios.

Molecule Species Phenotypes affected References

Indole V. anguillarum Biofilm #, exopolysaccharide #, virulence (sea bass) # [22]

V. campbellii Biofilm #, exopolysaccharide #, motility #, quorum sensing #, virulence (brine shrimp and giant river prawn) # [23]

V. cholerae Biofilm ", grazing resistance ", cell envelope production and maintenance "1, exopolysaccharide (VPS) "1, motility #1 [21]

V. splendidus Protease, hemolysin and ABC transporter ATP-binding protein #1 [30]

Cyclo(Phe-Pro) V. cholerae Cholera toxin and coregulated pilus # [31,32]

V. vulnificus Outer membrane protein OmpU "1, biofilm #, resistance to oxidative stress " [33–35]

DPO V. cholerae Biofilm #, exopolysaccharide (VPS) #1, Rtx toxin # [36,37]

1 Effect on gene expression level based on promoter activity, microarray, and/or RT qPCR studies; impact on phenotypes not documented.

Abbreviations: ABC, ATP binding cassette; cyclo(Phe-Pro), cyclo(L-phenylalanine-L-proline); DPO, 3,5-dimethylpirazin-2-ol, OmpU, outer membrane protein U; RT

qPCR, reverse transcriptase quantitative PCR; Rtx, repeats in toxin; VPS, Vibrio polysaccharide

https://doi.org/10.1371/journal.ppat.1007815.t001
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(Fig 1B), with a maximal level being produced at the onset of stationary phase [33]. Although

enzymes from the nonribosomal peptide synthetase and cyclopeptide synthase families are the

major catalysts known for cyclic dipeptide formation, the exact biosynthetic route of cyclo(Phe-

Pro) in vibrios is yet unknown. Two decades ago, cyclic dipeptides were documented to activate

AHL reporter strains (although at higher concentrations than AHLs) [41]. However, the actual

biological function of these compounds in the producing species remained unknown until,

more recently, cyclo(Phe-Pro) was reported to induce the production of the major outer mem-

brane protein U (OmpU), a virulence factor in various vibrios [33], whereas it inhibited cholera

toxin and toxin-coregulated pilus production in V. cholerae [31]. Furthermore, cyclo(Phe-Pro)

decreased biofilm formation of V. vulnificus in a concentration-dependent way [34]. Very

recently, cyclo(Phe-Pro) was reported to increase the resistance of V. cholerae, V. parahemolyti-
cus, and V. vulnificus to reactive oxygen (one of the reactions of the innate immune defense in

higher organisms) by activating the expression of catalase-peroxidase (katG) [35].

The response to cyclo(Phe-Pro) requires the membrane-bound regulator ToxR, a major vir-

ulence regulator in vibrios [32,33]. The mechanism by which cyclo(Phe-Pro) affects ToxR is

not yet clear, although the periplasmic domain of ToxR and the LysR family regulator LeuO

are required for the activity [32,35]. Furthermore, the cyclo(Phe-Pro)–ToxR–LeuO pathway

also represses aphA, one of the master regulators of the multichannel quorum sensing system

in V. cholerae [32]. Finally, cyclo(Phe-Pro) is also connected with the RpoS regulon in V. cho-
lerae, V. parahemolyticus, and V. vulnificus because the rpoS mRNA was stabilized in the pres-

ence of exogenous cyclo(Phe-Pro) [35].

The most recently discovered player: DPO

Very recently, DPO has been identified as a quorum sensing molecule in V. cholerae [37].

Although the biosynthetic pathway has not yet been completely elucidated, DPO was found to

be derived from L-threonine and L-alanine (Fig 1C). The threonine dehydrogenase (tdh) gene

is required for DPO biosynthesis, and the molecule is detected by the cytoplasmic transcription

factor VqmA [36]. Upon binding of DPO, VqmA activates transcription of the small RNA

vqmR, which in turn represses the repeats in toxin (rtx) toxin genes and the vpsT transcriptional

regulator of biofilm formation [36]. The addition of exogenous DPO (100 μM) decreased the

expression of the Vibrio polysaccharide (vps) genes and inhibited biofilm formation in V. cho-
lerae [37]. The impact on other virulence-related phenotypes has not yet been documented.

The fact that threonine dehydrogenases are conserved among bacteria, together with the

observation that cell-free supernatants of E. coli also contain DPO activity [37], suggests that

DPO might be produced by a wide variety of bacteria. However, it is less clear whether non-

Vibrio species are also able to respond to DPO because homologs of the VqmA receptor are

limited to the genus Vibrio. Furthermore, the vqmR gene is highly conserved among the

Vibrionaceae [36], suggesting that other vibrios in addition to V. cholerae might be able to

respond to DPO. Remarkably, a functional vqmA gene was very recently identified in the

genome of a vibriophage. The phage-encoded VqmA controls genes required for lysis, result-

ing in lysis of phage-infected Vibrio cells in the presence of DPO [42]. These observations fur-

ther broaden the scope of influence of quorum sensing molecules with respect to interactions

between bacteria, viruses, and eukaryotes.

Ecological perspective in the context of the life cycle of pathogenic

vibrios

The life cycle of pathogenic vibrios is characterized by an alteration of a host-associated and an

external phase in the aquatic environment, and each of these transitions requires major
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metabolic changes [43]. During passage through the gastrointestinal tract of a host, bacteria

experience a shift in fermentation pattern, with easily degradable carbohydrates being metabo-

lized in the proximal part and more refractory compounds (including proteins) in the distal

part [44]. Amino acid–derived quorum sensing molecules could enable vibrios to sense the

shift to protein fermentation toward the distal part of the gastrointestinal tract, thereby facili-

tating the metabolic changes that are required to survive in the external environment. This

notion is further supported by a number of observations, including the interconnection

between the production of and response to amino acid–derived quorum sensing molecules

and the stress sigma factor RpoS (which has been demonstrated for indole and cyclo(Phe-Pro)

[23,35], whereas it has not been investigated yet for DPO), the fact that these molecules are all

mainly produced during (early) stationary phase and are active within the same concentration

range (roughly 0.1–1 mM) [20,33,37], and transcriptomic analyses showing that sensing of

these molecules leads to alterations in genes involved in energy production and amino acid

transport and metabolism [23,34].

Because they are derived from different amino acids, it is tempting to speculate that the bac-

teria might be able to sense and respond to the amino acid landscape in their surroundings.

Several vibrios are able to associate with and/or infect various host organisms [45], and distin-

guishing the amino acid composition of their surroundings (which likely will be different in

different hosts) might enable the regulatory network of these bacteria to adapt the production

of virulence factors to the specific host they encounter. In order to clarify the previously men-

tioned hypotheses, further research is needed with respect to the biosynthetic and response

pathways of these quorum sensing molecules, the relation with the amino acid composition of

the environment, and possible interactions between the different molecules (Are they able to

bind to the same receptor(s), and if so, are they acting in a redundant, agonistic, or antagonis-

tic way? Do they share response pathways?).

Concluding remarks and further perspectives

The fact that indole, cyclo(Phe-Pro), and DPO control virulence factor production in vibrios

makes the production and detection mechanisms of these quorum sensing molecules interest-

ing targets for the development of novel drugs to control Vibrio disease. A few analogs of these

molecules, including the auxins indole-3-acetic acid and indole-3-acetamide and the cyclic

dipeptide cyclo(valine-valine), have shown to be promising leads, as they decreased virulence

and/or virulence factor production in vibrios [23,46]. In addition to this, a library of synthetic

cyclic dipeptides has been screened in V. fischeri, and one of the compounds showed up to

95% luminescence inhibition [47]. It would be interesting to screen more compounds for

increased activity and to establish structure–activity relations with respect to impact on viru-

lence or virulence-related phenotypes. In addition to synthetic compounds with increased

activity, natural sources of these quorum sensing molecules could be investigated. Indeed,

indoles and cyclic dipeptides are produced by various organisms, including marine bacteria,

fungi, and algae [48,49]. Either purified compounds could be applied, or selected (micro)

organisms able to produce high levels of these compounds—e.g., lactobacilli or bifidobacteria

producing indoles and/or cyclo(Phe-Pro) [50,51]. The application of such compounds to con-

trol disease might not be limited to vibrios, because other bacteria, such as P. aeruginosa and

E. coli, have also been reported to produce and/or respond to these amino acid–derived quo-

rum sensing molecules [35,37,38]. The identification and development of therapeutics derived

from these molecules will need to include experiments in appropriate host models because

higher organisms can also respond to these amino acid–derived quorum sensing molecules.

Indeed, indole has been reported to increase human epithelial cell tight-junction resistance
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and to reduce inflammatory cytokine levels [52], and several studies suggested a beneficial

effect on oxidative stress and inflammation [38]. More recently, cyclo(Phe-Pro) has been docu-

mented to induce DNA damage by increasing the levels of reactive oxygen species in mamma-

lian cells [53] and to inhibit innate immune responses [54,55].
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