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Abstract: Full 3D inversion of time-domain Airborne ElectroMagnetic (AEM) data requires specialists’
expertise and a tremendous amount of computational resources, not readily available to everyone.
Consequently, quasi-2D/3D inversion methods are prevailing, using a much faster but approximate
(1D) forward model. We propose an appraisal tool that indicates zones in the inversion model
that are not in agreement with the multidimensional data and therefore, should not be interpreted
quantitatively. The image appraisal relies on multidimensional forward modeling to compute a so-
called normalized gradient. Large values in that gradient indicate model parameters that do not fit the
true multidimensionality of the observed data well and should not be interpreted quantitatively. An
alternative approach is proposed to account for imperfect forward modeling, such that the appraisal
tool is computationally inexpensive. The method is demonstrated on an AEM survey in a salinization
context, revealing possible problematic zones in the estimated fresh–saltwater interface.

Keywords: airborne geophysics; AEM; TEM; resistivity; conductivity; appraisal; modeling;
electromagnetics

1. Introduction

The Airborne ElectroMagnetic induction (AEM) method is a practical tool to map
near-surface geological features over large areas, as electromagnetic induction methods
are sensitive to the bulk resistivity. It is increasingly used for mineral exploration [1],
hydrogeological mapping [2,3], saltwater intrusion [4–6] and contamination [7]. AEM
methods will become more and more important for the challenges in the future, e.g., as
an important investigation method for groundwater management. It is the only viable
approach to providing hydrogeological mappings on a large scale. Among the geophysical
EM methods, the advancement of the AEM within the last two decades was eminent.
While the AEM systems have massively advanced [8], the data interpretation process and
the related computational burden remains a main impediment. Full 3D inversion is an
active research area [9–15]. It requires specialists’ expertise and a tremendous amount
of computational resources, not readily available to everyone. Consequently, quasi-2D
and quasi-3D inversion methods are prevailing, using a much faster but approximate
(1D) forward model. While using a 1D forward model is valid for slowly varying lateral
variations, the hypothesis is not always valid. The question remains whether the obtained
inversion results are reliable and can be interpreted quantitatively. In this work, we do
not want to dissuade the use of 1D forward models for AEM interpretation. Rather, we
argue that an additional step after each inversion with an approximate forward model
should be added using an image appraisal tool, to verify that no erroneous interpretation
has occurred as a result of the approximate forward model. The tool indicates uncertain
areas in the recovered model, which should be interpreted with extra care or should be
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reinterpreted using a full 3D inversion. In the latter case, this computationally demanding
3D inversion must, fortunately, only be performed on a subset of the original dataset.

Appraisal tools usually address resolution issues. They are commonly used in electrical
resistivity tomography [16–18], with e.g., Paepen et al. [19] showing an application directly
functional in a saltwater intrusion context. Specifically for EM, Alumbaugh and Newman [20]
provide an appraisal tool based on the resolution matrix, which provides insight on the res-
olution and accuracy of the recovered images. Christiansen and Christensen [21] provide a
quantitative appraisal for AEM by adding a comparison to ground-based data. The method
relies on 1D forward modeling and does not account for multidimensionality effects.

To overcome the latter shortcomings, we propose a novel appraisal tool that can detect
wrongly fitting multidimensional data, i.e., zones in the inversion model that are not in
agreement with the multidimensional (2D/3D) forward model and, therefore, should not
be interpreted in a quantitative fashion. To our knowledge, such a tool has never been
presented in the scientific literature. As generating multidimensional data in a time-domain
AEM setting can be challenging, a successful, alternative approach is presented to function
with imperfect forward 2/3D modeling. This allows for more accessible, computationally
tractable computations on coarser discretizations on a single laptop with only a fraction of
the required resources for perfect modeling.

2. Method
2.1. Three Types of Forward Modeling

The forward model describes the subsurface’s response to a specific subsurface real-
ization and a specific survey set-up. There are two main common approaches: The first
is based on (semi-)analytical models that solve the (continuous) Maxwell equations for
a one-dimensional subsurface model, meaning that it assumes horizontal layers without
lateral variations. An open-source Python implementation by Werthmüller [22] neatly
implements such a forward model by Hunziker et al. [23] in a fast and reliable fashion. We
refer to this model as the low-fidelity model (LF), as it cannot account for lateral variations
in the subsurface model. The second approach is based on a discretization of the physics
on a mesh. Those simulations mimic the full 3D soil response of the potentially non-1D
subsurface and allow for multidimensional modeling. In this work, the finite volume
method from the open-source package SimPEG [10] is used. With a suitable discretization
of the geometry, an accurate magnetic field response can be obtained. In the case of perfect
forward modeling, we refer to these simulations as the high-fidelity model (HF). However,
numerical simulations are not always accurate, and the term high-fidelity should be used
with caution. If the accuracy of the simulations is limited due to the computational burden
requiring the use of a coarse mesh, the response contains a modeling error. That modeling
error is different in origin than the one introduced by only considering a one-dimensional
subsurface and depends on the discretization of the user and subsurface model. We refer to
this model as the medium-fidelity model (MF). We visualized the various types of modeling
in Figure 1.

2.2. Quasi-2D Inversion

In most geophysical inverse problems, the inversion model m consists of electrical
conductivities (EC) and fits the observed data dobs and is simple in Occam’s sense [24].
This is accomplished by minimizing an objective function:

φ(m) = φd(m) + βφm(m), (1)

where φd and φm are, respectively, the data and model misfit. β is a regularization parameter
that balances the relative importance of the two misfits.

In quasi-2D inversion, the data misfit:

φd(m) =
1
n

∣∣∣∣∣∣Wd

(
dobs −F1D(m)

)∣∣∣∣∣∣2
2

(2)
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uses a 1D approximation for the forward (LF) model F1D(m), which significantly reduces
the computation time of the inversion procedure. The model misfit φm promotes smooth
solutions [24,25].
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Figure 1. Conceptual visualization of the various forward data types used. The input is either a
multidimensional subsurface model (B,C) or a 1D subsurface model (in a moving footprint approach)
(A,D). The forward model is either a Low-Fidelity (LF) analytical forward model (with depths and
EC as input) (see A), a High-Fidelity (HF) forward simulation on an accurate mesh (B) or a Medium-
Fidelity (MF) forward simulation on an inaccurate (coarser) mesh (C,D). NOTE: the presented meshes
are illustrative and are not the ones used for multidimensional modeling. Some details on the MF
and HF mesh are described in Appendix A.

In this work, the regularization parameter β is selected via the chi-squared criterion,
meaning that an optimal inversion model fits the observed data to a noise-weighted RMS.
The diagonal matrix Wd contains the noise-levels, that is the reciprocals of the estimated
noise standard deviation and the noise floor. The latter ensures that not too much weight is
given to the last channels, as they are highly sensitive to measurement error due to their
small absolute value (in this work, the noise floor is set to 10−13). As we work with two
forward models, we distinguish two RMS errors:

ε1D =

√
1
n
∣∣∣∣Wd

(
dobs −F1D(m)

)∣∣∣∣2
2, ε2.5D =

√
1
n
∣∣∣∣Wd

(
dobs −F2.5D(m)

)∣∣∣∣2
2, (3)

where F2.5D refers to either the high- or medium-fidelity forward model, which better allow
for 2D variations on a 3D mesh. The approach could be extended without loss of generality
to a full 3D forward model, meaning that 3D variations are modeled on a 3D mesh.
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2.3. Normalized Gradient

The multidimensional sensitivity matrix or Jacobian J
(
= ∂d

∂m

)
is required to map

poorly fitting data points to specific areas of the inversion model. A high sensitivity value
signifies that a change of this parameter influences the predicted data strongly. We propose
to compute the sensitivity matrix Ji on a coarse 3D mesh with a strongly reduced mesh size
and number of cells, optimized for computing the response for one sounding and allowing
for a computation on a single laptop/desktop. This strategy combines the moving footprint
approach [15] and that of Zhang et al. [26].

With the computed data, the normalized gradient ∇̃φd,2.5D is computed as follows:

∇̃φd,2.5D =
∑i |JT

i Wd
(
dobs

i −F2.5D(m)i
)
|

∑i |JT
i |

, (4)

where i refers to a specific sounding. Note that this computation may involve an interpo-
lation step to map all data to, for example, the discretization of the recovered model. We
are mainly interested in the relative importance of each zone in the inversion model, hence
the denominator. The normalized gradient ∇̃φd,2.5D gives an indication for which model
parameters would change in a full 2D inversion, meaning that those model parameters
do not fit the data well with a multidimensional forward model. Put differently, model
parameters that would not rapidly change are likely to be fitting the data well and can be
interpreted quantitatively.

2.4. Accounting for Imperfect Modeling

The image appraisal method does not need to be used with an expensive, exact
high-fidelity forward model F2.5D. If a medium-fidelity model is used, the predicted
data F2.5D(m) for the recovered model will not fit the observed data dobs as well as
the 1D forward model F1D, which we refer to as the forced modeling error approach.
However, our method will still identify in which zone of the model multi-dimensional
effects are significant.

In this approach, the model parameters right below the sounding location are fed
as a 1D subsurface model to the imperfect 2.5D medium-fidelity forward model F2.5D.
As a result, we obtain less accurate data than with the 1D forward model F1D, but with
similar modeling errors per gate time. The normalized gradient (4) is otherwise identical,
but dobs is replaced by F2.5D(m1D), where m1D represents the 1D subsurface model per
sounding, which is generated from the recovered model. This approach is demonstrated in
Section 3.1.2.

3. Results

In this section, we apply our proposed methodology on a synthetic model and a real
field data case within a saltwater intrusion context [27], both with the time-domain AEM
data from a dual moment (LM+HM) SkyTEM instrument [28].

3.1. Synthetic Model

Any appraisal method for multidimensional effects should indicate areas in the re-
covered model that potentially do not fit the true multidimensionality of the observed
data well. Simultaneously, it should not indicate areas in the recovered model where there
appear to be no issues with data interpretation. For field data, where the true subsurface
parameters are unknown, our proposed method is difficult to validate. Therefore, a simple
subsurface model was created to demonstrate and verify the performance of our method,
before applying it to real field data in Section 3.2.
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Consider the recovered model in Figure 2B, which consists of two layers of 0.05 S/m
and 0.5 S/m, respectively. The model is selected based on the discrepancy principle
(Figure 2A), which states that the optimal value for the regularization parameter corre-
sponds to the case in which the data fits up to the noise level, i.e., φd ≈ 1 [29]. The recovered
model has a noise-weighted error ε1D of 1.02, while with the multidimensional data ε2.5D is
1.53. The latter indicates that the model does not fit the data to its noise level when an HF,
multi-dimensional forward model is used. The predicted data with the low-fidelity model
and the observed data points are presented in Figure 2C,D, where the slight discrepancy in
the late HM time channels are ascribed to the noise floor. In the recovered model, the inter-
face between both layers changes abruptly at x = 700. Near the interface, the recovered
model suggests a dipping layer and the interpretation can be erroneous without taking into
account the use of the 1D forward model for the generation of the recovered model.
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Figure 2. Quasi-2D inversion results. (A) Discrepancy principle for the selection of the optimal
regularization parameter β. (B) Recovered model. (C,D) Observed and predicted data (time-domain
electromagnetic induction data) with a 1D analytical forward model F1D.

3.1.1. Perfect Modeling Approach

The first approach compares the predicted multidimensional data (F2.5D) with the
observed data dobs. In Figure 3A,B, the green dashed line from the predicted data F2.5D(m)
clearly deviates between 600 m and 800 m from the observed data points. The individual
noise-weighted errors are also shown in Figure 3C. For some soundings between n◦30
and n◦40 in Figure 3C, where dobs = F2.5D(m), the inversion model appears to fit the
multidimensional data, which is an anticipated behavior with this kind of subsurface model
that cannot be determined objectively in a general fashion (for an unknown subsurface
model). As the sensitivity functions overlap with neighboring soundings, this poses no
problems and this alleged perfect fit will also come into the scope of the appraisal method,
which is evidently a plus.
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The normalized gradient is shown in Figure 3D, which must be considered together
with the recovered model. The larger (darker) the normalized gradient, the more likely the
interpretation in the area is incorrect. In Figure 3E,F, the recovered model is shown where
cells are left white if they are larger than a certain cut-off value, set by the user. In our
case, that is if they are larger than 20% or 50% of the maximum value in the normalized
gradient (conservative, resp. optimistic case). The user can, as it were, scroll from a max
normalized gradient to smaller values to get an indication of which areas are more/less
likely to be correct.
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Figure 3. Image appraisal with perfect forward modeling. (A,B) A discrepancy mainly near the
x = 700 m interface. (C) The individual noise-weighted errors. The first 18 gate times correspond to
the LM and the 23 last gate times to the HM. (D) The normalized gradient indicates areas near the
x = 700 m interface. (E,F) Image appraisal outcomes clearly indicate problematic areas in the region
near the ‘step’.

3.1.2. Imperfect Modeling—Approach with Forced Modeling Error

The second approach uses a medium-fidelity model to compute the 1D model response.
The model parameters right below the sounding location are used, as in the quasi-2D
inversion scheme, and extended/projected to construct horizontally stratified layers to be
used in the simulation. When using the same 2.5D forward model on the 1D model, a similar
modeling error is expected to the 2.5D data (while of course, we have used a faster and
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more accurate 1D forward model F1D throughout the inversion). Then, the obtained data
F2.5D(m1D) can be compared to F2.5D(m) to get an idea of where the multidimensionality
of the observed data is not well fitted. In Equation (4), dobs is replaced with F2.5D(m1D).
A disadvantage of this method is that the observed data is no longer used. The advantage
is that it is not required to work with (robust) selection methods to eliminate the modeling
error (which can potentially fail for poorly designed meshes).

The procedure behind the image appraisal is analogous to the previous approach in
Section 3.1.1. Contrary to the previous method, additional data is generated with the 2.5D
forward model F2.5D of the 1D version of the recovered version F2.5D(m1D). This data is
presented in Figure 4A,B as the green dashed line. It is apparent that the predicted data
F2.5D(m1D) and F2.5D(m) overlap at the horizontal parts of the recovered model, while a
deviation is observed at the transition near x = 700 m. The predicted seems to follow the
trend in the observed data well, while the exact value is quite different. This should be
ascribed to the multidimensionality of the step at x = 700 m, but the imperfect modeling of
the MF forward model. More background is provided in Appendix A and in Figure A1,
more specifically. The noise-weighted errors are no less than ε1D = 14.6 and ε2.5D = 14.7,
signalling a significant modeling error. The absolute values of the noise-weighted errors
with respect to the true observed data are shown in Figure 4C. The errors around x = 700 m
are prominent. The normalized gradient is presented in Figure 4B; it closely resembles
the normalized gradient with perfect modeling. The image is less noisy, as we are no
longer comparing with the observed data, and thus, the measurement error is lacking.
The resulting image appraisal images are presented in Figure 4C,D, and are very similar to
the results from Section 3.1.1, thereby reconfirming the interpretation made there.

To illustrate the reduction in the computational burden, for the data production for a
single sounding on the precise mesh for perfect modeling in Section 3.1.1, 1 h and 20 min
of computation time were required on 36 cores of an HPC infrastructure node (2 × 18-core
Intel Xeon Gold 6140 (Skylake @ 2.3 GHz)) and required 150 GB of RAM. The simulations
on the coarse mesh for imperfect modeling were performed in just a few seconds on a
laptop with Apple’s M1 chip and 10 cores and with negligible memory usage.

3.2. Field Data Case

The image appraisal method is applied on time-domain AEM data with the setup
described in Delsman et al. [27]. The inversion model in Figure 5 is obtained via quasi-2D
inversion. The obtained inversion model has ε1D of 0.97, while 2.9 for ε2.5D. The result
shows low values of Electrical Conductivity (EC) at shallow depths and high values of EC
between 20 m and 50 m depth, which corresponds to a saltwater lens resting on a clay layer.
There is quite some lateral variation, so this is an interesting case for our appraisal tool.

The normalized gradient ∇̃φd,2.5D for both approaches is shown in Figures 6 and 7.
In this case, one can see the effect of working with the observed data dobs and the medium
fidelity data F2.5D(m1D) well. The recovered model in Figure 5 generally fits the late gate
times less well (the broad layer around gate time n◦30 in Figure 6A), creating a relatively
present dark layer in the normalized gradient from a depth of 30 m onwards, not necessarily
due to multidimensionality issues. The perfect modeling (Figure 6) gives a more general
picture of which areas of the recovered model do not fit the observed data well, whatever
the reason (multidimensionality, misfit related to noise). The optimistic image appraisal
in Figure 6D shows that especially the fresh–saltwater interface around 600–800 m should
not be interpreted quantitatively. This is also the conclusion from the image appraisal
with imperfect modeling in Figure 7D. Here, the observed data is no longer used and one
only gets a picture of areas that do not fit the multidimensionality well (the band around
gate time n◦30 is missing in Figure 7A, while poorly fitting data points are now focused
near specific soundings). Our image appraisal analysis teaches one that multidimensional
inversion would be advised in the part from 400 to 800 m.
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Figure 4. Image appraisal with imperfect forward modeling approach. (A,B) A discrepancy mainly
near the x = 700 m interface. (C) The individual noise-weighted errors. The first 18 gate times
correspond to the LM and the 23 last gate times to the HM. (D) The normalized gradient indicates
areas near the x = 700 m interface. (E,F) Image appraisal outcomes clearly indicate problematic areas
in the region near the ‘step’.

Figure 5. Recovered model from real field data from Delsman et al. [27].

Also note that the identified areas are not only zones with sharp conductivity varia-
tions. One could argue that the user who knows the 1D approximation would be careful to
interpret in such zone, but the results illustrate that this is not sufficient. On the other hand,
the tool does not tell if a 2D inversion would result in a significantly different 2D/3D inver-
sion. It primarily indicates zones that might be sensitive to multidimensionality effects.
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Figure 6. Image appraisal on real field data with perfect forward modeling approach. The individual
noise-weighted errors in (A) include observed noise. The normalised gradient (B) for different cut-off
values are shown in (C,D).
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Figure 7. Image appraisal on real field data with imperfect forward modeling approach. The individual
noise-weighted errors in (A) do not include observed noise. The normalised gradient (B) for different
cut-off values are shown in (C,D).

4. Conclusions

We have proposed a computationally inexpensive image appraisal tool for AEM inver-
sion. It enables assessment of an inversion model obtained with a low-fidelity (approximate)
forward model for areas that are not fitting the true multidimensionality of the observed
data, because it deviates from the 1D assumption. Adding this step to any quasi-2D or
-3D method prevents one from quantitatively interpreting the problematic areas in the
inversion model. If sufficient computational resources are available, the uncertain zones
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in the recovered model can be reinterpreted with 3D inversion, instead of performing 3D
inversion on the whole dataset. Furthermore, a forced modeling approach allows computa-
tionally less demanding simulations on an imperfect discretization to identify zones for
which multidimensionality likely plays a role.

Thinking about general applications, cf. our method, the specific context of the
reader’s research will determine which of the two approaches is more desirable. If an HPC
infrastructure is available, the perfect modeling will generate more general appraisal images
(locating areas which are poorly fitting the observed data). When limited computational
resources are available, the forced modeling error approach is more feasible (only requiring
a fraction of the perfect modeling resources), focusing on multidimensionality issues only.
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Appendix A. Practical Guide for Constructing a Medium/High-Fidelity Mesh

The multidimensional data are simulated via the finite volume method, a numerical
discretization technique for representing and solving partial differential equations (here:
Maxwell equations) in the form of algebraic equations. SimPEG [10,32] is used in this
work, which is is an open-source Python package for 3D simulations on a mesh (and other
functionalities, such as inversion). As we rely on the moving footprint approach [15],
we focus on a suitable mesh that we can use for each sounding (and thus no multiple
sources and receivers on one larger mesh). A suitable mesh has smaller cell sizes in crucial
areas where the physical quantities significantly vary, e.g., right below the surface. We are
working on time-dependent problems, therefore, smaller time steps have to be considered
when the physical quantities are changing rapidly. This, in turn, depends on the electrical
conductivity (the more resistive, the faster the currents dissipate both downwards and
laterally, similar to smoke rings). A good spatial and temporal discretization should be
small at crucial stages of the underlying physics to ensure good accuracy, but should also
balance the computational burden.

https://doi.org/10.5281/zenodo.7015419
https://doi.org/10.5281/zenodo.7015876
https://github.com/WouterDls/AEM_appraisal
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Figure A1. When comparing the generated data via simulation software with an exact forward model,
one can get an indication of how to improve the mesh. In this case, where the late time channels
break down, the mesh size should be increased.

To construct a mesh, we have used the following strategy: it is a rule of thumb that
for time-domain problems, the appropriate cell sizes can be determined from the expected
diffusion distance d [33], i.e.,

d =

√
2t
µσ

, (A1)

where the relation with conductivity is apparent. Note that this expression only holds
for homogeneous halfspaces. From this quantity, we determine that the smallest cell size
should be no larger than 10% of the smallest diffusion distance and the thicknesses of the
padding should be at least three times the maximum diffusion distance. Depending on
the specifics of the survey set-up and the expected conductivities, the simulated data for a
homogeneous halfspace can be compared to an exact semi-analytical forward model [23].
For example, for a 10 mS/m halfspace, we could get the result from Figure A1. From a first
look, there is a good correspondence for the LM and the early times of the HM. Clearly,
at later times, there is a discrepancy. We exploit our understanding of the underlying
physics to resolve this issue. The breaking down at late times suggests that the physical
dimensions of the mesh are too small (the far away dissipated currents ‘do not fit’ on
the mesh). For resistive media, the currents dissipate more quickly and consequently, a
larger mesh is required. For a homogeneous halfspace of 100 mS/m, the mesh would have
been suitable.

A. B.
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Figure A2. The relative modeling error of a homogeneous halfspace for the dual moment SkyTEM set-
up, compared to the semi-analytical forward model for the Low Moment (A) and High Moment (B).

A discrepancy at early time gates indicates that the smallest cell sizes are too large.
Furthermore, a smaller time stepping could solve the problem. It is a process of trial and
error, balancing speed and accuracy.
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For our work, we have set the target of the modeling error to max. 3%, a typical
measurement noise level. This target has to hold for electrical conductivities ranging
between 10 mS/m and 1000 mS/m. The relative modeling error per time channel is shown
in Figure A2A,B. For the electrical conductivities of 10 mS/m, we abandon the target for
later times in the HM, as we will never encouter such a low conductivity for the whole
halfspace (the eddy currents will reach a higher conductive area faster than the late times
channels, and for higher conductive halfspaces, the accuracy is higher). We also abandon
the requirement for the last time channel for all conductivities, as we believe that the
additional accuracy is not worth the additional extra computational cost. This is indeed
not an issue, because the last time channel is typically close to the noise floor, for which the
inverse problem already allows for a larger data misfit.

The above rationale was used to construct the high-fidelity mesh for this work. A suit-
able mesh thus depends on the context of the problem, where setting and loosening the
targets should be carefully considered, as well as the computational burden. For the
MF, the above requirements do not hold. The mesh is spatially too small (this can be
clearly seen in Figure 4B, where the last time channel has a large discrepancy with the
observed data) and the time-stepping is not optimized. The main requirement is always
the computational practicality.

For constructing the MF mesh, we suggest to start from an HF mesh. For example,
by doubling the smallest cell size of the HF mesh and halving the mesh size. For the
time stepping, one allows larger time steps at earlier times. One keeps adjusting those
parameters until the computation time is acceptable, the user again decides on the balance
between computational burden and accuracy. The generated data and gradient will be
highly inaccurate, but this poses no problems for the identification of multidimensionality
issues: the generated data are solely compared with other data from this MF mesh (with
similar modeling errors) and the gradient will still indicate the relevant area in the inversion
mesh leading to the specific data (see, e.g., Zhang et al. [26]).

In this work, we reduced the HF mesh from Figure A3A with 1,284,795 cells to an MF
mesh with 12,760 cells in Figure A3B. The smallest cell size is 0.05-by-0.5 and 4-by-10 for
the HF and MF mesh, respectively. The spatial dimensions are also reduced: the furthest
point on the HF mesh is at 1500 m from the origin, while it is at 675 in the MF mesh.
In the HF mesh, 700 time steps are considered, while only 90 time steps are considered in
the MF mesh. The specific details of both meshes can be found in Deleersnyder [31] and
Deleersnyder et al. [34].

A. B.

Figure A3. Cross-section of the 3D meshes used in this work, indicating regions with higher cell
densities. (A) High-Fidelity (HF) mesh with 1,284,795 cells. (B) Medium-Fidelity (MF) mesh with
12,760 cells.
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