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A B S T R A C T   

Human activities in the ocean have never been chronically and continuously investigated on a large scale. Night- 
time light (NTL) images collected by the Defense Meteorological Satellite Program/Operational Linescan System 
(DMSP/OLS) have been used as a proxy for monitoring the distribution and intensity of some human activities in 
the ocean from 1992 to 2013. However, systematic radiometric biases exist among the average visible-light 
DMSP/OLS NTL images (DMSPavg) derived from different satellites. Moreover, the high randomness of fishing 
vessel locations and the large amount of noise impede the intercalibration of DMSPavg. To address these issues, 
this study has developed a method for generating a series of consistent NTL images from 1992 to 2013 for a large- 
scale oceanic area. A composite image was first constructed by combining the original DMSPavg, median, and 
standard deviation filter images derived from the DMSPavg, and a bathymetry image. Thereafter, Random Forest 
(RF) algorithm was employed to classify the composite image into effective and noisy pixels. Finally, a stepwise 
intercalibration method was adopted to reduce the systematic radiometric biases in the denoised images. The 
experimental results showed that RF had an overall accuracy of 96% and a Kappa coefficient of 0.775. 
Furthermore, the intercalibration was shown to significantly reduce the systematic radiometric biases owing to 
the noises being effectively discarded by the RF. Specifically, the Sum Normalized Different Index (SNDI) of the 
images intercalibrated by the proposed method can reach 0.61, which is 68.2% less than that of the original 
DMSPavg. In addition, the correlation coefficients between the intercalibrated DMSPavg and fishery catches in the 
exclusive economic zones (EEZs) of Japan and Malaysia can reach 0.949 and 0.901, respectively, which are 
higher than other values, such as the one intercalibrated using the Pseudo-Invariant Features (PIFs) method. In 
summary, the proposed method has been proven to be effective and feasible for generating consistent time-series 
NTL data for a large-scale oceanic area, and the derived Total Light Index (TLI) is an effective indicator of ocean 
fishery activities for ocean ecosystem research and related applications.   

1. Introduction 

More than 95% of the oceans are currently exposed to numerous 
local stressors caused by human activities (Gissi et al., 2021). The 
stressors include maritime vessels, overfishing activities, oil pollution 
from offshore wells, and construction of seaports. These stressors 
adversely impact marine resources (Chen et al., 2018; Jenssen 1996; 
Robards et al., 2016). For example, overfishing is considered the main 
reason for the reduction in global fishery resources and it is agreed that 
production has reached its limits (Derrick et al., 2017). Moreover, 

fishery resources have declined dramatically in some regions (Rodhouse 
et al., 2001). Therefore, for sustainable development and conservation 
of marine resources, it is crucial to monitor human activities in marine 
areas. 

Some mandatory vessel communication and navigational safety 
systems, such as the Automatic Identification System (AIS) and Vessel 
Monitoring Systems (VMS), have been adopted to monitor maritime 
vessels to enable research on the conservation of marine resources 
(Robards et al., 2016). However, these systems are not satisfactory for 
monitoring human activities in large areas of the oceans, because the 
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heterogeneous data from these systems are neither publicly available 
nor do they cover the global scope (Kroodsma et al., 2018). Moreover, 
these systems can artificially turn off or tend to produce fake positioning 
information to avoid administration management. Therefore, the data 
recorded by these systems may not be comprehensive. Moreover, some 
countries do not use monitoring systems; for example, the Philippines 
did not require domestic fishing vessels to use the VMS system before 
2018. 

In contrast to the data recorded by electronic vessel monitoring 
systems, Night-time light (NTL) remote sensing images can provide a 
synoptic view of human activity for monitoring in both regulated and 
unregulated areas, that is, satellite imagery is not restricted by political 
boundaries. Two types of major NTL images are used for human activity 
research. One type is provided by the Defense Meteorological Satellite 
Program (DMSP)/Operational Linescan System (OLS). The DMSP/OLS 
satellite was designed to capture faint moonlight reflected from clouds 
at night for meteorological applications. Meanwhile, scientists have 
discovered that DMSP/OLS can also record the light emitted by urban 
human activities covering large areas at a low cost (Elvidge et al., 1997; 
Li et al., 2016; Li et al., 2017a; Shi et al., 2016). The other type is pro-
vided by the Suomi National Polar Partnership (SNPP) satellite-Visible 
Infrared Imaging Radiometer Suite (VIIRS). When compared with the 
DMSP/OLS images, SNPP-VIIRS images are calibrated in-flight with a 
higher spatial resolution and lower detection limits (Elvidge et al., 
2013). The superior SNPP-VIIRS NTL images were effective in detecting 
fishing vessels and constructing time-series assessments (Elvidge et al., 
2018; Elvidge et al., 2015; Ruiz et al., 2020), but most studies based on 
SNPP-VIIRS covered only a small or middle ocean area. However, as the 
SNPP satellite was launched in 2011, earlier research data is not avail-
able. For this reason, DMSP/OLS NTL images, which span a long time 
from 1992 to 2013, are crucial for ocean human activity research. For 
example, studies on live coral cover from 2004 to 2015 around Weizhou 
Island and the corresponding remote-sensed environmental parameters, 

Huang et al., (2019) concluded that eutrophication of seawater induced 
by human-activity may be the main cause of the degradation of live coral 
cover around Weizhou Island. 

Except for the DMSP/OLS-NTL-image-based research on the national 
socioeconomic and urbanization (Cheng et al., 2016; Jin et al., 2017; Shi 
et al., 2016; Shi et al., 2017), DMSP/OLS NTL images can also be used to 
indicate human activities associated with oceanic areas, such as fishing 
vessels, offshore wells, and seaports (Aubrecht et al., 2008; Lu et al., 
2020; Waluda et al., 2004). As early as 1978, some scholars studied the 
production activities of Japanese fishing boats catching squid based on 
single-pass DMSP/OLS NTL images (Croft 1978). Maxwell et al. (2004) 
conducted aerial surveys to obtain the number of squid fishing vessels on 
the water surface. Thereafter, a regression model was established be-
tween the number of vessels and the number of detected light pixels. 
Waluda et al. (2004) constructed a regression model for illuminated 
pixels in DMSP/OLS images and they elucidated the number of vessels 
derived from ARGOS data in Peruvian waters. The results showed that 
the estimated number of fishing vessels was correct at 83% within ± 2 
vessels for 130 single-pass DMSP images from 1999. Moreover, DMSP/ 
OLS images can also be used to survey offshore petroleum facilities 
(Elvidge et al., 2009). In summary, DMSP NTL images have great po-
tential for use in studying the impacts of human activities on marine 
ecosystems. 

However, at present, the widely used single-pass DMSP/OLS NTL 
images used in previous research for monitoring fishing vessels on the 
ocean surface are not publicly available (Cheng et al., 2017; Kiyofuji and 
Saitoh 2004; Waluda et al., 2008; Waluda et al., 2011; Waluda et al., 
2004). Instead, annual DMSP/OLS version-4 time-series products were 
published to replace early products (Cheng et al., 2017). More seriously, 
inconsistencies caused by systematic radiometric biases existed in the 
annual time-series images, as there were subtle differences in perfor-
mance among the multiple satellites. Moreover, on-board calibration 
and gain parameters of DMSP/OLS satellites are lacking (Pandey et al., 

Fig. 1. Schematic diagram of the illuminated pixel comparison between the DMSPavg and DMSPstl. DMSPstl: DMSP/OLS stable light image; DMSPavg: DMSP/OLS 
average visible light image. 
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2017). As a result, few studies have focused on the impacts of direct 
human activities, such as the effect of fishing vessels, on changes in 
marine ecosystems. For example, some researchers have analyzed the 
influence of other factors on the degradation of coral reefs, such as 
global warming (Liu et al., 2020a; Liu et al., 2020b), atmospheric ni-
trogen deposition (Chen et al., 2019), and human-activity-induced 
water eutrophication (D’Angelo and Wiedenmann 2014; Li et al., 
2017b); however, detailed discussions of the impact of direct human 
activities on coral reef degradation have rarely been reported. In other 
words, DMSP/OLS NTL images cannot be utilized to quantitatively 
monitor changes in human activities unless they are calibrated (Pandey 
et al., 2017). 

Intercalibration has generally been employed to reduce inconsis-
tency. The Pseudo-Invariant Features (PIFs) method has been widely 
applied to the intercalibration of DMSP/OLS annual time series images 
for urban study (Elvidge et al., 2011; Zhang et al., 2016). The PIFs 
paradigm assumes that the NTL intensity is stable, and the NTL changes 
are only induced by systematic biases in the pseudo-invariant region. 
Thus, all the images pending calibrating can then be calibrated to the 
reference image using an empirical model, where the parameters of the 
model are commonly estimated using the pseudo-invariant regions. For 
example, Wu et al. (2013) in their study selected Mauritius, Puerto Rico, 
and Okinawa as pseudo-invariant regions, and intercalibration was 
performed using a power function model. However, because of the high 
randomness of fishing vessels in terms of number and location, it is 
unreasonable to assume a stable region in the ocean area. 

The Version-4 DMSP/OLS product collection includes three sub- 
types of images: cloud-free, average visible light (DMSPavg), and stable 
light images (DMSPstl). DMSPstl which excludes sunlit, moonlit, cloudy 
impact, and major noise pixels, has been widely used in urban areas (Li 
and Zhou 2017; Liu et al., 2016; Liu et al., 2012; Pandey et al., 2017; 
Zhang et al., 2016). However, many of the illuminated pixels caused by 
human activities in the ocean were also excluded from DMSPstl, as 
shown in Fig. 1. Therefore, in this study, DMSPavg was selected to 
generate consistent NTL images. Because post-compositing filtering has 
not been performed, a large amount of noise exists in the DMSPavg. 
However, the DN values of the non-noise pixels on the ocean are small 

and very close to those of the noise pixels, where the DN values of the 
noise pixels generally fluctuated in the range of 1 to 7. 

Consequently, the objectives of this study are to reduce the incon-
sistency caused by the systematic radiometric biases and then build 
consistent time series NTL images from DMSPavg for large-scale ocean 
areas during the period 1992–2013. The main idea is to combine a 
Random Forest (RF) algorithm with a stepwise intercalibration 
approach. The advantage is that the noise of the DMSPavg and the im-
pacts of the highly random fishing vessel number and locations can be 
efficiently weakened during intercalibration. In addition, the discussion 
on the correlation between TLIs and fishery catches not only provides a 
supplement to confirm the effectiveness of the proposed method, but it 
also implies that the TLIs can be used as an effective indicator of fishery 
activities for ocean ecosystem research and for various applications in 
the future. 

2. Material and methods 

2.1. Study area and datasets 

DMSPavg was downloaded from the National Oceanic and Atmo-
spheric Administration (NOAA) National Geophysical Data Center 
(NGDC) (https://www.ngdc.noaa.gov/eog/download.html). It has a 
radiometric resolution of 6 bits, that is, the DN values range from 0 (no 
lighting) to 63 (highest lighting). The spatial resolution is 30 arc seconds 
(about 1-km spatial resolution at the equator). As shown in Table A1, the 
data was acquired by using six different satellites spanned from 1992 to 
2013: F10, F12, F14, F15, F16, and F18. The quality of DMSPavg de-
creases as latitude increases (Wu et al., 2013). To avoid the impacts of 
high latitude area distortion and abnormally high DN-value pixels, the 
research boundary was established by using the data from the Food and 
Agriculture Organization of the United Nations (FAO) Major Fishing 
Areas (MFAs). Specifically, the research area covered the area between 
− 180◦ to 180◦ longitude and − 55◦ to 50◦ latitude, as shown in Fig. 2. 
Pixels in inland and pole regions were excluded. The FAO MFAs dataset 
was downloaded from GeoInfo (https://www.fao.org/fishery/area/s 
earch/en). The dataset used was determined in consultation with 

Fig. 2. Overview of study area: the study area is marked using the red rectangle, and the boundary of FAO MFAs is marked using the medium-grey lines. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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international fishery agencies on various considerations, such as the 
boundary of natural regions and the natural divisions of the seas. 

Exclusive Economic Zones (EEZs) were selected to conduct the as-
sessments. These EEZs include China (CHN), Indonesia (IDN), Japan 
(JPN), Malaysia (MYS), Thailand (THA), Vietnam (VNM), Peru (PUR), 
United States (USA), and Argentina (ARG). The boundaries of the EEZs 

were provided by the Maritime Boundaries Geodatabase, downloaded 
from the Marineregions website (https://www.marineregions. 
org/sources.php#marbound). 

As bathymetry was considered a factor for the formation of a marine 
fishing area (Ruiz et al., 2020), bathymetric data were also considered as 
a feature to identify the noise. Bathymetry data were provided by the 
General Bathymetric Chart of the Oceans (GEBCO). The GEBCO_2014 
version data with a 30′’ spatial resolution was used (https://www. 
gebco.net/data_and_products/historical_data_sets/#gebco_2014). 

Fishery catch data (1950–2016) were used as auxiliary data to 
highlight the significance of this study in regards to fishery management 
and assessment. The data can be downloaded from the research initia-
tive, Sea Around Us (https://www.seaaroundus.org/simple-site.ph 
p#/eez). The data are regarded as an accurate measure for marine 
fisheries at the country level (Golden et al., 2016). 

The intercalibration coefficients derived from the PIFs method pro-
posed by Elvidge et al. (2014) were also used to intercalibrate the 
denoised images. The purpose was to compare the proposed method 
with the PIFs method. 

2.2. Methods 

The proposed method consisted of two parts. First, Random Forest 
(RF) algorithm was applied to identify the effective pixels. Second, the 
inconsistency of the denoised images is reduced using a stepwise inter-
calibration approach. Here, effective pixels are defined as pixels in the 
DMSPavg that can record the light emitted by marine human activities. 
The main source of light is fishing activity. The light emitted from 
offshore oil, gas wells, and coastal cities was also included. Fig. 3 il-
lustrates the details of the proposed methodology. 

2.2.1. Random forest denoising 
As the radiance of the light emitted from fishing vessels is weaker 

than that of city lights, the DN values of the effective pixels in marine 
areas are usually lower than those in city areas. The DN values of the 

Fig. 3. Framework of the proposed method.  

Fig. 4. Construction of a composite image for distinguishing the effective and the noisy pixels.  
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effective pixels are typically close to those of the noise pixels. What is 
worse, as there are nearly no human activities in many ocean areas far 
from inland, most of the pixels in such areas are noisy. 

For studies on the NTL in urban areas, the saturation and diffusion 
effects in DMSP/OLS images are usually considered as data defects, 
which limit the application potential of the NTL data (Zhao et al., 
2019a). However, for oceanic areas, as most of the light is emitted by 
fishing boats, such relatively low radiance makes most of the pixels 
unsaturated. Conversely, as diffusion effects, an NTL image is usually 
shown as clustered round spots with high DN values of central pixels and 
low DN values of surrounding pixels (Zhao et al., 2019a). 

Meanwhile, it is important to consider that there is no diffusion effect 
for the noise pixels, that is, the noise usually presents the characteristics 
of a large-scale and discrete distribution. In addition, the DN values of 
the noise pixels increased slightly across the high-cloud coverage and 
high-latitude sea areas. 

When considering such differences between the light emitted by 
human activities in the ocean and noise, a Median Filter Image (MFI) 
and a Standard Deviation Image (STDI) were utilized to extract the light 
targets. In other words, to make full use of the differences, a median 
filter was used to filter the noise, and a variance filter was used to 
enhance the edge of the light target. 

In addition, as bathymetry was considered a factor for the formation 
of a marine fishing area (Ruiz et al., 2020), bathymetric data were also 
adopted as a feature to distinguish between effective pixels and noise. 

In summary, DMSPavg was combined with the corresponding MFI, 
STDI, and the bathymetry to make a composite image, as shown in 
Fig. 4. 

Thereafter, the Random Forest (RF) algorithm proposed by Breiman 
(2001) was applied to the composite image to identify the effective 
pixels and noise. The RF algorithm uses bootstrap aggregation to inte-
grate multiple decision trees, and the classification derives from the 
majority vote of all individual trees (Hu et al., 2022). The reasons why 
RF was used are as follows: 1) RF does not require an implicit assump-
tion on data distribution, and it is capable of accommodating different 
types and scales of input data (Puttanapong et al., 2022); 2) Feature 
importance can be easily estimated by using Mean Decrease Accuracy 
(MDA) or Mean Decrease Gini (MDG) (Hu et al., 2022), which helps to 
illustrate the necessity of each of the features for the classification; 3) RF 
has been applied to geospatial data and yielded a high prediction per-
formance (Hu et al., 2022; Jin et al., 2014; Kedia et al., 2021; Putta-
napong et al., 2022; Tian et al., 2022; Zhao et al., 2019b). 

Furthermore, the RF is easy to handle as the major hyperparameters 
can conveniently be set as follows (Hu et al., 2022; Stefanski et al., 
2013): 1) the number of features was set to 2, that is, the square root of 
the feature number in the composite image; 2) the number of trees was 
set to 10, where the out-of-bag (OOB) error rate began to become almost 
stable and was approximate to the minimum (Fig. A1). As shown in 
Fig. A1, the OOB error curve do not exist an apparent minimum as it was 
seen to be monotonically decreasing with the increase of the number of 
trees. For this reason, such tree number selection can limit the number of 
trees to being too large. This is able to reduce the probability of the RF 
overfitting. 

The training and validation pixels of the RF were manually selected 
using visual interpretation, as illustrated in Fig. 5. The rules are as fol-
lows: 1) the noise pixels were mostly selected from the areas that are far 

Fig. 5. Example of the selection of the training and validation pixels for constructing the RF.  

Table 1 
List of the reference and intercalibrated images for each step in the approach 
used in this study.  

Step Reference images Intercalibrated images 

1 F12-1994 F10-1992 ~ 1994 
2 F12-1997 ~ 1999 F14-1997 ~ 2003 
3 F14-2003 F15-2003 ~ 2007 
4 F15-2004 ~ 2007 F16-2004 ~ 2009 
5 F18-2011 F18-2010 
6 F16-2009 F18-2010 ~ 2013  
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away from traditional fishing operation and coastal zones; 2) some 
pixels in high-latitude ocean areas were also selected as noise pixels; 3) 
some of the prominent bright pixels in the nearshore and traditional 
fishery areas were selected as the effective pixels; 4) the training pixels 
and the validation pixels were selected as evenly as possible. 

To dissolve the overfitting problem, the training set and the testing 
set were selected separately and were ensured to be nonoverlapping. 
Specifically, the proportion between the size of the training data and 
that of the testing one was controlled to around 8:2 as possible, and the 
numbers of the training and testing pixels were controlled to no less than 
300, 000 and 75, 000 pixels respectively.2 Furthermore, during the 
training approach, about 37% of training data was not picked during the 
sampling procedure and thus was not used to train the model. Such data 
are known as OOB data, and error rates estimated by using the OOB data 
are called OOB error rates (Hu et al., 2022; Stefanski et al., 2013). As 
described previously, OOB error rates were utilized to determine tree 
number of the RF, where the probability of overfitting was reduced by 
limiting the number of trees to being too large. 

To determine the window sizes for the calculations of MFIs and 
STDIs, F10-1992, F12-1996, F14-2001, F15-2002, F16-2005, and F18- 
2010 were used as sample images. Thereafter, different window sizes 
were traversed to calculate the MFIs and STDIs to construct the different 
composite images. RF was then applied to these composite images to 
classify the noise and effective pixels. Consequently, the averages of the 
Kappa values for the sample images were estimated. The window size 
corresponding to the maximum of the average Kappa values was then 
selected to calculate the MFIs and STDIs for all images. 

2.2.2. Stepwise intercalibration 
Owing to the high randomness of the fishing vessel locations, it was 

difficult to apply the PIFs method to conduct the intercalibration. 

However, there were several fishing boat positions that remain un-
changed for a short period when they were fishing and emitting light. 
For example, Guo et al., (2017) proved that most of the fishing boat 
positions in the SNPP-VIIRS NTL image can match the VMS data within 
4 h. To sufficiently utilize this situation, a stepwise intercalibration 
approach, referring to Li and Zhou (2017), was applied to reduce the 
radiometric biases of the denoised images. In the approach of Li and 
Zhou (2017), F12 images were utilized as reference images because the 
pattern of TLI derived from F12 had a stable upward trajectory. Simi-
larly, F12 images were also selected as reference images in this study, as 
shown in Table. 1, the intercalibration steps are different though, as 
follows:  

1) Instead of non-intercalibration between F10 and F12, F10 
(1992–1994) was calibrated using F12-1994 as the reference image. 
This was because the inconsistencies between F10 and F12 were 
much more serious in nature in the ocean area than in the inland 
area.  

2) Instead of combining PIFs with stepwise intercalibration, F16 
(2004–2009) was intercalibrated directly by referencing the inter-
calibrated F15 (2004–2007). One reason is that the inconsistencies 
between F15-2007 and F16-2007 in the ocean area were much 
smaller than those in inland areas. Another reason is that the PIFs 
method is unreasonable in ocean areas.  

3) F18-2010 was calibrated by referencing F18-2011 before F18 
(2010–2013) was calibrated by referencing F16-2009. This is 
because F18-2010 had an extremely high TLI, whereas F18-2011 had 
a more reasonable trajectory. 

Many functions, such as linear, quadratic, cubic, power, and expo-
nential, have been applied to establish an intercalibration model be-
tween the pending and reference images (Li et al., 2017a; Li and Zhou 
2017; Pandey et al., 2017; Wu et al., 2013; Zhao et al., 2019a). In this 
study, linear, quadratic, cubic, power, and exponential functions were 
selected as candidate pending functions. 

Fig. 6. Four different groups of training and validation sets derived from the FAO MFAs.  

2 As the training set and the testing set were selected separately, the pro-
portion between the size of training data and that of testing one is difficult to 
exactly control to 8:2. 
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DNc = a × DNp + b (1)  

DNc = c × DN2
p + d × DNp + f (2)  

DNc = g × DN3
p + h × DN2

p + i × DNp + j (3)  

DNc = k × DNl
p +m (4)  

DNc = n × eq×DNp (5)  

where DNp is the DN value of the pending image; DNc is the corre-
sponding DN value of the intercalibrated image; a, b, c, d, f, g, h, i, j, k, l, 
m, n, and q are the unknown coefficients of the functions. 

To select the best-fitting function from all the candidate pending 
functions, the study area was divided into several sub-regions using FAO 
MFAs, as shown in Fig. 6. Some of the subregions were randomly 
selected as the validation set, and the rest were selected as the training 
set. The four different groups of the training and validation sets are 
shown in Fig. 6. Eqs. (1) – (5) were then trained and validated using each 
group of training and validation sets, respectively. Similar to Wu et al. 
(2013), for each step of the intercalibration, the function with the 
highest average coefficient of determination (R2) and the smallest 
average Root Mean Square Error (RMSE) for the four validations was 
chosen as the best fitting function. The best-fitting functions were then 
applied for intercalibration. 

2.2.3. Performance assessment 
The Total Light Index (TLI) is widely used to indicate the intensity of 

human activities at the global, national, or regional levels (Elvidge et al., 
2011). The intercalibration of the NTL images can be evaluated by 
comparing the TLI before and after intercalibration (Pandey et al., 
2017). The Normalized Difference Index (NDI) was used to evaluate the 
inconsistencies (Zheng et al., 2019). Accordingly, the summed-up NDI 
(SNDI) was used to indicate the performance of the intercalibration. 
Here, the TLI, NDI, and SNDI were calculated using Eqs. (6) – (10) as 
follows: 

TLIi,j =
∑n

k=1
DNi,j,k (6)  

where i, j, and k represent the satellite, year, and pixel of the NTL image, 

respectively; and n represents the number of pixels. 

NDIjdefNDIr,s,j =

⃒
⃒TLIr,j − TLIs,j

⃒
⃒

TLIr,j + TLIs,j
(7)  

where r and s represent two different satellites and j represents the year 
of the NTL image.3 

SNDI =
∑T

j
NDIj (8)  

j ∈ T = (1994, 1997, 1998, 1999, 2003, 2004, 2005, 2006, 2007, 2009)

Considering that some lit pixels can be found in DMSPstl, SNDI of 
these lit pixels (pixel_SNDI) was utilized as an auxiliary index to assess 
inconsistencies. The pixel_SNDI was calculated as follows: 

pixel NDIjdef pixesl NDIp,s1,s2,j =
∑S

p

⃒
⃒DNp,s1,j − DNp,s2,j

⃒
⃒

DNp,s1,j + DNp,s2,j
(9)  

pixel SNDI =
∑T

j
pixel NDIj (10)  

where p ∈ S, S is the position set of the lit pixels, s1 and s2 represent two 
different satellites, j indicates the year. 

Finally, as DMSP/OLS NTL single-pass images have been shown to 
correlate with the fishery catch in some ocean areas (Saitoh et al., 2010; 
Waluda et al., 2008), correlations between the TLIs and fishery catches 
for the EEZs of Japan and Malaysia were also conducted to verify the 
effectiveness of the proposed method. There were few offshore gas 
flaring in these EEZs (Lu et al., 2020). 

3. Results 

3.1. Results of the RF denoising  

1) Selection of the window sizes for the MFI and the STDI calculations 

Fig. 7. Average Kappa values of the RF denoises for F10-1992, F12-1996, F14-2001, F15-2002, F16-2005, and F18-2010 images corresponding to the different 
window sizes for the MFI and the STDI calculations. 

3 As there are no overlap images captured from two different satellites during 
2009, NDI2009 was just calculated by using TLIF16, 2009 and TLIF18,2010 in this 
paper. 

R. Huang et al.                                                                                                                                                                                                                                  



International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103023

8

The average Kappa values of the RF denoising approaches using 
different window sizes corresponding to the MFI and STDI calculations 
are shown in Fig. 7. As shown in Fig. 7, the highest Kappa value of 0.775 
was obtained when the window sizes of the MFI and STDI calculations 
were both 4× 4. However, the average Kappa values are very close to 
each other when the window size of the MFI calculation varies from 4 ×

4 to 8 × 8 but the window size of the STDI calculation is fixed at 4× 4. 
Further comparisons showed that if the window size of the MFI calcu-
lation was chosen to be 8× 8, the identified effective pixels would 
become larger than those of the 4× 4 or 6× 6 window sizes. As shown in 
Fig. 8, most of the increased pixels are located at the edges of the 
diffusion effect pixels. We believe that it is reasonable that such pixels 
are regarded as effective pixels, so a window size of 8× 8 was finally 
chosen to calculate the MFIs.  

2) Importance of each component of the composite image input for RF 
denoising 

The importance scores of DMSPavg, MFI, STDI, and bathymetry of 
each composite image during RF are shown in Fig. 9, where the 
importance scores were estimated by using MDG. The average impor-
tance scores of DMSPavg, MFI, STDI, and bathymetry were 43%, 34%, 
16%, and 7%, respectively. Overall, DMSPavg was the most important 
feature, whereas bathymetry was the most unimportant feature. 

However, this does not mean that bathymetry needs to be discarded 
from the composite image input for the RF denoising approach. This is 
because the importance score of the bathymetry was higher than the 
STDI or MFI over several years, as shown in Fig. 9. In other words, 
DMSPavg, MFI, STDI, and bathymetry are all necessary for RF denoising.  

3) Accuracy of the RF denoise approach 

The RF denoising approach was compared with a fixed Threshold 
(TS) denoising method, where a DN value of 6 was selected as the fixed 

TS, this effectively means that if the DN value of a pixel is not greater 
than 6, then the pixel is removed as noise; otherwise, the pixel is 
retained as an effective pixel. 

This TS method was utilized for the comparison because of the 
following points:  

1) The TS method is typically used to remove noise in urban NTL images 
(Zhao et al., 2019a), and 6 is typically chosen as the TS (Elvidge 
et al., 2011; Liang et al., 2019).  

2) Histogram analyses of DMSPavg in the mid-high latitude ocean area 
indicated that more than 99.9% of the pixels had a DN value lower 
than 6. Thus, the maximum DN value of the major abnormal pixels in 
the mid-high-latitude ocean areas is generally regarded as 6. 

The average overall accuracy and Kappa value of the TS method were 
94.3% and 0.558, respectively. They were lower than those of the RF 
approach, that is, the average overall accuracy and average Kappa value 
of the RF approach were 96.0% and 0.775, respectively. Furthermore, 
the producer accuracy of the effective pixels was 45.0% for the TS 
method, which is significantly lower than that of the RF approach 
(77.8%). In other words, in contrast to the RF approach, the TS method 
misclassifies too many effective pixels as noise. 

3.2. Results of the fitting functions of the intercalibration 

Fig. 10 illustrates the average R2 and RMSEs for each step in Table. 1. 
According to Eqs. (1)–(5), each step of the intercalibration includes five 
groups of average R2 and the average RMSEs. As seen in the figure, the 
power function has the highest average R2 and the smallest average 
RMSE for steps 1 and 6, whereas the cubic function has the highest 
average R2 and the smallest average RMSE for steps 2, 3, 4, and 5. 
Therefore, the power function (Eq. (4)) was selected as the best-fitting 
function for steps 1 and 6, and the cubic function (Eq. (3)) was 
applied in steps 2, 3, 4, and 5. The coefficients of the best-fitting 

Fig. 8. Effective pixels identified by the RFs based on 4 × 4 window size and 8 × 8 window size, respectively, for the MFI calculations.  

R. Huang et al.                                                                                                                                                                                                                                  



International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103023

9

functions are listed in Table 2. 

3.3. Performance assessment of the intercalibration 

The TLIs derived from the original DMSPavg (avg_TLIs), DMSPavg 
denoised using RF (RF_TLIs), and DMSPavg denoised using TS (TS_TLIs) 
are presented in Fig. 11a and 11b. When compared with avg_TLIs, both 
the RF_TLIs and TS_TLIs were significantly reduced. This may be because 
massive noise pixels were removed using the RF or TS methods. 

As shown in Fig. 11b, the trajectories of RF_TLIs and TS_TLIs were 
similar. The TLIs of F12 were higher than those values for F10 and F14. 
The TLIs of F15 were divided into two stages: 1) the TLIs remained at the 
same level as F12 from 2000 to 2002, and 2) the TLIs remained at the 
same level as F14 from 2003 to 2007. The TLIs of F18 were higher than 
those of the previous satellites. Similar TLI trajectories have also been 
observed in inland NTL stable images (Li and Zhou 2017). In addition, 

the RF_TLIs were observed to be commonly higher than the TS_TLIs. This 
was because more effective pixels were mistakenly removed using the TS 
method. 

To investigate the contribution of RF in the intercalibration, the same 
stepwise intercalibration model was applied to the TS denoised images. 
The RF_TLIs and TS_TLIs after stepwise intercalibration (RFcal_TLIs and 
TScal_TLIs) are shown in Fig. 11c. The RF_TLIs intercalibrated using the 
PIFs method proposed by Elvidge et al. (2011) and Elvidge et al. (2014) 
are shown in Fig. 11c using orange lines. As seen in the figure, the biases 
of the RF_TLIs were better eliminated by the proposed method 
(RFcal_TLIs) than those of the TScal_TLIs for most of the years studied. 
Specifically, the biases of the TScal_TLIs were not adequately reduced 
between F10 and F12 during 1994 and between F12 and F14 from 1997 
to 1999. 

The RFcal_TLIs intercalibrated by the PIFs method proposed by 
Elvidge et al. (2011) and Elvidge et al. (2014) were shown to be more 

Fig. 9. Importance scores of the composite images used in the RF denoise approach.  
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consistent than the proposed method. However, the upward trend of the 
RFcal_TLIs intercalibrated by the PIFs method proposed by Elvidge et al. 
(2014) is not as significant as the RFcal_TLIs intercalibrated by using the 
proposed method. In addition, there was an abnormally rapid increase 
from 2010 to 2013 for the RFcal_TLIs intercalibrated using the PIFs 
method. This implies that the PIFs method may not be suitable for NTL 
intercalibration in ocean areas. 

To further quantitatively assess the consistency, SNDIs of the original 
DMSPavg (SNDIavg), DMSPavg denoised using the TS method (SNDITS), 
DMSPavg denoised using the RF approach (SNDIRF), SNDITS and SNDIRF 
after stepwise intercalibration (SNDITS_cal and SNDIRF_cal(proposed)), and 
SNDIRF after PIFs intercalibration (SNDIRF_cal(Elvidge)) are shown in 
Fig. 12. The SNDIRF is usually less than the SNDITS, e.g. the SNDIRF of the 
study area was 16.8% less than that of SNDITS. 

However, SNDIavg was lower than both SNDIRF and SNDITS. This does 
not mean that the biases become larger after the RF or TS denoising 
approaches. In fact, there were a large number of noise pixels in the 
original DMSPavg, so the TLIs of the original DMSPavg were much larger 

than those of the RF or TS denoised pixels, as shown in Fig. 12. In this 
case, SNDIavg can also become abnormally low because of massive noise 
according to Eq. (7) and Eq. (8). 

After the stepwise intercalibration, both SNDIRF_cal and SNDITS_cal 
were much lower than the SNDIavg, e.g., for the whole study area, 
SNDIRF_cal was 68.2% less than SNDIavg, and SNDITS_cal was 38.2% less 
than SNDIavg. SNDIRF_cal(Elvidge) had the lowest SNDI. However, the high 
consistency may stem from the overly flat TLI trend described in the 
preceding paragraph. This indicates that the proposed method may be 
more appropriate for ocean areas than the PIF method. This is discussed 
further in the following section. 

Furthermore, pixel_SNDIRF_cal (pixel_SNDI after RF denoising and 
stepwise intercalibration) was 1.098, which was 32.2% less than pix-
el_SNDIavg (pixel_SNDI of the original DMSPavg). This is also an impor-
tant auxiliary evidence that the proposed method can effectively reduce 
radiometric biases in ocean areas. 

4. Discussions 

4.1. Features such as MFI, STDI, and bathymetric data increased the RF 
denoising 

Owing to the diffusion effect, the effective pixels have a structure 
that is blurred rather than isolated highlight points, as shown in Fig. 13f 
and g. MFI and STDI can help the RF to distinguish the blurred structures 
from the isolated highlight points in the proposed method. On the one 
hand, as shown in Fig. 13c, d, f, and g, some effective pixels distributed 
at the edges of the blurring structures were discarded by the TS 
approach. By contrast, such effective pixels can be successfully 

Fig. 10. Average R2 and average RMSE corresponding to each candidate pending function for step 1 (a), step 2 (b), step 3 (c), step 4 (d), step 5 (e), and step 6 (f) of 
the intercalibration. 

Table 2 
List of the best fitting functions and their respective coefficients.  

Step function Coefficients 

1 Eq. (4) k = 1.555, l = 0.8832, m = 1.091 
2 Eq. (3) g = -0.0001081, h = 0.004975,i = 1.082, j = 1.397 
3 Eq. (3) g = -0.0002234, h = 0.01403, i = 0.933, j = 2.804 
4 Eq. (3) g = -0.0001526, h = 0.01247, i = 0.7435, j = 3.105 
5 Eq. (3) g = 7.496e-05, h = -0.002692, i = 0.7968, j = 0.6883 
6 Eq. (4) k = 1.013, l = 0.9969, m = -0.05397  
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preserved using the proposed method. On the other hand, the sum of the 
average RF importance scores of MFI and STDI was even greater than 
that of DMSPavg, as shown in Fig. 9. 

Furthermore, the quality of DMSPavg is worse in middle-high latitude 
areas than in low latitude areas, for example, the DN values of some 
noise pixels in middle to high latitude areas are much higher than in the 
low-latitude areas (Pandey et al., 2017; Wu et al., 2013). Therefore, 
many noise pixels were misidentified as effective pixels during the TS 
approach, but they were not misclassified using the proposed method, as 
shown in Fig. 13b and e. 

Despite the bathymetric data showing the lowest average importance 
score (7%), a part of importance scores of the bathymetric data were 
significantly higher than the average as shown in Fig. 9, such as F10- 
1992 (28%), F14-2000–2003 (14%, 17%, 14%, 25%). Coincidently, 
the TLIs of these images were much higher than those of the other 

images which were captured by the same satellite, as shown in Fig. 11a. 
The TLIs of those images and their differences from the other images 
captured by the same satellite were both found to have decreased, as 
shown in Fig. 11b. We assumed that the TLIs of those images were 
overestimated, and that the bathymetric data may be able to increase the 
RF denoising when the TLI is overestimated. 

In summary, RF denoising can be increased by combining the MFI, 
STDI, and bathymetric data with the original DMSPavg. We believe that 
this is an important reason why the proposed stepwise intercalibration 
method was able to effectively reduce systematic radiometric biases. 

4.2. Correlation between the TLIs and fishery catches as a supplement to 
confirm the effectiveness of the proposed method 

The EEZs of Japan and Malaysia were selected to illustrate the 

Fig. 11. Time series TLIs derived from the original DMSPavg (a), time series TLIs derived from corresponding images denoised by using the RF (blue line) and the TS 
(green line) respectively (b), time series TLIs derived from corresponding images intercalibrated using the proposed method (blue line), TS method (green line), and 
PIFs method proposed by Elvidge et al. (2014) (orange line) (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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Fig. 12. SNDI derived from the raw DMSP image, TS denoised image, and RF denoised image before and after calibration for the whole study area and several EEZs.  

Fig. 13. Schematic of DMSPavg overlaid with images of effective pixels identified by RF and TS (a) and zoomed–in for middle to high latitude area (b), low latitude 
area (c), deep-sea fishing vessels (d) and the corresponding stereoscopic images for middle-high latitude area (e), low latitude area (f). The green squares in (d) is the 
location of the pixel shown in stereoscopic images (g). The height for pixels in stereoscopic images were built by DN values. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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effectiveness of the proposed method. They were chosen because their 
fishery resources have an opposite development trend; that is, the fish-
ery development trend of Japan tends to be gradually declining, while 
that of Malaysia tends to steadily increasing. 

The correlations between TLIs and fishery catches for Japan and 
Malaysia are shown in Fig. 14. The correlation coefficients between the 
avg_TLIs and the fishery catches were the lowest for both EEZs, and the 
correlation coefficients between the RFcal_TLIs derived from the pro-
posed method and the fishery catches were shown to be the highest. 

In addition, the correlation coefficients between the fishery catches 
and the RF_TLIs derived from the data intercalibrated by using PIFs 
proposed by Elvidge et al. (2014) are lower than that between the 
RFcal_TLIs (proposed) and fishery catches. 

These results provide additional evidence to prove the effectiveness 
of the stepwise intercalibration with RF denoising, that is, the proposed 
method can reduce the systematic radiometric biases effectively and also 
enhance the RFcal_TLIs as an indicator of human activities in the marine 
environment. This is also an important reason why we have previously 

Fig. 14. Correlation coefficients between the TLIs and fishery catches of both Japan and Malaysia.  
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stated that the proposed method may be more appropriate for ocean 
areas than the PIF method, although SNDIRF_cal(Elvidge) was found to be 
the lowest. 

4.3. Potential applications and future improvements 

As the TLIs are well correlated with fishery catches, so the consistent 
time series NTL data has a great potential to be used to discuss on the 
variations of the carbon emissions with the ocean human activities, the 
development of ocean economy, or the influences of human activities on 
the changes of the ocean ecosystem such as coral reefs in a large scale. 
For example, as shown in Fig. 15, the consistent time series NTL data 
provide a first comparison between human activities (TLIs) and the 
average live coral covers in South China Sea (SCS). In other word, it 
makes quantitative and semi-quantitative analysis on how human ac-
tivities effect on the global degradation of coral reefs become possible. 

However, as can be seen from Fig. 15, the consistent NTL time series 
spanned only from 1992 to 2013. Some researchers have intercalibrated 
the DMSP-OLS and NPP-VIIRS data for a long-term (2000 to 2018) 
analysis on non-oceanic area (Chen et al., 2020; Nechaev et al., 2021; 
Tilottama et al., 2021). As a result, it is still necessary in future to 
combine the proposed intercalibration with the cross-sensor calibration 
proposed by Chen et al. (2020), Nechaev et al. (2021), and Tilottama 
et al. (2021), or directly extend the proposed intercalibration to a cross- 
intercalibration between the DMSP-OLS and NPP-VIIRS data in a large- 
scale oceanic area for spanning the time series NTL data as long as 
possible (1992 to current). 

Finally, note that there are many other machine learning algorithms 
such as Neural Network (NN) and Support Vector Machine (SVM) could 
potentially be applied to the denoising approach. Hence, another 
important task in future work is to further assess the performances of 
those intercalibration approaches that make use of other machine 
learning algorithms such as NN and SVM instead of the RF in the pro-
posed method. 

5. Conclusions 

To evaluate human activities for ocean ecosystem research and 
application, this study provides a method to generate a consistent NTL 
time series for a large-scale oceanic area from the DMSPavg. The main 
idea of this study was to combine an RF approach with stepwise inter-
calibration. Specifically, the noise that impeded the stepwise intercali-
bration was first removed using an RF approach. Here, a feature image 
composited by the original DMSPavg, MFI, STDI, and bathymetric data 
was utilized to increase RF denoising. Thereafter, stepwise intercali-
bration is implemented on the denoised DMSP images to reduce the 
systematic radiometric biases. 

Experimental results showed that the composite image can increase 
RF denoising and help eliminate systematic radiometric biases during 
stepwise intercalibration. The overall accuracy and Kappa coefficient of 
the RF approach reached 96% and 0.775, respectively. Based on RF 
denoising, the systematic radiometric biases of the DMSPavg were found 
to be significantly reduced by stepwise intercalibration, that is, the SNDI 
of the images calibrated using the proposed method can reach 0.61, 
which is 68.2% less than that of the original DMSPavg. Furthermore, the 
effectiveness of the proposed method was confirmed by using the cor-
relation coefficients between the TLIs and the fishery catch data, that is, 
the correlation coefficients between the TLIs derived from the images 
calibrated using the proposed method and fishery catches of Japan and 
Malaysia can reach 0.949 and 0.901, respectively, which is the highest 
compared to others, including the TS and PIF methods. This implies that 
the TLIs can be used as effective indicators of fishery activities for ocean 
ecosystem research such as the discussions on the global coral reef 
degradations, and for other various applications such as the estimation 
of human-activity-caused ocean carbon emission changes in the future. 

In summary, the proposed method proved to be accurate, effective, 
and feasible for generating consistent time-series NTL data for large- 
scale ocean areas. Compared to current open access dataset, the pro-
duced consistent time series NTL data is specialized for the oceanic 

Fig. 15. Comparison between the TLIs and the 
live coral covers in Xisha Islands, South China 
Sea: live coral covers are come from Li et al. 
(2019) and Yu (2012). The live coral cover is seen 
to be drastically declined during 2006 to 2008, 
which is just about 3 years after the TLI begins to 
increase significantly; and the live coral cover 
seems to recover after the TLI starts to rapidly 
decrease. More discussions on the relationship 
between the TLIs and the live coral covers need 
us to further span the time series NTL data as long 
as possible in future work.   
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areas, which will be helpful for the studies and practices of ocean eco-
systems and large-scale ocean human activities. 
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Appendix A 

See Fig. A1. 
See Table A1. 

Fig. A1. OOB Error rates with number of trees.  

Table A1 
Time distribution and numbering of DMSP/OLS night-time light datasets for 
different satellites.  

Year/ 
Satellite 

F10 F12 F14 F15 F16 F18 

1992 F10- 
1992 

– – – – – 

1993 F10- 
1993 

– – – – – 

1994 F10- 
1994 

F12- 
1994 

– – – – 

1995 – F12- 
1995 

– – – – 

1996 – F12- 
1996 

– – – – 

1997 – F12- 
1997 

F14- 
1997 

– – – 

1998 – F12- 
1998 

F14- 
1998 

– – – 

1999 – F12- 
1999 

F14- 
1999 

– – – 

2000 – – F14- 
2000 

F15- 
2000 

– – 

2001 – – F14- 
2001 

F15- 
2001 

– – 

2002 – – F14- 
2002 

F15- 
2002 

– – 

2003 – – F14- 
2003 

F15- 
2003 

– – 

2004 – – – F15- 
2004 

F16- 
2004 

– 

2005 – – – F15- 
2005 

F16- 
2005 

– 

2006 – – – F15- 
2006 

F16- 
2006 

– 

2007 – – – F15- 
2007 

F16- 
2007 

– 

2008 – – – – F16- 
2008 

– 

2009 – – – – F16- 
2009 

– 

2010 – – – – – F18- 
2010 

2011 – – – – – F18- 
2011 

2012 – – – – – F18- 
2012 

2013 – – – – – F18- 
2013  

R. Huang et al.                                                                                                                                                                                                                                  



International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103023

16

References 

Aubrecht, C., Elvidge, C.D., Longcore, T., Rich, C., Safran, J., Strong, A.E., Eakin, C.M., 
Baugh, K.E., Tuttle, B.T., Howard, A.T., Erwin, E.H., 2008. A global inventory of 
coral reef stressors based on satellite observed nighttime lights. Geocarto Int 23, 
467–479. 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. 
Chen, X., Yu, K., Huang, X., Wang, Y., Liao, Z., Zhang, R., Yao, Q., Wang, J., Wang, W., 

Tao, S., Zhang, H., 2019. Atmospheric Nitrogen Deposition Increases the Possibility 
of Macroalgal Dominance on Remote Coral Reefs. J. Geophys. Res.-Biogeo. 124, 
1355–1369. 

Chen, Z., Yu, B., Yang, C., Zhou, Y., Qian, X., Wang, C., Wu, B., Wu, J., 2020. An 
extended time-series (2000–2018) of global NPP-VIIRS-like nighttime light data 
from a cross-sensor calibration. Earth Syst. Sci. Data Discuss 1–34. 

Chen, Y.p., Wei, Y.q., Peng, L.H., 2018. Ecological technology model and path of seaport 
reclamation construction. Ocean Coast Manage. 165, 244–257. 

Cheng, Y., Zhao, L., Wan, W., Li, L., Yu, T., Gu, X., 2016. Extracting urban areas in China 
using DMSP/OLS nighttime light data integrated with biophysical composition 
information. J. Geog. Sci. 26, 325–338. 

Cheng, T., Zhou, W., Xu, H., Fan, W., 2017. Estimation of Fishing Vessel Numbers Close 
to the Terminator in the Pacific Northwest Using OLS/DMSP Data. Geo-Spatial 
Knowl. Intell. 321–327. 

Croft, T., 1978. Nighttime Images of the Earth from Space. Sci. Am. - SCI AMER 239, 
86–98. 

D’Angelo, C., Wiedenmann, J., 2014. Impacts of nutrient enrichment on coral reefs: new 
perspectives and implications for coastal management and reef survival. Curr. Opin. 
Env. Sust. 7, 82–93. 

Derrick, B., Noranarttragoon, P., Zeller, D., Teh, L.C.L., Pauly, D., 2017. Thailand’s 
Missing Marine Fisheries Catch (1950–2014). Front. Mar. Sci. 4, 402. 

Elvidge, C.D., Baugh, K.E., Kihn, E.A., Kroehl, H.W., Davis, E.R., Davis, C.W., 1997. 
Relation between satellite observed visible-near infrared emissions, population, 
economic activity and electric power consumption. Int. J. Remote Sens. 18, 
1373–1379. 

Elvidge, C., Baugh, K., Zhizhin, M., Hsu, F.-C., 2013. Why VIIRS data are superior to 
DMSP for mapping nighttime lights. Proceedings of the Asia-Pacific Advanced 
Network 35, 62–69. 

Elvidge, C.D., Ziskin, D., Baugh, K.E., Tuttle, B.T., Ghosh, T., Pack, D.W., Erwin, E.H., 
Zhizhin, M., 2009. A Fifteen Year Record of Global Natural Gas Flaring Derived from 
Satellite Data. Energies 2, 595–622. 

Elvidge, C.D., Sutton, P.C., Baugh, K.E., Ziskin, D., Tilottama, G., Anderson, S., 2011. 
National Trends in Satellite Observed Lighting: 1992–2009. AGU Fall Meeting 
Abstracts 3, 03. 

Elvidge, C.D., Hsu, F.-C., Baugh, K.E., Ghosh, T., 2014. National trends in satellite- 
observed lighting. Global Urban Monitor. Assess. Through Earth Observ. 23, 97–118. 

Elvidge, C.D., Zhizhin, M., Baugh, K., Hsu, F.-C., 2015. Automatic Boat Identification 
System for VIIRS Low Light Imaging Data. Remote Sens. 7, 3020–3036. 

Elvidge, C.D., Ghosh, T., Baugh, K., Zhizhin, M., Hsu, F.-C., Katada, N.S., Penalosa, W., 
Hung, B.Q., 2018. Rating the Effectiveness of Fishery Closures With Visible Infrared 
Imaging Radiometer Suite Boat Detection Data. Front. Mar. Sci. 5, 132. 

Gissi, E., Manea, E., Mazaris, A.D., Fraschetti, S., Almpanidou, V., Bevilacqua, S., 
Coll, M., Guarnieri, G., Lloret-Lloret, E., Pascual, M., Petza, D., Rilov, G., 
Schonwald, M., Stelzenmuller, V., Katsanevakis, S., 2021. A review of the combined 
effects of climate change and other local human stressors on the marine 
environment. Sci. Total Environ. 755, 142564. 

Golden, C.D., Allison, E.H., Cheung, W.W.L., Dey, M.M., Halpern, B.S., McCauley, D.J., 
Smith, M., Vaitla, B., Zeller, D., Myers, S.S., 2016. Nutrition: Fall in fish catch 
threatens human health. Nature 534, 317–320. 

Guo, G., Fan, W., Xue, J., Zhang, S., Zhang, H., Tang, F., Cheng, T., 2017. Identification 
for operating pelagic light-fishing vessels based on NPP/VIIRS low light imaging 
data. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 33, 245–251. 

Hu, S., Ge, Y., Liu, M., Ren, Z., Zhang, X., 2022. Village-level poverty identification using 
machine learning, high-resolution images, and geospatial data. Int. J. Appl. Earth 
Obs. 107, 102694. 

Huang, R., Zhang, H., Yu, K., 2019. Analysis on the Live Coral Cover around Weizhou 
Island Using MODIS Data. Sensors 19. 

Jenssen, B.M., 1996. An overview of exposure to, and effects of, petroleum oil and 
organochlorine pollution in grey seals (Halichoerus grypus). Sci. Total Environ. 186, 
109–118. 

Jin, X., Long, Y., Sun, W., Lu, Y., Yang, X., Tang, J., 2017. Evaluating cities’ vitality and 
identifying ghost cities in China with emerging geographical data. Cities 63, 98–109. 

Jin, H., Mountrakis, G., Stehman, S.V., 2014. Assessing integration of intensity, 
polarimetric scattering, interferometric coherence and spatial texture metrics in 
PALSAR-derived land cover classification. Isprs J. Photogramm. 98, 70–84. 

Kedia, A.C., Kapos, B., Liao, S., Draper, J., Eddinger, J., Updike, C., Frazier, A.E., 2021. 
An Integrated Spectral-Structural Workflow for Invasive Vegetation Mapping in an 
Arid Region Using Drones. Drones 5, 19. 

Kiyofuji, H., Saitoh, S.-I., 2004. Use of nighttime visible images to detect Japanese 
common squid Todarodes pacificus fishing areas and potential migration routes in 
the Sea of Japan. Mar. Ecol.-Progr. Ser. 276, 173–186. 

Kroodsma, D., Mayorga, J., Hochberg, T., Miller, N., Boerder, K., Ferretti, F., Wilson, A., 
Bergman, B., White, T., Block, B., Woods, P., Sullivan, B., Costello, C., Worm, B., 
2018. Tracking the Global Footprint of Fisheries. Science 359. 

Li, Y., Yu, K., Wang, Y., Guo, J., Huang, X., Pei, J., Luo, Y., 2017b. Distribution 
Characteristics of Surface Seawater Nutrients in Summer around Luhuitou Reef in 
Sanya. Trop. Geogr. 37, 708–717. 

Li, Y., Wu, Z., Liang, J., Chen, S., Zhao, J., 2019. Analysis on the outbreak period and 
cause of Acanthaster planci in Xisha Islands in recent 15 years (in Chinese). Chin. 
Sci. Bull. 64, 3478–3484. 

Li, D., Zhao, X., Li, X., 2016. Remote sensing of human beings – a perspective from 
nighttime light. Geo-spat. Inform. Sci. 19, 69–79. 

Li, X., Zhou, Y., 2017. A Stepwise Calibration of Global DMSP/OLS Stable Nighttime 
Light Data (1992–2013). Remote Sens.-Basel 9, 637. 

Li, X., Li, D., Xu, H., Wu, C., 2017a. Intercalibration between DMSP/OLS and VIIRS night- 
time light images to evaluate city light dynamics of Syria’s major human settlement 
during Syrian Civil War. Int. J. Remote Sens. 38, 5934–5951. 

Liang, L., Bian, J., Li, A., Feng, W., Lei, G., Zhang, Z., Zuo, J., 2019. Consistent 
intercalibration of nighttime light data between DMSP/OLS and NPP/VIIRS in the 
China–Pakistan Economic Corridor. IGARSS 2019 - 2019 IEEE International 
Geoscience and Remote Sensing Symposium 24, 149–160. 

Liu, Y., Delahunty, T., Zhao, N., Cao, G., 2016. These lit areas are undeveloped: 
Delimiting China’s urban extents from thresholded nighttime light imagery. Int. J. 
Appl. Earth Obs. 50, 39–50. 

Liu, Z., He, C., Zhang, Q., Huang, Q., Yang, Y., 2012. Extracting the dynamics of urban 
expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. 
Landscape Urban Plann. 106, 62–72. 

Liu, J., Huang, R., Yu, K., 2020a. Analysis on the geomorphic changes of Huangyan 
Island based on satellite images over the past 40 years. Quarter. Sci. 40, 775–790. 

Liu, J., Huang, R., Yu, K., Zou, B., 2020b. How lime-sand islands in the South China Sea 
have responded to global warming over the last 30 years: Evidence from satellite 
remote sensing images. Geomorphology 371, 107423. 

Lu, W., Liu, Y., Wang, J., Xu, W., Wu, W., Liu, Y., Zhao, B., Li, H., Li, P., 2020. Global 
proliferation of offshore gas flaring areas. J. Maps 16, 396–404. 

Maxwell, M.R., Henry, A., Elvidge, C.D., Safran, J., Hobson, V., Nelson, I., Tuttle, B., 
Dietz, J., Hunter, J., 2004. Fishery dynamics of the California market squid (Loligo 
opalescens), as measured by satellite remote sensing. Fish B-Noaa 102, 661–670. 

Nechaev, D., Zhizhin, M., Poyda, A., Ghosh, T., Hsu, F.-C., Elvidge, C., 2021. Cross- 
Sensor Nighttime Lights Image Calibration for DMSP/OLS and SNPP/VIIRS with 
Residual U-Net. Remote Sens.-Basel 13, 5026. 

Pandey, B., Zhang, Q., Seto, K.C., 2017. Comparative evaluation of relative calibration 
methods for DMSP/OLS nighttime lights. Remote Sens. Environ. 195, 67–78. 

Puttanapong, N., Martinez, A., Bulan, J.A.N., Addawe, M., Durante, R.L., Martillan, M., 
2022. Predicting Poverty Using Geospatial Data in Thailand. Isprs. Int. Geo-Inf. 11, 
293. 

Robards, M., Silber, G., Adams, J., Arroyo, J., Lorenzini, D., Schwehr, K., Amos, J., 2016. 
Conservation science and policy applications of the marine vessel Automatic 
Identification System (AIS)-A review. Bull. Mar. Sci. -Miami- 92, 75–103. 

Rodhouse, P.G., Elvidge, C.D., Trathan, P.N., 2001. Remote sensing of the global light- 
fishing fleet: An analysis of interactions with oceanography, other fisheries and 
predators. Adv. Mar. Biol. 39, 261–303. 

Ruiz, J., Caballero, I., Navarro, G., 2020. Sensing the Same Fishing Fleet with AIS and 
VIIRS: A Seven-Year Assessment of Squid Jiggers in FAO Major Fishing Area 41. 
Remote Sens. 12, 32. 

Saitoh, S.-I., Fukaya, A., Saitoh, K., Semedi, B., Mugo, R., Matsumura, S., Fumihiro, T., 
2010. Estimation of number of pacific saury fishing vessels using night-time visible 
images. ISPRS Commision VIII, XXXVIII Part, p. 8. 

Shi, K., Chen, Y., Yu, B., Xu, T., Yang, C., Li, L., Huang, C., Chen, Z., Liu, R., Wu, J., 2016. 
Detecting spatiotemporal dynamics of global electric power consumption using 
DMSP-OLS nighttime stable light data. Appl. Energy 184, 450–463. 

Shi, F., Li, X., Xu, H., 2017. Analysis of Human Activities in Nature Reserves Based on 
Nighttime Light Remote Sensing and Microblogging Data –Illustrated by the Case of 
National Nature Reserves in Jiangxi Province. ISPRS – Int. Arch. Photogramm., 
Remote Sens. Spat. Inf. Sci. XLII-2/W7, 1341–1348. 

Stefanski, J., Mack, B., Waske, B., 2013. Optimization of Object-Based Image Analysis 
With Random Forests for Land Cover Mapping. Ieee J.-Stars 6, 2492–2504. 

Tian, F., Wu, B., Zeng, H., Watmough, G.R., Zhang, M., Li, Y., 2022. Detecting the linkage 
between arable land use and poverty using machine learning methods at global 
perspective. Geogr. Sustain. 3, 7–20. 

Tilottama, G., Baugh, K., Elvidge, C., Zhizhin, M., Poyda, A., Hsu, F.-C., 2021. Extending 
the DMSP Nighttime Lights Time Series beyond 2013. Remote Sens.-Basel 13, 5004. 

Waluda, C.M., Yamashiro, C., Elvidge, C.D., Hobson, V.R., Rodhouse, P.G., 2004. 
Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite 
remote sensing. Remote Sens. Environ. 91, 129–133. 

Waluda, C.M., Griffiths, H.J., Rodhouse, P.G., 2008. Remotely sensed spatial dynamics of 
the Illex argentinus fishery, Southwest Atlantic. Fish Res. 91, 196–202. 

R. Huang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1569-8432(22)00211-4/h0005
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0005
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0005
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0005
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0010
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0015
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0015
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0015
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0015
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0020
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0020
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0020
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0030
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0030
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0030
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0035
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0035
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0035
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0040
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0040
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0045
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0045
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0045
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0050
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0050
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0055
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0055
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0055
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0055
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0065
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0065
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0065
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0070
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0070
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0070
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0075
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0075
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0080
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0080
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0085
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0085
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0085
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0090
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0090
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0090
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0090
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0090
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0095
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0095
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0095
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0100
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0100
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0100
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0105
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0105
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0105
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0110
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0110
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0115
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0115
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0115
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0120
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0120
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0125
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0125
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0125
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0130
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0130
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0130
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0135
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0135
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0135
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0140
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0140
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0140
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0145
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0145
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0145
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0150
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0150
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0150
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0155
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0155
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0160
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0160
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0165
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0165
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0165
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0175
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0175
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0175
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0180
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0180
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0180
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0185
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0185
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0190
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0190
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0190
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0195
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0195
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0200
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0200
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0200
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0205
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0205
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0205
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0210
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0210
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0215
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0215
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0215
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0220
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0220
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0220
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0225
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0225
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0225
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0230
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0230
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0230
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0235
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0235
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0235
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0240
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0240
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0240
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0245
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0245
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0245
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0245
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0250
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0250
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0255
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0255
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0255
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0260
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0260
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0265
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0265
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0265
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0270
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0270


International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103023

17

Waluda, C.M., Trathan, P.N., Elvidge, C.D., Hobson, V.R., Rodhouse, P.G., 2011. 
Throwing light on straddling stocks of Illex argentinus: Assessing fishing intensity 
with satellite imagery. Can. J. Fish Aquat. Sci. 59, 592–596. 

Wu, J., He, S., Peng, J., Li, W., Zhong, X., 2013. Intercalibration of DMSP-OLS night-time 
light data by the invariant region method. Int. J. Remote Sens. 34, 7356–7368. 

Yu, K., 2012. Coral reefs in the South China Sea: Their response to and records on past 
environmental changes. Sci. China Earth Sci. 55, 1217–1229. 

Zhang, Q., Pandey, B., Seto, K.C., 2016. A Robust Method to Generate a Consistent Time 
Series From DMSP/OLS Nighttime Light Data. Ieee T Geosci. Remote 54, 5821–5831. 

Zhao, M., Zhou, Y., Li, X., Zhou, C., Cheng, W., Li, M., Huang, k., 2019a. Building a Series 
of Consistent Night-Time Light Data (1992-2018) in Southeast Asia by Integrating 
DMSP-OLS and NPP-VIIRS. Ieee T Geosci. Remote 58, 1–14. 

Zhao, X., Yu, B., Liu, Y., Chen, Z., Li, Q., Wang, C., Wu, J., 2019b. Estimation of Poverty 
Using Random Forest Regression with Multi-Source Data: A Case Study in 
Bangladesh. Remote Sens. 11, 375. 

Zheng, Q., Weng, Q., Wang, K., 2019. Developing a new cross-sensor calibration model 
for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. Isprs J. Photogramm. 
153, 36–47. 

R. Huang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1569-8432(22)00211-4/h0275
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0275
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0275
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0280
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0280
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0285
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0285
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0290
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0290
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0300
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0300
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0300
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0305
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0305
http://refhub.elsevier.com/S1569-8432(22)00211-4/h0305

	Building consistent time series night-time light data from average DMSP/OLS images for indicating human activities in a lar ...
	1 Introduction
	2 Material and methods
	2.1 Study area and datasets
	2.2 Methods
	2.2.1 Random forest denoising
	2.2.2 Stepwise intercalibration
	2.2.3 Performance assessment


	3 Results
	3.1 Results of the RF denoising
	3.2 Results of the fitting functions of the intercalibration
	3.3 Performance assessment of the intercalibration

	4 Discussions
	4.1 Features such as MFI, STDI, and bathymetric data increased the RF denoising
	4.2 Correlation between the TLIs and fishery catches as a supplement to confirm the effectiveness of the proposed method
	4.3 Potential applications and future improvements

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Acknowledgments
	References


