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Abstract: A lack of data hinders effective marine management strategies for developing island
states. This is a particularly acute problem for the Commonwealth of Dominica. Here we use
publicly available remote sensing and model data to map their relatively unstudied waters. Two
study areas were selected; a smaller area focussing on the nearshore marine environment, and a
larger area to capture broader spatial patterns and context. Three broadscale landscape maps were
created, using geophysical and oceanographic data to classify the marine environment based on its
abiotic characteristics. Principal component analysis (PCA) was performed on each area, followed
by K-means clustering. The larger area PCA revealed three eigenvalues > 1, and one eigenvalue
of 0.980. Therefore, two maps were created for this area, to assess the significance of including the
fourth principal component (PC). We demonstrate that including too many PCs could lead to an
increase in the confusion index of final output maps. Overall, the marine landscape maps were
used to assess the spatial characteristics of the benthic environment and to identify priority areas for
future high-resolution study. Through defining and analysing existing conditions and highlighting
important natural areas in the Dominican waters, these study results can be incorporated into the
Marine Spatial Planning process.

Keywords: marine landscape mapping; Commonwealth Marine Economies Programme;
Commonwealth of Dominica; confusion index maps; principal component analysis; eigenvalue;
K-means analysis; publicly available data

1. Introduction

The growing human population has caused increased exploitation of the marine
environment, through activities such as commercial fishing, coastal development, tourism,
and seabed mining [1], leading to increased habitat damage, pollution, and littering. Marine
spatial planning (MSP) is a process that organises the human use of marine space to balance
ecological, economic, and social goals. To appropriately manage and promote sustainable
human-marine interactions requires detailed knowledge of the marine environment. In
many cases, this is restricted by data availability and the ability to process and interpret
environmental data. In situ data collection techniques (e.g., multibeam and sidescan sonar
and groundtruthing data collection) form the prime method to expand spatial and temporal
data coverage [2]. However, in situ data acquisition, processing, and interpretation is not
always possible or a priority for many developing countries due to the expense and
expertise required [2,3], even if those nations are reliant on their waters for food and
income [3–5]. Due to prolonged and increasing exploitation, easily accessible terrestrial and
marine resources are dwindling [6], moreover, advancements in technology allow greater
scope for resource mining [7]. Therefore, understanding what currently exists in national
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and international waters is of vital importance to underpin appropriate management and
conservation strategies [2,8,9].

Small Island Developing States (SIDS) often have a large marine environment relative
to their terrestrial area and a population that relies on the coastal environment for food
production and economic income [3,4]. Yet often SIDS do not have the resources to monitor
and sustainably manage their marine waters [3,10]. The Commonwealth Marine Economies
Programme, announced in 2015, aimed to help vulnerable SIDS to further understand,
use and protect their marine environment in a sustainable and economically beneficial
way [11]. One of the targeted islands was the Commonwealth of Dominica, a volcanic
island in the Caribbean. The island topography remains rugged and mountainous resulting
in the majority of the population living in coastal towns [12–15]. The continental shelf sur-
rounding Dominica is narrow, with the 50 m depth contour occurring a maximum of 2.8 km
from shore [16]; consequently, a significant proportion of shallow water benthic habitats
of Dominican waters are in close proximity to the coast and its human population. As
such, there is pressure on the nearshore, marine environment and the potential for marine
habitat damage [12]. The Institute for Tropical Marine Ecology, Roseau, Commonwealth
of Dominica has conducted studies of nearshore Dominican waters but little data of the
wider marine environment has been collected [12,13,16]. As the coastal population grows,
bringing with it development along the coast, the marine environment is increasingly vul-
nerable to overfishing, sedimentation and pollution [12]. Without knowledge of vulnerable
marine habitats and a wider context of their waters, effective management of the resources
available in Dominican waters is difficult.

To address this need, in this study, we aim to create a broadscale marine landscape
map to provide an initial summary of the benthic environment of Dominican waters, also
beyond the shallow near-shore environment. This approach is a top-down method of
landscape mapping that uses geophysical and oceanographic data to classify the marine
environment based on its abiotic characteristics. Abiotic classifications can be combined
with existing biological sampling to expand current knowledge of the marine environment,
to predict the location of vulnerable habitats in areas that have not been extensively studied,
or are under pressure from marine resource exploitation, and to prioritise where future
data collection should occur when financial, social and political goals align.

Biological sampling (e.g., video, camera, or grab data) is often required to map habitats
of ecological and economic importance, yet data coverage is often spatially sparse [17]
due to the expense and time required for a meaningful survey [2]. As an alternative, a
broadscale landscape mapping approach, using the growing body of data available from
modelling, remotely sensing and in situ data sources, can be adopted. To overcome the
lack of existing biological data, an unsupervised classification of the marine environment
surrounding Dominica was carried out (based on the method presented by Hogg et al. [18];
adapted from Verfaillie et al. [17] and Ismail et al. [19]), using open source datasets to create
a broadscale landscape map. While the original method used a supercomputer, this study
was performed on a normal computer and so would be transferable to developing nations.
The authors used this method for underpinning decision-making on large-scale marine
protected areas (MPAs); this study uses bathymetric, satellite, and modelled abiotic vari-
ables to distinguish areas with similar characteristics in each study area and see how they
contrast with surrounding regions, the outcomes of which could also be used to underpin
large-scale MPA decisions and be incorporated into ecosystem-based MSP development
and implementation.

Approach

Briefly, the rationale of the method is to conduct Principal Component Analysis (PCA)
on a set of full-coverage environmental data (bathymetric, satellite, and oceanographic
model derived abiotic variables), followed by K-means classification into an optimal num-
ber of classes for the area under study, i.e., the waters surrounding Dominica. These are
well-established methods, which were chosen for their accessibility and applicability, mak-
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ing use of standard computing resources. More advanced unsupervised clustering methods
have been described and increasingly Artificial Intelligence approaches are being tested,
such as autoencoders [20] or the use of a fully convolutional network to predict superpixels
for segmentation [21]. However, their implementation is often less straightforward, which
may limit their use in SIDS.

The study was conducted at both a local scale and at a wider scale to give a broader
context for the Dominican waters. PCA is a common method used to reduce the number
of input variables to a new set of linearly independent principal components (PCs) that
account for the majority of the variance in the original variables [17,22]. An important
consideration in the use of this unsupervised classification method is how many principal
components to retain for K-means clustering [23,24]. Underestimating results in the loss of
important information, while overestimating diffuses the variables into more components
than needed to describe the main structure of the data, and could lead to an interpretation
focussing on trivial components [24,25].

The Kaiser-Guttman criterion, a popular method for factor retention, dictates that
only those PCs with eigenvalues greater than one should be retained [26,27]. The rationale
behind this criterion is that a factor should account for more variance than the original input
variables. Several studies showed that the use of the Kaiser-Guttman criterion overestimates
the number of factors to retain [25,28]; however, Pituch and Stevens [29] suggest this rule
might be used for studies in which there are less than 30 variables. Therefore, the results of
the PCA will be assessed for both eigenvalues and the proportion of variance explained.
Once the factor retention is decided, a Varimax rotation is performed on the retained PCs,
resulting in the original input variation being maximally aligned to single rotated PCs
(RPCs), so correlated variables are more likely to have maximal loadings on the same RPC
and variation among RPCs is equalised [30].

K-means clustering is then performed on the resulting RPCs, a data partitioning
process commonly used for marine data [17]. The results of this clustering will then be
mapped for the local and broadscale studies, and the correlation of the original input
abiotic variables against the K-means cluster values assessed to determine the physical
characteristics of each cluster and therefore, the region.

Within this study, we assess the Kaiser-Guttman criterion of retaining eigenvalues
greater than one [26] during factor retention decisions, as this decision determines the
variance explained in the study. We also evaluate the suitability of this landscape mapping
method for Caribbean Islands, due to the availability of open source environmental data.

2. Materials and Methods
2.1. Study Area

The study area consists of the Commonwealth of Dominica and surrounding waters,
first using a large bounding box extending from 57.5◦W to 63◦W (~586 km) and 14◦N
to 16.9◦N (~320 km). This covers an area of ~188,000 km2 including several Caribbean
Islands and stretches into the abyssal plain of the NW Atlantic (Figure 1). Second, a smaller
bounding box is used, extending from 60.3◦W to 62.3◦W (~215 km) and 14◦N to 16.9◦N
(~320 km), covering an area of ~68,800 km2. This smaller area study was conducted to
focus on the shallower marine environment surrounding the Caribbean Islands, without
extending further into the NW Atlantic or Caribbean Sea. Removing the influence of
the deeper, further offshore region may reveal patterns in the nearshore clusters that
give us greater insight into these shallower waters, but it has the risk to ignore wider
environmental patterns.
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Figure 1. Location of study area. The green outline shows the second, smaller bounding box extent,
the grey outline shows the location of Macouba Bank.

2.2. Data
2.2.1. Bathymetric Data

Two sources of bathymetric data were used within this study. The first data source,
at 800 m resolution, is the General Bathymetric Chart of the Oceans (GEBCO) [31] and
the boundaries of this dataset (57.5◦–63.0◦W and 14.0◦–17.0◦N) were selected to include
the entire Dominican Exclusive Economic Zone (EEZ), which extends from 57.875◦ to
62.8139◦W and 14.4886◦ to 16.5008◦N [32]. The second bathymetry dataset is a digital
elevation model (DEM) of Guadeloupe and Martinique produced as part of the HOMONIM
(History, Observation and Modelling of sea levels) project [33]; piloted by the French Naval
Hydrographic and Oceanographic Service (SHOM) and the French national meteorological
service (Météo-France).

This DEM encompasses several of the Lesser Antilles Islands, from Montserrat in the
north to Saint Lucia in the south and extends offshore to a depth of 5800 m. It is comprised
of SHOM bathymetry combined with existing compilations of DEM (GEBCO, EMODnet
etc.) and bathymetric data from international databases. The boundaries of the smaller
dataset defined the extent of the local scale study, extending from 60.3◦ to 62.3◦W and 14.0◦

to 17.0◦N. This dataset had a resolution of 100 m, but due to noise in the data, a Gaussian
Filter (Standard deviation 20, radius 40) was applied in SAGA GIS (version 7.2) to soften
noise that might affect the clustering process (see landscape mapping).

Both datasets were interpolated to 250 m resolution and then combined using the
TOPOGRID interpolation function in ArcGIS (version 10.6). This function uses the ANU-
DEM algorithm, a computationally efficient multigrid interpolation process, which aims to
account for errors in large datasets without over-smoothing well-defined features [18,34,35].
The SHOM dataset was prioritised due to its initial higher resolution and a 1000 m sur-
rounding buffer with no data were applied to smooth the boundary joining.

Following the creation of an initial map, which demonstrated clusters in unnatural
straight lines, highlighting the survey artefacts in the data, the mean Focal Statistics function
in the Spatial Analyst toolbox of ArcMap was used (a neighbourhood settings of three cells)
to further reduce the noise associated with the bathymetric data. This process created a
smoother DEM with output cell values that are a function of the original cell values in a
specified neighbourhood around the focal cell.
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From this combined grid, the following bathymetric derivatives were calculated
(summarised in Table 1): within ArcMap slope and plan curvature were derived using the
Spatial Analyst Toolbox (using a 3 × 3 cell neighbourhood). Topographic position index
(TPI) was calculated using the Land Facet Corridor Tools extension in ArcMap (radius of
4 cells, 1000 m). Terrain ruggedness index (TRI) was calculated using the SAGA GIS Terrain
Analysis Morphometry tools (radius of four cells, 1000 m).

Table 1. Bathymetric derived variables included in the landscape mapping analysis.

Bathymetric Derivatives Description Calculated

Slope Gradient of bathymetry Slope Spatial Analyst Tool in ArcMap (using
a 3 × 3 cell neighbourhood)

Topographic Position Index Compares elevation of focal cell to all cells in a
specified neighbourhood

Land Facet Corridor Tools extension in
ArcMap, radius of 4 cells (1000 m)

Terrain Ruggedness Index
The mean difference between a focal cell and

the surrounding cells in a
specified neighbourhood

SAGA GIS Terrain Analysis Morphometry,
radius of 4 cells (1000 m)

Plan Curvature Curvature of the surface perpendicular to the
slope direction

Curvature Spatial Analyst Tool in ArcMap
(using a 3 × 3 cell neighbourhood)

Multiple scales of the same variables were highly correlated and so, rather than
including them all, finer scale plan curvature and slope were used to capture finer patterns
(gullies and canyons) while broad scale TPI and TRI were used to capture broad patterns.
Plan curvature was selected, as it is the least correlated with TPI.

2.2.2. Satellite and Oceanographic Model Derived Variables

Seabed salinity, temperature and current velocity data were derived from the Coper-
nicus Global Sea Physical Analysis and Forecasting numerical model [36] at a spatial
resolution of 0.083 degrees × 0.083 degrees (~8900 m by longitude and ~9100 m by lat-
itude at the latitude of study). Contrary to Hogg et al. [18], who split oceanographic
variables into summer and winter averages, we used annual mean values, given the
limited annual variation in water column characteristics at this latitude. Satellite de-
rived net primary productivity (NPP) data were sourced from Oregon State Univer-
sity [37] (http://sites.science.oregonstate.edu/ocean.productivity, accessed 8 March 2019),
as monthly means at 1/12 degree spatial resolution. NPP is defined as a function of the Ver-
tically Generalised Production Model, MODIS surface chlorophyll concentrations, MODIS
4-micron sea surface temperature and MODIS cloud-corrected incident daily photosynthet-
ically active radiation (PAR). Table 2 provides a summary of satellite and oceanographic
model derived variables included in the landscape mapping analysis. These data were im-
ported into RStudio (version 2021.9.1.372) where they were filtered to the region of interest
and an average of the monthly means from January 2016 to December 2018 was calculated.

Table 2. Satellite and Oceanographic Model derived variables included in the landscape map-
ping analysis.

Satellite and Oceanographic
Model Variables Source Calculated

Net Primary Production
(mg C/m2/day)

Oregon State University
Vertically Generalised

Production Model Monthly data averaged over
3 years (January

2016–December 2018)
Salinity (PSU)

Copernicus Global Ocean
Model TimeseriesTemperature (◦C)

Current (m/s)

http://sites.science.oregonstate.edu/ocean.productivity
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These data were then imported into ArcMap, transformed to WGS 84 UTM 20N and
interpolated to a spatial resolution of 250 m using the Spline with Barriers function from
the Spatial Analyst Toolbox. The island’s coastline was used as the barrier to prevent
interpolation across the terrestrial landscape.

2.3. Landscape Mapping

This study follows the method adapted by Hogg et al. [18], to create a landscape map
of sub-Antarctic South Georgia, following Verfaillie et al. [17] and Ismail et al. [19]. The
following analysis was conducted in RStudio [38] (package ‘psych’ [39]), with the data
normalised to have zero-means and unit variance. The stages were as follows:

1. Principal component analysis (PCA). PCA was conducted on the nine input variables
to reduce the data to linearly independent Principal Components (PCs) and remove
collinearity. These PCs account for the greatest variance in the data without needing
to predetermine which variables should be used for the analysis. PCs with eigenval-
ues less than 1 are traditionally discarded following the Kaiser-Guttman criterion;
however, the initial eigenvalues calculated from the larger dataset had one borderline
value and so the study was performed using both values >1 and >0.97. A Varimax
rotation of the retained PCs was performed, to clarify the loadings matrix structure,
and the subsequent analysis was performed on the resulting rotated PCs (RPCs).

2. Determine optimum number of clusters. A predefined number of clusters must
be input into the K-means clustering algorithm. Here we used both the Calinski-
Harabasz index (C-H) [40] and the elbow method [22] to determine the number of
clusters. The C-H index is the ratio of the sum of inter-cluster variance to the intra-
cluster variance; the highest value indicates the optimum number of clusters. The
elbow method assesses the variance within clusters against a range of cluster values
(here 1–15). The point at which increasing the number of clusters does not significantly
lower the intra-cluster variance is the optimum number of clusters.

3. K-means clustering. K-means clustering is a common algorithm used to partition
marine environmental data [17,41]. The number of clusters for K-means clustering
must be specified for this analysis; both the Calinski-Harabasz index (C-H) [40] and
the elbow method [22] will be used to determine this value in an objective way.
The K-means clustering algorithm uses an iterative method, whereby cluster centres
are randomly allocated, and each data point is temporarily assigned to the cluster
that minimises the distance between the focal point and the centre of the cluster in
the multidimensional PC space. The centre points are then repeatedly shifted, the
distances recalculated, and the data points re-allocated to the closest cluster centres,
until the positions of the centroids are optimal or until the specified number of
iterations has been reached.

4. Landscape map. The final cluster value for each data point was plotted against the
point location to create a landscape map of the study regions. Boxplots summarising
the distribution of the original input abiotic variables against the K-means cluster
values were created to assess the influence of the abiotic inputs on the cluster solution
and determine the physical characteristics of each cluster.

5. Confusion Index Map. To assess how well each data point fitted within its assigned
cluster, a confusion index map was created using the inverse distance squared in
attribute space between the data observation and each K-means cluster centre to
give a cluster membership value. A quantitative uncertainty measurement can be
calculated using, for each data point, the ratio of the second highest membership
value versus the highest, known as a confusion index (CI) [19]. If the data point is well
characterised by the assigned cluster, the CI value will approach zero. Conversely, if
the data point is not dominated by the assigned cluster, and the membership values
are spread across several clusters, the value will be closer to one. These values were
plotted against the data observation location to create a confusion map. For more
detail, see Hogg et al. [18].
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3. Results
3.1. PCA and Eigenvalues
3.1.1. Larger Study Area

Principal component analysis (PCA) performed on the larger study area variables
resulted in three eigenvalues greater than one, and one eigenvalue of 0.980 (Table 3). To
assess the significance of including this fourth principal component (PC), two landscape
maps were created; henceforth these two maps shall be referred to as E3 (three eigenvalues
used) and E4 (four eigenvalues used). Taking only the initial three PCs with eigenvalues of
one or greater, 73.265% of the total variance was explained, while the addition of the fourth
RPC with eigenvalue 0.980 explains a further 10.894% of the variance.

Table 3. Eigenvalues for the larger study area.

Larger Study Area PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Standard deviation 1.684 1.411 1.330 0.990 0.862 0.611 0.468 0.294 0.057

Proportion of Variance (%) 31.500 22.122 19.643 10.894 8.263 4.148 2.436 0.958 0.036

Cumulative Proportion (%) 31.500 53.622 73.265 84.159 92.422 96.570 99.006 99.964 100.000

Eigenvalue 2.835 1.991 1.768 0.980 0.744 0.373 0.219 0.086 0.003

Varimax rotated principle component analysis (RPCA) performed on the E3 data
(Table 4), resulted in RPC 1 having high loads for depth, salinity, and temperature and
lower loads for NPP and current; RPC 2 had high loads for slope and TRI and a lower load
for current; RPC 3 had high loads for plan curvature and TPI. Joint high loadings on one
RPC clearly illustrate correlation between those variables.

Table 4. Rotated components matrix. Correlation between the original input variables and the
Varimax rotated principal components for the larger study area using three eigenvalues. Values with
r > 0.7 or r < −0.7, are considered high factor loads (bold), while low factor loads (r < 0.3 or r > −0.3)
are omitted.

Abiotic Variables (E3, Large) RPC 1 RPC 2 RPC 3

Depth 0.829 - -

Slope - 0.974 -

Plan Curvature - - 0.943

Topographic Position Index - - 0.942

Terrain Ruggedness Index - 0.975 -

Salinity 0.837 - -

Current 0.352 0.441 -

Temperature 0.908 - -

Net Primary Productivity 0.532 - -

In the E4 RPCA (Table 5), all abiotic variables had a connection with only one RPC,
except for depth and current. RPC 1 had high loads for depth, salinity, and temperature as
well as lower loads for NPP and current; RPC 2 had high loads for slope and TRI and a
lower load for current; RPC 3 had high loads for plan curvature and TPI; RPC 4 had a high
load for NPP and a lower load for depth.
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Table 5. Rotated components matrix. Correlation between the original input variables and the
Varimax rotated principal components for the larger study area using four eigenvalues. Values with
r > 0.7 or r < −0.7, are considered high factor loads (bold), while low factor loads (r < 0.3 or r > −0.3)
are omitted.

Abiotic Variables (E4, Large) RPC 1 RPC 2 RPC 3 RPC 4

Depth 0.592 - - 0.642

Slope - 0.989 - -

Plan Curvature - - 0.944 -

Topographic Position Index - - 0.942 -

Terrain Ruggedness Index - 0.989 - -

Salinity 0.908 - - -

Current 0.556 0.315 - -

Temperature 0.909 - - -

Net Primary Productivity 0.055 - - 0.928

3.1.2. Smaller Study Area

PCA performed on the smaller study area resulted in three RPCs with an eigenvalue
of one or greater (Table 6), which explained 73.490% of the total variance and RPCA was
performed on these PCs. The rotated components matrix (Table 7) shows the factor loads
which explain the correlation between the RPCs and the original abiotic variables, excluding
any factor loads −0.3 > r < 0.3. All variables had a high factor load (r > 0.7) with only one
RPC, except current and NPP. RPC 1 had a high load for the variables depth, salinity, and
temperature; RPC 2 for slope and TRI; RPC 3 for plan curvature and TPI. NPP had a lower
factor load with RPC 2 and current had a lower factor load with RPCs 1 and 2.

Table 6. Eigenvalues for the smaller study area.

Smaller Study Area PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9

Standard deviation 1.661 1.471 1.300 0.936 0.818 0.714 0.487 0.306 0.031

Proportion of Variance (%) 30.642 24.058 18.790 9.737 7.431 5.657 2.637 1.037 0.011

Cumulative Proportion (%) 30.642 54.700 73.490 83.228 90.659 96.315 98.952 99.989 100.000

Eigenvalue 2.758 2.165 1.691 0.876 0.669 0.509 0.237 0.093 0.001

Table 7. Rotated components matrix. Correlation between the original input variables and the
Varimax rotated principal components for the smaller study area. Values with r > 0.7 or r < −0.7, are
considered high factor loads (bold), while low factor loads (r < 0.3 or r > −0.3) are omitted.

Abiotic Variables (E3, Small) RPC 1 RPC 2 RPC 3

Depth 0.798 - -

Slope - 0.948 -

Plan Curvature - - 0.937

Topographic Position Index - - 0.931

Terrain Ruggedness Index - 0.948 -

Salinity 0.893 - -

Current 0.338 0.535 -

Temperature 0.951 - -

Net Primary Productivity - −0.490 -
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3.2. Clustering and K-Means
3.2.1. Larger Study Area

For the larger study area, the ‘elbow method’ was applied to the within group sum
of squares clustering solution. The gradient change in the graph, which would identify
the optimal clustering solution, was unclear for both the E3 and E4 studies (Figure 2a,c,
respectively). The Calinski-Harabasz method showed clear first local maxima for both the
E3—six clusters (Figure 2b) and E4—five clusters (Figure 2d) studies, and so these values
were used for the following K-means analyses.
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Figure 2. Optimal K-means cluster solution for each study area. Showing (a) number of clusters
versus the within group sum of squares for the larger study area, using three eigenvalues; (b) number
of clusters versus the Calinski-Harabasz criterion for the larger study area, using three eigenvalues;
(c) number of clusters versus the within group sum of squares for the larger study area, using four
eigenvalues; (d) number of clusters versus the Calinski-Harabasz criterion for the larger study area,
using four eigenvalues; (e) number of clusters versus the within group sum of squares for the smaller
study area; (f) number of clusters versus the Calinski-Harabasz criterion for the smaller study area.
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3.2.2. Smaller Study Area

The result of the group sum of squares clustering solution for the smaller study area
was evident at four clusters (Figure 2e). The Calinski-Harabasz method agreed, showing
a clear first local maximum at four clusters (Figure 2f) and so this value was used for the
following K-means clustering.

3.3. Broadscale Landscape Map

The results of the K-means analysis clustering solution were interpreted alongside the
boxplots of the distribution of the original input variables for each cluster.

3.3.1. Larger Study Area

The E3 area resulted in six clusters (Figure 3), each of which had distinct physical
conditions (Figure 4). Clusters 1 and 6 occur in deeper waters and were influenced by the
eastward transition from high to low NPP. Cluster 2 occurs in areas of steep slopes and
high TRI, as well as higher currents and a broad range of plan curvature and TPI, indicating
an area of depressions and peaks. This cluster occurs on the west side of each island, on
the shoulder to the northeast of Guadeloupe and along a ridge to the northeast of the study
area. Clusters 3 and 4 were characterised by plan curvature and TPI, occurring on the
sides of slopes and around the islands where the seafloor drops into deep water. Cluster 3
occurs in high TPI and curvature indicating peaks and ridges and cluster 4 in low TPI and
curvature indicating gullies or canyons. Cluster 5 occurred predominantly to the east of
each island in shallow depths, high temperatures and high salinity waters with a broad
range of currents. Small features occur throughout the study area to the east of the islands.
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Figure 3. Broadscale Landscape Map for the larger study area, using three eigenvalues. Showing the
K-means cluster analysis results of the six cluster classes.

The E4 study area demonstrates similar cluster characteristics to the E3 map; however,
the four eigenvalues resulted in only five clusters (Figures 5 and 6). Clusters 1 and 5
demonstrate the declining NPP gradient from east to west. Cluster 2 is defined by shallow,
high temperature and high salinity waters. However, clusters 3 and 4 represent the areas
covered by the E3 clusters 2, 3 and 4 and are characterised by slope, TRI, plan curvature
and TPI.
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Figure 4. Boxplots of the nine original abiotic variables for each of the K-means derived clusters for
the larger study area using three eigenvalues. The x-axis denotes the five K-means clusters, the y-axis
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extending parallel from the box show the maximum and minimum values for each variable.
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Figure 6. Boxplots of the nine original abiotic variables for each of the K-means derived clusters for
the larger study area using four eigenvalues. The x-axis denotes the five K-means clusters, the y-axis
denotes the respective units of each abiotic variable. The colours represent the corresponding cluster
in the landscape map (Figure 5). Format of boxplots as described in Figure 4.

3.3.2. Smaller Study Area

The smaller study area was clustered into four regions (Figure 7) and was characterised
in a similar manner to both the larger studies (Figure 8). Cluster 2 was characterised by
shallow, high temperature, high salinity water to the east of the islands while clusters 3 and
4 represented the areas of high slope and ruggedness (TRI), and range in plan curvature
and TPI. Cluster 1 represented the remaining deeper water but did not demonstrate the
gradient in NPP shown in the larger area. In this local map, the shoulder to the east of
Guadeloupe is divided into two clusters, similar to the E4 map, demonstrating that the
difference in plan curvature and TPI is more significant than depth and slope.
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3.4. Confusion Index Map
3.4.1. Larger Study Area

Figure 9 shows the confusion index maps for both E3 and E4, with the confusion index
for each study scaled between 0 and 1. Around the islands, the confusion index map is dark,
showing low confusion in the assigned cluster for each study and indicating the regions
dictated by depth, salinity and temperature are distinct. The area to the southwest of the
islands also demonstrates low confusion, although the E4 study is darker in this region
than the E3 study, indicating the E3 study has higher confusion in the assigned cluster for
that region. The same occurs in the northeast of the map extent.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

axis denotes the respective units of each abiotic variable. The colours represent the corresponding 
cluster in the landscape map (Figure 7). Format of boxplots as described in Figure 4. 

The shoulder to the northeast of Guadeloupe is more distinctly dark in the E3 study, 
where the shoulder was classed as one cluster, whereas in the E4 study, where the shoul-
der was divided into two clusters, the region has higher confusion. The highest confusion 
occurs at the boundaries of the clusters, as the characteristics of the region transition be-
tween defining variables. High confusion is indicative that the habitats have characteris-
tics of more than one cluster. The E3 patchiness of the smaller features to the east of the 
islands is more apparent than in the E4 map but the western extent of cluster 5 in the E4 
study has higher confusion than the E3 assigned clusters, particularly to the northeast of 
the Commonwealth of Dominica as cluster 5 transitions to cluster 1 along the NPP gradi-
ent. 

 
Figure 9. Confusion Index Map. Showing quantified clustering uncertainty for the larger study area 
(a) E3 and (b) E4. Zones of high confusion appear white, while lower confusion is darker. 
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The shoulder to the northeast of Guadeloupe is more distinctly dark in the E3 study,
where the shoulder was classed as one cluster, whereas in the E4 study, where the shoulder
was divided into two clusters, the region has higher confusion. The highest confusion occurs
at the boundaries of the clusters, as the characteristics of the region transition between
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defining variables. High confusion is indicative that the habitats have characteristics of
more than one cluster. The E3 patchiness of the smaller features to the east of the islands
is more apparent than in the E4 map but the western extent of cluster 5 in the E4 study
has higher confusion than the E3 assigned clusters, particularly to the northeast of the
Commonwealth of Dominica as cluster 5 transitions to cluster 1 along the NPP gradient.

3.4.2. Smaller Study Area

The confusion index map for the smaller study area (Figure 10) has extensive areas of
low confusion to the southwest of the map extent, similar to the larger study areas. Most of
the higher confusion zones appear at the cluster boundaries. Areas of lighter grey occur to
the northeast where cluster 1 reaches around the islands, in the region the broadscale maps
transition to another cluster due to the NPP gradient.
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4. Discussion
4.1. The Marine Landscape around Dominica

Each of the studies above maps environmental zones based on abiotic factors derived
from publicly available data. This demonstrates the potential of open access data, and,
while the method does not determine where ecologically important habitats are located,
it highlights areas of potential interest without the input of biological data. The results
can be used to identify areas of survey priority and in need of MSP, be a starting point for
stakeholder discussion, and be incorporated into MSP development and MPA designation
through defining and analysing existing conditions and highlighting potential areas of
interest. If conservation efforts need to be focused on just one or a few areas, selecting
the areas of highest habitat heterogeneity—the areas with the highest number of clusters,
and therefore habitats, within close proximity—can allow each habitat to be included
within the MSP. Additionally, calculating the area covered by each cluster can contribute to
proportional conservation target achievement. The marine landscape maps can be used as
input to quantify the structure (composition and configuration) of the offshore environment,
using metrics such as those used in landscape ecology (e.g., Swanborn et al. [42]). At the
same time, it may be possible to apply some local knowledge of the nearshore environment
to offshore areas that have been allocated to the same cluster.

Previous studies of the nearshore distribution of benthic habitats in Dominican waters
revealed seagrass habitats dominate the west and north coast of the island, with coral reefs
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also occurring in these regions [13,43,44]. In the E3 study, this western nearshore region
is classified predominately as cluster 2, with areas of clusters 3 and 4, the same as the
shoulder to the northeast of Guadeloupe, the southern tail of which lies within Dominican
waters, and is characterised by higher slope, TRI, and currents. In the E4 and smaller
area study both areas are more evenly divided between clusters 3 and 4, characterised by
slope, TRI, TPI and plan curvature, as these clusters in E4 account for clusters 2, 3 and 4 in
E3. Hydrodynamics and terrain complexity strongly influence habitat suitability [45,46].
While this dataset lacked substrate type, which is also influential in determining habitat
assemblages, the inclusion of bathymetric derivatives such as rugosity and slope can be
an indicator of substrate type [47]. Areas of high slope and current are often indicative
of hard substrate, due to low sedimentation or erosion. Higher current velocity and
terrain complexity have also been linked with increased biodiversity [46]. A relationship
between filter-feeding communities and increased (up to limiting values) slope, near-
bottom currents and resultant turbidity has been demonstrated, as these organisms feed
on particles suspended in the water [45,48]. Habitats identified from previous nearshore
studies of areas that lie in the same cluster as the southern tail of the shoulder can be used
to infer whether further investigation of this area is warranted.

Rocky and sandy areas comprise 81% of the shallow marine benthos of Dominica
and dominate the south and east coast [13] where the topography is not as steep as the
west. The shelf area, characterised by shallow, higher temperature and salinity waters
is comparatively much smaller for Dominica than the surrounding islands. Each of the
broadscale landscape maps identify a bank to the southeast of Dominica that demonstrates
the same characteristics, defined by shallow depth, higher temperature, and salinity, as
the nearshore waters on the northeast of the islands. This is Macouba bank, partially
within Dominican waters but, as it is ~24 km from the coast, it is difficult for the smaller
Dominican fishing boats to access and has allegedly been exploited by fishers coming from
other nations with more established fishing gear [49,50]. If this is an area of ecological and
environmental interest, as it has waters of similar characteristics to the more productive
shallow Dominican waters, it might be a priority for future management and investigation.
It is also of note that the more productive shallow waters on the Dominican coast lie to the
northeast of this island and fishers from this area would have to travel over 40 km to reach
the exposed waters of Macouba Bank. This distance could also present difficulties with
management and policing of this bank.

4.2. Unsupervised Classification: Methodological Considerations

The purpose of PCA is to reduce the dimensionality of the input data and to ensure
the input variables are independent. A significant consideration for this study was how
many PCs to include within the analysis. An eigenvalue >1 explains more variance in
the data than the individual input variables. Therefore, the initial study follows this rule.
However, as computers have developed, constraining the dimensionality of the data is
less important and the priority is reducing the correlation between variables. Therefore,
the E4 study was also conducted to prevent loss of variability in the dataset. By including
the fourth eigenvalue, a further 10.894% of the variance was included in the map. This
additional data may be a deciding factor in the cluster assignment of a data point where
the confusion index is high.

The difference between the E3 and E4 study is the amalgamation of E3 clusters 2,
3 and 4 into E4 clusters 3 and 4, removing the separation between the TRI/slope and
curvature/TPI characterised clusters. This is most apparent in the shoulder to the northeast
of Guadeloupe, and while the confusion index for the E3 study is low in this area, the
boundaries of the shoulder clusters in the E4 study have higher confusion. This indicates
that depth, salinity, temperature and NPP have a stronger influence on the segmentation of
this dataset than the other variables.

By including the fourth eigenvalue in the E4 study and losing the sixth cluster, it could
be said that too much variance is included and this has diluted the contribution of the
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other eigenvalues and increased the map confusion. The E3 study shows more detail, by
including the sixth cluster and separating the TRI/slope and curvature/TPI contributions,
it also has lower confusion in the region to the east of the islands. It is of note that in the
smaller study area the shoulder to the northeast of Guadeloupe is divided into two clusters,
similar to the E4 study. The influence of the NPP gradient is not seen in the smaller study,
indicating that the TRI/slope and curvature/TPI variables are more significant in this
smaller area. The smaller extent study was conducted to focus on the abiotic characteristics
impacting the nearshore waters; however, as the clustering in this region seems to repeat in
the larger extent studies, removing the deeper, offshore water influence has been shown
to not greatly influence the clustering result, and no further patterns were revealed in the
shallow waters. By conducting the larger extent studies, the NPP gradient influence has
been highlighted, providing context information for the Dominican marine environment.

While this approach is unsupervised and objective in its clustering of the environ-
mental variables, careful consideration of the input variables had to be conducted. Equal
weighting is given to each variable; therefore, if there is an imbalance of topographic versus
oceanographic variables, the results may be skewed towards the dominant data input. To
improve upon this, a review of initial results was used to infer the importance of the input
variables and consider their inclusion throughout the study. Furthermore, normalising the
data to make the range of values in all variables comparable also means that even if there is
very little change in a variable, these values will be stretched to make them as significant
as the other data, which may have significant impacts on the final map. The assumption
that organisms are equally influenced by each variable is inherent in this equal weighting
approach. It is a valid default starting position if very little is known about the area or
its fauna. Subsequent investigations should clarify if this assumption holds for the area
under investigation.

Using bathymetric data sourced from multiple surveys, collected over a large area
using different equipment and with varying resolution, and creating secondary derivatives
from these merged surfaces, means any artefacts or errors included in the initial data will
be propagated throughout the analysis and may bias results. As there was no access to raw
data, which would have taken considerable time to process, it was necessary to use already
processed bathymetry layers. The noise remaining from survey artefacts would have
presented in the data as higher topographic complexity, e.g., higher rugosity or gradient.
This was evident in the initial broadscale map and demonstrates how the results of the
analysis are determined by the quality of the input data. The mean Focal Statistics function
in the Spatial Analyst toolbox of ArcMap was used to reduce the noise in the bathymetric
data, by creating a new value for each cell that is a function of the specified surrounding
cells; however, by dampening the noise there is also loss of detail, and so a balance between
detail and noise must be reached. Additionally, rather than grid at the coarsest resolution
and lose the finer detail available, it is preferable to resample both the higher (100 m)
and lower (800 m) resolution bathymetric surfaces to a middle ground (250 m). The low
resolution of the open access bathymetric, satellite and oceanographic data means fine scale
analysis is not possible. As data coverage and resolution increase in the future, and models
advance, the resolution of the final products will also improve.

As part of our study, it was decided to include surface NPP values as a predictor of
benthic characteristics. An implicit assumption in this approach is that benthic habitats
are equally connected to surface productivity at all locations. The range of water depth in
our study was 0–6200 m. However, the impact of primary production upon the benthic
community will be influenced by the vertical attenuation due to remineralisation of the
organic carbon as it sinks through the water column [51]. Therefore, at greater depths, the
connection between surface and benthic environments may be reduced. Additionally, by
assuming a one-dimensional water column, any lateral particulate organic carbon (POC)
flux is neglected. Better POC estimates in deep waters at the benthic boundary layer would
allow more accurate characterisation and the ability to distinguish between the range of
benthic environments included in this study. The authors should discuss the results and
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how they can be interpreted from the perspective of previous studies and of the working
hypotheses. The findings and their implications should be discussed in the broadest context
possible. Future research directions may also be highlighted.

5. Conclusions

Based on publicly available datasets, we created broadscale landscape maps for the
Commonwealth of Dominica and surrounding islands that allow us to assess the abiotic
variables influencing the offshore benthic environment and to infer areas of interest for
future study. Of particular note is Macouba Bank, an offshore area with similar charac-
teristics to the productive nearshore environment of Dominica. It is proposed as a focus
for future research and a priority for management. By defining and analysing existing
conditions of the Dominican environment, the results of this study can be a starting point
for MSP development.

The creation of the different extent maps highlighted the strong influence of NPP
across the region and demonstrates that to capture large spatial patterns and context,
sufficient spatial data coverage is needed.

The low resolution and high noise in the input data means fine scale analysis was
not possible in this study; however, in areas of little available data, this method highlights
the capabilities of publicly available datasets in providing context for a region. The equal
weighting of the variables is both advantageous, as there is no prior knowledge of the
most influential variables and so this method is objective, and disadvantageous, as with
the equal weighting comes the assumption that all variables are equally influential on
organism assemblages. However, careful consideration of the input variables and review
of the initial results meant only variables considered important to the study were included
in the final product. Our multiple clustering exercises also illustrated that inclusion of too
many PCs in the K-means clustering could lead to an increase in the confusion index of the
final output maps, and hence may not always be an advantage.
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