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ABSTRACT
The volume and availability of satellite image data has greatly 
increased over the past few years. But, during the transmission 
and acquisition of these digital images, noise becomes 
a prevailing term. When preprocessing the data for computer 
vision tasks, human experts often produce noise in the labels 
which can downturn the performance of learning algorithms 
drastically. This study is directed toward finding the effect of 
label noise in the performance of a semantic segmentation 
model, namely U-net. We collected satellite images of the 
Bangladesh marine region for four different time frames, cre-
ated patches and segmented the sediment load into five differ-
ent classes. The U-Net model trained with Dec-2019 dataset 
yielded the best performance and we tested this model under 
three types of label noise (NCAR – noise completely at random, 
NAR – noise at random and NNAR – noise not at random) while 
varying their intensity gradually from low to high. The perfor-
mance of the model decreased slightly as the percentage of 
NCAR noise is increased. NAR is found to be defiant until 20◦ of 
rotation, and for NNAR, the model fails to classify pixels to its 
correct label for maximum cases.
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Introduction

The delta in Bengal (eastern part of Asia) is the largest Asian delta and second 
largest delta in the world with regard to its size. In terms of population, it is the 
most populated delta in the world(Ericson et al. 2006). Originated from moun-
tains in the upper stream, big rivers cross more than one country in their path 
making themselves inter-country rivers. There are inter-country rivers too 
which originates and flows inside one country. The data collected by the 
Water Development Board of Bangladesh show that, among the 405 total rivers 
flowing inside Bangladesh, 357 rivers are intra-country (originated inside 
Bangladesh) and 48 rivers are inter-country (originated outside Bangladesh) 
(BWDB 2021). A large number of rivers pass through Bangladesh on their way 
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to the Bay of Bengal, where their hydrologic flow pattern finishes. Report by 
Center for Environmental and Geographic Information Services of Bangladesh 
(CEGIS 2021) shows that a mammoth amount of slit which counts to a total of 
1.2 billion tonnes is carried and discharged into the Bay of Bengal alone by the 
Ganga-Brahmaputra-Meghna trio of large rivers. As a result, sediment load in 
this area is a major concern for both marine diversity and the economy of the 
nation.

The overall maritime boundary of Bangladesh expands up-to 354 NM 
which includes 12 NM of sovereign rights over the resources and an economic 
marine zone of 200 NM (Islam and Shamsuddoha 2018). This marine bound-
ary of Bangladesh has a great impact on the country’s overall economy 
(Hussain et al. 2018). Thus, understanding the load of sedimentation in this 
huge marine region holds a great impact in several related sectors like marine 
biology, blue economy, and aquaculture. Conducting field research in these 
enormous areas can both be effort-taking and costly. Satellite images can aid 
the purpose of diverse study in the marine area using the most recent techni-
ques in machine learning paradigm. Crucial cases such as soil erosion, flood 
management, oceanology, and biodiversity under the sea can be greatly bene-
fited by using these techniques.

Multi-temporal geospatial data can be used in deep learning algorithms for 
accomplishing a wide range of tasks (Lei et al. 2019). These images are 
remotely sensed from satellites and are available in vast amounts. Satellite 
images are made up of minuscule pixels that contain condensed, squeezed, and 
high-level information that can be segmented using deep learning techniques 
for a better understanding of real-world implications from up top. The process 
of splitting a visual input into different segments is known as image segmenta-
tion. Image segmentation has a wide range of applications (Chouhan, Kaul, 
and Pratap Singh 2018) but it can be divided into two fundamental categories, 
instance segmentation and semantic segmentation. For instance segmentation, 
a segment is a part of an object, or a whole object where the bare minimum 
threshold to be considered as a segment is a pixel. Deep learning techniques 
have been well known for learning different patterns from data inputs to 
predict object classes from each pixel, thus creating segments (Chouhan, 
Kaul, and Pratap Singh 2018).

Convolutional Neural Network (CNN) has previously shown considerable 
performance and prospect (O’Shea and Nash 2015) in segmentation tasks. 
However, finding accurate and reliable image segmentation solutions has been 
one of the most difficult challenges in the computer vision area for the past three 
decades (Yanming et al. 2018). The recent growth of new ideas and solutions to 
semantic segmentation using transfer learning has revealed some intriguing 
cases and represents a major advance over earlier semantic image segmentation 
methods (Cui, Chen, and Yan 2020; Panboonyuen et al. 2019; Sharma et al. 2019; 
Wurm et al. 2019). Satellite images contain high-level information captured 
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from the top that can be of great help to understand certain aspects of the world 
which are not captured in regular imagery. Moreover, these images possess 
significant implications in the segmentation task as uniformed and compact 
meaningful information awaits extraction in the case of satellite data which are 
captured from top covering larger regions at high resolution. Remotely sensed 
images provide a plethora of real-world use-cases from a deep learning perspec-
tive. For instance, Road extraction (Zeyu et al. 2021), building detection (Junjun 
et al. 2020), land cover classification (Talukdar et al. 2020), urbanization detec-
tion (Yang et al. 2020) and slum detection (Wurm et al. 2019), etc.

Noise is a phenomenon where data is either corrupted or not in its actual 
form or values. Satellite images are often contained with various kinds of 
noises, among which salt and paper noise (Borra, Hanki, and Dey 2019), 
speckle noise (Singh and Shree 2016), stripping noise (Xiao, Guo, and 
Zhuang 2018), etc. are commonly seen and found. Various methods of remov-
ing these noises from images have also been shown by the research community 
(Borra, Hanki, and Dey 2019; Singh and Shree 2016; Xiao, Guo, and Zhuang 
2018). However, noise can also exist in labels and masks that we use to train 
our deep learning models. In this study, we will be using high-resolution 
satellite imagery with deep neural networks to segment sedimentation in the 
entire marine region of Bangladesh with a profound focus on label noise. 
Using the patch-wise learning method, our focus will be to evaluate the 
performance of a deep learning segmentation algorithm for different types of 
noise as well as different magnitude and volumes of these noises. Our study is 
targeted toward the following aspirations.

Using high-resolution satellite pictures to create a sedimentation dataset for 
the Bangladesh marine region.

Segment the sediment type into different classes.
Analysis of three different label noise on performance of segmentation 

model.
Analysis of model performance under different magnitude and volume of 

these noises.
The rest of the paper is organized as follows: section 2 contains detailed 
discussion on related literature, section 3 vividly describes our study area 
with details of geographic location. Our data collection and image processing 
for making them compatible with a segmentation has been delineated in 
section 4 and section 5 contains our methodology used in this study. All the 
metrics used for measuring learning of our model and for evaluating the 
performance has been manifested in section 6. Discussion on result and 
analysis of our study has been included in section 7, where we have displayed 
the performance of our segmentation model under different types of label 
noise. Finally, we draw a close to the document with conclusive statements, 
our findings, the prevalent contribution of our study and future research 
directives.
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Related Works

Effect of Label Noise

The fundamental aspect in almost all kinds of neural network models is 
learning from the input data and comparing the predicted output with some 
corresponding labels. Without the labels being accurate, no matter how perfect 
the model predicts, evaluation metrics will take a hit. There are many ways 
these datasets are made. And the process of building a dataset can often 
produce label noise which can directly affect the model’s accuracy. Three 
major kinds (NCAR, NAR, and NNAR) of label noise are seen in machine 
learning paradigm (Frenay and Verleysen 2013). The statistical taxonomy and 
increasing complexity dependency of the three types of label noise are shown 
in the figure below (Figure 1).

In Figure 1, Y represents the true labels, E represents the possibility of 
occurrence of an error, X represents the input feature vector and ~y represents 
the predicted output. From the figure, we can see that occurrence of a NCAR 
type of label noise is not dependent on the other variables, including the true 
labels itself with an error probability of Pe ¼ P E ¼ 1ð Þ ¼ P Y�~yð Þ where the 
incorrectness in the label is chosen at random (Frenay and Verleysen 2013; 
Angluin and Laird 1988). In the case of NAR, the possibility of error in labels is 
dependent on the true label while the error probability is Pe ¼ P E ¼ 1ð Þ ¼

P

y2Y
P Y ¼ yð ÞPðE ¼ 1jY ¼ yÞ (Frenay and Verleysen 2013). NNAR is the most 

realistic case of noise as the source of noise can both be the input images and 
the label images (Algan and Ulusoy 2020). This representation of label noise is 
the most complex label noise relation with the probability of error which 
follows the equation, Pe x; yð Þ ¼ P E ¼ 1jX ¼ x;Y ¼ yð Þ (Frenay and 
Verleysen 2013).

Figure 1. Statistical representation of label noise (Frenay and Verleysen 2013). NCAR (a) (Noisy 
completely at random) is an acronym for noisy completely at random. NAR (b) stands for noisy at 
random. NNAR (c) stands for noisy not at random.
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Extraordinary improvement of deep learning methods has created more 
advanced and efficient techniques for different computer vision tasks over the 
last decade (Khamparia and Mehtab Singh 2019). However, obstacles like label 
noise still need to be dealt with as it is an inseparable part of modern computer 
vision. Many researchers found that deep learning models can put up with 
noise up to a certain level (Algan and Ulusoy 2020; Rolnick et al. 2017). 
Go¨rkem Algan and Ilkay Ulusoy showed that feature dependent label noise 
which is a NAR type of label noise, affects the model’s performance by 
reducing the test accuracy (Algana and Ulusoy 2021). Another study showed 
that the more the presence of label noise, the more the accuracy is reduced in 
the case of satellite image classification, but the proper distribution of high- 
intensity noise into the study area tends to increase the correctness of the 
model (Boonprong et al. 2018).

Deep Neural Networks for Image Segmentation

A rapid paradigm shift was seen in the deep learning paradigm when the 
ImageNet model outperformed all other state-of-the-art techniques in the 
ImageNet LSVRC-2010 contest (Alex, Sutskever, and Hinton 2017). In the 
following years, varying deep learning techniques and approaches for innu-
merable use cases were discovered by researchers. The use of different deep 
learning approaches bought significant improvement in the segmentation task 
with remarkable performance (Garcia-Garcia et al. 2017). As the progression 
of deep learning thrived over the last decade, the convolutional neural network 
(CNN) has performed admirably in many computer vision tasks (Voulodimos 
et al. 2018). However, image segmentation has been one of the most difficult 
tasks in computer vision for the previous three decades (Wurm et al. 2019). 
Image segmentation holds a major position in the domain of computer vision 
for its further implications in many other sectors. Crucial sectors like medical 
(Nima et al. 2020; Olaf, Fischer, and Brox 2015), geospatial data analysis (Liu 
et al. 2018), and autonomous driving (Sharma et al. 2019) uses segmentation 
technique as a solution to several other implementations.

Application of recent findings in semantic image segmentation (Yanming 
et al. 2018) has yielded some encouraging results in terms of accuracy and 
performance. Furthermore, advanced Convolutional Neural Network models 
have resulted in significant improvements over previous semantic segmentation 
methods (Long, Shelhamer, and Darrell 2015; Ming et al. 2019). Cas-FCN, a less 
sophisticated but high-performing model for ultrasound maternity image seg-
mentation which has been proposed (Ming et al. 2019). (Long, Shelhamer, and 
Darrell 2015) developed a segmentation architecture that includes fully con-
volutional models such as AlexNet, GoogleNet, and VGG. For enhanced feature 
extraction, their study used a combination of upsampling technique and patch- 
wise training mechanisms, as well as skip connections, which are employed 
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across the layers to fuse coarse. Despite the fact that deep learning works 
effectively for segmentation tasks, vanishing gradient and overfitting are still 
issues when training deep neural networks (Evgin 2019).

Complex images are difficult to segment because information localized in 
images poses difficulty for the model to understand. Satellite images, for 
example, are a collection of compressed high-level data that can be difficult 
to segment. More advanced deep learning models, such as UNet (Khryashchev 
et al. 2019) and DeepLabV3 (Chen et al. 2017), come in helpful here. For the 
optimum feature extraction, UNet is an FCNN (Fully Connected Neural 
Network) that uses skip connections between the ‘contracting’ and ‘expansive’ 
components of the network (Olaf, Fischer, and Brox 2015). The medical sector 
has seen the most impactful deployment of U-Net-based segmentation models 
so far (Garcia-Garcia et al. 2017; Nima et al. 2020). This architecture has been 
used for chronic stroke lesion segmentation (Liu et al. 2018), retina-vessel 
segmentation (Robert and Shapiro 1985), nuclei segmentation in histology 
images (Olaf, Fischer, and Brox 2015), liver and tumor segmentation (Garcia- 
Garcia et al. 2017), and investigating heart-conditions from ultrasound images 
(echo-cardiography) (Naz, Majeed, and Irshad 2010).

The positive impact of U-net-like architecture in the medical field prompted 
numerous researchers to investigate its usage in other circumstances where 
segmentation is advantageous and required in some cases. Though it was 
originally designed for medical image segmentation, UNet has been used for 
a variety of other applications, including sea-land segmentation (Chu et al. 
2019), street tree segmentation (Junjun et al. 2020), satellite image segmenta-
tion (Khryashchev et al. 2019), sediment segmentation (Pranto et al. 2021), 
tomato leaf segmentation (C. Ngugi, Abdelwahab, and Abo-Zahhad 2020), 
real-time hair segmentation (Yoon, Park, and Yoo 2021), hand segmentation 
in complex background (Wang, Wang, and Juan 2011), pedestrian segmenta-
tion (Nurhadiyatna and Lončarić 2017), etc. We extended our previous study 
(Pranto et al. 2021) on sedimentation segmentation and analyzed three differ-
ent label noise on the performance of segmentation model and the model 
performance under different magnitude and volume of these noises.

Study Area

Bangladesh’s marine territory is separated into three zones (Belal 2012): the 
coastal marine region (12 nautical miles), the exclusive economic zone (200 
nautical miles), and the seabed off the coast (350 nautical miles). These marine 
regions conjointly occupy an area of 165,887 square kilometers. The geo-
graphic coordinate of the Bangladesh marine region is at the latitude and 
longitude of 20.99°N, 90.73°E (Marine Gazetteer Placedetails 2020). Our frame 
of reference for this study is located at (89.09, 20.37) in the South-West, (92.34, 
20.37) in the South-East, (92.34, 22.91) in the North-East, and (89.09, 22.91) in 
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the North-West, which is located at the lower stream to many rivers, which 
creates a large load of sedimentation in the Bay of Bengal’s estuary. The study 
area is divided into three parts based on geographic features, the eastern zone, 
central zone, and western zone, among which the central zone is considered to 
the most susceptible to sediment load as river Meghna falls into this region 
which is a major contributor of sedimentation (Ahmad 2019). Our study area 
has been depicted in Figure 2.

Data Extraction and Preparation

Labeling and Extracting Satellite Images in GEE

For the purpose of image extraction, we used Copernicus Sentinel-2 satellite 
and images at 10 m resolution were used in our study. The rectangular area is 
located at (89.09, 20.37) in South-West, (92.34, 20.37) in the South-East, 
(92.34, 22.91) in North-East, and (89.09, 22.91) in North-West is our reference 
frame for clipping images. We also collected the images of four separate time 
frames, which are January–February 2020, November–December 2019, 

Figure 2. (a) Bangladesh geographical location. (b) High-resolution satellite image of target 
Region. (c) Targeted marine region.
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January–February 2019, and November–December 2018. The whole process 
of image labeling and extraction is shown in the figure below (Figure 3). More 
details of the process could be found elsewhere (Pranto et al. 2021).

Collecting images from satellites and making them compatible with deep 
learning algorithms required several steps of data perpetration and pre- 
processing. For that purpose, we used Google Earth Engine (GEE), which 
provides a compact package of various tools and functionalities. First of all, we 
extracted image tiles of our target area. From several image tiles of a particular 
location, we filtered out the best possible tile using different filtration mechan-
isms provided by the GEE JavaScript API. Using the in-built filtration tools of 
GEE, we selected tiles that had cloud cover less than 1%, and we also checked if 
the image tile passed geometric, radiometric and sensor tests of GEE. Only 
these selected tiles were used to form our original image. After the selection of 
tiles has been made, for labeling the image tiles, we used the GEE polynomial 
tool. Using the polynomial tool, we can define the categorical class of a labeled 
region. For our study, we have five classes, among which we labeled four 
classes in GEE and the remaining portion is the fifth class. After finishing the 
labeling, we collected the labeled images to further process them in QGIS 

Figure 3. Image labeling and band extraction (a) 12-band satellite image. (b) Labeling with google 
earth engine. (c) Generating shapefile by QGis Software. (d) Adding shapefile as the 13th band to 
the original image.
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software. The target area is erroneous in size and for that reason, the total area 
is composed of several disjointed image tiles which need to be joined as well as 
the labeling which falls out of the target area also needs to be clipped from the 
original area of interest. We used QGIS for these tasks and the final resultant 
shapefile was our mask that needed to be added to the original images. We 
added this labeled image as the fourth band of our original image, which made 
the original image a four-band image where the first three bands (RGB) 
compose the input image and the fourth band is the mask for our segmenta-
tion model.

Data Preparation

Deep learning models are not compatible with huge satellite image tiles. 
Comparatively smaller labeled images can be used directly, but in our case, 
the image size was 36141 × 28197 units at 10 m resolution. For making images 
usable to the deep learning algorithm, first, we separated the label (4th band) 
from the original image which is our mask images for the segmentation model. 
Then, image and mask were cropped into 15762 patches using the python 
GDAL library where each patch was measured 256 × 256 pixels in height and 
width. Both images and masks contain two kinds of regions that the model has 
to distinguish which is shown in Figure 4(b). Moreover, these images are often 
affected by values that are hard to be dealt with (e.g., infinite values, ‘Nan’ 
values). These values do not cause any error while reading the images but 
affect the error metrics substantially. These kinds of concealed flaws are hard 
to find which caused us great difficulty to fine-tune the model’s performance. 
‘Nan’ values were replaced by the nearest class labels in our study. The process 
of image-mask separation and patch cropping is shown in the figure below 
(Figure 4).

Methodology: Modification U-Net Architecture

The left part of the U-Net design (Olaf, Fischer, and Brox 2015) is called the 
contracting part, and the right part is called the expansive part. Juxtaposing 
these two parts forms a shape identical to “U” which reflects on the model’s 
architecture. We used the same form of architecture with modification in the 
shapes across the model while sub-dividing the model into 11 groups for easier 
explanation. The Rectified linear unit (ReLU) activation is used between the 
layers and the output layer uses a SoftMax activation function. The model is 
divided into two parts and a combination of these two parts together segments 
an input image. The model architecture is shown in the figure below 
(Figure 5).
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Figure 4. Preparing dataset from the satellite image. (a) 4-band satellite image (4th band is a label). 
(b) Stacked layers of an image. (c) The first three layers (bands) are separated as the image. (d) 4th 

band is separated as a mask.

Figure 5. Modified U-Net architecture used in this study.
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Contracting Part

The stack indicated as 1 in Figure 5 takes 256 × 256 images as input. This layer 
is constructed of concatenating layers which precede a layer of unpadded 2d- 
convolution with 64, (3*3) kernels, followed by batch normalization with 2*2 
kernel, stride size of 2, and momentum of 0.01. The second and third stacks 
are identical in the architecture. Values are copied or sent to the expanded 
portion of the model through skip connection at this step. The picture is then 
shrunk to 128*128 by passing it through a 2d-max-polling layer with kernel 
size (2*2) and stride 2. Group 3ʹs layer layout is identical to that of group 2. 
The layer configuration in groups 4,5 and 6 is identical to that in group 2, with 
the exception that there is no skip connection in these layers.

Expansive Part

The model’s expansive component begins with group 7. A Conv2d-transpose 
layer with 64 kernels of size (3*3) and stride of 2 is used to start a group in the 
expansive section. This layer does the inverse of 2d-Convolution. This is 
followed by a concatenation layer, batch normalization, and a 2d- 
convolution layer. This pattern is repeated until the 11th group, and the 
final layer picture has a form of 256*256*5.

Evaluation Metrics and Loss Function

Dice Coefficient

The dice coefficient is a statistic for evaluating segmentation performance of. It 
quantifies the proportion of similarity between the real image and the image 
predicted by the model (Tustison and Gee 2009). Equation 1 represents the 
formula of dice coefficient where A is the true image and the predicted image is 
denoted as B. 

DiceCoefficient ¼
2 � intersection A � Bð Þ

Aþ Bð Þ
(1) 

Categorical Cross-Entropy

Categorical Cross-entropy, often known as negative log loss function, is often 
used as a loss calculation metric to multi-class classification problems 
(Yaoshiang and Wookey 2019). For real image representation y and predicted 
image representation ŷ, the loss is calculated using equation 2. 
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L y; ŷð Þ ¼
XM

j¼0

XN

i¼0
yij � log ŷð Þ
� �

(2) 

SoftMax

SoftMax activation determines the difference between two vectorized one-hot 
encoded probability distributions and examines the probability of a pixel 
belonging to a particular class (Nwankpa et al. 2018). The task of semantic 
segmentation requires classification of each class, hence, calls for pixel-wise 
SoftMax to each pixel. The softMax activation function is expressed as follow-
ing equation 3. 

σ ~zið Þ ¼
ezi

Pn

k¼1
ezk

(3) 

The normal exponential function is represented by e, the input vector is 
represented by z, and the number of classes is represented by n in equation 3.

Pixelwise Accuracy

Pixel accuracy holds profound importance in semantic segmentation. Pixel 
accuracy refers to the percentage of pixels successfully classified (percentage of 
true positive rate) by the segmentation algorithm (Wang, Wang, and Zhu 
2020). True-positive is represented as TP and false-positive as FP, and the 
equation of pixel accuracy is shown in equation 4. 

PixelAccuracy ¼
P

n TPn
P

nðTPn þ FPnÞ
(4) 

Result and Analysis

We have analyzed the results and predictions of our model from two perspec-
tives, with and without noisy labels. In the satellite image, noise is a common 
phenomenon (Asokan and Anitha 2020) where, on the other hand, labeling by 
human experts also increases the amount of noise (Frenay and Verleysen 
2013) as different human being labels an image from their own confidence 
(deciding upon the label). We have tested our best-performing model, that is, 
Dec2019, under three kinds of label noise.

In extension to our previous work (Pranto et al. 2021), we conducted 
a comprehensive study on label noise in this study. The best image over 
a region is taken on when the satellite is in its NADIR position (Zhou et al. 
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2020) (satellite perpendicular to a point on earth). The off-NADIR position creates 
an angle between the sensor of the satellite and the region. Moreover, sunlight also 
has an angle of reflectance over a region in which satellite image is being taken. So, 
analysis of the model’s robustness under different levels of rotation and flip has 
been analyzed in this study. On the other hand, salt and paper (Lopes et al. 2020) is 
another common noise seen in satellite images. So, we also experimented with 
complete random noise, which represents salt and pepper noise.

Analysis of Result under Noiseless Labels

During the model training, 70% of the data was utilized for training, while the 
remaining 30% was used for testing. For 30 epochs, the models were trained. 
This criterion was applied to each of the four datasets. Figures 6 and 7 illustrate 
the change in training and validation dice co-efficient and training and 
validation loss over 30 epochs, respectively.

The model looks to be learning some pattern in the data based on the pixel 
accuracy, loss, and dice coefficient values and graphs. The loss is smoothly 
dropping in accordance with the validation loss, while the dice coefficient 
follows the same pattern. As for dice coefficient as a performance evaluation 
metric, the models appear to perform well, with the greatest co-efficient of 85% 
for both training and validation. The images contain two types of areas, one 
with one of the five classes and the other with two independent classes joining. 
Our experiment considers both these cases to determine the predictive cap-
ability of the model. The Dice coefficient, loss and pixel-wise accuracy scores 
have been shown in Table 1.

The next two consecutive figures below show the prediction of our model 
for class join regions (Figure 8) as well as for single class regions (Figure 9).

Analysis of Result under Label Noise

In the previous section, we saw how the models perform for different year 
datasets under noiseless labels. The same model performed almost similarly 
for all these datasets, but the Dec-2019 model comparatively performed better 
than the other datasets. In this section, we will present the result and metric as 
well as model predictions for our best-performing model.

NCAR – Noise Completely at Random
The noise completely at random appears completely randomly and class 
independently. In our study, each pixel in an image belongs to one of the 
five classes as follows: Class 0: Land, class1: high-sediment, class 2: moderate 
sedimentation, class 3: low sedimentation, and class 4: water/no- 
sedimentation. We randomly chose x% of the pixels and randomly altered 
the class to any of the other classes creating completely random noise. For 
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Figure 7. Loss during training and validation over 30 epochs.

Table 1. Performance measurement for four-year dataset.
Dice coefficient 

(%)
Validation dice 
coefficient (%) Loss

Validation 
loss

Validation 
loss (%)

Validation pixel 
accuracy (%)

December 2018 85.51 85.42 0.695 0.667 74.88 73.34
January 2019 86.72 86.76 0.627 0.614 77.47 77.07
December 2019 86.86 87.81 0.628 0.600 77.00 78.97
January 2020 85.76 86.22 0.672 0.661 75.25 75.83

Figure 8. Prediction on regions with two class.
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instance, 5% NCAR noise injection means every training image will have 5% of 
its pixels intentionally miss-classed. We injected random noise in the range of 
1% to 25%. The percentage we chose are 1,3,5,10,15,20 & 25%. The figure 
below (Figure 10) shows the gradual increase of complete random label noise.

The table below (Table 2) shows the metric and accuracy measurements of 
the model under different percentages of complete random noise.

From the table (Table 2), we can clearly see that, as we increase the 
percentage of completely random label noise, the model’s performance 
seems to drop. Where the dice coefficient for 1% noise was 87.51% and pixel 
accuracy was 78.88%, for 25% label noise, dice coefficient drops to 78.65% and 
pixel accuracy drops to 64.11%. The same scenario is seen in the case of loss. 
From 0.595 for 1% completely random noise, loss increases to 1.07 for 25% 
complete random noise. The following figure (Figure 11) shows prediction on 
class join regions under different percentages of completely random label 
noise.

The figure shows that the model performs almost similarly to noiseless 
models up until 10% noise. After that, a slight drop is seen for 15% noise. But, 
as we get closer to the highest noise, that is 25%, performance changes 
drastically. The same characteristic of performance drop is also seen in pre-
dictions of single class region areas (Figure 12).

Figure 9. Prediction on regions with one class.

e2039348-2442 T. H. PRANTO ET AL.



NAR – Rotation with Nearest Fill Mode Label Noise
Rotation is a type of random noise but not completely at random. An image can 
only be rotated at a certain angle which is not entirely random. Our approach to 
rotation is slightly different; labels were rotated between 10◦ to 30◦ with an 
interval of 5◦, and the gap created due to rotation was filled with the “Nearest” 
mode of the python SciPy library to avoid artificial pixel filling. The figure 
below (Figure 13) contains some examples of rotation with nearest fill noise.

The next two figures (Figure 14,15) show the model’s prediction capability 
under different levels of rotational noise.

The figures depict that up to 20◦ rotations; the model predicts almost 
similar to the noiseless model while more rotation than 20◦ rotation causes 
performance drop. From the metric-accuracy table (Table 3), we can also see 
that rotation more than 20◦ brings down both pixel accuracy and dice 
coefficient drastically. The prediction image also shows the same characteristic 

Figure 10. Example of complete random label noise in a range from 1% to 25%.

Table 2. Dice coefficient, pixel accuracy, and loss for complete random label noise.
Noise 
(%)

Dice coefficient 
(%)

Validation dice 
coefficient (%) Loss

Validation 
loss

Pixel accuracy 
(%)

Validation pixel 
accuracy (%)

1% 87.51 87.42 0.595 0.607 78.88 78.34
3% 85.02 86.15 0.734 0.703 74.99 76.44
5% 83.94 85.33 0.796 0.752 72.16 75.11
10% 82.85 83.94 0.874 0.843 71.48 73.35
15% 81.14 81.70 0.954 0.952 69.07 69.40
20% 79.18 79.76 1.03 1.02 65.11 65.85
25% 78.65 79.20 1.07 1.05 64.11 65.21
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as we can clearly see the model guessing randomly both for a single class and 
class join regions. The table below (Table 3) contains the accuracy and metrics 
of model performance under rotation noise.

As we can see from the table (Table 3), as we increase rotation performance 
of the model de- creases notably. Dice coefficient of 88.46% for 10◦ rotation 
reduces down to 71.23% for 30◦ rotations. Same type of scenario is seen in the 
case of validation dice coefficient. On the other hand, loss of 0.562 for 10◦ 

rotations increases up to 0.95 for 30◦ of rotations. These values of evaluation 
metrics clearly depict that up to 20◦, the models show robust nature against 
noise but rotation more than 20◦ drops performance significantly.

NNAR – Label Flip Noise
In label flip noise, we flipped the labels vertically and horizontally. This is an 
NNAR (noise not at random) type of noise. The figure below (Figure 16) 
shows an example of label flip noise on a mask image.

The next two figures below (Figure 17,18) show the prediction of our deep 
neural model under label flip noise.

Figure 11. Class-join prediction under complete random label noise.
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We can see in Figures 17 and Figure 18 that, under label flip, the model’s 
performance is considerably poor. The model for some labels cannot segment 
properly, let alone a clean segmentation. For both horizontal and vertical flip, 
the model seems to lose its segmentation capability. This intuition seeing the 
prediction images can be further justified using metrics, loss and accuracy 
table. The table below (Table 4) shows the pixel accuracy and metrics results 
under horizontal and vertical label flip noise.

Figure 12. Single-class region prediction under random Gaussian label noise.

Figure 13. Example of rotational label noise (10◦ to 40◦) with nearest fill mode.
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Table 4 shows that, for label flip, U-Net does not perform well for segmen-
tation tasks. The loss is high and accuracy and dice coefficient is considerably 
low which leads the model to random guesses for pixels. The next two images 
show the model’s performance under label flip noise for both class-join 
regions and single class regions.

Discussion

In this study, we investigated how a semantic segmentation model behaves 
under different intensities of label noise. We specifically worked with label 
noise because satellite image data is generally extracted using filtration tech-
niques which removes feature noises in the earliest stage. But, during labeling, 
human experts or crowd-sourced labeling are often noisy. This impairs the 
model’s learning and also eventually hurts the performance of the model. 
From our experimentation, we found that an increasing amount of NCAR 
noise gradually decreases the model’s performance. Until 20◦ rotation (NAR 
noise), the U-Net model yields competitive performance and rotation greater 
than 20◦ is intolerable by the segmentation model. Whereas on the other 
hand, flipping the labels completely puzzles the model and performance drops 
drastically where the model seems to produce random predictions. All these 

Figure 14. Class-join region prediction under rotational label noise.
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Figure 15. Single class prediction under rotational noise ranging from 10◦ to 30◦.

Table 3. Dice coefficient, pixel accuracy, and loss for rotational label noise.

Rotation
Dice coefficient 

(%)
Validation dice 
coefficient (%) Loss

Validation 
loss

Pixel accuracy 
(%)

Validation pixel 
accuracy (%)

10◦ 88.46 87.54 0.562 0.610 80.78 78.21
15◦ 87.53 87.65 0.616 0.613 79.09 79.01
20◦ 85.43 86.76 0.705 0.649 74.49 77.14
25◦ 80.78 81.14 0.717 0.726 72.28 71.84
30◦ 71.23 73.26 0.958 0.918 67.35 68.16

Figure 16. Example of horizontal and vertical flip label noise.
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Figure 17. Class-join region prediction under horizontal and vertical flip label noise.

Figure 18. Single-class region prediction under horizontal and vertical flip label noise.

Table 4. Dice coefficient, pixel accuracy, and loss for label flip noise.

Flip
Dice coefficient 

(%)
Validation dice 
coefficient (%) Loss

Validation 
loss

Pixel 
accuracy (%)

Validation pixel 
accuracy (%)

Horizontal 65.94 63.83 1.365 1.647 61.50 63.23
Vertical 67.53 64.65 1.416 1.513 63.09 62.01
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three noises were injected into the training images based on their intensity 
while the original masks being noise-free. After training, the result was 
generated using noise-free test sets.

Conclusion

Noise is an inseparable part of satellite images data. Understanding noise thus 
aids the purpose of building robust solutions to specific problems under label 
noise. Without a proper understanding of how a deep learning segmentation 
model can react to different kinds of noises, it is difficult to build precise 
solutions. In this study, we conducted an in-depth analysis of the performance 
of deep learning model under three prevalent kinds of noise (NCAR – noise 
completely at random, NAR – noise at random and NNAR – noise not at 
random) that can be present in the labels. For complete random label noise, 
which is a NCAR type of noise, seven magnitudes of noise percentage were 
used. As we increase the percentage of complete random noise, Dice 
Coefficient falls, loss increases, and pixel-wise accuracy drops at an equidistant 
trend compared to the previous value of each other. There is no sudden 
dramatic change in these values. However, for rotation noise, which is 
a NAR type of noise the trend is different. Up to 20◦, the model Dice 
Coefficient stays above 85% and drops in an equidistant trend. But after 20◦, 
rotation, a sudden downfall of every parameter is observed. For NNAR, 
horizontal or vertical flip of noise shows a significant negative impact on the 
performance. Dice Coefficient drops in the vicinity of 65% and pixel-wise 
accuracy to 62%, which leads the model to random guess. Although noise 
imparts the performance of segmentation, augmentation is a strong means of 
improving model performance via providing more data. Augmentation uses 
different noise-like techniques to generate new data. Using remotely sensed 
satellite data is a cost-effective way to investigate and analyze sedimentation in 
the marine area without reaching into the study field while wasting valuable 
time and resources. For the future work of this study, we have the desire to 
work with the de-lineation of sediment in the marine region of Bangladesh as 
well as in the river banks. Our implementation has been made generic enough 
that can aid the other similar works. For encouraging future research, our 
implementation has been made public and can be found at https://github.com/ 
Tahmid1406/Sediment-Load-Performance-Under-Label-Noise.
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