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Abstract: Grassland management practices and intensities are key factors influencing the quality
and balance of their provisioning and regulating ecosystem services. Most European temperate
grasslands are exploited through mowing, grazing, or a combination of both in relatively small
management units. Grazing and mowing can however not be considered equivalent because the first
is gradual and selective and the second is not. In this study, the aim is to differentiate grasslands in
terms of management practices and to retrieve homogeneous management units. Grasslands are
classified hierarchically, first through a pixel-based supervised classification to differentiate grazed
pastures from mown hay meadows and then through an object-based mowing detection method
to retrieve the timing and frequency of mowing events. A large field dataset was used to calibrate
and validate the method. For the classification, 18 different input feature combinations derived from
Sentinel-1 and Sentinel-2 were tested for a random forest classifier through a cross-validation scheme.
The best results were obtained based on the Leaf Area Index (LAI) times series with cubic spline
interpolation. The classification differentiated pastures (grazed) from hay meadows (mown) with
an overall accuracy of 88%. The classification is then combined with the existing parcel delineation
and high-resolution ancillary data to retrieve the homogeneous management units, which are used
for the object-based mowing detection based on the Sentinel-1 coherence and Sentinel-2 NDVI. The
mowing detection performances were increased thanks to the grassland mask, the management unit
delineation, and the exclusion of pastures, reaching a precision of 93% and a detection rate of 82%.
This hierarchical grassland classification approach allowed to differentiate three types of grasslands,
namely pastures, and meadows (including mixed practices) with an early first mowing event and
with a late first mowing event, with an overall accuracy of 79%. The grasslands could be further
differentiated by mowing frequency, resulting in five final classes.

Keywords: grasslands; management; grazing; mowing; Sentinel-1; Sentinel-2

1. Introduction

Grasslands cover about one-third of the global ice-free land surface. In Europe, they
account for approximately one-third of the utilized agricultural area. Grasslands are a key
element of our agricultural systems as they provide nearly half of the feed requirements for
global livestock production [1,2]. They also play an essential role in regulating, e.g., soil
erosion, carbon, water, and nitrogen fluxes [3–5] and are habitats for a broad range of plant
and animal species [6,7].

In land-cover maps, grasslands and other open biotopes are often embedded in one
broad land-cover class (e.g., [8–10]). However, the quality and quantity of—and the syner-
gies and trade-offs between—their provisioning and regulating ecosystem services vary
significantly depending on the grassland types, grassland-use intensity, and environmental
context [11–13]. More specifically, grasslands-use intensity has a significant impact on their
ecological value as habitats [13–18]. Furthermore, the spatial and temporal distribution of
grassland-use intensity affects the biodiversity at the landscape scale [19,20]. It is therefore

Remote Sens. 2023, 15, 181. https://doi.org/10.3390/rs15010181 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15010181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5591-1472
https://doi.org/10.3390/rs15010181
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15010181?type=check_update&version=1


Remote Sens. 2023, 15, 181 2 of 18

crucial to map and monitor grassland-use intensity to further study links and balance
trade-offs with their ecosystem services and their ecological value as habitats.

Most grasslands in temperate areas are managed through grazing, mechanical mowing,
or a combination of both for forage production. The stocking rate of grazing animals and
the timing and frequency of mowing events are major factors of grassland-use intensity.
The type and quantity of management practices are commonly used as indicators to classify
grasslands, both from an agricultural and an ecological perspective [21–23].

In recent years, with the emergence of new satellites combining a high spatial and
temporal resolution, such as the Sentinel missions, an increasing number of studies have
shown the potential of remote sensing for grassland mapping and monitoring [24,25].
Optical and radar image time series are increasingly used to discriminate grasslands
habitats [26–28] or management practices [29]. A large number of studies focus on mapping
grassland-use intensity either through image classification methods [30] or by retrieving
different factors of grassland-use intensity (e.g., mowing frequency, grazing intensity,
and/or biomass production) from image time series and auxiliary data [29,31–34]. In this
context, the most frequently used index seems to be the Normalized Difference Vegetation
Index (NDVI), followed by biophysical indices, such as the Leaf Area Index (LAI).

Lately, particular attention has been given to the detection of mowing events based
on satellite image time series. The timing and frequency of mowing events have a great
influence on grasslands provisioning and regulating ecosystem services and on biodi-
versity [35,36]. Several types of approaches have been explored. A majority of studies
use optical imagery (e.g., Sentinel-2, Landsat, MODIS, and RapidEye), detecting mowing
events through significant decreases in the NDVI, LAI, or other vegetation indices [33,37,38].
In radar remote sensing (e.g., Sentinel-1), mowing events can be detected through sudden
increases in interferometric coherence time series [39,40]. Optical imagery allows detecting
mowing events with more precision (i.e., less false positives) but with a lower detection
rate than radar because persistent cloud cover prevents the detection of some events. A few
studies, therefore, combined both optical and radar imagery, increasing the detection rate
while limiting the number of false positives. Studies combining Sentinel-1 and Sentinel-2
time series for either rule-based or deep learning mowing detection methods reached high
performances, with F1-scores between 79% and 84% [41,42].

Many mowing detection methods described in the literature are object based, relying
on existing delineations of parcel boundaries or a preliminary segmentation step [32,39–43].
This allows a spatial smoothing of the satellite signal and avoids the salt-and-pepper
effect that is inherent to pixel-based approaches [37,38,44]. One of the major drawbacks
of object-based approaches is, however, the potential heterogeneity of practices inside
declared or delineated parcels. When only one part of a parcel is mown at a given time and
the other is grazed or mown at a different time, the signal change can be smoothed out,
causing omissions.

While many studies focused on mowing detection, few have investigated the possi-
bility of monitoring grazing activities [30,32,45] and even fewer discriminate grazed and
mown grasslands [29]. Grazing has been identified as a major confounding factor to mow-
ing detection in several studies as many false mowing detections occur in pastures [40,44]
because they both result in biomass removal. However, both from an agricultural and an
ecological point of view, grazing and mowing cannot be considered equivalent manage-
ment practices because the first is selective (depending on the type of livestock), while the
second is not.

The objective of this study is to differentiate grasslands in terms of management prac-
tices at the sub-parcel level, corresponding to homogeneous management units. Grasslands
are differentiated in two hierarchical steps, combining a pixel-based and an object-based
method to account for the variability in the practices inside declared parcels.

The first step consists of detecting the main management practice at the pixel level
to differentiate pastures, managed exclusively through grazing, from hay meadows, which
are mown mechanically. This preliminary pixel-based classification approach tackles two
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main issues in grassland monitoring, namely (i) the heterogeneity of practices inside
declared parcels and (ii) grazing as a confounding factor for mowing detection.

Then, an object-based mowing detection method based on the Sentinel-1 (S1) and
Sentinel-2 (S2) time series is applied to the management units classified as hay mead-
ows to further differentiate them and to produce an exhaustive grassland management
practice classification.

2. Materials
2.1. Study Area

This study was performed on permanent grasslands in Wallonia, the southern region of
Belgium (Figure 1). Wallonia covers 16 901 km2 and around 35% of its utilized agricultural
area is occupied by permanent grasslands [46]. The majority of permanent grasslands are
managed through relatively intensive mowing, grazing, or a combination of both. Extensive
hay meadows which are exclusively mown are uncommon. In most agricultural grasslands,
exploitation (grazing or mowing) starts in mid-April. In grasslands of high biological
interest, supported by the European (EU) Common Agricultural Policy (CAP), mowing is
only allowed after the 15th of June and before the 31th of October for flowering purposes.

Figure 1. Extent of the study area (Wallonia, Belgium) and location of grassland parcels observed
during the field campaign. Orthophoto credits: Service Public de Wallonie (SPW).

2.2. Satellite Data

The grassland classification method developed in this study is based on Sentinel-1
Synthetic Aperture Radar (SAR) and Sentinel-2 multi-spectral optical time series. All S1
and S2 scenes covering the study area during the study period (April 9 to July 19 2019)
were downloaded from Copernicus Open Access Hub.

During the study period, 17 scenes were acquired by Sentinel-1 A and B in ascending
pass and 18 in descending pass over the study area (Table 1). All scenes were processed
from Single-Look Complex to Ground Range-Detected γ0 backscattering amplitudes, using
SNAP Sentinel-1 toolbox [47]. Processing steps include calibration, georeferencing, deburst,
and terrain correction. The S1 γ0 images were resampled from 15 m to 10 m, using the
nearest-neighbour method, to match the pixel size of the S2 images. Sentinel-2 A and
B acquired 17 multi-spectral images with less than 80% cloud cover over the study area
(tile 31UFR) during the study period (April 9 to July 19, 2019). The top-of-atmosphere
images (Level 1) were converted to surface reflectances (Level 2) using Sen2Cor v2.10 for
atmospheric correction. The function of mask (Fmask) method [48] was used for cloud
masking because it was shown to be more accurate than the Sen2Cor cloud masking
method [49].
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Table 1. Sentinel-1 and 2 images acquired during the study period (April 9 to July 19, 2019) and used
to compute the classification features.

Mission Max Cloud Cover Pass (S1)/Tile (S2) n Acquisitions Features

Sentinel-1 - ascending 17 VVasc, VVdesc, VHasc,
descending 18 VHdesc, ratioasc, ratiodesc

Sentinel-2 80% 31UFR 17 NDVIlinear , NDVIspline, CIrelinear,
CIrespline, LAIlinear, LAIspline

2.3. Field Data

The reference data used for training and validation were obtained through a field cam-
paign across 3 agroecological regions of Wallonia (Condroz, Fagne-Famenne, and Ardenne)
in 2019. Between the 9th of April and the 19th of July 2019, the management practices of
426 permanent grassland parcels were monitored through a windshield survey (Figure 1).
Each parcel was visited 11 times during the study period. The field visits were carried
out with intervals of 6, 12, or 18 days, with the highest frequency in May and June when
the first cuts are expected to occur and the regrowth would be relatively fast. On each
visit, the management status of each grassland parcel was recorded (‘growing’, ‘recently
cut’, ‘being cut’, ‘grazed’). Based on the observations, four classes of grasslands could be
differentiated: parcels where only grazing was observed (pastures, n = 201), grazed parcels
with at least one mowing event (mixed practices, n = 61), and parcels with no grazing
but at least one mowing event before (hay meadows (<15/06), n = 78) or after June 15th
(extensive hay meadows (≥15/06), n = 76). On 11 parcels, the management practice could
not be defined with certainty based on the field observations. These parcels were discarded
from the reference dataset.

3. Methodology

Previous studies have shown the great potential of combining Sentinel-1 and Sentinel-2
for grassland mowing detection. Because of the speckle inherent to SAR imagery, pixel-
based approaches are challenging. Therefore, studies using SAR data for mowing detection
rely on object-based approaches, averaging the signal per parcel.

However, grassland parcels, as declared by farmers in the Land Parcel Identification
System (LPIS, i.e., a vector dataset based on legal declarations by farmers in each EU country,
including parcel boundaries and crop types), often include several management units that
are not all exploited at the same time or in the same way. To illustrate, Figure 2 shows the
Sentinel-2-derived LAI time series of a grassland parcel in our study area. The parcel’s
average time series (in gray) is relatively constant, while about half of the pixel time series
(in green) significantly decreases in the middle of June. This decrease in LAI is due to a
mowing event that occurred on one part of the declared parcel, while the other part was not
mown but grazed. The two management units are also visible on the orthophoto (dashed
red line in Figure 2).

This is an issue for object-based grassland monitoring methods, such as the one devel-
oped in Sentinels for Common Agricultural Policy (Sen4CAP) [42]. Therefore, we develop
a hierarchical grassland characterization approach combining a pixel-based classification
method and an object-based mowing detection method.
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Figure 2. Leaf Area Index (LAI) time series (retrieved from Sentinel-2) extracted per pixel and per
parcel (average value) for a grassland parcel (drawn in red on the orthophoto (SPW)). The dashed
red line shows the boundary of the management units.

3.1. Pixel-Based Supervised Classification

In this phase, the aim is to differentiate grasslands in terms of main management
practice (grazing or mowing) and retrieve homogeneously managed parcels for further
characterization. A pixel-based supervised classification method is used to discriminate
exclusively grazed pastures from mown hay meadows. The hay meadows class includes
mixed practices, which are alternatively mown and grazed. Field observations were used
to build a reference dataset to train and validate a random forest classifier based on S2 and
S1 time series.

3.1.1. Input Features

Vegetation indices derived from specific spectral bands are commonly used to empha-
size certain properties of a vegetation cover, such as biomass. We made the hypothesis
that grasslands that are grazed throughout the season should have relatively constant and
stable vegetation index time series compared to grasslands with at least one mowing event
causing a sudden change in biomass [38,44]. To test the sensitivity of the classification to
the choice of vegetation index, three spectral vegetation indices and one biophysical index
derived from Sentinel-2 were considered for the classification, namely NDVI, the red-edge
chlorophyll index (CIre), and the LAI. The NDVI is computed as the normalized difference
between the near-infrared (band 8) and the red (band 4) reflectance (Equation (1)) and is
largely used for vegetation monitoring and more specifically for grassland mapping and
mowing detection [33,37,44]. The CIre is related to the increase in reflectance between the
red and near-infrared (i.e., the red edge) which is linked to biomass and chlorophyll content
of vegetation. It is calculated as the ratio between lower (band 5) and upper (band 7)
red-edge reflectance (Equation (2)). The CIre was used by Hardy et al. [34] to retrieve
grassland biomass.

NDVI =
Band 8 − Band 4
Band 8 + Band 4

(1)

CIre =
Band 7
Band 5

− 1 (2)

The LAI was retrieved from Sentinel-2 reflectances through the calibrated artificial
neural network from the BV-NET tool [50], which is implemented in several European
Space Agency (ESA) agricultural monitoring toolboxes (e.g., Sen2Agri, Sen4CAP).

To fill gaps due to cloud cover, the S2 vegetation index time series were temporally
interpolated using the Image Time-Series Gap Filling tool [51] available in Orfeo Tool-
box [52]. As we intend to apply this classification to a larger area, the time series were
temporally resampled to a 5-day grid, starting at the first acquisition date, to overcome
the multiple-day offset between adjacent satellite tracks [53]. Both linear and cubic spline
interpolations were tested for the three indices. A total of 6 different S2 feature sets were
thereby tested as input features for the random forest classifier (Table 1).

Microwave data guarantee regular temporal coverage and can provide complementary
information to optical data. The complementarity of Sentinel-1 and Sentinel-2 was shown
in the context of grassland mowing detection [41,42]. Therefore, we tested the classification
with microwave time series alone and in combination with Sentinel-2 data. Sentinel-1 γ0
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backscattering amplitudes in VV and VH polarization and the ratio VV/VH were used as
input features. Ascending and descending pass acquisitions were made at different times
of the day and with different look angles. Because radar signal is strongly impacted by
water content, morning acquisitions are significantly affected by dew and vegetation water
content. Each polarization was therefore tested in ascending (e.g., VVasc) and descending
(e.g., VVdesc) pass separately. A total of 6 different S1 feature sets were thereby tested as
input for the classification (Table 1).

In addition, to assess the complementarity of S1 and S2 for differentiating pastures
and hay meadows, the best-performing S2 feature set was tested in combination with the
best-performing S1 feature as well as the respective time-series minimum (min), maximum
(max), mean (mean), and median (median) values and all statistics together (stats). A total
of 6 different S1 and S2 feature combinations were thereby tested.

3.1.2. Classification Mask

The classification mask was built by combining and resampling a grassland mask and
a shadow mask (Figure 3).

The grassland mask was obtained by reclassifying the 2 m resolution land-cover
product of LifeWatch [54]. Two grassland classes, namely “Monospecific grassland with
graminoids” and “Diversified grassland and shrubland”, were taken into account.

The shadow mask was based on a digital surface model (DSM) (Figure 4). The DSM
of Wallonia is a product of the orthophoto acquisition campaign of 2019 (Service Public
de Wallonie, SPW). Shadow projections were computed with 2 m resolution based on the
object heights from the DSM and a sun azimuth and elevation of 146◦and 38◦, respectively.

The combined grassland and shadow mask was resampled to 10m to match Sentinel-2
pixels. A minimum rule was applied for the resampling to take only pure pixels into
account for the classification, with 100% grassland and no shadow.

Figure 3. Classification mask flowchart. The mask was built using the two grassland classes of
the LifeWatch land-cover product and shadow projections based on a digital surface model (DSM).
The mask was resampled to 10m to match the pixel size of Sentinel-2.

Figure 4. (a) Orthophoto (SPW) with tree shadows in a grassland, (b) digital surface model (DSM,
credits SPW) showing the elevation of the top of objects above the ellipsoid, and (c) projected shadows
based on the DSM with given sun angles.

This mask allows to classify only pure grassland pixels and discard pixels that are
influenced by shadows or trees (Figure 5). The LAI time series of masked pixels (in gray on
Figure 5) consistently differ from the valid pixels (in green on Figure 5). The majority of
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masked pixels in this example are mostly influenced by shadow, which manifests in lower
LAI values throughout the season. A few masked pixels are influenced mostly by trees and
shrubs and have higher LAI values compared to valid grassland pixels.

Figure 5. Leaf Area Index (LAI) time series (retrieved from Sentinel-2) extracted per valid (green)
and masked (gray) pixel for a grassland parcel (drawn in red on the orthophoto (SPW)).

3.1.3. Reference Data

Based on the field observations, the observed parcels could be classified into two cate-
gories: pastures, which were exclusively grazed during the study period, and hay meadows
on which at least one mowing event was observed. The reference parcels were redrawn
manually, based on the LPIS, the grassland mask, and the Walloon orthophoto of 2019
(SPW) to obtain homogeneous reference parcels. When two or more management units
could be differentiated inside one declared parcel, only the management units closest to
the road were considered to be matching the field observation.

During the redrawing, 5 parcels were discarded because they contained no valid
pixels due to shadow. In total, the reference dataset contained 412 parcels (194 pastures and
218 hay meadows). They were equally partitioned into a training and a validation dataset
through stratified random sampling. The training dataset was used to train, calibrate, and
compare the classification methods through cross-validation. The validation dataset was
used to validate the final product.

3.1.4. Cross-Validation

Different classifiers were evaluated and compared through a 4-fold cross-validation
scheme. The training dataset was split into 4 subsets to keep a reasonable number of
samples for the validation at each iteration. The classifiers were compared based on the
mean overall accuracy (OA) and its standard deviation. The best-performing classifier
was then trained using the whole training dataset. The resulting classification was then
validated with the validation dataset. The user and producer accuracy (UA and PA) of both
classes were also computed in addition to the overall accuracy.

Both during the cross-validation and the final validation, we applied a per-pixel wall-
to-wall validation, assessing each pixel inside each redrawn homogeneous reference parcel.

3.2. Object-Based Mowing Detection

The pixel-based classification obtained in the first step was used in combination with
the LPIS to obtain homogeneous parcels for an object-based mowing detection using the
Sen4CAP toolbox v3.0 [55].

3.2.1. Classification Post-Processing

The following steps were applied to obtain homogeneous management unit polygons
based on the classification and the LPIS.

1. The classification is filtered to remove isolated pixels: a pixel value is changed to the
other class if there are less than 4 pixels of the same class in a 3 × 3 window around
the pixel.
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2. All parcels declared as grasslands (temporary or permanent) are extracted from
the LPIS.

3. The LPIS grassland polygons are rasterized at 10 m resolution using the parcel unique
feature IDs (between 1 and 999,999) as raster values.

4. The binary classification is multiplied by 106 and summed up to the values rasterized
LPIS. This combined raster carries information about the management class (pastures
vs. hay meadows) and the LPIS parcel delineation.

5. The combined raster is polygonized.
6. No-data polygons (i.e., covering masked areas) and polygons with an area smaller

than 1000 m2 (10 pixels) are discarded.

3.2.2. Mowing Detection Method

The mowing detection method of Sen4CAP is based on two separate algorithms
detecting changes in Sentinel-2 and Sentinel-1 time series extracted per parcel (Figure 6).
The detailed method is described in De Vroey et al. [42].

The S1 algorithm detects significant increases in VH interferometric coherence by
comparing each value coh(t) to the previous value coh_ f it(t − 1) obtained by linear fit of
the six previous values [coh(t − 6), ..., coh(t − 1)]. The detection is based on a Constant
False Alarm Rate (CFAR) adaptive threshold (3.0 × 10−7 × σ) that takes into account the
standard deviation of the residual fitting errors (σ). The S2 algorithm detects a mowing
event when the decrease in NDVI between two consecutive cloud-free acquisitions is larger
than a given threshold, fixed at 0.12 for this region [42].

A confidence level is computed for each detection, with lower values for S1 than
for S2 to compensate for the lower precision of S1 mowing detection. For each parcel,
the four most confident detections are retained. For each detection, the detection interval is
given along with the confidence level and the data source (S1, S2, or both). The confidence
levels of the detections range from 0 to 1 and are well correlated to the precision of the
detections [42].

Figure 6. Illustration of the mowing detection algorithms of the Sen4CAP toolbox, based on Sentinel-1
VH coherence and Sentinel-2 NDVI time series extracted on a permanent grassland parcel.

3.2.3. Validation

The mowing detection performances were assessed at two levels. First, the actual
detection of each single mowing event was validated. Second, the further classification of
hay meadows, based on the mowing detections, was validated.

In the first case, the mowing detections were validated by crossing the detection
intervals with reference intervals. Reference mowing intervals were retrieved from the
observations made during the field campaign. A reference mowing interval consists of the
time interval between an observation of short grass and the previous observation of high
grass. When a detection interval intersects a reference mowing interval, it is considered
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as a true positive (TP). If no reference mowing interval overlaps a detection, it is a false
positive (FP), and if no detection overlaps a reference mowing interval, it is counted as a
false negative (FN). The remaining intervals are true negatives (TN).

Two quality metrics, namely the precision and the detection rate, are calculated using
Equations (3) and (4).

precision =
TP

TP + FP
(3)

detection rate =
TP

TP + FN
(4)

In the second case, the accuracy of the differentiation between hay meadows with an
early first mowing event and a late first mowing event was validated through a confusion
matrix and related quality metrics (UA, PA, and OA).

The calibration reference dataset was used to define the optimal confidence level
thresholds and maximize the accuracy of the management practice classification. The vali-
dation dataset was then used to assess the result.

Here as well, to stay consistent with the previous classification validation, a per-pixel
wall-to-wall validation was applied.

4. Results
4.1. Classification Algorithm Calibration

The results of the random forest classifier calibration with the different feature sets
are shown in Tables 2–4. For each tested feature set, the mean overall accuracy (mean OA)
and its standard deviation (std OA) over the four iterations of the cross-validation scheme
are given.

Table 2 shows the calibration results for the Sentinel-2 feature sets. The highest mean
OA is 88.4% obtained with LAIspline and the lowest is 85.7% obtained with NDVIlinear.
For all three indices, the cubic spline interpolation seems to result in slightly better perfor-
mances than the linear interpolation. Given the standard deviation of the OA, ranging from
2.6% to 5.3%, the differences in the OA between the feature sets are however relatively low.

Table 3 shows the calibration results for the Sentinel-1 feature sets. The highest mean
OA is obtained with the VV polarization, both in the ascending (71.3%) and descending
pass (68.5%). The lowest performances are obtained with the VV/VH ratio in both passes
(60.3% and 57.7% OA). The performances are overall significantly lower than with the S2
features. Moreover, the standard deviations of the OA over the iterations are higher (4.6%
to 8.7%), showing a higher sensitivity of the algorithm to the training dataset.

Finally, Table 4 shows the results of the combined S2 and S1 feature sets. The best-
performing S2 feature time series (LAIspline) was combined with the best-performing S1
feature (VVasc) to test if they improve the classification performances. The last column
(delta OA) shows the change in the mean OA compared to the use of the S2 LAIspline
time series alone. The addition of the VVasc time series to LAIspline improves the mean
OA by 0.2%. The VVasc temporal statistics all result in a small decrease in performance,
from −0.1% with max(VVasc) to −1.1% with min(VVasc). Overall, the differences in the
mean OA and std OA are extremely small compared to those of S2 LAIspline alone.

The calibration results suggest that the three tested S2 vegetation index time series
allow differentiating pastures from other grasslands with high accuracy. The S1 γ0 backscat-
tering amplitude time series however performed lower. Moreover, the combination of the
S1 VVasc time series or temporal statistics to S2 features did not significantly improve the
classification accuracy. For a further analysis, we used the S2 LAI time series with cubic
spline interpolation because it provided the highest mean OA of the S2 features.
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Table 2. Classification algorithm calibration results with the Sentinel-2 features. For each feature time
series, the mean overall accuracy (mean OA) and its standard deviation (std OA) over the 4 iterations
of the cross-validation scheme are given.

S2 Features Mean OA Std OA

LAIspline 88.4% 3.5%
CIrespline 87.3% 3.0%
LAIlinear 87.0% 3.7%
CIrelinear 86.9% 4.8%
NDVIspline 86.3% 2.6%
NDVIlinear 85.7% 5.3%

Table 3. Classification algorithm calibration results with the Sentinel-1 features. For each feature time
series, the mean overall accuracy (mean OA) and its standard deviation (std OA) over the 4 iterations
of the cross-validation scheme are given.

S1 Features Mean OA Std OA

VVasc 71.3% 6.5%
VVdesc 68.5% 8.7%
VHdesc 67.3% 7.1%
VHasc 67.0% 4.7%
ratioasc 60.3% 4.6%
ratiodesc 57.7% 5.2%

Table 4. Classification algorithm calibration results with the combined S1 and S2 features. For each
feature time series, the mean overall accuracy (mean OA) and its standard deviation (std OA) over
the 4 iterations of the cross-validation scheme are given. The change in OA compared to the use of S2
LAIspline (delta OA) is provided in the last column.

S2 Feature S1 Features Mean OA Std OA Delta OA

VVasc 88.6% 3.0% +0.2%
max(VVasc) 88.3% 3.6% −0.1%

LAIspline mean(VVasc) 88.2% 3.8% −0.3%
(OA = 88.4%) stats(VVasc) 87.9% 3.0% −0.5%

median(VVasc) 87.6% 3.7% −0.9%
min(VVasc) 87.3% 4.1% −1.1%

4.2. Classification Validation and Post-Processing

Based on the results of the calibration, a random forest classifier was trained using the
whole training dataset (n = 208) and applied to the Sentinel-2 LAI time series with spline
interpolation. The resulting classification is shown in Figure 7. Visually, the classification
seems relatively accurate in separating pastures from hay meadows. In some parcels, there
is however a salt-and-pepper effect due to the pixel-based approach. The classification
was quantitatively validated using the remaining half of the reference dataset (Table 5).
The overall accuracy is 88%, which is very close to the OA obtained during the calibration
(88.4%). The user and producer accuracies are also high and well-balanced. The UA is 88%
for both classes. The PA is 91% for the pastures and 85% for the hay meadows.

To assess the added value of masking out pixels containing non-grassland elements
(e.g., trees or buildings) or shadows, the same classifier was applied using only the grass-
land parcels from the LPIS as a classification mask. The OA of this classification is 87%,
which is 1% lower than when using high-resolution products (land cover and DSM) to
build a strict classification mask. In the examples in Figure 8, the classification without
the LC and shadow mask shows some commission errors due to the trees and shadows
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inside the parcels, while these pixels are masked out when using high-resolution products.
The impact on the OA is small because only a limited number of pixels are involved.

Table 5. Validation of the grassland management types classification. Confusion matrix, user,
producer, and overall accuracy (UA, PA, and OA) between reference (ref) and predicted (pred) types.

Ref\Pred Pastures Hay Meadows PA UA

Pastures 24267 2516 91% 88%
Hay Meadows 3277 18843 85% 88%

0A 88%

Figure 7. Pixel-based classification based on Sentinel-2 LAI time series differentiating pastures
(exclusively grazed) from hay meadows (including mixed practices).

Figure 8. Comparison of the classification obtained with and without the land cover (LC) and shadow
mask derived from very high resolution data.

The obtained classification was post-processed to obtain homogeneous grassland
management units with a single management practice. The removal of isolated pixels (cf.
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Section 3.2) allowed to significantly reduce the salt-and-pepper effect (Figure 9b). The fil-
tered raster was then crossed with the LPIS raster and polygonized. The polygons smaller
than 1000 m2 (10 pixels) were removed to obtain clean homogeneous grassland parcels for
the object-based mowing detection (Figure 9c). From the 20,796 grassland parcels declared
in the LPIS in the study area, 21% contained both pasture and hay meadow management
units. Furthermore, 10% of the remaining parcels contained multiple management units
with the same practice (mowing or grazing). In total, 31,230 homogeneous grassland parcels
were delineated through the classification in the study area.

Figure 9. Post-processing of the raw classification result (a). Filtered to remove isolated pixels (b),
polygonized and cleaned to remove small parcels (c).

4.3. Mowing Detection Calibration and Validation

The object-based grassland mowing detection method of the Sen4CAP toolbox was
applied to the polygons that were classified as hay meadows. The mowing detections
between April 9th and July 19th were validated with the reference mowing intervals from
the calibration reference dataset. The obtained precision is 83% and the detection rate is 73%.

Based on the date of the first mowing event (before or after June 15th), two classes of
mown grasslands could be differentiated: early and late. The confusion matrix and accuracy
metrics computed with the calibration reference dataset are given in Table 6. When all the
detections are taken into account (minimum confidence level (min(con f )) = 0.0), the OA
is 61%. More than half of the late grasslands are incorrectly classified as early (PA = 45%),
and the UA of the early grasslands is only 51%. This is due to false detections occurring
before 15/06.

The confidence level was used to filter out early false positives. With a min(con f ) of
0.5 for the detections before 15/06 and 0.4 for the detections on or after 15/06, the PA of
the late grasslands and the UA of the early grasslands are significantly higher (74% and
62%, resp.). There are more omissions of early mowing events, reducing the PA of the early
grasslands (57%) and the UA of the late grasslands (75%). However, the performances are
more balanced, and the overall accuracy is higher (67%). This adaptive min(con f ) was
therefore retained for further grassland characterization.

Table 6. Calibration of the minimum mowing detection confidence level (min(con f )). Confusion
matrices crossing the first mowing event classes (before (early) or after June 15th (late)) based on field
observations (ref) and mowing detection (pred) for different min(con f ) of detections. The user and
producer accuracies (UA and PA) are provided as well as the overall accuracy (OA).

min(con f ) = 0.0 min(con f ) = 0.5 (<15/06), 0.4 (≥15/06)
ref\pred early late no activity PA ref\pred early late no activity PA
early 6994 1262 124 83% early 4744 3033 603 57%
late 6389 5545 326 45% late 2871 9063 326 74%
UA 51% 81% OA 61% UA 62% 75% OA 67%

The Sen4CAP mowing detection on the hay meadows (with the adaptive min(con f ))
was finally validated with the independent validation reference dataset. The estimated



Remote Sens. 2023, 15, 181 13 of 18

precision of the detections is 93%, and the detection rate is 82%. According to the validation
dataset, the grasslands with late and early first mowing events were differentiated with an
overall accuracy of 75%.

4.4. Hierarchical Classification of Management Practices

Based on the previous results, we can expect that the classification and mowing
detection allow to hierarchically differentiate three grassland management practices with
high accuracy. First, pastures are differentiated from hay meadows through the classification.
Then, the hay meadows can be further differentiated by the first mowing date (before or
after June 15th). This hierarchical classification was validated using the validation reference
dataset (Table 7). The overall accuracy is 79%. The UA and PA of the pasture class (resp.,
89% and 91%) are slightly improved compared to the raw pixel-based classification (Table 5),
thanks to the post-processing. The UA and PA of the hay meadows with an early (resp.,
65% and 54%) and a late (resp., 70% and 72%) first mowing are lower due to the confusion
between both sub-classes.

Table 7. Validation of the hierarchical grassland typology. Confusion matrices crossing the main
management practice classes (pastures and hay meadows) and the first mowing event classes (before
(early) or after June 15th (late)) based on field observations (ref) and on the classification and mowing
detection (pred). The user and producer accuracies (UA and PA) are provided as well as the overall
accuracy (OA).

Hay MeadowsRef\Pred Pastures Early Late No Activity PA

Pastures 24224 492 1397 398 91%
Hay Meadows early 1523 4846 2588 64 54%

late 1587 2082 9255 0 72%
UA 89% 65% 70% OA 79%

In addition to the first mowing date, hay meadows can be differentiated by the number
of mowing events in the growing season. The hay meadows with an early first mowing
(<15/06) were further split into grasslands with less than three mowing events (n < 3) and
three events or more (n ≥ 3), while those with a late first mowing (≥15/06) were further
split into grasslands with only one mowing event (n = 1) and two events or more (n ≥ 2).
These final grassland classes are mapped in Figure 10.

Figure 10. Grassland management practice classification. This hierarchical classification is based
on the classification differentiating pastures from hay meadows and the mowing detection which
further differentiates the second class by the date of the first mowing and by the number of mowing
events (n).
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5. Discussion
5.1. Classification and Mowing Detection Performances

One of the main motivations behind the binary classification developed in this study
was to be able to exclude pastures for the subsequent mowing detection. In previous
studies, grazed parcels were either not taken into account [41] or shown to be a confounding
factor for mowing detection [38,42,44]. Precise information on the management practice of
grasslands (i.e., mowing or grazing) is however rarely available. Using a large field dataset,
we showed that this information could be retrieved with high accuracy from Sentinel-2
vegetation index time series. This corroborates the hypothesis that grazed grasslands
can be distinguished from mown grasslands based on their relatively constant temporal
vegetation index profiles. The LAI had already been identified as a relevant variable to
discriminate grazed and mown grasslands in a study using three SPOT images [56]. The
LAI retrieved from S2 with the BV-NET tool [50] was shown to be fit to the purpose of this
study. It would however still need to be validated for the absolute retrieval of the LAI in
temperate agricultural grasslands.

In this study, the three tested vegetation indices derived from Sentinel-2 (the NDVI,
CIre, and LAI) performed similarly, and the random forest classifiers all reached a high
overall accuracy. The performances obtained with the Sentinel-1 backscattering time
series were much lower. This can mainly be explained by the speckle effect inherent
to SAR imagery that makes a pixel-based analysis challenging without any spatial or
temporal smoothing. The addition of the Sentinel-1 backscattering temporal statistics to the
Sentinel-2 input features did not significantly improve the classification results. Sentinel-1
was therefore discarded for the classification step. The LAI time series with cubic spline
interpolation was retained for a further analysis because it performed slightly better, but the
NDVI and the CIre could be used as well because the differences in the performances were
not statistically significant.

Another related aim of this pixel-based classification was to tackle the issue of grass-
land parcel delineation, raised in previous studies [41,42] and illustrated in Figure 2.
In datasets such as the LPIS, parcel delineations often include several management units
that are managed differently or at different times. The binary classification and the post-
processing, including a filtering step to remove isolated pixels, allowed to retrieve more
homogeneously managed grassland patches at the management units level.

Next to the heterogeneity of practices, delineated grassland parcels can also include
hedges, trees, and buildings with different spectral signatures that can hinder the clas-
sification. Thanks to the 2 m resolution land-cover product that was used to build the
grassland mask, the 10 m pixels with less than 100% grassland cover could be masked
out. In optical remote sensing, shadows can also be a significant issue. A shadow mask,
estimated through a DSM, was therefore added to the grassland mask to further optimize
the classification performances. Overall, the availability of very high resolution products
such as the land-cover map, the orthophoto, and the DSM was a great asset. Very high
resolution data and products are increasingly available and could be used to build similar
grassland masks and reproduce the classification over larger areas.

The operational object-based mowing detection method of the Sen4CAP toolbox was
applied to the homogeneous patches of the hay meadows retrieved from the classification.
According to the validation reference dataset, the method reached a precision of 93% and a
detection rate of 82%. These detection performances are much higher than those obtained on
the same grasslands without the preliminary classification, especially in terms of precision.
The precision was only 44% when the pastures were taken into account due to false mowing
detections on grazed grasslands [42]. The exclusion of pastures thanks to the classification
was of course a major factor in this increased performance. However, even compared to
the precision we obtained in De Vroey et al. [42] on hay meadows alone (73%), the present
results show a significant improvement. This implies that the homogeneity of practices and
the absence of trees and shadows inside the reshaped grassland parcels also contributed to
the high mowing detection accuracy. In addition, the wall-to-wall pixel-based validation
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applied in this study could also explain the higher performance metrics because the size
of the parcels was not taken into account in the validation in the previous study [42].
The mowing detection performances obtained here are also slightly higher than those
obtained with a deep learning approach combining Sentinel-1, Sentinel-2, and Landsat-8 in
a convolutional neural network with a maximum precision of 86% and a detection rate of
82% [41].

While this method showed high performances in our study area in the 2019 growing
season, it should be further tested in more extended areas and other seasons. For example,
the effects of drought on vegetation could significantly alter the vegetation index time
series and thereby represent a challenge for classification and mowing detection.

5.2. Grassland Typology and Perspectives

Previously, a few studies have considered the classification of grassland management
practices and intensities through remote sensing, showing promising results but often lack-
ing sufficient representative ground truth data for validation. Using a supervised classifica-
tion algorithm on RapidEye imagery and a rule-based method to estimate the first mowing
date, Franke et al. [30] classified four types of grassland (semi-natural, extensive, intensive,
and tilled) with high accuracy on a small study area in Germany. The red-edge vegeta-
tion index derived from five RapidEye images was used by Gómez Giménez et al. [32]
to retrieve a grassland-use intensity index based on the individual estimation of three
factors (mowing, grazing, and fertilization intensity). They obtained promising results
for the estimation of grazing and mowing intensities but lacked actual ground truth data
for validation.

In this study, the hierarchical categorization based on the classification and the mowing
detection allowed to differentiate five types of grassland based on the main management
practice (grazing or mowing), the date of the first mowing event, and the mowing frequency.
Thanks to the large and regionally representative field dataset, we showed that three classes
(pastures, meadows with an early first mowing event, and a late first mowing event) could
be differentiated with 79% overall accuracy. The mowing frequency estimation could not be
validated because the field campaign was only carried out between April 9th and July 19th,
while mowing events occur until the end of October. However, given the high detection
accuracy obtained during the study period, we make the hypothesis that the detections
remain relatively accurate throughout the season.

While hay meadows could be further differentiated through the mowing detection,
pastures were not further categorized. In a recent study with a similar hierarchical catego-
rization approach, pastures and mown grasslands were differentiated based on biomass
productivity and both classes were then subdivided into three management levels based
on the exploitation (i.e., harvest) frequency [29]. Both the biomass productivity and the
exploitation frequency were retrieved through the detection of significant drops in Landsat
NDVI time series, considering the cumulative change and the count of drops, respectively.
While this approach showed consistent results with regional statistics and georeferenced
land-use data, the land-use intensity levels of both classes could not be validated due to a
lack of ground truth data. Moreover, the timing of the first exploitation activity should be
considered in addition to the exploitation frequency as it is a major factor of grassland-use
intensity and has an influence on their ecological value [57,58].

We showed that the retrieval of homogeneously managed grassland patches and the
identification of pastures greatly improved the precision of the mowing detection and
allowed to classify five grassland types with high accuracy. These management units
could further serve as a baseline to retrieve other grassland characteristics and study their
relationships with biodiversity and ecology. The method developed in this study should be
further tested in different conditions to be able to extend it over larger areas and transfer it
to other seasons to classify grasslands at the landscape level [58,59] and study inter-annual
variations [20] to contribute to ecological habitat monitoring.



Remote Sens. 2023, 15, 181 16 of 18

6. Conclusions

Several studies have shown the great potential of remote sensing for grassland mon-
itoring. In particular, the most recent developments in automated mowing detection
methods allow estimating mowing dates and frequencies with high accuracy. In this study,
we built on previous achievements to produce a thematically improved grassland classi-
fication, differentiating five management classes. First, a pixel-based classification using
LAI time series differentiated pastures from hay meadows with an overall accuracy of 88%.
An object-based mowing detection method using the Sentinel-1 coherence and Sentinel-2
NDVI was then applied to further differentiate hay meadows by the timing and frequency
of the mowing events. The pixel-based approach and the strict grassland mask built for the
classification allowed to retrieve homogeneous grassland management units. Moreover,
the preliminary identification of grazed grasslands reduced the number of false positives
due to the confusion between the grazing and mowing activities during the mowing de-
tection. The hierarchical classification method differentiated pastures and the meadows
with an early first mowing event and a late first mowing event with an overall accuracy
of 79%. The retrieved management practices could be combined with other factors and
environmental context for further grassland characterization to contribute to ecological
habitat monitoring.
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