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EXECUTIVE SUMMARY

This document provides an overview of predictive capacity over the Arctic and mid-
latitudes  of  current  state-of-the-art  prediction  systems  ranging  from  numerical
weather prediction (NWP) to seasonal time scales.

The  assessment  is  mainly  based  on  forecasting  systems  and  climate  models
contributing  to  the  APPLICATE  project.  This  deliverable  therefore  provides  a
thorough  evaluation  of  the  forecast  models  included  in  the  WP5  stream  1
experiments,  and a baseline for future improvements to current systems resulting
from developments in the framework of the project.

Beyond commonly used verification metrics for the evaluation of weather and climate
predictions, illustrations of current systems predictive capacity are shown by focusing
on specific phenomena and case studies (e.g. extreme rainfall on Svalbard). With the
perspective of providing useful and reliable forecasts for potential end-users, some
skill evaluations on more user-relevant metrics were included.

Results  on  the  weather  prediction  time  scales  show  the  impact  of  horizontal
resolution in better representing precipitation extremes, although some weaknesses
remain in a 2.5 km resolution configuration for the Svalbard case study examined in
this  deliverable.  More generally,  high resolution  limited  area models  show added
value  with  respect  to  global  models  depending  on  the  parameter  and  region  of
interest.

At the medium range (5 days), the evaluation of the European Centre for Medium-
range Weather  Forecasts  (ECMWF)  forecasts  over  1990-present  for  geopotential
height at 500 hPa shows that these have been steadily improving over the Arctic, at
the same rate as the Northern Hemisphere in general. Skill and biases are found to
vary according to the region and season of interest.

Seasonal  re-forecasts over a common 1993-2014 period were evaluated for both
atmospheric and sea ice concentration fields. The skill of the systems is quite limited,
consistent with previous works. For sea ice, forecast performance for boreal summer
seems to depend quite strongly on systematic errors which appear in some systems
from  the  initialization  time  step.  This  deliverable  also  presents  results  from  a
statistical forecasting framework, using HighResMIP model simulations to evaluate
lagged predictability of sea ice volume with sea ice volume and area as predictors. It
appears from the results presented that sea ice area does not add much additional
predictability to the information provided by sea ice volume.
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1. INTRODUCTION

1.1 Background and objectives

This  deliverable  provides  a  comprehensive  overview  of  current  prediction  capabilities  in
state-of-the-art weather and climate forecasting models. The report synthesizes findings from
the analysis of operational systems as well as the first stream of experiments performed in
the first 18 months of the APPLICATE project (stream 1, see deliverable 5.1).

The content of this deliverable results from work led in task 5.2, which aims to assess several
aspects of the quality of forecasting systems existing at the start of the APPLICATE project.
Results  presented  in  this  deliverable  will  serve  as  a  baseline  for  testing  improved
performance of the systems developed during the second phase of the project, building on
work led in WP2 as well as in task 5.3.

1.2 Organisation of this report

Rather than presenting an exhaustive list of scores for numerous atmospheric and sea ice
variables, this report focuses on some key aspects of forecast quality, working from the local
and numerical  weather  prediction  scales  to  the regional  and global  scale  for  the  longer
ranges.

The report is organised as follows: part 2 provides detailed information on the methodology
used,  including  the models,  reference data,  and skill  metrics  chosen.  Part  3  presents a
detailed analysis of forecast quality at different time ranges for representing extreme rainfall
events  over  Svalbard.  We  then  take  a  step  back  and  present  indicators  of  model
performance at the regional level (Arctic and/or Northern Hemisphere midlatitudes), for both
the medium range (part 4) and the seasonal time scales (part 5). Part 5 also incorporates
results on statistical  prediction of sea ice volume based on HighResMIP simulations.  We
summarize key points in a conclusions section (part 6).

2. METHODOLOGY

2.1. Model and reference data

NWP and medium-range forecasts

AROME Arctic (AA) is a limited area NWP model in operational use for northern Norway, the
Svalbard region and the Barents Sea (blue frame in Figure 4.2.1) operated by the Norwegian
Meteorological Institute (MET Norway). The model is based on the High Resolution Limited
Area  Model  (HIRLAM)–ALADIN  Research  on  Mesoscale  Operational  NWP  in  Europe
(HARMONIE) AROME configuration (Bengtsson et al. 2017). AA use a 3D-var assimilation
scheme for upper air and optimal interpolation for surface analysis. The model has 2.5km
horizontal grid spacing and 65 vertical levels. As AA is not a global model it uses ECMWF
high-resolution forecasts (see below) as lateral boundary conditions (more details are found
in Müller et al., 2017). Analysis of several years of AA forecasts contributes to “Multi-Scale
predictions of extremes: Rainfall Svalbard” (section 3.1, 3.3) and “Evaluation of short- and
medium-range forecast over the Arctic (section 4.2).
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ECMWF produces global  forecasts aimed at  medium-range through to sub-seasonal  and
seasonal  scales.  The deterministic  high-resolution  forecast  (HRES hereafter)  uses 9  km
horizontal resolution and 137 vertical levels (of which 20 are below 1000 metres) and runs
twice a day out  to a lead time of  10 days.  The ensemble (ENS) uses 18 km horizontal
resolution and 91 vertical levels and runs out to 15 days twice a day. Twice a week (Monday
and Thursday)  the  ensemble  forecasts  are  extended  to  45 days at  36 km resolution  to
provide forecasts on the sub-seasonal time scale. Once a month, seasonal forecasts are
produced  with  7-month  lead  time  using  ECMWF  SEAS5  system.  The  atmospheric
component of the forecasting system is the ECMWF Integrated Forecasting System (IFS)
model  (https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-
model/ifs-documentation). Since June 2018, all systems are coupled to the Nemo (Nucleus
for European Modelling of the Ocean) ocean model with 0.25 degree resolution (in June
2018  HRES  became coupled,  before  only  ENS  and  SEAS5  were  coupled).  The  ocean
coupling is described in Mogensen et al. (2017) and references therein.

The initial conditions are created separately for the atmosphere and ocean. The atmospheric
initial  conditions are produced with a 4-dimensional  variational  data assimilation (4D-Var,
Rabier et. al, 2000). To provide background error statistics a 25-member ensemble of 4D-Var
assimilations (EDA) is run with a lower (18 km) resolution (Bonavita et al., 2012). The EDA
members are also used to initialise the ensemble forecast (see below).  The ocean initial
conditions are provided by the ECMWF OCEAN5 operational 3-dimensional variational data
assimilation system (Zuo et al., 2018).

Ensemble  forecasts  are  run  with  the  aim  of  estimating  range  of  possible  future  states
(Leutbecher  and  Palmer,  2008).  At  ECMWF,  the  ensemble  consists  of  50  perturbed
forecasts  and  1  unperturbed  member  with  the  same  resolution  (control  member).  The
ensemble is generated by applying initial perturbations based on a combination of EDA and
singular  vector  perturbations  and  model  uncertainties  represented  by  the  Stochastically
Perturbed Parametrization Tendency scheme and the Stochastic Kinetic Energy Backscatter
scheme (SPPT and SKEB, see Leutbecher et al.(2017) for details). 

Seasonal re-forecasts

Table  2.1  presents  information  on  the  seasonal  re-forecasts  evaluated  in  this  study  (in
section  5).  The  following  paragraphs  provide  more  detailed  information  on  the  different
coupled models.

CNRM-CM6-1 is the global coupled model developed by CNRM and CERFACS for CMIP6
(Voldoire et al. 2018). The coupled model uses ARPEGE-Climate v6.3 for the atmosphere
and NEMO3.6 -  GELATOv6 for  the ocean and sea ice.  The land surface component  is
SURFEXv8.  Coupling  between  atmosphere/land  and  ocean  is  called  in  the  SURFEX
interface using the OASIS-MCT code. This global coupled model (GCM) was used to run
seasonal  re-forecast  experiments initialized  in  May and November  1993-2014 as  part  of
APPLICATE stream 1 (see Deliverable 5.1). 

EC-Earth3.2 is based on the ECMWF's atmospheric circulation model IFS, cycle 36r4 and
the land surface model H-Tessel. The ocean component is a recent version of the ocean
model NEMO3.6 and the sea-ice model is a recent version of the Louvain-la-Neuve Sea Ice
Model (LIM3). The different components communicate via the coupler OASIS-3. EC-Earth3.2
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is used for seasonal re-forecast experiments initialized in May and November 1993-2014 and
for climate change experiments covering the period 1950-2014 (1950-2050 once the forcing
data is released).

Seasonal  re-forecasts from  GloSea5 (MacLachlan et  al.  2015) were also included in  the
analysis. GloSea5 is the UK Met Office operational seasonal forecast system, using the Met
Office Unified Model (UM) global atmosphere model coupled to the NEMO ocean model with
CICE sea ice at a 0.25° horizontal resolution.

So  as  to  complete  our  evaluation  with  another  operational  state-of-the-art  seasonal
forecasting system, we also included the ECMWF SEAS5 re-forecasts (see full description
above) in our analysis of sea ice seasonal forecasts. Both GloSea5 and SEAS5 are part of
the Copernicus Climate Changes Services operational seasonal forecasting systems, while
CNRM-CM is a different model version to that contributing to Copernicus.

Model/System CNRM-CM6-1 SEAS5 GloSea5 EC-Earth 3.2.2

Atmosphere ARPEGE 6.3 IFS Cy43r1 UM v6 IFS Cy36r4

Ocean NEMO 3.6 NEMO 3.4 NEMO 3.4 NEMO 3.6

Sea ice GELATO v6 LIM2 CICE 4.1 LIM3

Atmospheric 
resolution

tl127l91r
(~ 1.4°)

TCo319L91 N216L85 tl255l91r 
(~ 0.7°)

Ocean 
resolution

eORCA1 L75 ORCA 0.25 L75 ORCA 0.25 
L75

ORCA1L75

Initial 
conditions

GLORYS 
(Mercator)

ORS-S5 NEMOVAR Forced NEMO 
run

Ensemble size 30 25 28* 10

Tab. 2.1: Characteristics of the seasonal re-forecasts included in the analysis presented in
section 5. All systems are initialized in the atmosphere with ERA-Interim. * All re-forecasts
are initialized on the 1st of the month, except for GloSea5 for which 7 members from the 9th,
17th, 25th of the previous month as well as 7 from the 1st of the initialization month are
grouped into a 28-member ensemble. 

Climate change simulations

This deliverable initially envisaged the analysis of climate change simulations with EC-Earth3
and ECHAM6-FESOM. These included the production of transient experiments for the period
1950-2050, and present-day control simulations with fixed forcing from year 1950. However,
a major delay in the generation by the CMIP6 community of the radiative forcings for the
future scenarios has prevented us from starting the transient simulations. Also, a potential
bug over the Arctic has been identified in the control experiment with ECHAM6-FESOM, that
is currently under investigation. Due to these problems, and given the specific focus of this
deliverable  on  weather  and  climate  prediction,  we  have  decided  to  exclude  the  climate
change simulations from the report. They will be covered extensively in the final Deliverable
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5.6 on the integrated added-value of APPLICATE on weather and climate predictions and
projections.

Reference datasets

High-resolution short-range forecasts over Svalbard are compared to station data over six
locations  of  the  region  for  daily  precipitation.  Evaluations  of  NWP  predictions  are  also
presented with respect to data from 120 SYNOP stations in Norway.
For  the  seasonal  re-forecast  evaluations,  precipitation  was  compared  to  the  GPCP v2.2
monthly precipitation analysis dataset (Adler et al. 2003). The ERA-Interim reanalysis (Dee et
al. 2011) is used for most evaluations of other atmospheric variables.
Monthly mean sea ice concentration data based on brightness temperature (Cavalieri et al.
1996) was retrieved from the National Snow and Ice Data Center (NSIDC).

2.2. Metrics of forecast quality

2.2.1. Deterministic scores and metrics

Atmospheric and sea ice fields

Below we give a list of metrics applied in this report and a short description of them. Where
no  other  references  are  given,  they  are  explained  in  more  detail  at
http://www.cawcr.gov.au/projects/verification/. 

Mean Error (ME)
Also called bias. Measures the average or systematic error, and indicates the sign of the
error. Negatively oriented score (best score 0).

Mean Absolute Error (MAE)
Measures the average of the magnitude of the error. Negatively oriented score (best score
0).

Root Mean Square Error (RMSE)
Measures the deviation from the observed values, but puts more weight on larger errors.
Negatively oriented score (best score 0).

Correlation 
Measures the linear association between forecasts and observations. Does not take bias into
account. Positively oriented score (best score 1).

Equitable Threat Score (ETS) 
Measures  the  fraction  of  observed  and/or  forecast  events  that  were  correctly  predicted,
adjusted for hits associated with random chance. Positively oriented score (best score 1).

Frequency bias
Measures the ratio of the frequency of forecasted events and the frequency of observed
events. Best score 1, above (below) 1 indicates forecasting too many (few) events compared
to the observations. 

Ratio of Predictable Components (RPC)
Based on Eade et al. (2014), the RPC compares the predictable component in observations
(PCobs) to that in model hindcasts (Pcmod). It will be used exclusively for the North Atlantic
Oscillation Index (NAOI). It is in practice estimated as a lower bound using the right term in

Page 8 of 57



APPLICATE – GA 727862 Deliverable 5.2

the equation below, where r is the Pearson correlation coefficient divided by the square root
of the ratio in the variance of ensemble mean NAOI and the mean of the variances of the
NAOI for individual members. 

 RPC=
PC obs
PCmod

⩾
r

√σsig
2

/σtot
2

Sea ice edge

IIEE and decomposition 
Integrated Ice Edge Error (IIEE, Goessling et al.  2016) is computed to evaluate the total
spatial extent of errors in the position of the sea ice edge. The IIEE is the sum of areas
where the presence of sea ice, defined with a 15% SIC threshold, is overestimated (O) and
underestimated (U) with respect to reference data.

The IIEE can be decomposed into two terms, namely misplacement error (ME) and absolute
extent error (AEE), as follows:

IIEE=O+U=|O−U|+2⋅min(O ,U )=AEE+ME

The  absolute  error  corresponds  to  the  total  Pan-Arctic  SIE  error  when  this  metric  is
computed  over  the  region,  whereas  the  misplacement  error  shows  the  compensation
between areas with overestimation and areas with underestimation.

2.2.2. Probabilistic scores

Atmospheric and sea ice fields

Fair Continuous Ranked Probability Skill Score (FCRPSS)
The FCRPSS is  the ensemble-size corrected,  integrated squared difference between the
cumulative  distribution  function  of  the  forecasts  and  the  corresponding  value  in  the
observations,  compared with its climatological  equivalent.  I.e.  the FCRPSS estimates the
added value of a forecasting system over a climatological forecast. Values of one indicate a
perfect  forecast,  while  positive,  zero  and  negative  values  indicate  an  improvement,  no
improvement  and  a  degradation  of  the  forecast  over  the  climatology,  respectively.  The
FCRPSS was estimated for each variable’s winter average (DJF) at each grid point for each
startdate of  the re-forecast  period.  The FCRPSS map is  estimated over  22 independent
events and the climatology of the 22 years hindcast period is used as the reference forecast. 

Sea ice edge

Spatial Probability Score (SPS)
A natural extension to the IIEE is used to examine skill of probabilistic forecasts for presence
of sea ice at a grid point level. Goessling and Jung (2018) recently introduced the Spatial
Probability  Score  (SPS)  which  consists  in  a  spatial  integral  of  the  Brier  Score  for  the
probabilistic event of SIC exceeding the 15% threshold. With NSIDC data as a reference, the
SPS is formulated as follows:

SPS=∬(PSIC f >0.15(x , y )−1SICo>0.15(x , y ))
2dx dy  

Page 9 of 57



APPLICATE – GA 727862 Deliverable 5.2

In this deliverable probabilities are computed by counting the fraction of ensemble members
exceeding the 15% concentration threshold,  and then bias-corrected using leave-one-out
cross-validation.

3. MULTI-SCALE  PREDICTIONS  OF  EXTREMES:  RAINFALL  IN
SVALBARD

3.1. Introduction

On 7-10 November  2016 Svalbard  was hit  by extreme rainfall.  For example Ny-Ålesund
observed 86.8mm in 24hr (November normal 33mm) and 41.7mm in 24hr was observed at
Svalbard Airport (November normal 15mm). Several landslides and (slush) avalanches were
identified by satellite images at Svalbard during these days, even if it is believed that a frozen
surface and modest surface snow amounts stabilized the situation. Within short time after the
rainfall the temperature fell well below 0°C with the potential of producing ground ice and
reducing availability of food for the wildlife. Evacuation of parts of Longyearbyen was done in
advance  (see  for  instance  the  following  websites:  https://titan.uio.no/node/2009,
https://www.dagbladet.no/nyheter/130-evakuert-pa-svalbard-deler-av-longyearbyen-er-
sperret-av-og-det-er-innfort-ferdselsforbud/64354331,https://norut.no/nb/news/kartlegging-
med-radarsatellitt-gir-bedre-snoskredvarsling-og-beredskap,  all  in  Norwegian).  In  general,
such rain on snow events has a substantial impact on infrastructure, society and wildlife as
described in more detail in Serreze et al. (2015) and Hansen et al. (2014). They are therefore
one of the key types of extreme events to predict on different time-scales.

The extreme rainfall  was caused by a warm and humid air  stream from the south. Such
streams  are  often  referred  to  as  atmospheric  rivers
(http://glossary.ametsoc.org/wiki/Atmospheric_river)  and  its  signature  can  be  seen  in  the
vertically integrated water vapour transport (IVT) on the 8 November 2016 towards Svalbard
(Figure 3.1.1). The figure is based on the ECMWF forecast product Extreme Forecast Index
(EFI) for IVT, as described in Lavers et al. (2017). At the same time the temperature was
extremely warm (Figure 3.1.1),  and because of that the precipitation fell  partly in form of
rainfall.  In this type of flow situations the precipitation is enhanced by orography. Such a
process is inherently dependent on the model resolution to be captured in numerical weather
forecasts. Model topography from ECMWF HRES (~ 9 km grid spacing) and AROME Arctic
(2.5km  grid  spacing)  is  shown  in  Figure  3.1.2  together  with  the  24hr  accumulated
precipitation forecasts. The more detailed topography in AROME Arctic is a prerequisite to
be able to forecast local variations in precipitation. 

To predict extreme precipitation and heat in the European sector of the Arctic on different
time scales involves different challenges. For short-range predictions, the model resolution
needs to be sufficient  to resolve the orography to capture the precipitation maximum. In
medium-range predictions, with coarser resolution model systems, features like atmospheric
rivers and large-scale patterns leading to strong advection of heat and moisture from lower
latitudes  need  to  be  captured.  In  a  statistical  sense,  such  events  are  related  to  the
Scandinavian  blockings  (Serreze  et  al.,  2015).  It  is  therefore  important  to  capture  the
statistical  properties  of  such  patterns  in  (sub)  seasonal  forecasts  and  also  in  climate
projections.  If  the  blocking  frequency  is  changing  in  a  future  climate,  the  statistics  of
extremes in the Arctic will do as well.
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Figure 3.1.1 Extreme forecast index (EFI) for vertically integrated water vapour flux (left) and 
2-metre temperature (right) based on a 24-hour forecast from 7 November. 
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Figure 3.1.2 Model  topography on Svalbard  for  ECMWF HRES (left)  and AROME Arctic
(right) at the top and 24 hr accumulated precipitation from 7 November 2016 06 UTC to 8
November 2016 06 UTC in ECMWF HRES (left) and AROME Arctic (right) at the bottom.

3.2. Links with circulation patterns

Precipitation events as described above are often driven by large-scale flow patterns. The
weather  over  the  ‘European’  sector  of  the  Arctic  is  influenced  by  the dominant  weather
pattern over the northern Atlantic. These weather patterns have been extensively studied in
the literature, and are often referred to as Euro-Atlantic regimes, and the regime type and
phase leads to strong anomalies of surface temperatures and precipitation over Europe (and
Arctic). The variability of these regimes acts on many time-scales and some of this variability
is predictable on monthly (Vitart (2014), Ferranti et. al. (2018)) and seasonal (Scaife et al.,
2014)  timescales.  Hence  this  framework  could  also  be  useful  for  evaluation  of  the
predictability in part of the Arctic.

There are several definitions of the Euro-Atlantic regime types. All of them include some form
of the North-Atlantic Oscillation (NAO), which indicates the anomaly of the zonal wind over
northern Atlantic. During its positive phase there is stronger than average westerly flow over
northern  Atlantic  while  in  the  negative  phase  the  westerly  winds  are  reduced  or  even
reversed.  Regime definitions  often include indicators of  the meridional  modulation  of  the
winds, such as blocking over northern Europe (often referred to as Scandinavian blocking).
The regimes are often based on anomalies in the 500 hPa geopotential  but can also be
defined according to the position of the jet stream (Woolings et al. 2010). 

In its classical form the NAO index (NAOCLASSIC) is measured by calculating the surface
pressure difference between the Azores/Lisboa and Reykjavik, but it is today often based on
the leading empirical orthogonal function (EOF1) for the variability over North Atlantic. The
second EOF (EOF2) shows similarities with a blocking over Scandinavia. Operationally at
ECMWF, 4 regimes are characterized using clustering techniques based on the work by
Vautard (1990). In winter, these include positive (NAOP) and negative NAO (NAOM) phases,
Scandinavian  Blocking  (BLOCK)  and  Atlantic  Ridge  (RIDGE).  The  corresponding  spatial
patterns are shown in Figure 3.2.1.
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Figure 3.2.1 Definitions of the 4 Euro-Atlantic regimes in terms of Z500 anomalies.

As mentioned above the Euro-Atlantic regimes also affect the occurrence of extremes in the
Arctic. Figure 3.2.2 shows projections on the different regime definitions averaged over 20
extreme  rainfall  cases  over  Svalbard  (rainfall  events  defined  as  days  where  at  least  2
observation sites in Svalbard measured more than 10mm). For this type of extreme, the z500
anomaly  of  the  days with  extreme rainfall  has the strongest  positive  projection  onto  the
Scandinavian blocking pattern on average (Figure 3.2.2), similar to the findings of Serreze et
al. (2015). It should be noted that for the case of November 2016, the projection was not onto
this pattern, but rather a narrow and tilted ridge from Iceland towards northern Scandinavia.

To further study the relation between the Scandinavian Blocking pattern and anomalies in the
Arctic,  Figure  3.2.3  shows  composites  over  2-metre  temperature  (left)  and  precipitation
(right) anomalies during days with a blocking over Scandinavia during DJF, based on 35
years  of  seasonal  reforecasts  with  ECMWF  System  4.  On  average  the  Scandinavian
blocking  is  accompanied  with  warm  temperatures  over  the  north-eastern  Atlantic  and
enhanced precipitation on Iceland, Northern Norway, Svalbard and eastern Greenland. 
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Figure 3.2.2 Average projection onto the 4 Euro-Atlantic regimes for the rainfall event over
Svalbard. Negative values indicates projections on the reversed pattern.

Figure 3.2.3 Composites of 2-metre temperature anomalies (left) and precipitation anomalies
(right) during the Scandinavian blocking regime in System 4 for DJF 1981-2015.

Results  from the  previous  figures  suggest  that  Scandinavian  blocking  is  associated  (on
average)  to  heavier  than  usual  precipitation  over  Norway  and  Svalbard,  a  feature
represented in the ECMWF seasonal forecasting System 4.

As a first approach to evaluate the seasonal re-forecasts discussed later (see section 5), we
compute the blocking frequency in DJF for the November re-forecasts, using the method
introduced by Tibaldi and Molteni (1990). Daily 500-hPa geopotential height fields for each
ensemble member and over the 1993-2014 re-forecast period are used, and compared to
corresponding data from ERA-Interim. Figure 3.2.4 shows the blocking frequency depending
on the longitude for CNRM-CM6-1, SEAS5 and EC-Earth3 re-forecasts. All systems seem to
capture reasonably well the variation of blocking frequency according to longitude, although

Page 14 of 57



APPLICATE – GA 727862 Deliverable 5.2

model behaviour differs in the amplitude and exact position of the peaks in blocking activity.
CNRM-CM6-1 (in red) clearly underestimates the blocking frequency over the Atlantic sector
with respect to ERA-Interim, and overestimates blocking over the Pacific. SEAS5 captures
quite  well  the Atlantic  peak but  underestimates  blocking  frequency  in  the Pacific  sector,
whereas EC-Earth3 finds a small shift in the peak of Atlantic blocking and overestimates the
secondary peak around 60°E. Differences between SEAS5 and EC-Earth3 are larger than
expected,  given  that  the  same  atmospheric  and  ocean  models  (although  with  different
versions) are used in both sets of re-forecasts. Note however that uncertainties in the ERA-
Interim estimates cannot be excluded given the short re-forecast period, as shown by the
more  noisy  curve  than  for  re-forecasts  which  have  larger  samples  due  to  the  use  of
ensembles.

Figure 3.2.4. Frequency for Tibaldi and Molteni blocking index for DJF 1993-2014 in ERA-
Interim  (black),  compared  to  seasonal  re-forecasts  with  CNRM-CM6-1  (red),  ECMWF
SEAS5 (blue) and EC-Earth3 (light blue) for DJF initialized in November.

Beyond this evaluation of the mean statistics in the re-forecasts, actual skill in forecasting an
increase in blocking activity is a necessary step for seasonal re-forecasts to be used as early
indicators of possible heavy rainfall events over the region. Unfortunately, if current models
show some skill in representing the NAO at a seasonal time scale (see section 5.1), little to
no skill is found for blocking (not shown).

3.3. Predictability of short range forecasts

The  short  range  forecasting  capabilities  for  precipitation  at  Svalbard,  exemplified  with
ECMWF HRES and the higher resolution limited area model AROME Arctic (hereafter AA)
are evaluated in this section.

Verification statistics for daily precipitation for the period from March 2016 - April 2018 for 6
observation sites at Svalbard are presented in Figure 3.3.1 (location of  observation sites
given in Figure 3.3.2). Both ECMWF HRES and AA have a higher inherent spatial correlation
than the observations,  i.e.  the models have less spatial  variability  than the observations.
However, the higher horizontal  resolution of AA adds value by more spatial  variability.  In
general, the models overestimate the observed precipitation (exception: Ny-Ålesund), but AA
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forecasts less precipitation than ECMWF HRES (exception: Sveagruva).  In particular,  the
precipitation amounts are overestimated at the three stations located in the interior fjords of
Svalbard (Svalbard Airport, Adventdalen and Sveagruva). Opposite to this the three stations
Ny-Ålesund,  Hornsund  and  Isfjorden,  situated  closer  to  the  west  coast,  experience  less
overestimation. The skill varies in space, e.g. the temporal correlation varies from 0.5-0.6 for
Sveagruva to above 0.8 in Ny-Ålesund. A difference in skill  is also seen between models
where AA has lower MAE in 5 out of 6 stations and higher temporal correlation in 4 out of 6
stations than ECMWF HRES. 

Figure 3.3.1 Verification statistics for daily  precipitation on Svalbard for the period March
2016 to April  2018.  To the left  inherent  spatial  correlation between Svalbard stations for
observations and forecasts, then temporal correlation, MAE and ME per station with ECMWF
HRES (red) and AA (blue). All forecasts have lead time +30hr.

In the following we look at the forecast capabilities during severe precipitation events, which
we define as a minimum of 2 (out of 6) observations > 10 mm/day. The days meeting this
criteria are shown in Figure 3.3.4. Composites of forecasted precipitation from these cases
are shown in  Figure  3.3.2.  The difference in  model  topography is  a major  driver  of  the
differences seen between the models.  The ECMWF HRES forecasts are smoother,  with
lower precipitation maxima compared to AA. The precipitation patterns (in particular from AA)
indicate further that severe precipitation events at Svalbard are to a high degree steered by
topographic  effects.  The  maximum  forecasted  precipitation  amounts,  located  at  higher
elevations,  are  at  least  twice  what  is  seen  at  lower  elevations.  This  also  indicates  that
verification  against  observations  is  biased  towards  regions  with  minimum  forecasted
precipitation  and  sensitive  to  the  representativeness  of  the  nearest  grid  point  to  the
observation sites.

Despite local differences between the composites from ECMWF HRES and AA, the average
values  for  the  plotted area  in  Figure  3.3.2  are  very  similar  with  6.2  and  6.1mm/day for
ECMWF  HRES  and  AA,  respectively.  On  average,  the  potential  added  value  of  AA  is
therefore related to a spatial redistribution of the precipitation. However, in some situations
there is (up to 36%) more precipitation in ECMWF HRES (top row Figure 3.3.3), while there
are other situations with (up to 22%) more precipitation in the AA forecast (bottom row Figure
3.3.3). A tendency for ECMWF HRES to produce more precipitation than AA when parts of
the  air  flow  are  from  the  north  is  seen.  In  the  opposite  situations,  AA  produces  more
precipitation when the air flow is mainly from the south. The results indicate that the severe
Svalbard precipitation events are sensitive to both the moisture transport towards Svalbard
and to the representation of the topography.
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Various verification plots for the severe precipitation events are presented in Figure 3.3.4.
The time series show the highest observed and forecasted (from the observation sites) daily
precipitation values at Svalbard. A relatively good day-to-day agreement between forecasted
and observed maximum precipitation is found with a correlation of 0.84 for AA and 0.76 for
ECMWF HRES.  However,  both models fail  to forecast the highest  observed precipitation
amounts, but AA are closer to the observations (e.g. November 2016, September 2017 and
January 2018). The highest precipitation amounts at Svalbard are observed at Ny-Ålesund
which  therefore  dominate  the  presented  time  series.  However,  Ny-Ålesund  is  the  only
Svalbard stations where AA adds value regarding simulating the precipitation peak events
(top right part of Figure 3.3.4). Furthermore, the temporal correlation, MAE and bias station
by station indicate a shift towards less added value of AA in the high precipitation situations.
In addition ECMWF HRES are in better agreement with the observed spatial correlation than
AA. It  can therefore be argued that to some extent the added value of AA compared to
ECMWF HRES is less,  or  more complex to extract,  for the severe events than when all
cases are included. 

Also  for  the  severe  precipitation  events  the  forecasts  overestimate  the  precipitation  at
Svalbard  Airport,  Adventdalen  and  Sveagruva.  Furthermore,  the  models  are  not  able  to
predict the local differences between Svalbard Airport and Adventdalen. The same behaviour
is also seen for ECMWF HRES and AA in a Year of Polar  Prediction Special  Observing
Period 1 (YOPP-SOP1) model intercomparison (Køltzow et al., 2018). However, in another
set-up of AROME provided by Meteo-France, also with 2.5 km horizontal grid spacing, the
lower observed precipitation amounts in Adventdalen are better captured. This indicates that
2.5 km horizontal grid spacing has the potential  to forecast very small  scale precipitation
patterns, but there is also some sensitivity to the configuration of the model. It should also be
mentioned that  there are some uncertainties with respect  to precipitation observations at
Svalbard airport and Adventsdalen which are under investigation.

Many of the severe precipitation events on Svalbard are rain on snow events, i.e. rain on
snow covered surfaces and a later re-freeze with implications for infrastructure and wildlife
(Hansen et al., 2014). Correct forecasts of the precipitation phase are therefore important.
Since direct observations of the precipitation phase are rare in time and space we use 2m air
temperature as a proxy for the precipitation phase. Averaged over the severe precipitation
events  the  forecasts  have  a  negative  temperature  bias  (-1.03C  for  AA  and  -1.55C  for
ECMWF HRES) indicating too much solid precipitation and too little rain. We further assume
a temperature  threshold  of  +1C to  distinguish  between rain  and  solid  precipitation.  This
threshold  results  in  73% of  the  AA  and  59% of  the  ECMWF HRES  precipitation  being
forecasted as rain. If we instead use the observed temperatures the numbers are 76 and
73%,  respectively.  The  results  indicate  that  AA  does  a  reasonable  good  job  on  the
precipitation phase and adds value on this aspect compared to ECMWF HRES.

In summary, the higher resolution limited area model AA adds value to the global ECMWF
HRES  in  several  aspects  regarding  forecasting  precipitation  at  Svalbard.  However,  the
added  value  is  not  evenly  distributed  (e.g.  in  space,  time,  on  parameters  or  specific
precipitation characteristics) and there are, even with 2,5 km horizontal resolution and the
present configuration of AA, weaknesses in the predictability of severe precipitation events at
Svalbard.
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Figure  3.3.2.  Daily  forecasted  precipitation  averaged  over  severe  precipitation  cases.
Observation sites used in verification statistics; A - Ny-Ålesund, B - Svalbard Airport, C -
Adventdalen, D - Isfjorden radio, E - Sveagruva and F - Hornsund. Numbers in black are
maximia averaged over all forecasts.
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24.10.2017, ECMWF
36% more

25.01.2017, ECMWF
29% more

19.09.2017, ECMWF
25% more

28.02.2018, ECMWF
23% more

04.07.2016, AA 22%
more

05.10.2016, AA 17%
more

03.09.2017, AA 15%
more

17.01.2017, AA 13%
more

Figure 3.3.3. From AA forecasts, daily accumulated precipitation, MSLP and 925h Pa wind
from time in the middle of the precipitation accumulation period. In the top row; the 4 events
where ECMWF HRES forecast the highest precipitation amounts compared to AA (averaged
over the plotted region),  in  the bottom row; the 4 events where AA forecast  the highest
precipitation amounts compared to ECMWF HRES.
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Figure 3.3.4 Top left; time series of maximum daily precipitation (observed and forecasted) at
Svalbard observation sites from March 2016 to April 2018. Top right; for 6 stations the mean
value (grey), the 95, 98 and 99%-tile (red, black and blue, respectively) and the max value
(green) for 24h observed precipitation (first column), ECMWF HRES (second column) and
AA (last column). Second row; statistics over severe precipitation events marked with blue
dots in the time series. To the left inherent spatial correlation between Svalbard stations for
observations and forecasts, then correlation, MAE and ME per station with ECMWF HRES
(red) and AA (blue). All forecast has lead time +30hr. Location of stations are given in Figure
3.3.2. 
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4. EVALUATION OF SHORT AND MEDIUM-RANGE FORECASTS 
OVER THE ARCTIC

4.1. Evaluation of medium-range forecasts over the Arctic

This section aims to document the medium-range forecast skill over the Arctic and contrast it
to the predictability over the full northern hemisphere. The verification in this section is based
on ECMWF operational global medium-range forecasts from DJF 2016-2017 and JJA 2017.
The  ECMWF  medium-range  forecasts  include  a  high-resolution  forecast  with  horizontal
resolution of 9 km (HRES) and a 51 member ensemble with 18 km resolution (ENS). The
verification here is mainly made against the operational analysis. Albeit the disadvantages of
using an analysis as verification, the uneven distribution of observations in the Arctic would
make the results difficult to interpret. Work package 4 in Applicate will assess the validity of
the  analysis.  We  will  also  use  SYNOP  observations  to  evaluate  biases  in  weather
parameters.  The  scores  presented  here  are  the  spatial  anomaly  correlation  coefficient
(ACC), root-mean-square error (RMSE) and  mean error (ME).

Figure 4.1.1 shows the evolution of the skill in terms of ACC for z500 over the Arctic (65N-
90N) and Northern Hemisphere (20N-90N) since 1990 for  HRES.  The plot  also includes
results  for  forecasts based on ERA-Interim (Dee et  al.  2011).  ERA-Interim used a  fixed
forecast system during the whole period and can therefore be used to determine the natural
variability in the predictability. The general result is a steady improvement in the scores over
the decades,  with  similar  pace for  the Arctic  and the Northern  Hemisphere.  The factors
behind the long-term improvements are discussed in Magnusson and Källén (2013).  The
scores have been somewhat lower for the Arctic than over the whole hemisphere during
most of the period. In the early 90s the ACC for HRES was similar for both regions. However,
looking at the score for ERA-Interim, the Arctic seems to have been relatively predictable
during that period (1990-1994). The same holds true for the last year,  where the relative
improvement over the Arctic could be attributed to natural variability.

Figure 4.1.2 shows the spatial distribution of RMSE for geopotential at 200, 500 and 850 hPa
in 5-day forecasts verified against the operational analysis.  The 200 hPa level shows low
errors over the central Arctic. This could be explained by the fact that the 200 hPa level is in
the  stratosphere  over  the  Arctic,  which  is  dominated  by  slower  time-scales  than  in  the
troposphere.  It is mainly in the lower troposphere that errors are larger over the Arctic than
in the mid-latitudes. In winter-time high errors are especially found over the north Atlantic
where the storm track leads to high variability. However, during summer the largest RMSE
on 500 and 850 hPa level is found in the central Arctic. It is a sign of the Arctic being more
dynamically active during the summers, and therefore more unpredictable. 
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Figure 4.1.1 Evolution of day 5 ACC in ECMWF for N.Hem (red) and Arctic (blue) and ERA-
Interim N.Hem (light-green) and Arctic (dark-green).

Figure 4.1.3 shows maps of ME for HRES forecasts verified against SYNOP observations
The results are for 24-hour minimum (top) and maximum (bottom) temperature. The daily
extremes have been determined from hourly observations and forecast values spanning 24
to 48 hours into the forecast. The scores are presented both for DJF (left) and JJA (right).
The same type of verification is available for 10-metre wind speed, total cloud cover and 24-
hour precipitation but is not presented here.

On the land areas over the Arctic, a positive bias is dominating for minimum temperature in
DJF. This bias is mainly occurring during nights with strong surface inversions, a common
issue for weather and climate models.  For JJA, the largest bias appear in the maximum
temperature with a cold bias.

In the next section we are going to look further into errors in “weather parameters”,  and
compare the global model with the regional Arome Arctic model.
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Figure 4.1.2. Day 5 RMSE for geopotential for 200 hPa (top), 500hPa (middle) and 850 hPa
(bottom) for DJF 2016-2017 (left) and JJA 2017 (right).
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Figure 4.1.3. Day 2 mean error of daily minimum (top) and maximum (bottom) temperature
for DJF 2016-2017 (left) and JJA 2017 (right).

4.2. Comparison of short range forecasts with observations

Limited area models can, for targeted areas, be compared with global models, and have
shown  improved  forecast  skill  associated  with  the  use  of  optimized  physics  and  finer
horizontal and vertical resolution (Jung et al., 2016). In the following we compare forecasts
from the high resolution limited area model AROME Arctic, hereafter AA and the ECMWF
HRES forecasts (see section 2.1 for model descriptions). 

The short range operational forecasts (+9, +12, +15, …, +30h) from ECMWF HRES and AA
are compared over the period 10 March 2016 - 31 April 2018. The models are compared
against  quality  controlled  Norwegian  observations  derived  from  the  MET  Norway
observational  database  (eklima.met.no).  The  comparison  is  divided  into  6  roughly
homogeneous regions based on the knowledge and experience of operational forecasters at
MET Norway (Figure  4.2.1).  The different  regions  make the comparison more useful  as
model differences and errors are more easy to interpret. It is the raw model output that is
compared and no post-processing, spatial methods or other adjustments are employed to
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models or observations. Operational systems are in a continuous process of improvement
and  several  model  upgrades  for  both  systems  were  introduced  in  the  inter-comparison
period, but the grid spacing of both models was kept constant. 

In the comparison we use Mean Absolute Error (MAE), Mean Error (ME) and the categorical
Equitable  Threat  Score  (ETS)  and Frequency Bias  (FB)  described in  section  2.2.1.  This
selection of  metrics does not  cover  all  aspects of  the forecast  quality,  but  gives a good
overview of  some main characteristics and differences between the model  systems. The
comparison of AA and ECMWF HRES is presented in Figure 4.2.2 and 4.2.3 and the main
features are summarized below. 

Mean Sea Level Pressure (MSLP) forecasts have small errors, but ECMWF HRES scores
consistently better than AA indicating a better description of the large scale systems. This is
a behavior often seen in the comparison of operational global and regional models. Some
possible mechanisms to explain this are e.g. better assimilation of large scale weather in
global  models,  inaccurate  treatment  of  lateral  boundary  data  in  regional  models,  slightly
different “tuning” of global (focus: low pressure development) and regional (focus: 10m wind
speed) models and more small scale noise with higher resolution. Mountain areas have the
most  pronounced  errors  with  a  substantial  systematic  part  for  both  model  systems.
Furthermore,  the  errors  are  larger  and  more  systematic  in  winter.  How  observed  and
forecasted surface pressure are reduced to MSLP might explain part of the more pronounced
mountain and winter errors (Pauley, 1998).

2m air temperature (t2m) errors vary between regions. Smaller errors are seen when the
influence from the relatively well represented sea surface temperatures is significant (islands,
coast) and larger errors are present in e.g. fjords, inland and mountains. As discussed in
Section 4.1, ECWMF has a warm bias in cold conditions (night-time), and a cold bias for
daily maximum in summer-time. AA has lower MAE than ECMWF HRES with the exception
of islands. The difference in MAE is particularly pronounced in complex terrain  (fjords, inland
and in mountain areas).  A substantial  part  of  the differences can be attributed to higher
systematic errors in ECMWF HRES. AA benefits from the higher horizontal resolution with a
better description of complex terrain, coast lines and other local heterogeneities feeding local
differences in temperature. A simple height correction of ECMWF HRES reduces some of
these errors in the presence of complex terrain (not shown). Largest t2m errors are present
in winter and are often connected to difficulties in representing the stable boundary layer
properly.

10m wind speed (S10m) errors measured with MAE and ME increase for regions exposed to
high  wind  speeds.  Regionally  this  is  seen  from  inland  to  fjords,  coast/Svalbard  and
mountains, while seasonally the errors increase from summer to spring/autumn and winter.
In general, AA has smaller errors than ECMWF HRES (excepted over islands and inland).
Both  model  systems  have  regions  with  pronounced  systematic  errors,  but  these  vary
between the systems. In general AA forecasts stronger winds than ECMWF HRES. ECMWF
HRES has a larger negative bias than AA in the mountains, Svalbard, coast and fjords, but
AA overestimates the wind speed for inland and islands. The categorical scores show that
the forecast skill decreases with increasing wind speed thresholds, but AA performs better
than ECMWF HRES for  all  chosen thresholds.  Part  of  this  difference is  due to a better
frequency climatology for AA, e.g. for more than 20.8m/s AA has a FB of 0.4-0.7 (depending
on season) while ECMWF HRES very rarely forecast this (FB < 0.1).
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2m air relative humidity (rh2m) errors vary between regions and seasons. Smallest MAE is
found for  islands (ECMWF HRES slightly  higher  (systematic)  errors in  the cold  season).
Opposite to this AA has higher (systematic) errors inland in spring (and winter/summer). An
improved physical description of the surface in AA, which is under implementation, reduces
this error. In general the most pronounced errors are found in mountain areas, but with a
similar forecast quality from both models.

Total cloud cover (TCC) has lower MAE for ECMWF HRES for all  regions and seasons.
Norwegian TCC observations are manual observations and valid for a large spatial area that
better fits the ECMWF HRES resolution. A simple smoothing of the TCC fields from AA to the
resolution  of  ECMWF HRES reduce parts  of  the  difference in  skill  (not  shown).  For  the
systematic errors it is difficult to see specific patterns in model system behaviour. 

24h accumulated precipitation (P24) errors measured with MAE are in general slightly higher
for ECMWF HRES than AA. At least part of this difference is due to an overestimation in
ECMWF HRES. For both model systems the highest  MAE is found for coast,  fjords and
mountain stations. Notice that due to the undercatch of solid precipitation in precipitation
gauges  (not  adjusted  for  in  this  comparison)  it  is  very  difficult  to  draw  conclusions  for
seasons  that  are  dominated  by  solid  precipitation.  Most  likely,  both  model  systems
underestimate  the  solid  precipitation  (Køltzow  et  al.,  2018).  With  respect  to  categorical
scores the forecast skill decreases with increasing thresholds. For the lowest thresholds (e.g.
precipitation / no precipitation) AA has higher ETS and better FB than ECMWF HRES. For
the  highest  thresholds  AA  has  a  better  FB  (ECMWF HRES  rarely  forecast  the  highest
thresholds),  but this is not reflected in a higher skill  measured in form of ETS. The latter
might be due to the “double penalty issue” that is a well  known issue for high resolution
models (Mass et al., 2002).

In summary, the higher resolution of AA adds value because of a better description of small
scale forcings (e.g. complex topography, coast lines, surface heterogeneities). However, the
added value varies and is not necessarily seen for all parameters, regions or seasons. The
results presented in this inter-comparison are in agreement with the findings in a model-
intercomparison during the YOPP-SOP1 which in addition to AA and ECMWF HRES also
include the high resolution model systems Canadian Arctic Prediction System, CAPS, and an
AROME version based on the Meteo France set-up (Køltzow et al., 2018). Køltzow et al.
(2018), which is also work done in the APPLICATE project,  go in more detail  on several
aspects of the Arctic forecast skill assessment which is beyond the scope for this report.  
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Figure 4.2.1 The integration domain for AA and Norwegian SYNOP observation used for
comparison are plotted as black (Islands), yellow (Svalbard), orange (coast), blue (fjords),
green  (inland)  and  red  (mountains)  circles.  In  grey  colours  sea  ice  concentration  from
ECMWF HRES 1 March 00 UTC 2018 and in green/brown colours the model topography
from AROME Arctic. 
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Figure  4.2.2  Comparison  of  forecast  skill  between  AROME Arctic  (x-axis)  and  ECMWF
HRES (y-axis) for March 2016 to April 2018. Skill is computed against all Norwegian SYNOP
stations available in the common domain (in total ~120 stations, see Figure 4.2.1, but not all
measure all  parameters).  The 6 upper panels  show Mean Absolute Error for parameters
Mean Sea Level Pressure, 2m air temperature and relative humidity, 10m wind speed, total
cloud cover and daily precipitation for different seasons (shape of plot) and regions (color of
plot). The two lower panels show Equitable Threat Score (ETS) for different seasons (by
shape) and exceeding thresholds (by color) in 10m wind speed and daily precipitation for all
stations (too little data for some thresholds to get robust results if divided in regions). Lead
times included are +9, +12, +15, +18, +21, +24, +27 and +30h.
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Figure  4.2.3  Comparison  of  forecast  skill  between  AROME Arctic  (x-axis)  and  ECMWF
HRES (y-axis) for March 2016 to April 2018. Skill is computed against all Norwegian SYNOP
stations available in the common domain (in total ~120 stations, see Figure 4.2.1, but not all
measure all parameters). The 6 upper panels show the absolute value of the Mean Error for
parameters Mean Sea Level Pressure, 2m air temperature and relative humidity, 10m wind
speed,  total  cloud cover and daily  precipitation for  different  seasons (shape of  plot)  and
regions (color of plot). The two lower panels show Frequency Bias (FB) for different seasons
(by shape) and exceeding thresholds (by color) in 10m wind speed and daily precipitation for
all stations (too little data for some thresholds to get robust results if divided in regions). Lead
times included are +9, +12, +15, +18, +21, +24, +27 and +30h.
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5. SEASONAL  FORECAST  QUALITY  OVER  THE  NORTHERN
HEMISPHERE MIDLATITUDES AND ARCTIC

5.1. Atmospheric predictability for boreal winter

This  section  describes  the  ability  and  deficiencies  of  current  state-of-the-art  seasonal
forecasting systems in reproducing northern hemisphere mid-latitude atmospheric variability
for  common  climate  variables  (i.e.  surface  air  temperature,  sea  level  pressure  and
precipitation). The analysis is focused on coupled seasonal re-forecasts from the stream 1 of
APPLICATE WP5 experiments (see Deliverable 5.1). The reference data for the analysis of
sea level pressure and surface air  temperature is ERA-Interim, while  for precipitation the
reference  is  GPCP  V2.2.  All  results  in  this  section  were  produced  after  simple  bias
correction.  

Based on evaluations of the Fair Continuous Ranked Probability Skill Score, the winter re-
forecasts of surface air temperature (Fig 5.1.1) show consistent skill across models in most
of the Pacific Ocean, Northeast Atlantic and Barents Sea, being the only Arctic region with
consistent skillful predictions. The surface temperature predictability in the Barents Sea is
most  likely  related  to  the  ocean/sea  ice  state.  Interestingly,  all  models  fail  to  predict
temperature around Iceland showing negative values in the FCRPSS. In terms of sea level
pressure (Fig 5.1.2) all models show consistent skillful prediction over the Aleutian region,
tropical western Pacific, Pacific and Gulf coasts of North America, and South Asia. Skill in
precipitation forecasts is patchy and low for all models, reduced to parts of southern North
America and East  China (Fig.  5.1.3).   FCRPSS shows consistently  lower  scores than a
typical  deterministic  score like anomaly correlation coefficient.  To illustrate this,  we show
maps of  sea level pressure anomaly correlation between models and ERA-Interim in Fig
5.1.4. Comparing Fig 5.1.2 with Fig 5.1.4 shows large differences depending on the metric
used. FCRPSS is much lower because it does not detect skill that is potentially achievable
with the mean of a large ensemble if the signal to noise ratio is too small in the models as
opposed to anomaly correlation.
 
Large scale climatic variability such as the El Niño Southern Oscillation (ENSO) or the North
Atlantic Oscillation (NAO) is associated with climatic teleconnection patterns extending over
large parts  of  the  planet  (e.g.  global  or  hemispheric).  Skillful  prediction  of  such  climatic
variability  would  translate  in  widespread  predictability  over  large areas.  All  models  show
skillful prediction of ENSO from November to April in the winter forecasts (Fig 5.1.5) with
anomaly correlation coefficients of over 0.8 up to five months lead time. Contrasting with
ENSO, the winter NAO skill is considerably lower (Fig 5.1.6). However, the low r-values are
in part  due to small  ensembles:  for  instance CNRM-CM6 and GloSea5 have statistically
significant r-values of 0.51 and 0.43 with thirty members and fourteen members, respectively.
Something  similar  happens  with  the  multi-model  ensemble,  which  has  a  statistically
significant r-value of 0.5. The ratio of predictable components (RPC) in Fig 5.1.6 indicates
that all 10-member individual model ensembles are overconfident (CNRM-CM6 only slightly),
while the multi-model ensemble is underconfident. The latter is consistent with results using
larger ensembles which show that  the signal  to noise ratio  is  too small  in many models
compared to observations (Baker et al 2018). Although this highlights a model deficiency, it
also suggests that skilful forecasts of the NAO can be made by taking the mean of a large
ensemble to extract the predictable signal.

To help interpret the predictive capacity of the systems, linear correlations of winter (DJF)
surface air temperature, sea level pressure and precipitation with the NINO3.4 index (Fig
5.1.7)  and  the NAO index  (Fig  5.1.8)  were  done  using  a  200  year  control  preindustrial
simulation with EC-Earth3.2. The spatial similarity between ENSO teleconnections (positive
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and negative correlations) and the improved forecast skill in the climate variables displayed
in  Figs  5.1.1-3  suggests  that  ENSO  is  the  main  source  of  predictability  on  seasonal
timescales  for  the  extratropical  northern  hemisphere  -  a  feature  common  to  seasonal
prediction  systems for  many  years  (Doblas-Reyes  et  al.,  2013).  For  a  given  model,  as
opposed to ENSO, the low/intermediate predictive skill of the NAO may hinder its capacity to
provide  skilfull  predictions  in  the  NAO  influence  regions  through  the  teleconnections
displayed in Fig 5.1.8.  However, we note that higher NAO skill is potentially available with a
larger ensemble (Athanasiadis et al 2017).

Fig  5.1.1:  Fair  continuous  ranked  probability  skill  score  of  the  1993-2014  DJF  2-meter
temperature anomalies for ensemble simulations started in November 1st. Upper left (EC-
Earth3.2 - 10 members), upper right (CNRM-CM6 - 10 members), lower left (GloSea5 C3S,
10 members), lower right (Multi-model). Dots indicate statistically significant values at a 95%
confidence. Comparisons against ERA-Interim. 
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Fig  5.1.2:  Fair  continuous ranked probability  skill  score of  the 1993-2014 DJF sea level
pressure  anomalies  for  ensemble  simulations  started  in  November  1st.  Upper  left  (EC-
Earth3.2 - 10 members), upper right (CNRM-CM6 - 10 members), lower left (GloSea5 C3S,
10 members), lower right (Multi-model). Dots indicate statistically significant values at a 95%
confidence. Comparisons against ERA-Interim.
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Fig 5.1.3 Fair continuous ranked probability skill score of the 1993-2014 DJF precipitation
anomalies for ensemble simulations started in November 1st. Upper left (EC-Earth3.2 - 10
members), upper right (CNRM-CM6 - 10 members), lower left (GloSea5 C3S, 10 members),
lower right (Multi-model). Dots indicate statistically significant values at a 95% confidence.
Comparisons against  GPCP V2.2. 
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Fig  5.1.4  Anomaly  correlation  coefficient  of  the  1993-2014  DJF  sea  level  pressure  for
ensemble  simulations  started in  November  1st.  Upper  left  (EC-Earth3.2  -  10  members),
upper right (CNRM-CM6 - 10 members), lower left (GloSea5 C3S, 10 members), lower right
(Multi-model). Dots indicate statistically significant values at a 95% confidence. Comparisons
against ERA-Interim.
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Fig 5.1.5:  November 1st initialized 10-member ensemble forecasts of NINO3.4 index for the
period 1993-2014. Comparison against ERA-Interim. Dashed lines show the 95% confidence
intervals  of  the  correlation  coefficient.  The  confidence  interval  is  computed  by  a  Fisher
transformation and the significance level relies on a one-sided student-T distribution. 
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Fig 5.1.6: November 1st initialized 10-member ensemble forecasts of the normalized winter
(DJF)  North  Atlantic  Oscillation  Index  (NAOI)  for  the  period  1993-2014,  defined  as  a
projection on 1st EOF of sea level pressure. Correlation coefficient values (r) versus ERA-
Interim  (Significance  indicated  by  a  star).  Gray  symbols  display  results  from  individual
ensemble members. RPC stands for ratio of predictable components. 

Fig 5.1.7: Surface temperature (left), sea level pressure (center) and precipitation (right) 
anomaly correlation with the NINO3.4 index for a 200 year control pre-industrial simulation 
with EC-Earth3.2. Statistically non-significant values are in white.  
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Fig  5.1.8:  Surface temperature (left),  sea level  pressure (center)  and precipitation  (right)
anomaly correlation with the station based NAO index for a 200 year control pre-industrial
simulation with EC-Earth3.2. Statistically non-significant values are in white.

5.2. Skill of seasonal forecasting systems in representing 
summer Arctic sea ice

This  section  describes  the  ability  and  deficiencies  of  current  state-of-the-art  seasonal
forecasting systems in reproducing Arctic sea ice concentration variability. The analysis is
focused  on  coupled  seasonal  re-forecasts  from  the  stream  1  of  APPLICATE  WP5
experiments (see Deliverable 5.1), as well as the ECMWF operational seasonal forecasting
system  5  (SEAS5),  for  the  summer  season  in  May  initializations.  Some  corresponding
analyses for the winter season are provided in the annex to this deliverable.
Reference data for this analysis is NSIDC version 4.

5.2.1. Systematic errors in sea ice concentration and extent

A preliminary step in evaluating the forecast quality of these models is to compute systematic
errors in the raw model outputs for sea ice concentration.
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Fig. 5.2.1: Mean bias in monthly mean sea ice concentration with NSIDC v4 in May (forecast
month 1) and September (forecast month 5) for each of the coupled systems.

Fig. 5.2.1 shows the mean bias over the re-forecast period of month 1 (May) and month 5
(September)  SIC with  respect  to  NSIDC.  Red  areas  show where  SIC is  too  low in  the
models, whereas blue areas highlight where model have excessive SIC. From the first month
of simulation, the systems exhibit different behaviors. CNRM-CM6-1 has too low SIC along
the ice edge in the Labrador and Greenland seas, whereas the other systems show too high
SIC  in  the  Iceland  and  Nordic  seas.  At  longer  lead  times,  CNRM-CM6-1  exhibits  a
substantially different bias than the other models, with too little SIC over most of the Arctic.
This is due to the initialization strategy for this system, for which even at the initial stage, sea
ice thickness is often too low. During the melt season, this results in an excessive reduction
of SIC over most of the Arctic, and a subsequent loss in predictability (see later evaluations).
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Fig. 5.2.2: Boxplots representing SIE values for the re-forecast ensembles in each of the
models (a) CNRM-CM6-1, (b) SEAS5, (c) GloSea5 and (d) EC-Earth3 compared to NSIDC
data (in blue). Boxes show the inter-quartile range of the ensembles, the thick black line is
the ensemble  median,  whiskers show the range of  the ensemble up to 1.5 σ,  and dots
represent outliers beyond this range.

Figure 5.2.2 shows for each year of the re-forecast period the interquartile range and spread
of ensemble members (non bias-corrected model outputs) in May re-forecasts for September
SIE, compared to NSIDC reference data. The systems exhibit different characteristics: while
CNRM-CM6-1 clearly underestimates SIE for most years of the re-forecast, but seems to
capture the negative  trend in  SIE over  1993-2014,  SEAS5 shows values comparable to
NSIDC in the beginning of the re-forecast period but tends to underestimate the negative
trend, leading to an overestimation of September SIE for all years after 2006. Both GloSea5
and EC-Earth3 remarkably capture the overall negative trend, and NSIDC values are inside
the range of the ensemble for most years of the re-forecast in these two systems.
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From this analysis, it appears crucial to bias-correct the SIC values for these systems, and
remove the trend in the consecutive skill evaluations so as to avoid overestimating actual
skill of the models.

5.2.2. Pan-Arctic sea ice extent

To get a first glimpse of the skill of different systems in re-forecasting sea ice conditions, we
focus  on  Pan-Arctic  sea  ice  extent  (SIE)  computed  with  a  0.15  sea  ice  concentration
threshold. RMSE and correlation over the 1993-2014 re-forecast period are shown in Fig.
5.2.3. These skill scores are calculated for linearly-detrended sea ice concentration data so
as to avoid over-estimating the skill due to the strong negative trend in sea ice extent.

 
Fig.  5.2.3:  Evolution  according  to  forecast  month  of  pan-Arctic  SIE  RMSE  (left)  and
correlation (right) with NSIDC reference data. The multi-model ensemble (MME) is shown in
light blue, and persistence of April anomalies in pink.

The skill of individual systems is compared to a multi-model ensemble (MME) grouping all
ensemble members of each system together (without weighting individual systems but with
equal  weight  for  each member).  The skill  of  the  MME is  shown in blue.  Scores can be
compared to a  simple  persistence approach (persisting  SIC anomalies  from April  to  the
following months) for which results are shown in pink.  Most  systems exhibit  fairly similar
levels of skill, both for RMSE and correlation. RMSE is maximum in September when SIE is
at the minimum of the seasonal cycle. Correlation drops (as expected) with lead times from
over 0.8 in May to near-zero correlation for two of the models in October, namely CNRM-
CM6-1 and EC-Earth 3.2. The other two systems, namely SEAS5 and GloSea5, still exhibit
significant levels of correlation with NSIDC data at a 6-month lead time. All  models show
higher  skill  than  persistence,  although  the  score  for  persistence  is  inside  the  range  of
uncertainty after 2 months lead time in most cases, likely due to the limited number of re-
forecast years in the evaluation (not shown).

5.2.3. Sea ice edge forecast quality

While seasonal forecasts of Pan-Arctic sea ice can provide some indication of below-average
or above-average presence of sea ice, these are not the most relevant indicators for potential
end-users of seasonal forecast information. Among these users, some are most interested in
probabilities of presence of sea ice along shipping routes or near the climatological sea ice
edge (Melia et al. 2017).
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We therefore evaluate the skill of the different models in representing the position of the sea
ice edge (based on monthly averages) by computing the IIEE metric introduced by Goessling
et al. (2016). This is done after correcting SIC for systematic errors with a simple cross-
validation bias removal.  This  simple method has some caveats,  since for bounded fields
such as SIC values it can yield values outside the theoretical range. More elaborate methods
exist such as that of Dirkson et al. (2018), but are beyond the scope of this deliverable.

Fig 5.2.4: IIEE (black, in millions of km2) and decomposition in ME (red) and AEE (blue) with
respect to NSIDC data for September 1993 to 2014 in re-forecasts initialized in May with (a)
CNRM-CM6-1, (b) SEAS5, (c) GloSea5 and (d) EC-Earth3. (e) Same as (a-d) but for a multi-
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model ensemble grouping all ensemble members of each individual system (after individual
bias correction of SIC). The grey line shows the reference SIE (y-axis on the right hand side).

Figure 5.2.4 shows the IIEE for each individual system for September 1993-2014, as well as
for  a multi-model  ensemble grouping each individual  member of  each system (after  bias
correction) into a large ensemble. Results for the different systems are quite similar, with
IIEE increasing during the re-forecast period, mainly due to an increase in AEE.

Peaks in IIEE are found in 2007 and 2012 for each system. Some systems, namely CNRM-
CM6-1 and EC-Earth 3, show more variability in the misplacement error than SEAS5 and
GloSea5. This suggests that for the latter, skill evaluations based on RMSE of Pan-Arctic SIE
are giving a rather correct picture of the model capacity to predict the sea ice edge position,
whereas for the former two systems, the Pan-Arctic SIE actually “hides” some compensation
between areas where SIC is overestimated and where it is underestimated.

Fig. 5.2.5: Right: SPS for September 1993-2014 over the Pan-Arctic region in the MME of re-
forecasts initialized in May (in black), and total SIE (in grey, right y-axis); left: mean SPS over
1993-2014 according to forecast month for each system and the MME (in black).

Figure 5.2.5 shows the SPS for monthly SIC in September over the re-forecast period for the
multi-model ensemble. Little inter-annual variability in SPS is found, setting aside the 1996,
2007 and 2012 cases during which SIE over the Pan-Arctic region reached local extrema
(maximum in the case of 1996, minima in 2007 and 2012, as shown in grey in the figure).
The right hand side figure shows the average SPS over the 1993-2014 period for each re-
forecast  month  for  each  system  (colors)  and  the  multi-model  ensemble  (black).  Unlike
previous results for atmospheric fields over other regions (see e.g. Hagedorn et al. 2005), the
multi-model approach does not significantly improve results with respect to the best single
models. Each system exhibits quite similar  mean values over the re-forecast period, and
similar peaks to those of the MME are found for each system in September (not shown). The
CNRM-CM6  model  exhibits  once  more  some  difficulties  related  to  the  too  thin  sea  ice
initialization, leading to a loss of predictability in August to October.
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5.2.4. Illustration of model deficiencies using a case study: 

September 2012

This section focuses on the seasonal re-forecasts for September 2012 sea ice extent, which
corresponds to the minimum over the 1993-2014 period for Pan-Arctic sea ice extent. This is
to provide an illustration of the model deficiencies and discuss the limitations of the simple
bias correction approach used in this deliverable. Figure 5.2.6 shows the sea ice edge for
September 2012 in the ensemble mean of each individual system initialized in May, defined
using a SIC > 0.15 threshold. This is compared to the ice edge obtained with NSIDC data. As
in Figure 1 in Goessling et al. (2016), we depict in blue areas where SIC is overestimated
beyond this 0.15 level, leading to a too extended sea ice edge, and in red areas where SIC is
underestimated leading to a too restricted sea ice edge contour. Some of the systematic
errors in  September illustrated in  Fig.  5.2.1 can be found for  this  specific  forecast  date:
CNRM-CM6-1 has too low SIC in the Central Arctic, leading to the underestimation of the ice
edge in the Greenland seas and close to the pole. SEAS5, GloSea5 and EC-Earth 3.2 exhibit
a  typical  extension  of  SIC  too  far  towards  Alaska  and  Eastern  Siberia,  therefore
overestimating the sea ice edge in the Beaufort, Chukchi and East Siberian seas.
The Atlantic sector is generally better forecasted in the different systems than in the Pacific.

Fig.  5.2.6:  Raw  Arctic  sea  ice  edge  re-forecasts  for  September  2012  in  each  system,
compared to NSIDC. Areas in white indicate where sea ice is found in both NSIDC and the
ensemble mean re-forecast.  Areas in  red show where sea ice was found in  NSIDC but
wasn’t forecast by the model, while areas in light blue highlight regions where the sea ice
was forecast in the model but not present in NSIDC. The threshold for SIC used here is 0.15.
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These  raw  forecasts  can  be  compared  to  those  obtained  after  a  straightforward  bias
correction of SIC fields using leave-one-out cross-validation. These are shown in figure 5.2.7.
Despite very different biases between CNRM-CM6-1 and the other systems, all models after
bias  correction  over-estimated the total  pan-Arctic  sea ice  extent,  mainly  due to a  clear
extension of the sea ice edge towards the Bering Strait.

When looking at the forecasts for September 2012 in figure 5.2.2 and their corresponding
ensemble  spread,  compared  to  that  of  surrounding  years,  it  appears  that  no  individual
system clearly singled out 2012 as a year of record-low SIE.
This  particular  year  appears  therefore  as  a  clear  “forecast  bust”,  and  reasons  for  such
misses in the seasonal forecast systems despite fair correlation levels for total SIE should be
further investigated in the framework of the project. In the case of 2012, part of the decline in
SIE was however attributed to a strong storm in August (Parkinson and Comesino (2013)),
which limits the extent to which such a minimum can be predicted at extended time scales.
Events at a sub-seasonal time scale may therefore significantly alter the quality of seasonal
predictions if these are not at least partially captured by the ensemble.

However,  beyond  the  actual  predictability  of  the  2012  minimum,  this  evaluation  does
highlight the need for significant improvements in the systematic errors and drift in the sea
ice component of the coupled models evaluated in this deliverable.

Fig. 5.2.7: Same as fig. 5.2.6, but for bias-corrected September 2012 sea ice edge over the
Arctic in each re-forecast compared to NSIDC.
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5.3. Statistical forecasting

Section 5.3 evaluates the skill of statistical empirical models for predicting Arctic sea ice area
(SIA) and sea ice volume (SIV) anomalies as proposed in Task 5.2.4. This ongoing task is
mainly guided by three well-defined goals, as follows: (i) Assess the skill of multiple linear
regression models for predicting the Arctic sea ice area and volume anomalies at two critical
months of the year (March and September), for lead periods of up to twelve months; (ii)
Determine whether, and eventually how, model resolution can play a role on the statistical
predictability of the Arctic sea ice? (iii) Identify whether or not the statistical predictability of
sea ice area and volume anomalies is losing skill over time.

To do so, we make use of four different GCMs with two configurations each (“low” and “high”
resolutions), totalizing eight model simulations. Namely, the models are: HadGEM (Roberts
et al., 2018a; Williams et al., 2018), ECMWF-IFS (Roberts et al., 2018b), AWI-CM (Wang et
al., 2014; Sidorenko et al., 2015) and MPI-ESM (Müller et al., 2018). Model outputs come
from  HighResMIP  (Haarsma  et  al,  2016),  which  is  one  of  the  CMIP6-endorsed  Model
Intercomparison  Projects  (MIPs).  These  results  were  previously  used  in  the  context  of
PRIMAVERA (Process-based climate sIMulation: AdVances in high-resolution modelling and
European climate Risk Assessment) project (e.g., Docquier et al., 2018), which is another
European Union Horizon2020 Project. This task is being developed in close collaboration
with PRIMAVERA and it  is a successful example of clustering between two Horizon2020
projects.

The empirical models are built mainly based on recommendations from Drobot et al. (2006)
and Lindsay et al. (2008). They are generated following a Monte Carlo (MC) method, with
500 realizations at every step. For each realization, 80% of the data are randomly selected
and used to build the statistical model, while the remaining 20% of the data are used for
verification, estimating the errors (RMSE) from statistically reconstructed values and model
outputs. Fig. 5.3.1 displays the first MC realization used to construct three different statistical
models for  predicting  the SIV in  September  (SIVSEP),  having as predictor  the  SIVJAN and
SIAJAN in January (8-month lag), as well as the combination of these two variables. Fig. 5.3.2
shows the RMSE estimated at each MC realization, for all lagged-months.

For the example mentioned above, with SIVSEP  predicted by SIV itself and SIA, Fig. 5.3.3
reveals  that  SIA does not  substantially  improve the skill  of  the statistical  model  and the
SIVSEP  is more efficiently predicted by its own values at lagged-months. This observation is
valid for the eight model configurations.

Fig.  5.3.4  compares  the  RMSE  resulting  from  the  statistical  model  performed  with  two
different configurations of the same GCM. Interestingly, the skill of the statistical models is
better  for  the  high-resolution  version,  except  for  MPI-ESM in which the statistical  skill  is
slightly better for the low-resolution version.  However, such better skill  for high-resolution
models tend to attenuate near September (also observed in Fig. 5.3.2). Finally, the results
also suggest that the statistical predictability substantially improves in July, at about 3-month
lag. A feasible explanation for these results has not yet been found and would require further
investigation.
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In total,  seven predictors are being considered for  building the multiple linear  regression
models: Sea Ice Area (SIA), Sea Ice Volume (SIV), Sea Ice Concentration (SIC), Sea Ice
Thickness (SST),  Sea Surface Temperature  (SST),  Ice  Velocity  (Drift)  and the poleward
Ocean Heat Transport (OHT). To the knowledge of the authors, this is the first  time that
poleward OHT is included as predictor for sea ice parameters. At the moment of closing this
report, results are being analyzed and improved, in order to be incorporated to a scientific
manuscript in the upcoming months.

Fig.  5.3.1:  (Top) Diagrams SIVSEP x SIVJAN (left)  and SIVSEP x SIAJAN (right).  Black circles
represent the data used to built  the statistical model, while white points indicate the data
used for calculating the RMSE and testing the skill of the statistical model. (Bottom) Black
line represents the SIVSEP time series. Black and white stars are equivalent to the black and
white circles described above, respectively. Green, blue and red stars display the statistically
predicted values for SIVSEP having as predictor SIVJAN, SIAJAN and SIVJAN+SIAJAN, respectively.
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Fig. 5.3.2: Root Mean Squared Error (RMSE) estimated between the statistically predicted
values and the respective model outputs selected for testing the statistical model at every
Monte Carlo realization. Blue, green (overlapped by the red) and red represent the RMSEs
from the models which have as predictor SIVMON  , SIAMON and SIVMON+SIAMON, respectively.
The  subscript  index  “MON”  refers  to  the  predictor  month.  For  instance,  8-month  lag  is
January, 7-month lag is February, etc. The 12 to 9 month-lags predict the SIV in September
of the next year.  
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Fig. 5.3.3: Monthly mean Root Mean Squared Error (RMSE) estimated from all Monte Carlo
realizations. The error bar represents the standard deviation. Blue, green and red represent
the RMSEs from the models which  have as predictor  SIVJAN  ,  SIAJAN and SIVJAN+SIAJAN,
respectively. Left panels represent the “low” resolution versions of the models, while right
panels  represent  the high  resolution  configurations.  Notice  that  the  MPI-HR is  our  “low”
resolution version of MPI-ESM model.
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Fig. 5.3.4: Monthly mean Root Mean Squared Error (RMSE) estimated from all Monte Carlo
realizations. The error bar represents the standard deviation. Black and red represent the
“low” and “high” resolution configuration of the models, respectively.
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6. CONCLUSIONS AND OUTLOOK

In this report, we have shown a comprehensive evaluation of forecast quality over the
Arctic  and  mid-latitudes,  based  on  a  set  of  state-of-the-art  models  focusing  on
weather to seasonal climate prediction time scales.

The first part of this deliverable focused on a case study for extreme precipitation in
Svalbard which occurred from 7-10 November 2016, and more generally on several
events  during  the recent  2016-2018 period.  A comparison between the  AROME-
Arctic  limited  area  model  and  ECMWF  deterministic  global  HRES  forecasts
highlighted the  importance of  a  detailed  orography to  better  capture precipitation
amounts. However, the added value of high resolution is clearer when all days are
included in the analysis than when subsetting the scores on high precipitation events
only. AROME-Arctic was also found to have an improved ability to separate rain and
snow events over the region.

The analysis was then extended to investigate added value in short range forecasts
of  high  resolution  limited  area  models  compared  to  global  models  for  a  region
encompassing  all  Norwegian  SYNOP  stations  for  the  March  2016  to  April  2018
period. The added value of a high resolution model was found to depend on the
variable, type of station (e.g. inland or mountain) and the season of verification. 

At the medium range, ECMWF forecasts are found to be on average less skillful over
the  Arctic  than  over  the  Northern  Hemisphere  (20°N-90°N),  although  the  rate  of
improvement of 500 hPa geopotential height correlation over the past two decades is
very  similar  for  both  regions.  The  evaluation  of  2016-2017  winter  and  summer
seasons medium range forecasts shows that  errors for geopotential  height  in the
troposphere are overall higher in summer than in winter. The spatial distribution of
errors also varies with higher RMSE over the pole in summer, and a maximum over
the north Atlantic in winter.

At the seasonal time scale, models from APPLICATE stream 1 as well as SEAS5
were evaluated and found to show a reasonable climatology in blocking frequency
when  compared  to  ERA-Interim,  although  this  is  no  guarantee  of  actual  skill  in
predicting  a  higher-than-normal  blocking  activity  at  a  seasonal  time  scale.  The
evaluation  of  winter  seasonal  re-forecasts  based  on  a  fair  continuous  ranked
probability  skill  score  demonstrated  the  very  limited  ability  of  models  to  properly
represent  the  variability  of  atmospheric  fields  such  as  sea-level  pressure,
temperature  and  precipitation  at  this  time  scale,  with  most  skill  arising  from the
predictability  of  ENSO.  However,  gridpoint  correlation  with  ERA-Interim suggests
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some signal  can be extracted from the ensemble mean of  these forecasts when
using larger ensembles and a multi-model approach.

Sea ice concentration forecast quality and skill was also examined in the seasonal
re-forecasts.  Beyond  typical  Pan-Arctic  sea  ice  extent  skill  scores,  we  used
deterministic  and  probabilistic  integrated  scores  accounting  for  both  total  extent
errors as well as misplacement errors to get a more complete overview of strengths
and weaknesses of current systems. Levels of skill are quite similar between systems
for  both  summer  and  winter  seasons,  with  some  sensitivity  to  the  initialization
strategy. Statistical  forecasts based on numerical model experiments suggest that
longer lead times for sea ice predictability than those found with current forecasting
systems could be achieved, by improving initialization as well as moving to higher
resolution.

Work is currently underway to improve both weather and seasonal climate prediction
systems,  by  enhancing  sea  ice  models  and  improving  air-sea  interactions  (task
5.3.1),  working  on  increased  resolution  (tasks  5.3.2  and  5.3.3),  and  improving
ensemble generation (5.3.4).
Conclusions from these different areas of model improvement will be summarized in
an  upcoming  deliverable  (5.3),  and  the  most  promising  approaches  will  be
implemented in a second stream of experiments in the framework of the project to be
compared with forecasts analysed here.
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AEE: Absolute Extent Error

ACC: Anomaly Correlation Coefficient

CMIP6: Coupled Model Intercomparison Project phase 6
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ECMWF: European Centre for Medium-range Weather Forecasts

EDA: Ensemble 4D-Var Assimilations

EFI: Extreme Forecast Index

ENS: ECMWF ensemble forecast

ENSO: El Niño Southern Oscillation

EOF: Empirical Orthogonal Function
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ETS: Equitable Threat Score

FB: Frequency Bias

FCRPSS: Fair Continuous Ranked Probability Skill Score

GCM: Global Coupled Model

GPCP: Global Precipitation Climatology Project

HARMONIE: HIRLAM-ALADIN Research on Mesoscale Operational NWP in Europe

HIRLAM: High Resolution Limited Area Model

IFS: Integrated Forecasting System

IIEE: Integrated Ice Edge Error

IVT: Integrated water Vapour Transport

JJA: June-July-August

MAE: Mean Absolute Error

MC: Monte Carlo

ME: Mean Error (sections 3 and 4) or Misplacement Error (section 5.2)

MME: Multi-model ensemble

MSLP: Mean Sea-Level Pressure

NAO: North Atlantic Oscillation

NEMO: Nucleus for European Modelling of the Ocean

NSIDC: NASA National Snow and Ice Data Center

NWP: Numerical Weather Prediction

OHT: Ocean Heat Transport

PRIMAVERA: H2020 project Process-based climate sIMulation: AdVances in high-resolution 

modelling and European climate Risk Assessment

RMSE: Root Mean Square Error

RPC: Ratio of Predictable Components

SEAS5: ECMWF Seasonal forecasting system 5

SIA: Sea Ice Area

SIC: Sea Ice Concentration

SIE: Sea Ice Extent

SIT: Sea Ice Thickness

SIV: Sea Ice Volume

SOP1: First Special Observing Period (of YOPP)

SPS: Spatial Probability Score

SST: Sea Surface Temperature

TCC: Total Cloud Cover

UM: UK Met Office Unified Model

YOPP: Year Of Polar Prediction
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9. ANNEXES

9.1. Winter sea ice extent seasonal re-forecasts

This annex presents and discusses results for the seasonal re-forecasts evaluated in section
5.2 for the November initialization, focusing on winter and the March maximum of the annual
cycle of sea ice extent.

Figure 9.1.1 presents the evolution of RMSE and correlation according to the forecast month
for re-forecasts initialized in November. Unlike results for the summer season (May starts),
very minor differences between the different systems are found, and levels of skill are clearly
better than that of persistence. These results are consistent with previous findings which
established a lower predictability in forecasts initialized in late spring (e.g. Guemas et al.
2016).

 
Fig.  9.1.1  Evolution  according  to  forecast  month  of  pan-Arctic  SIE  RMSE  (left)  and
correlation (right) with NSIDC reference data in re-forecasts initialized in November 1993-
2014.  The  multi-model  ensemble  (MME)  is  shown  in  orange,  and  persistence  of  April
anomalies in light blue.

Figure 9.1.2 shows the IIEE and decomposition for each system as well as for the multi-
model ensemble. As for the May starts, no significant improvement with a simple multi-model
approach is found, possibly due to the strong similarities between the different forecasting
systems. The decomposition in ME and AEE shows a much higher inter-annual variability for
the winter season than for the summer season. This is possibly mainly due to the fact that
ice-free areas are more restricted during winter.  As for  the probabilistic  score (SPS,  fig.
9.1.3),  very  minor  differences  between  the  systems  are  found.  The  highest  differences
appear  in  the  very  first  month  of  the  re-forecast,  again  suggesting  the  importance  of
initialization in the forecast quality.
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Fig 9.1.2: IIEE (black, in millions of km2) and decomposition in ME (red) and AEE (blue) with
respect to NSIDC data for March 1993 to 2014 in re-forecasts initialized in November with (a)
CNRM-CM6-1,  (b)  SEAS5  and  (c)  EC-Earth3.  (d)  Same as  (a-c)  but  for  a  multi-model
ensemble grouping all ensemble members of each individual system (after individual bias
correction of SIC). The grey line shows the reference SIE (y-axis on the right hand side).

Fig. 9.1.3 Mean SPS over 1993-2014 according to forecast month for each system and the
MME (in black) for re-forecasts initialized in November.

Page 57 of 57


	H2020 - Research and Innovation Action
	
	Advanced Prediction in Polar regions and beyond: Modelling, observing system design and LInkages associated with a Changing Arctic climaTE
	Grant Agreement No: 727862
	Deliverable No. 5.2
	Strengths and limitations of state-of-the-art weather and climate prediction systems
	
	Submission of Deliverable
	Work Package
	
	Deliverable No
	5.2
	Deliverable title
	Strengths and limitations of state-of-the-art weather and climate prediction systems
	Version
	2
	Status
	
	Dissemination level
	
	Lead Beneficiary
	
	Contributors
	☐ 1 – AWI ■ 2 – BSC ■ 3 - ECMWF
	☐ 4 – UiB ☐ 5 – UNI Research ■ 6 – MET Norway
	■ 7 – Met Office ■ 8 – UCL ☐ 9 - UREAD
	☐ 10 – SU ■ 11 – CNRS-GAME ☐ 12 - CERFACS
	☐ 13 – AP ☐ 14 – UiT ☐ 15 - IORAS
	☐ 16 - MGO
	Due Date
	
	Delivery Date
	
	Coordinating author
	Lauriane Batté (lauriane.batte@meteo.fr) (CNRS)
	Contributing authors
	Juan Camilo Acosta Navarro (BSC)
	Morten Koltzow (MET Norway)
	Linus Magnusson (ECMWF)
	Pablo Ortega (BSC)
	Leandro Ponsoni (UCL)
	Doug Smith (Met Office)
	EXECUTIVE SUMMARY
	1. INTRODUCTION
	1.1 Background and objectives
	1.2 Organisation of this report

	2. METHODOLOGY
	2.1. Model and reference data
	2.2. Metrics of forecast quality
	2.2.1. Deterministic scores and metrics
	2.2.2. Probabilistic scores


	3. MULTI-SCALE PREDICTIONS OF EXTREMES: RAINFALL IN SVALBARD
	3.1. Introduction
	3.2. Links with circulation patterns
	3.3. Predictability of short range forecasts

	4. EVALUATION OF SHORT AND MEDIUM-RANGE FORECASTS OVER THE ARCTIC
	4.1. Evaluation of medium-range forecasts over the Arctic
	4.2. Comparison of short range forecasts with observations

	5. SEASONAL FORECAST QUALITY OVER THE NORTHERN HEMISPHERE MIDLATITUDES AND ARCTIC
	5.1. Atmospheric predictability for boreal winter
	5.2. Skill of seasonal forecasting systems in representing summer Arctic sea ice
	5.2.1. Systematic errors in sea ice concentration and extent
	5.2.2. Pan-Arctic sea ice extent
	5.2.3. Sea ice edge forecast quality
	5.2.4. Illustration of model deficiencies using a case study: September 2012

	5.3. Statistical forecasting

	6. CONCLUSIONS AND OUTLOOK
	7. REFERENCES
	8. ACRONYMS
	9. ANNEXES
	9.1. Winter sea ice extent seasonal re-forecasts


	Zone combin#C3#A9e 1: [WP5 Improved predictive capacity]
	Zone combin#C3#A9e 2: [Final]
	Zone combin#C3#A9e 3: [PU - Public]
	Zone combin#C3#A9e 4: [11 - CNRS-GAME]
	Champ de date 1: 31/10/18
	Champ de date 2: 24/10/18


