
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

November 2022 

Quantifying Environmental Sensitivity of Marine Resources to Oil Quantifying Environmental Sensitivity of Marine Resources to Oil 

Well Blowouts in the Gulf of Mexico Well Blowouts in the Gulf of Mexico 

Emily Chancellor 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Ecology and Evolutionary Biology Commons 

Scholar Commons Citation Scholar Commons Citation 
Chancellor, Emily, "Quantifying Environmental Sensitivity of Marine Resources to Oil Well Blowouts in the 
Gulf of Mexico" (2022). USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/9755 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9755&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.usf.edu%2Fetd%2F9755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


 

 

 

 

 
 

Quantifying Environmental Sensitivity of Marine Resources to 

 

Oil Well Blowouts in the Gulf of Mexico 

 

 

 

by 

 

 

 

Emily Chancellor 

 

 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy  

College of Marine Science 

University of South Florida 

 

 

 

Major Professor: Steven A. Murawski, Ph.D. 

Ernst Peebles, Ph.D. 

Claire Paris, Ph.D. 

James Sanchirico, Ph.D. 

David Naar, Ph.D. 

 

 

Date of Approval: 

November 21, 2022 

 

 

 

Keywords: environmental sensitivity indices, vulnerability assessment, marine spatial planning 

 

Copyright © 2022, Emily Chancellor 

 



 

 

 

 

 

 

 

Acknowledgments 

 

I am grateful for the support provided by my family, peers, and friends during the 

completion of this degree.  My parents, Sam and Linda Chancellor, and my sister, Cara 

Chancellor, have been my supporters during their process and I am so thankful for it.  I want to 

thank my fellow USF graduates for their friendship and motivation.  I have met so many truly 

brilliant and talented peers during the completion of this degree and I am consistently inspired by 

them.  

A large thank you goes to my advisor, Dr. Steve Murawski, for the opportunity to 

complete both my M.S. and my Ph.D. degrees at USF, and for his insightful expertise which has 

shaped so much of this dissertation.  I want to thank the rest of my dissertation committee, Dr. 

Ernst Peebles, Dr. Claire Paris, Dr. James Sanchirico, and Dr. David Naar, for their invaluable 

assistance during this process.   This research was made possible in part by financial support 

provided by the Gulf of Mexico Research Initiative/C-IMAGE I and II.



i 

 

 

 

 

 

Table of Contents 

 

 

List of Tables ................................................................................................................................. iv 

 

List of Figures ..................................................................................................................................v 

 

Abstract ........................................................................................................................................ viii 

 

Chapter 1. Introduction ....................................................................................................................1 

 

Chapter 2. Comparative Environmental Sensitivity of Offshore Gulf of Mexico Waters  

 Potentially Impacted by Ultra-Deep Oil Well Blowouts ...........................................................9 

 2.1 Abstract ..........................................................................................................................9 

 2.2 Note to Reader .............................................................................................................10 

 

Chapter 3. A Quantitative Analysis of the Offshore Resources of the Gulf of Mexico and  

 Creation of Cumulative Environmental Sensitivity Indices (C-ESIs) .....................................11 

  3.1 Introduction ..................................................................................................................11 

  3.2 Methods........................................................................................................................17 

    3.2.1 Species Selection (Fishes, Turtles, Mammals) .............................................17 

    3.2.2 Distributions of Probability of Species Presence ..........................................18 

    3.2.3 Dissimilarity in Species Distributions ..........................................................20 

    3.2.4 Spatial Distribution of Species Richness ......................................................21 

    3.2.5 Spatial Distributions of Commercial Fisheries Economic Value .................22 

    3.2.6 Southeast Area Monitoring and Assessment Program (SEAMAP)  

     Larval Abundance ............................................................................................26 

    3.2.7 Deep-Sea Coral Habitat ................................................................................28 

    3.2.8 Creation of Cumulative Environmental Sensitivity Indices (C-ESIs) ..........29 

    3.2.9 Contribution of Individual Components and Identifying Tradeoffs .............30 

    3.2.10 Weighted Fish Species ESIs and Exploration of Sensitivity ......................30 

    3.2.11 Note for successfully running published scripts .........................................32 

  3.3 Results ..........................................................................................................................32 

    3.3.1 Spatial Distributions of Offshore Resources.................................................32 

    3.3.2 Dissimilarity in Species Distributions ..........................................................33 

    3.3.3 Cumulative Environmental Sensitivity Indices (C-ESIs) .............................34 

  3.4 Discussion ....................................................................................................................39 

  3.5 Tables ...........................................................................................................................45 

  3.6 Figures..........................................................................................................................50 

 

 



ii 

Chapter 4. Using Cumulative Environmental Sensitivity Indices (C-ESIs) to Identify  

 Vulnerable Resource Impacts from Hypothetical Oil Well Blowouts .....................................66 

  4.1 Introduction ..................................................................................................................66 

  4.2 Methods........................................................................................................................71 

    4.2.1 Creation of Surface Oil Maximum Daily Oil Concentration  

     (MDOC) Files ..................................................................................................71 

    4.2.2 Creation of Minimum Oil Concentration Threshold (MOCT)  

     Polygons ...........................................................................................................73 

    4.2.3 Calculating Intersection of C-ESIs and MOCT Polygons ............................73 

    4.2.4 Toxicity Threshold Conversion to MOCT ....................................................74 

  4.3 Results ..........................................................................................................................75 

    4.3.1 Proportion of C-ESI within each MOCT Polygon ........................................75 

    4.3.2 Ranking Oil Well Blowout Scenarios by Resource Vulnerability ................75 

    4.3.3 Resource Vulnerability to Oil Well Blowout Scenarios by C-ESI ...............76 

  4.4 Discussion ....................................................................................................................77 

    Future Inclusion for Changes in Duration of Exposure .........................................81 

  Model Elaboration for the Depth Distributions of Oil Concentrations  

   and Resources ..................................................................................................81 

    Limitations of Polygons created using the Convex Hull Algorithm......................82 

  4.5 Tables ...........................................................................................................................83 

  4.6 Figures..........................................................................................................................87 

 

Chapter 5: Connecting Networks of Vulnerability “Hot-Spots” of Resources to Oil  

 Spills with C-ESIs and the MARXAN Spatial Planning Solver..............................................98 

 5.1 Introduction ..................................................................................................................98 

 5.2 Methods......................................................................................................................106 

  5.2.1 Distribution of Current Oil and Natural Gas Production ............................106 

  5.2.2 Development of Single-Sector Tradeoff Curves .........................................107 

  5.2.3 Development of Multi-Sector Tradeoff Curves ..........................................108 

  5.2.4 Use of Marxan to Identify Minimum-Set Conservation Networks ............110 

  5.2.5 Development of Marxan Scenarios .............................................................110 

  5.2.6 Creation of Input Files for Scenarios ..........................................................111 

  5.2.7 Running Marxan and Generating Output Files ...........................................113 

  5.2.8 Calibration of Boundary Length Modifier (BLM) and Species  

   Penalty Factor (SPF) in Zonae Cogito ...........................................................113 

 5.3 Results ........................................................................................................................115 

  5.3.1 Scatterplots of C-ESI Proportions vs. Oil and Gas Production ..................115 

  5.3.2 Single-sector and Multi-sector Tradeoff Curves.........................................116 

  5.3.3 Scenario 1: Fisheries Marxan Solution – uniform cost, single sector .........117 

  5.3.4 Scenario 2: Mammals Marxan Solution .....................................................119 

  5.3.5 Scenario 3: Fisheries with Oil Production as Cost ......................................120 

  5.3.6 Scenario 4: Mammal Species with Oil Production as Cost ........................120 

  5.3.7 Evaluation of 2032 Congressional Moratorium ..........................................120 

 5.4 Discussion ..................................................................................................................121 

  Evaluation of the Best Solution for Marxan Scenarios ........................................123 

  Evaluation of the Frequency of Solutions for Marxan Scenarios ........................124 



iii 

  Areas for Future Study .........................................................................................124 

 5.5 Tables .........................................................................................................................126 

 5.6 Figures........................................................................................................................127 

 

Chapter 6: Conclusions ................................................................................................................143 

 

References ....................................................................................................................................148 

 

Appendix A:  Published Chapter .................................................................................................161 

 

Appendix B: Finalized rasters for all resource components created in Chapter 3 and used  

 as inputs in Chapter 4 and Chapter 5 .....................................................................................186 

 

Appendix C: Additional Tables and Figures from Running Marxan Spatial Planning  

 Solver ....................................................................................................................................220 

 

Appendix D: Copyright Clearances .............................................................................................224 

  



iv 

 

 

 

 

 

List of Tables 

 

Table 3.1  Common and scientific names for selected species whose individual  

  probability of occurrence distributions were included in this study.   ...................46 

 

Table 3.2  Common and scientific names of species of fishes and shrimp used in  

  indices for coastal reef fishes, coastal pelagic fishes, shrimp, and highly  

  migratory fishes. ....................................................................................................47 

 

Table 3.3  Larval Species used in larval abundance raster. ....................................................48 

 

Table 3.4 List of raster files with resolution level and ID number. .......................................49 

 

Table 3.5  List of C-ESIs and contributing raster IDs from Table 3.4. ...................................50 

 

Table 4.1  List of C-ESIs and contributing resource raster IDs from Table 4.2. ....................84 

 

Table 4.2  List of raster files with resolution level and ID number. .......................................85 

 

Table 4.3  Cumulative Impact Proportion (CIP) Scores by C-ESI within each oil  

 well blowout scenario at each MOCT level (ppb).  ...............................................86 

 

Table 4.4  Summary statistics of CIP by oil well blowout scenarios (A) and  

 C-ESI (B). ..............................................................................................................87 

 

Table 4.5  Published PAH toxicity thresholds converted to estimated MOCT ppb.  .............87 

 

Table 5.1  List of raster files included in this chapter by resolution level and ID  

 number. ................................................................................................................127 

 

Table 5.2  List of Marxan Scenarios and contributing raster IDs from Table 5.1. ...............127 

 

Table 5.3  Proportion of each C-ESI within the Congressional Moratorium area. ...............127 

  



v 

 

 

 

 

 

List of Figures 

 

Figure 1.1 Design and organization of this dissertation ............................................................8 

 

Figure 3.1 IHO Ocean shape file for the spatial extent of the GoM visualized in QGIS. .......51 

 

Figure 3.2 Coastal species revenue boxplots...........................................................................52 

 

Figure 3.3 Highly migratory species landings boxplots. .........................................................53 

 

Figure 3.4A Distribution of probability of occurrence and proportion of suitable habitat  

 for fish species. ......................................................................................................54 

 

Figure 3.4B  Distribution of proportion of suitable habitat for larval abundance. .....................55 

 

Figure 3.5A  Dissimilarity scores for mammals and fish. ...........................................................56 

 

Figure 3.5B  Cluster map for fish and mammal species. ............................................................57 

 

Figure 3.6  Mammals C-ESI (ID 1). .........................................................................................58 

 

Figure 3.7  Turtles C-ESI (ID 2). .............................................................................................59 

 

Figure 3.8  Fish species C-ESIs (ID 3 & 4)..............................................................................60 

 

Figure 3.9A  Cumulative sum by component for single weighted species. ................................61 

 

Figure 3.9B  Cumulative sum by component for weighted suite of fish species. .......................62 

 

Figure 3.10  Species Richness C-ESI (ID 5). .............................................................................63 

 

Figure 3.11  Commercial Fisheries C-ESI (ID 6). .....................................................................64 

 

Figure 3.12  Cumulative All Layers C-ESI (ID 7) .....................................................................65 

 

Figure 3.13  Red grouper point occurrence data used for creation of AquaMaps  

 distribution. ............................................................................................................66 

 

Figure 3.14  Red grouper catches from longline surveys in the GoM. ......................................66 

 



vi 

Figure 4.1  Surface distribution of the maximum daily oil concentration (ppb) for four  

 oil well blowout scenarios visualized in QGIS. .....................................................88 

 

 

Figure 4.2A Convex hull minimum oil concentration threshold (MOCT) polygons  

 created from the maximum daily oil concentration (MDOC) for DWH and  

 FALL oil spill scenarios.........................................................................................89 

 

Figure 4.2B  Convex hull minimum oil concentration threshold (MOCT) polygons  

 created from the maximum daily oil concentration (MDOC) for WFS and 

 WGoM spill scenarios............................................................................................90 

 

Figure 4.3A  Comparison of CIP scores by oil well blowout scenario and MOCT level. ..........91 

 

Figure 4.3B  Comparison of CIP scores by oil well blowout scenario and C-ESI. ....................92 

 

Figure 4.4  Fisheries C-ESI:  Comparison of oil spill scenarios. .............................................93 

 

Figure 4.5  Species Richness C-ESI:  Comparison of oil spill scenarios. ................................94 

 

Figure 4.6  Mammals C-ESI:  Comparison of oil spill scenarios.............................................95 

 

Figure 4.7  Turtles C-ESI:  Comparison of oil spill scenarios. ................................................96 

 

Figure 4.8  Fish Species C-ESI:  Comparison of oil spill scenarios. .......................................97 

 

Figure 4.9  Fish, Mammals, Turtles, Larval Fish, Deep Sea Corals C-ESI:   

 Comparison of oil spill scenarios. ..........................................................................98 

 

Figure 5.1 Boundaries for areas withdrawn from oil/gas/mineral leasing off the gulf  

 coast of Florida under the Congressional Moratorium and extended by  

 Presidential proclamation until June 30, 2032. ....................................................128 

 

Figure 5.2  Pairwise tradeoffs in sector values for Nantucket Cape Wind proposal. .............129 

 

Figure 5.3  Oil and natural gas production in the Gulf of Mexico. ........................................130 

 

Figure 5.4  Count and mean production of leases of oil and natural gas production  

 in the Gulf of Mexico by depth. ...........................................................................131 

 

Figure 5.5A Scatterplots of C-ESI proportions by natural gas and oil production  

 proportions. ..........................................................................................................132 

 

Figure 5.5E Scatterplots of C-ESI proportions by oil or natural gas proportions. ..................133 

 

Figure 5.6  Single- vs. Multi-Sector tradeoff curves for oil production sector vs ESI...........134 



vii 

 

Figure 5.7  Single- vs. Multi-Sector tradeoff curves for a hypothetical mammal  

 Reservation. .........................................................................................................135 

 

Figure 5.8  Planning unit shapefile. ........................................................................................136 

 

Figure 5.9  Best and frequency for Scenario 1: Fisheries - Pristine System. .........................137 

 

Figure 5.10 Initial best and frequency for Scenario 2: Mammals - Pristine System. ..............138 

 

Figure 5.11  Final best and frequency for Scenario 2: Mammals - Pristine System. ...............139 

 

Figure 5.12  Final best and frequency Scenario 3: Fisheries - Oil Production as Cost. ...........140 

 

Figure 5.13  Final best and frequency Scenario 4: Mammals - Oil Production as Cost. .........141 

 

Figure 5.14  C-ESIs mapped with the Congressional Moratorium. .........................................142 

 

Figure 5.15  Scenario 4: Mammals solution mapped with the Congressional  

 Moratorium Boundaries .......................................................................................143 

 

 

 

 

 

  



viii 

 

 

 

 

 

Abstract 

 

This dissertation focused on oil spill risk assessment techniques historically utilized for 

coastal resources (e.g., environmental sensitivity indices (ESIs), vulnerability assessments, 

species-specific vulnerability frameworks) and their application and expansion to offshore 

resources found in the Gulf of Mexico (GoM).  Additional included techniques (e.g., multi-sector 

trade-off analysis, marine spatial planning (MSP) software) provide support in decision making 

processes regarding the potential siting of oil production sites and/or the withdrawal of areas 

from oil and natural gas production.  Chapter 1 included an overview and justification for this 

study.  Chapter 2 demonstrated an initial methodology for the creation of offshore ESIs and how 

vulnerability to marine resources might be estimated via the inclusion of an oil fate and transport 

model used to simulate oil well blowouts.  Chapter 3 created spatial distributions of marine 

resources from disparate sources and transformed the distributions into quantifiably comparable 

grids via the use of standardized indices.  These grids were combined via a multi-attribute utility 

model (MAUM) to create multiple cumulative ESIs (C-ESIs) identifying resource rich “hot-

spots” within the GoM.  Chapter 3 also explored dissimilarity and cluster mapping methods to 

identify sets of resources with similar distributions and estimate the degree of influence to the 

overall C-ESIs.  Species-specific vulnerability rankings estimated under a preliminary trait-based 

framework were provided for use in this study and were added to a fish species C-ESI to 

illustrate how C-ESIs might be combined with similar frameworks to weight one resource or 

suite of resources more heavily.  The C-ESI was impacted as expected by the heavy weighting of 



ix 

one fish species with grid cells containing the weighted species being prioritized as resource 

“hot-spots”.  The C-ESI was rather robust to the inclusion of weights for the suite of fish species 

owing to the conflicting spatial distributions of the individual weighted species.  In Chapter 4, 

surface oil distributions from four oil well blowout scenarios were modeled with the 

Connectivity Modeling System (CMS; Paris et al. 2013).  These oil distributions were created to 

simulate likely conditions from the Deepwater Horizon oil well blowout (DWH) and three 

hypothetical oil well blowouts with origin points in the western GoM (WGoM), the west Florida 

slope (WFS), and at the DWH origin point with a September start date.  The simulated 

distributions of surface oil from these four scenarios were used to create bounded areas, or 

polygons, of minimum oil concentration thresholds (MOCT) representing spatial areas exposed 

to at least the specified concentration of oil for at least one day.  These MOCTs are intersected 

with the C-ESIs developed in Chapter 3 to compare potential vulnerability of resources to the oil 

well blowout scenarios.  The WFS scenario was found to potentially have the largest impact on 

the suite of included species due to the large surface area of the modeled spill and the resources 

found in that area.  While a spill off the continental slope near Texas (WGoM) would have the 

smallest overall footprint, it would affect some fisheries more severely than the other simulated 

spills.  The MOCT polygons coupled with known PAH concentration toxicity endpoints and 

spatial distributions of marine resources can be used to predict the extent of the spatial overlap 

between marine resources and oil and the likely outcome of that interaction.  In Chapter 5, a 

spatial distribution of 2018 oil production was overlaid with the C-ESIs created in Chapter 3 to 

form quantifiably explicit multi-sector tradeoff curves between resource sensitivity and oil 

production.  These tradeoff curves represent the system-wide benefit of theoretical allocations of 

oil production to both sectors on a cell-by-cell planning unit basis.  The C-ESIs and multi-sector 
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tradeoff functions were used to identify individual grid cells to potentially reserve from oil 

production.  Marxan, an MSP zoning software, was used to create minimum-set “hot-spot” 

networks of areas to potentially reserve from oil production in both 1.) a hypothetical pristine 

system where future oil production siting is being planned and 2.) the current system with current 

levels and placement of oil production.  In both scenarios, the “hot-spot” networks identified 

areas on the WFS as potentially valuable to reserve from oil production, with more “hot-spot” 

areas on the WFS when accounting for current oil production.  This result indicates that in a 

hypothetical reserve sited around existing oil production and created to protect a significant 

proportion of offshore marine resources, the grid cells on the WFS would be the most valuable to 

include in that reserve.  This study compares these “hot-spot” network solutions to the area in the 

eastern GoM currently withdrawn from oil production under Gulf of Mexico Energy Security 

Act (GOMESA) and the 2021 Congressional moratorium.  The “hot-spot” networks overlap with 

the withdrawn area with 39.5% of the pristine “hot-spot” reserve network and 53.2% of the 

current oil production “hot-spot” reserve network being located within the withdrawn area.  The 

“hot-spot” networks identified in this study can potentially be utilized in the decision-making 

process to continue the closure of these withdrawn areas.  

The integrated collection of methods presented here were designed to add to the crucial 

knowledge base for planning and prioritizing oil spill response, predicting impacts from an oil 

spill to individual resources and groups of resources, and to assist in the decision-making 

processes for making new and existing sites available or unavailable to oil production.  Impact 

estimates generated by these tools can be used in prioritizing oil spill cleanup and the acquisition 

or pre-positioning of oil spill response and supplies.  The C-ESIs can be combined with actual or 

proposed oil production statistics to serve as a decision-making tool for justifying the reservation 



xi 

of specific lease blocks from leasing or maintaining the status of areas temporarily withdrawn 

from oil production under the Congressional moratorium. 

The tools in this study were designed, developed, and published as open source with the 

hope that they may be added to, improved upon, and utilized in real world scenarios to lessen the 

risk of impacts on marine resources from future blowout scenarios.  The Python scripts used for 

the analyses and figures found in this dissertation can be found at 

github.com/echancellor/dissertation-scripts. 
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Chapter 1. Introduction 

 

This dissertation focuses on oil spill risk assessment techniques historically utilized for 

coastal resources and their application and expansion to offshore resources found in the Gulf of 

Mexico (GoM).  These applications are designed to add to the crucial knowledge base for 

planning and prioritizing oil spill response, predicting impacts from an oil spill to offshore 

resources, and to assist in the decision-making processes for making new and existing sites 

available or unavailable to oil production.   

Offshore oil production in the Gulf of Mexico (GoM) provides about 15% of the total 

U.S. crude oil production and about 97% of the marine oil production (EIA 2018; EIA 2021) 

with estimated oil reserves of over 3.67 billion barrels (Kazanis et al. 2015).  U.S. oil is produced 

in the GoM in the 200 miles beyond the U.S. coastline in the U.S. Exclusive Economic Zone 

(EEZ) and is divided into the Western Planning Area, Central Planning Area, and Eastern 

Planning Area (EIA 2021; BOEM 2021).  Most of the GoM marine oil production occurs in the 

central and western planning areas as part of the Central Planning Area and most of the Eastern 

Planning Area are currently withdrawn from drilling until 2032 under the initial 2006 Gulf of 

Mexico Energy Security Act (GOMESA) and extended under the 2021 Congressional 

moratorium (Schwartz 2020; BOEM 2021).  Most of this oil production occurs at depths 

between 1000 meters and 2000 meters with some production occurring at depths exceeding 3000 

meters (BOEM 2018a, b).  GoM oil production has focused on increasingly deeper sources to 

meet production goals and many of these deep-water sources are now more productive than 
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shallower fields (Murawski et al. 2020).  As marine oil and gas production moves further 

offshore, marine resources in the deep GoM become increasingly vulnerable to oil spills and oil 

well accidents.  The increased threat to these marine resources necessitates the knowledge of 

what resources are in these offshore areas and how they might respond to oil exposure from an 

oil spill accident.  This knowledge is crucial for oil spill response, predicting long term impacts 

from an oil spill, and can also be used as part of the decision-making process regarding opening 

or closing areas to oil production. 

The risks to marine resources from an oil spill depend on the degree of interaction 

between the resource and oil and the resource-specific vulnerability to that oil.  The degree of 

interaction between a marine resource and oil varies by 1.) the degree of spatial intersection 

between the resource and the oil, 2.) the physical and chemical characteristics of the oil, and 3.) 

the concentration and duration of the exposure.  Resource-specific vulnerability is the fragility 

and resiliency of that resource to an oil spill and varies due to resource-specific traits (e.g., life 

history traits in biological resources, physical traits between coastline areas; Polidoro et al. 2020; 

Peterson 2002).   

Spatial vulnerability assessments include spatial distributions of sensitive resources and 

their specific vulnerability to create a vulnerability matrix (Matisziw and Grubesic 2013; Nelson 

et al. 2015).  Spatial maps of sensitive natural resources called Environmental Sensitivity Indices 

(ESIs), are used to prioritize environmentally sensitive areas for oil spill cleanup, estimate 

impacts to marine resources from an oil spill, and to evaluate the potential environmental 

impacts caused by oil production (Jensen et al. 1990; Jensen et al. 1998; Kankara et al 2016).  

Coastal habitats and resources are not uniformly vulnerable to oil exposure due to differences in 

tidal energy, shoreline slope, and substrate type (Peterson 2002; Santos et al. 2012).  ESIs have 
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therefore been created for much of the coastal areas in the United States and GoM to identify the 

locations of sensitive resources and habitats.  Spatial vulnerability assessments can be 

incorporated with an oil fate and transport model to estimate interactions between the 

vulnerability matrix and oil, along with the chemical and physical traits of that oil.  

Environmental data, including ESIs, was combined to provide vulnerability assessments using 

the National Energy Technology Laboratory's (NETL) Blowout and Spill Occurrence Model 

(BLOSOM) model to provide an example assessment of coastal vulnerability in the GoM (Sim 

2013; Nelson et al. 2015).  A similar methodology to create an oil spill sensitivity analysis was 

applied in the Gulf of Kachchh through use of a previously published ESI for the coastal waters 

and an oil trajectory model to simulate oil spill scenarios (Kankara and Subramanian 2007). 

This study applies similar methodology as described above to assess the risk to resources 

in the offshore waters in the GoM.  Offshore waters in the GoM contain unique biological 

resources and habitats which are also threatened during large scale oil spills.  The offshore 

waters of the GoM are important as they are home to multiple species of economically important 

fishes and shellfish (Felder et al. 2009; Sutton et al. 2017; Frasier et al. 2020; Perlin et al. 2020; 

Pulster et al. 2020) as well as ecologically important forage species and other animals of concern 

including mammals, turtles, seabirds, and deep-sea corals which all can experience lethal and 

significant sub-lethal effects from exposure to oil (Antonio et al. 2011; Carmichael et al. 2012; 

Schwacke et al. 2014; Tran et al. 2014; Etnoyer et al. 2016; Kinlan et al. 2016).  Like coastal 

areas, which are not uniformly vulnerable to an oil spill, offshore marine resources are also not 

uniformly vulnerable to oil.  A complete vulnerability assessment for the offshore resources 

would therefore include the resource-specific vulnerability to oil exposure.  Resource-specific 



4 

vulnerability can be observed in the event of an oil spill, from toxicity tests, or estimated from 

life history traits via the use of a vulnerability framework.   

Marine organisms are exposed to oil through four major pathways: absorption of 

bioavailable hydrocarbon compounds into skin via direct contact with oil (e.g., sea turtles and 

mammals surfacing and diving), inhalation and aspiration (air-breathing animals may breathe in 

aerosol compounds), and ingestion (ingestion of water or sediments containing oil; Westerholm 

and Rauch 2016).  Polycyclic aromatic hydrocarbons (PAHs) are the most toxic compounds in 

crude oil.  The concentration of PAHs and duration of exposure determine lethal and sublethal 

effects to biological resources through absorption.   Toxicity tests are performed to identify 

critical thresholds (i.e., toxicity endpoints) of fish and invertebrate species to oil and dispersants 

used in oil cleanup (Westerholm and Rauch 2016).  Species-specific vulnerability to 

petrochemical exposure is not known for all species (Bejarano and Barron 2014; Bejarano and 

Barron 2016; Bejarano and Mearns 2015; Bejarano and Wheeler 2020) but can be estimated by 

using a trait-based framework to rank relative vulnerability and identify sensitive species 

(Polidoro et al. 2020; Sarrazin et al. 2021).  Species-specific vulnerabilities identified via these 

frameworks or by toxicity endpoints determined from experimental studies can be included when 

evaluating potential impacts to a resource due to oil exposure. 

The Bureau of Ocean Energy Management (BOEM) within the U.S. Department of the 

Interior (DOI) produces and utilizes environmental impact assessments as part of their decision-

making process on which areas to make available to oil drilling.  Approved leases for oil drilling 

are then sold by the DOI.  These environmental assessments consider the totality of natural 

resources and human activities within a region being considered for leases, as well as any 

particular hazards that might impact safe prospecting and production operations.  Planners use a 
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number of qualitative and quantitative tools to consider these activities and hazards when 

identifying lease blocks to offer for sale.  Ecosystem based marine spatial planning (MSP) is one 

such quantitative tool that has not heretofore been used in this regard but aims to maximize the 

combined benefit from the ecosystem to all sectors through use of quantifiably explicit tradeoffs 

between competing sectors (McLeod et al. 2005; White et al. 2012; Santos et al. 2013b).  MSP 

divides the planning area into planning units and assigns a value to each planning unit for each 

sector.  An optimization solver then finds a solution by assigning all planning units to sectors to 

maximize the system-wide benefit subject to grouping constraints.  Quantifying offshore 

resources through use of ESIs allows for the mapping of these tradeoff functions between 

resources and oil production and the subsequent development of an MSP solution.  

Chapters two-six of this dissertation explore the utility of spatially quantifying the 

distribution and abundance of offshore marine resources and creating Cumulative Environmental 

Sensitivity Indices (C-ESIs) for the offshore areas.  These C-ESIs, coupled with an oil fate and 

transport model and MSP software are employed to identify particularly vulnerable offshore 

areas, or “hot-spots”, as well as “hot-spot” networks that should potentially be reserved from oil 

production because the risks of oil production there create quantifiably greater risks than in other 

areas (Figure 1.1).  In Chapter 2, the initial methodology is presented for creating the ESIs for 

offshore marine resources and intersecting them with fate and transport models of simulated oil 

well blowouts.  In Chapter 3, C-ESIs are created from quantifiably comparable spatially 

distributed resource layers from initially disparate sources through use of scaling and data 

transformation.  A species-specific vulnerability score based on a preliminary trait-based 

framework (Polidoro et al. 2020) is added to one C-ESI to demonstrate the utility of combining 

the C-ESIs with species-specific vulnerability to prioritize certain resources in the C-ESI due to 
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their vulnerability.  In Chapter 4, surface oil distributions from four oil well blowout scenarios 

modeled by the Connectivity Modeling System (CMS; Paris et al. 2013) are used to create areas, 

or polygons, of minimum oil concentration thresholds (MOCT) representing areas exposed to at 

least the specified concentration of oil during these hypothetical blowouts.  These MOCTs are 

intersected with the C-ESIs and comprising resource layers developed in Chapter 3 along with 

identified species-specific PAH concentration toxicity endpoints to compare potential 

vulnerability of resources to the oil well blowout scenarios.  In Chapter 5, a spatial distribution of 

2018 oil production is overlaid with the C-ESIs created in Chapter 3 to form quantifiably explicit 

multi-sector tradeoff curves between resource sensitivity and oil production.  These tradeoff 

curves represent the system-wide benefit of theoretical allocations of oil production to both 

sectors on a cell-by-cell planning unit basis.  These C-ESIs and multi-sector tradeoff curves are 

used to create minimum-set “hot-spot” networks of areas to potentially reserve from oil 

production in both 1.) a hypothetical pristine system where future oil production siting is being 

planned and 2.) the current system with current levels and placement of oil production.  Finally, 

this study compares these “hot-spot” network solutions to the current areas withdrawn from oil 

production under GOMESA and the 2021 Congressional moratorium to provide additional 

support for the decision-making process of withdrawing these areas from oil production.  A 

diagram representing of the datasets developed in this study, the deliverables created by chapter, 

and their corresponding inputs are found in Figure 1.1. 

 The tools developed in this study have useful applications for oil production planning and 

oil spill response.   A complete risk and response assessment of marine resources in the event of 

an oil spill requires knowing what resources were exposed to oil, the characteristics of that 

exposure, and the resource-specific response to that oil.  The techniques for quantifying and 
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combining disparate sources into C-ESIs helps to answer the question of what resources were 

potentially exposed.  Creating MOCT polygons from fate and transport models of actual or 

hypothetical oil spills and intersecting them with the quantitative distributions of these resources 

provides details on the extent and characteristics of that exposure.  While the calculation of 

resource-specific vulnerability lies outside the scope of this study, species-specific vulnerability 

rankings and published toxicity endpoints are combined with the C-ESIs and MOCT polygons to 

demonstrate how these tools could improve estimates of impacts on marine resources from oil 

spills.  These impact estimates can be used in prioritizing oil spill cleanup and the acquisition or 

pre-positioning of oil spill response and supplies.  The C-ESIs can be combined with actual or 

proposed oil production statistics to create tradeoff functions between sensitive resources and the 

oil production industry and serve as a decision-making tool for justifying the reservation of 

specific lease blocks from leasing or the status of areas temporarily reserved from oil production. 

The tools in this study were designed, developed, and published as open source with the 

hope that they may be added to, improved upon, and utilized in real world scenarios to lessen the 

risk of impacts on marine resources from future blowout scenarios.  The Python scripts used for 

the analyses and figures found in this dissertation can be found at 

github.com/echancellor/dissertation-scripts. 
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Figure 1.1 Design and organization of this dissertation. 

Flowchart with data sources (yellow), data transformations(white), and deliverables by chapter 

(red – Chapter 3, green – Chapter 4, purple – Chapter 5). 
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Chapter 2. Comparative Environmental Sensitivity of Offshore Gulf of Mexico Waters 

Potentially Impacted by Ultra-Deep Oil Well Blowouts 

 

2.1 Abstract 

Environmental Sensitivity Indices (ESIs) have long been used to identify coastal and 

shoreline resources particularly vulnerable to oil spills and ensuing mitigation measures.  In the 

Gulf of Mexico oil production by the USA and Mexico has increasingly focused on deep-water 

sources.  As oil exploration and production continues further offshore, deep-water and open-

ocean pelagic resources increasingly become the focus of susceptibility to oil well blowouts.  

Methodologies are proposed to spatially quantify ESIs specifically for offshore living marine 

resources.  A multi-attribute utility model is proposed to integrate biological resource sensitivity 

measures and measures of potential economic losses to define spatially explicit environmental 

sensitivity.  Model sensitivity is examined using three weighting schemes for various 

environmental attributes.  The relative environmental sensitivities of four simulated deep-water 

blowouts in the Gulf of Mexico were analyzed and compared.  While differences were found 

between four oil well blowout scenarios in terms of the overall sensitivity and the individual 

attributes, results were relatively insensitive to relative weights assigned to various attributes.  

The uses of ESIs in optimizing oil production locations to minimize potential impacts on 

sensitive ecological resources and economic uses are discussed. 
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2.2 Note to Reader 

 This chapter was published in the book: Scenarios and Responses to Future Deep Oil 

Spills and is included here in Appendix A.   

The full citation is: 

Chancellor, E., Murawski, S.A., Paris, C.B., Perruso, L., Perlin, N., 2020. Comparative 

environmental sensitivity of offshore Gulf of Mexico waters potentially impacted by ultra-deep 

oil well blowouts, in: Scenarios and Responses to Future Deep Oil Spills. Springer, pp. 443–466. 
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Chapter 3. A Quantitative Analysis of the Offshore Resources of the Gulf of Mexico and 

Creation of Cumulative Environmental Sensitivity Indices (C-ESIs) 

 

3.1 Introduction 

Offshore oil production in the Gulf of Mexico (GoM) provides about 15% of the total 

U.S. crude oil production and about 97% of the marine oil production (EIA 2018; EIA 2021). 

Most of this marine oil production occurs at depths between 1000 meters (m) and 2000 m with 

some production occurring at depths exceeding 3000 m (BOEM 2018a, b).  GoM oil production 

has focused on increasingly deeper sources to meet production goals and many of these deep-

water sources are now more productive than shallower fields (Murawski et al. 2020).  The GoM 

contains many marine resources, both biological and human use, which can be negatively 

impacted in the event of an oil spill or oil well blowout such as occurred in the Deepwater 

Horizon blowout on April 20, 2010.  As GoM oil production continues to move further offshore, 

it is necessary to assess the risk to these marine resources and habitats.  Assessing this risk 

requires spatially quantifying the resources present in these offshore waters and combining the 

spatial distributions of these resources in a meaningful way to identify areas in the offshore 

waters which are especially vulnerable to a large oil spill event.   

Spatial maps of the presence of sensitive natural resources called Environmental 

Sensitivity Indices (ESIs) are used to prioritize environmentally sensitive areas for oil spill 

cleanup, estimate impacts to marine resources from an oil spill, and to evaluate the potential 

environmental impacts caused by oil production (Jensen et al. 1990; Jensen et al. 1998; Kankara 
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et al 2016).  Site-specific geographic information system (GIS)-based ESIs identifying the 

locations of sensitive resources and habitats have been published for much of the shoreline of the 

United States including the GoM (Knudsen and Druyor 2009; NOAA 2018).  NOAA Office of 

Response and Restoration has published guidelines for creating shoreline ESIs with a composite 

index consisting of three components: shoreline classification, biological resources, and human-

use resources (Peterson 2002; NOAA 2018).  Shorelines are classified by type and ranked by 

their sensitivity, natural persistence of oil, and ease of cleanup (Peterson 2002).   Shoreline 

sensitivity varies due to differences in tidal energy, shoreline slope, and substrate type with 

exposed rocky shorelines (Rank 1) ranked as least sensitive and marshes and mangroves (Rank 

10) ranked as most sensitive in the NOAA criteria (Peterson 2002; Santos et al. 2012).  

Biological resources include areas with many distinct species, areas with large overall abundance 

of organisms, and areas where vulnerable species reside (e.g., seabirds, turtles, and other 

endangered species; Peterson 2002).  These biological vulnerabilities may have a seasonal 

component as certain life stages are more vulnerable than others and may only present for part of 

the year (e.g., for breeding; Peterson 2002).  Human-use components include historic sites and 

public use areas such as parks and recreational beaches.  Both categorical and quantitative ESIs 

have been created for shoreline sensitivity to offshore spills specific to locations in the 

Mediterranean Sea (Adler and Inbar 2007; Castanedo et al. 2008; Fattal et al. 2010; Olita et al. 

2012; Santos et al. 2013a; Santos et al. 2013b; Alves et al. 2014; Maitieg et al. 2018), GoM 

(Nelson et al. 2015; Nelson and Grubesic 2018), Brazil (Carmona et al. 2006; Szlafsztein and 

Sterr 2007; Romero et al. 2013), and Asia (Lan et al. 2015; Lee and Jung 2015).  Environmental 

sensitivity is also regularly calculated using ESI methods by the Bureau of Ocean Energy 

Management (BOEM) for its Oil and Natural Gas Planning Program assessment (Niedoroda et 
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al. 2014; BOEM 2018a; Orr et al. 2018).  However, these analyses may not be sufficiently 

spatially disaggregated to identify discrete, sensitive areas worthy of increased scrutiny.  As well, 

they are difficult to compare across planning districts.   

This study creates offshore ESIs to add to the existing suite of ESIs previously created 

and published for the coastal areas of the GoM.  Offshore waters in the GoM contain 

heterogeneously distinct biological resources and human-use resources which can be threatened 

during large scale oil spills.  Commercially important fish and shellfish species, ecologically 

important forage fish species, deep-sea corals, sea birds, and endangered mammal and turtle 

species are all found in offshore GoM waters (Felder et al. 2009; Sutton et al. 2017; Frasier et al. 

2020; Perlin et al. 2020; Pulster et al. 2020).  Up to half of known fish species in the GoM occur 

in mesopelagic deep waters and new species are being encountered there regularly as sampling 

effort expands (Sutton et al. 2020).  These resources all have demonstrated lethal and sub-lethal 

effects from exposure to oil (Antonio et al. 2011; Carmichael et al. 2012; Schwacke et al. 2014; 

Tran et al. 2014; Etnoyer et al. 2016; Kinlan et al. 2016).  Additionally, many economically 

important species of fish spawn in open waters (Chancellor 2015) and their larval life stages are 

particularly vulnerable to oil (Carls et al. 1999; Incardona et al. 2004; Hicken et al. 2011; 

Incardona et al. 2013).  Primary production in offshore waters, although not as intense as in 

coastal waters nevertheless contributes to fishery production in the deep sea (Friedland et al. 

2012).  Human uses of resources in offshore waters include commercial and recreational 

fisheries, commercial shipping and cruise lines, military exercise areas, oil and natural gas 

extraction, renewable energy infrastructure, marine protected areas (MPAs) and other uses 

(Edgar et al. 2007; McCrea-Strub et al. 2011; BOEM 2018a, b).   
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The ESIs developed in this study combine quantitative spatial distributions of resources 

from disparate sources to create cumulative ESIs (C-ESIs).  The spatial resolution relevant to the 

development of the C-ESI metrics and modeling of tradeoffs between extractive activities and 

resource conservation is necessarily a tradeoff of precision vs. the availability and usefulness of 

fine scale data.  Too coarse a resolution (e.g., by BOEM planning districts) will not lead to the 

identification of significant ecological or economic “hot-spots” as candidates for special 

attention.  Too fine a spatial scale is challenging to populate with data and may result in an 

intractably large optimization problem.  For the purposes of this dissertation, I have chosen to 

summarize data by grid cells on the 0.5°x0.5° latitude/longitude resolution or 1°x1° 

latitude/longitude resolution scale which is a reasonable first pass compromise for the level of 

granularity to balance precision and access to data.  This study takes a quantitative, cumulative 

approach to C-ESI formulation using a multi-attribute utility model (MAUM; Huber 1974) to 

quantify sensitivities of spatially explicit offshore areas across many resources without having to 

subjectively concatenate maps of the individual species or human-use components of the C-ESIs.      

Each grid cell in the C-ESI is assigned a score via a MAUM equation.  In an MAUM, the 

overall value, or utility, of a system is calculated by the weighted sum or product of the 

individual utility values for a set of separate and potentially contradictory attributes.  The overall 

utility value is a score of how well the system meets multiple objectives or satisfies the needs of 

multiple stakeholders (Huber 1974).  In the health industry, for example, MAUMs are used to 

assign patients an overall health index based on a suite of independent health attributes (e.g., 

vision, hearing, speech, ambulation, dexterity, emotion, cognition, and pain/discomfort).  

Individual patients are assigned a semi-quantitative value of 0 to 6 in each of the health attributes 

and these attribute scores are substituted into the utility function to give an overall health index 
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per patient (Feeny et al. 2002).  MAUMs have also been used to appraise the overall 

sustainability of banks using a framework to assess a suite of attributes across multiple 

stakeholder priorities (e.g., regulators, shareholders, customers, employees; Rebai et al. 2012). 

Similar to the human health and banking examples above, the environmental sensitivity 

of a marine geographic location can be estimated both by the biological attributes extant at that 

location and human dependence on the region that might be compromised by an oil well blowout 

or other significant event resulting in biological and/or economic loss.  A preliminary model of 

this methodology was illustrated using three ecological variables and three economic (human-

use) indicators in Chapter 2.  This original MAUM focused on the diversity of larval fishes 

derived from abundance estimates from the Southeast Area Monitoring and Assessment Program 

(SEAMAP) described in Chancellor (2015) in both offshore and coastal areas and revenue 

estimates derived from vessel logbook data for coastal reef fisheries, highly migratory pelagic 

fisheries, and shrimp fisheries.  Larval fish are highly sensitive to oil-related pollution as they are 

susceptible to physiological defects and mortality at exceedingly low concentrations of oil 

exposure (Carls et al. 1999; Incardona et al. 2004; Hicken et al. 2011; Incardona et al. 2013).  

Pollution from oil well blowouts would likely impact survival of a variety of species, varying 

seasonally (Chancellor 2015).  Revenue estimates from various fisheries represent the quantified 

loss value of the human uses foregone in the event of an oil spill resulting in a fishery closure in 

a specified area. 

The objectives of the present study are (1) to expand the list of spatially-distributed 

offshore resources developed in Chapter 2 to include the spatial probability distributions of 

selected species (fish, mammal, and turtle), spatial distributions of species richness based on a 

larger set of species’ probability distributions, and the spatial distribution of presence/absence of 
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vulnerable deep-sea coral habitat, (2) to develop and demonstrate methodology for quantitatively 

and qualitatively comparing the spatial dissimilarity among these offshore resources, (3) to 

combine these spatially distributed resources into multiple cumulative ESIs (C-ESIs), (4) to 

evaluate individual resource components of the C-ESI to determine which resources are over- or 

under-represented in the C-ESI and to identify tradeoffs between resource components and 

provide potential guidance for applying weights to under-represented resource components, and 

(5) to develop methodology for adding optional weights to an individual resource component or 

a suite of resource components to create the C- ESIs and to test the sensitivity of the C-ESI to the 

addition of those weights. 

While the weighting of attributes within the C-ESI lies outside of the scope of this 

dissertation and historically requires semi-quantitative approaches based on expert opinion, three 

weighted C-ESIs are created using three levels of weights as a demonstration of the sensitivity of 

the C-ESI to weighting.  These weights are applied to a subset of species within the ESI 

identified as highly vulnerable by a preliminary vulnerability index being developed for fishes in 

the GoM (Woodyard et al. 2022).  An additional C-ESI with the weighting of one species is 

created to confirm the weighting system performs as expected in prioritizing spatial units 

containing weighted resources.   

The C-ESIs and the relative contributions of their individual components created from 

this study are used to identify “hot-spots” of resource sensitivity and to identify tradeoffs 

between resources.  Spatial distributions of resources and cumulative C-ESIs serve as inputs for 

comparisons among oil spill scenarios (Chapter 4) and optimization network problems (Chapter 

5).   
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3.2 Methods 

 Quantitative spatial distributions of offshore resources in the Gulf of Mexico were 

created for 13 fish species, six mammal species, four sea turtle species, three species richness 

groups, five commercial fisheries, ichthyoplankton total abundance, and deep-water coral reef 

presence/absence.  These distributions were combined to create five unweighted C-ESIs and four 

weighted C-ESIs.   

3.2.1 Species Selection (Fishes, Turtles, Mammals) 

 A total of 23 species were included in this study and are provided with their common and 

scientific names in Table 3.1.  Twelve fish species were selected based on their abundance 

within the GoM and their commercial importance (Chen 2017).  Selected commercially 

important fish species include Atlantic sailfish, Atlantic bluefin tuna, Atlantic blue marlin, 

Common dolphinfish, Greater amberjack, King mackerel, Red drum, Red grouper, Red snapper, 

Striped mullet, Atlantic swordfish, and Great northern tilefish.  Warmingii’s lanternfish was also 

added as a representative mesopelagic fish due to their relatively high abundance in the GoM and 

the importance of mesopelagic fishes generally as a prey species to many commercially 

important species, for a total of thirteen fish species.  Six mammal species were selected based 

on their abundance within the GoM and the variation in their spatial distributions (Würsig 2017); 

Bottlenose dolphin, Pantropical spotted dolphin, Atlantic spotted dolphin, Sperm whale, Pygmy 

killer whale, and False killer whale.  Five of the seven species of sea turtles found worldwide are 

found within the GoM (i.e., Kemp’s Ridley, Hawksbill, Loggerhead, Leatherback, Green; 

Valverde and Holzwart 2017).  I intended to include all five sea turtles found in the GoM but due 

to an incomplete probability of occurrence spatial distribution for Green turtles, this species was 

excluded from the creation of the C-ESIs.   
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3.2.2 Distributions of Probability of Species Presence 

 For the spatial distributions of species, I used probability of suitable habitat as a proxy for 

probability of species presence.  Suitable habitat identified through presence data and 

environmental estimates can be used to develop species distribution models (SDMs; Elith and 

Leathwick 2009; Drexler and Ainsworth 2013).  This study used the publicly available SDMs of 

suitable habitat developed by AquaMaps.org (Kaschner et al. 2010).  AquaMaps is a joint project 

of FishBase and SealifeBase which creates global-wide probability of occurrence spatial 

distributions for species using occurrence data collected from multiple surveys combined with 

environmental parameters (i.e., an environmental envelope).  AquaMaps provides a spatial 

probability distribution of the suitable habitat of a species for 1) the estimated native geographic 

range, 2) a predicted Year 2050 native range based on predicted environmental parameters in 

2050, and 3) suitable habitat where the species could potentially live.  Environmental factors 

included in the environmental envelope can include (1) Depth (m), (2) Temperature (°C), (3) 

Salinity (psu), (4) Primary Production (mgC·m-3·day-1), (5) Sea Ice Concentration (0-1 fraction) 

(not included in GoM), (6) Dissolved Bottom Oxygen (mmol·m-3), and (7) Distance to Land 

(km) depending on the species and geographic location.  The estimated native geographic range, 

environmental parameters included in the species-specific envelope along with their acceptable 

ranges for inclusion in the species range, and occurrence cells (with environmental parameter 

measurements) are available for download as a .csv file for each species from AquaMaps.org.  

Estimated native range probability is published at the 0.5° latitude/longitude grid resolution with 

center points being located at X.25° and X.75° of latitude and longitude.        

 Estimated probability of occurrence for the native range was downloaded for all species 

in June 2020.  Predicted occurrence records outside of latitude range [17°N to 32°N] and 
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longitude range [98°W to 80°W] for the Gulf of Mexico were removed.  An intersection between 

the remaining points and the International Hydrographic Organization (IHO) shape file for the 

GoM (Figure 3.1; Flanders Marine Institute 2018) was performed in QGIS (QGIS Development 

Team, 2020) using the Extract by Location tool in Vector Selection menu of the Processing 

Toolbox.  Two additional fields were created using the field calculator in QGIS:   

1) Overall_Probability>0.50: Probabilities of less than 0.5 were converted to 0 as these were 

considered unlikely to indicate presence, while probabilities greater than or equal to 0.5 

maintained their original values.  The 0.5 distinction is recommended by AquaMaps as species 

are unlikely to occur in places where probability of suitable habitat is < 0.5.  This 0.5 distinction 

is also used to determine which species are included in their published species richness 

estimations (See Section 3.2.4 below). 

2) Proportion_of_Probability: Overall_Probability>50 for each point divided by the total sum 

of the Overall_Probability>50 for all points.  Proportion_of_Probability was calculated since 

grid blocks with high probability of occurrence in a species with narrow spatial range are more 

important than grid blocks with high probability of species presence in a species with a wide 

spatial range.   

These new fields were converted to a raster using the Rasterize tool in the Processing 

Toolbox of ArcMap (ArcMap 2016).  For each species, two rasters were created: 1) a raster of 

the Overall_Probability>50 and 2) a raster of Proportion_of_Probability.  Two rasters were 

created for each of the 13 fish species, six mammal species, and four sea turtle species. 

 Created rastered resources were visually checked for accuracy with some fish and turtle 

species having an unexplained high probability value present at point [90.25°W, 25.75°N], while 
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displaying zero probability for surrounding points.  AquaMaps owners were contacted and 

agreed that this point appeared to be in error.  This point was removed using the Serval plugin in 

QGIS.  This change was made to a total of eight fish species distributions and three turtle 

distributions (Red grouper, Greater amberjack, Golden tilefish, King mackerel, Red grouper, Red 

snapper, Spanish mackerel, Striped mullet, Kemp’s Ridley, Hawksbill, Loggerhead).  Final grids 

for all species probability of occurrence are found in Appendix B. 

3.2.3 Dissimilarity in Species Distributions 

 Dissimilarity between species distributions was calculated as the mean average difference 

(MAD) between each species pair (Eq. 3.1).  Since the grid cells of the distributions are 

probabilities of occurrence (ranged 0 to 1), as opposed to species counts, the MAD method was 

used as opposed to other measures of dissimilarity commonly used in biological datasets (e.g., 

Bray-Curtis).   Pair-wise dissimilarity of the probability of occurrence values between mammal 

and fish species was calculated using the Overall_Probability rasters. 

The dissimilarity score between each pair of species is defined as: 

DissimilarityMAD = 
∑ √(𝑂𝑃𝑖𝑘−𝑂𝑃𝑗𝑘)22

𝑎𝑏𝑠[𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦] 𝑛
𝑘=1

𝑛
    Eq. 3.1 

where OPik is the Overall_Probability score of species i at grid cell k, Oik is the 

Overall_Probability score of the compared species j at grid cell k, and n is the total number of 

grid cells in the distribution raster.  

 The dissimilarity score was found by creating a raster of the range for each pair of 

distributions (r.series function in QGIS with GRASS (GRASS Development Team, 2020), 

method = range) and then finding the mean of the values within the resulting raster within the 

GoM (QGIS using the Zonal Statistics tool in the Raster Analysis menu of the Processing 
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Toolbox, range as raster layer, IHO ocean (Fig3.1) as Vector layer containing zones, method = 

mean). Dissimilarity scores were calculated between all fishes and mammal species. 

 A cluster map was produced using the seaborn package (Waskom 2021) on the set of 

probability distribution rasters.   

3.2.4 Spatial Distribution of Species Richness 

 This study created three rasters to spatially quantify species richness in the GoM.  

Species richness for three groups (1) bony fishes, 2) mammals, 3) elasmobranchs is available for 

download from AquaMaps at the 0.5°x0.5° latitude/longitude grid resolution.  The species 

richness for each grid cell is calculated as number of species for which the probability of 

occurrence within that cell is > 0.5.   

Species richness .csv files were accessed and downloaded from AquaMaps for all 

categories in June 2020.  Species richness estimations from AquaMaps were based on suitable 

habitat and not sampling, so species accumulation curves were not created.  Species richness 

point data inside latitude range [17°N to 32°N] and longitude range [98°W to 80°W] were 

converted to raster files.  An intersection between the remaining points and the shape polygon for 

the GoM (Figure 3.1) was performed in QGIS using the Extract by Location tool in Vector 

Selection menu of the Processing Toolbox.  Species richness values for bony fishes ranged 

between [2 and 1348], mammals ranged between [1 and 30], and Sharks/Rays ranging between 

[1 and 104].  For direct comparison between the three species richness groups, an additional field 

SpeciesRichnessIndex was created for each species richness group such that:   

SpeciesRichnessIndexi = SpeciesRichnessi/max(SpeciesRichnessall).   Eq. 3.2   



22 

where i represents the value at grid cell i and all represents the array of the SpeciesRichness 

values for all i values within the spatial domain. 

The SpeciesRichnessIndex field then ranged from [0,1] for each species richness 

distribution.  For each species, two rasters were created: 1) a raster of the SpeciesRichness and 

2) a raster of SpeciesRichnessIndex using the Rasterize tool in the Processing Toolbox of 

ArcMap.   

 Since the species richness datasets downloaded from AquaMaps are created from the 

AquaMaps’ individual species distributions, the SpeciesRichness bony fish raster exhibited the 

same data point anomaly at [90.25°W, 25.75°N], as did some of the individual bony fish 

probability distributions.  I manually edited this raster value to the average of the surrounding 

raster values using the Serval plugin in QGIS.  The mammals and elasmobranch species richness 

files were unaffected. 

Finalized rasters for the three species richness distributions are found in Appendix B. 

3.2.5 Spatial Distributions of Commercial Fisheries Economic Value 

This study estimated measures of economic dependence for five fisheries at the 1°x1° 

latitude/longitude grid resolution: coastal species (reef fishes and small pelagic fishes), highly 

migratory species, white shrimp, pink shrimp, and brown shrimp.  The National Marine Fisheries 

Service (NMFS) provided estimated revenue and landings at 1°x1° longitude/latitude resolution 

for coastal species (years 2013-2017) and the three shrimp fisheries (years 2011-2016) and 

estimated landings only for the highly migratory species (years 2013-2016).   

The revenue and landing estimates for coastal reef fishes were aggregated by NMFS and 

provided for this study at 1°x1° longitude/latitude resolution.  The estimations performed by 
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NMFS are detailed below and in Chancellor et al. (2020).  Annual landings (pounds), reported to 

the Southeast Coastal Fisheries Logbook Program, and estimates of annual revenues for 

individual coastal species were assigned to each 1°x1° grid cell.  Revenues were estimated by 

multiplying aggregated annual trip-level landings for each species by annual average ex-vessel 

prices from 2013-2017 (SAFE 2017).  Ex-vessel prices represent the unit price paid at the time 

of landing by fish dealers to fishers for harvested but unprocessed catch (so-called first-sale 

value).  Grids with less than three vessels reporting trip records were omitted to prevent 

identifying proprietary confidential information.   

A total of 59 species were included in the coastal reef fisheries estimates provided by 

NMFS (Table 3.2).  Estimated revenue was summed across each grid block for all species 

(distribution hereafter referred to as CoastalSpeciesRevenue).  The sum of the total estimated 

coastal revenue for years 2013-2017 was $318M with the estimated revenue of the top three 

species summing to 71% of the total revenue (top 3 species: Red snapper (37%), Red grouper 

(26%), King mackerel (8%).  The distribution of CoastalSpeciesRevenue by species and grid 

block is found in Figure 3.2.  For comparison between fisheries, an additional indexed field 

named CoastalSpeciesIndex was created such that:   

CoastalSpeciesIndexi = CoastalSpeciesRevenuei/sum(CoastalSpeciesRevenueall)  Eq. 3.3 

where i represents the value at grid cell i and all represents the array of the 

CoastalSpeciesRevenue values for all i values. 

The CoastalSpeciesIndex point data were rasterized using the Rasterize tool in the 

Processing Toolbox of ArcMap and the sum of the values in the raster is 1.  This raster can be 

found in Appendix B.  
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The landing estimates for the highly migratory species (HMS) were aggregated by NMFS 

and provided for this study at 1°x1° longitude/latitude resolution.  The estimations performed by 

NMFS are detailed below and in Chancellor et al. (2020).  Landings for eight highly migratory 

fish species (Table 3.2) were estimated by applying the proportion of numbers of individual 

species caught in each 1°x1° grid cell, as reported to the Atlantic Highly Migratory Species 

Fisheries Logbook Program, to total trip-level catch (pounds gutted weight). The resulting 

landings for each HMS were aggregated for each grid cell annually from 2013-2016. Landings 

were estimated for each grid cell in the same manner as described above for coastal species with 

similar considerations to protect confidential proprietary information.  The distribution of landed 

pounds by species and grid cell can be found in Figure 3.3. 

 I estimated revenue for each grid cell from the provided landings by multiplying the 

landings for each species by the average price from NMFS commercial landings in the GoM for 

available years 2013 to 2016 (distribution hereafter referred to as HighlyMigratoryRevenue).  

For blue shark and porbeagle shark, the average price per pound for ‘general sharks’ was used, as 

no specific information was available for them.  The top five ordered species ranked by the total 

pounds were 1) Yellowfin tuna, 2) Swordfish, 3) Albacore tuna 4) Bigeye tuna, 5) Bluefin tuna 

(from most to least).  The addition of the price per pound changed the ranked order of the 

HighlyMigratoryRevenue to 1) Yellowfin tuna 2) Swordfish, 3) Bluefin tuna, 4) Bigeye tuna, 

5) Albacore tuna (from most to least).  

For comparison between fisheries, an additional indexed field named 

HighlyMigratoryIndex (HMIndex) was created such that:   

HMIndexi = HighlyMigratoryRevenuei/sum(HighlyMigratoryRevenueall)  Eq. 3.4 
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where i represents the value at grid cell i and all represents the array of the 

HighlyMigratoryRevenue values for all i values. 

The HighlyMigratoryIndex point data was rasterized using the Rasterize tool in the 

Processing Toolbox of ArcMap and the sum of the values in the raster is 1.  This raster can be 

found in Appendix B. 

 Shrimp fishery revenue estimates were aggregated by NMFS and provided for this study 

at the 1°x1° longitude/latitude resolution.  The estimations performed by NMFS are detailed 

below and in Chancellor et al. 2020.  Landings for the three dominant species of shrimp (white, 

brown, pink) were estimated from landings reported to the Gulf of Mexico Shrimp Permit 

Cellular Electronic Logbook program during years 2011-2016 and from price per pound reported 

by port agents and trip tickets (Species names in Table 3.2).  Revenue was estimated as pounds 

landed multiplied by the price per pound and provided at the 1°x1° latitude/longitude grid 

resolution (referred to hereafter as BrownShrimpRevenue, WhiteShrimpRevenue, 

PinkShrimpRevenue).   

The combined estimated revenue for years 2011-2016 for all three species was $1.77 

billion with brown shrimp summing to $999 million, white shrimp summing to $675 million, and 

pink shrimp summing to $100 million.   

 For comparison between fisheries, an additional indexed field for each species was 

created such that:   

BrownShrimpIndexi = BrownShrimpRevenuei/sum(BrownShrimpRevenueall)  Eq. 3.5 

WhiteShrimpIndexi = WhiteShrimpRevenuei/sum(WhiteShrimpRevenueall)   Eq. 3.6 
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PinkShrimpIndexi = PinkShrimpRevenuei/sum(PinkShrimpRevenueall)   Eq. 3.7 

where i represents the value at grid cell i and all represents the array of the corresponding 

ShrimpRevenue values for all i values. 

The ShrimpIndex point data was rasterized using the Rasterize tool in the Processing 

Toolbox of ArcMap and the sum of the values in the raster is 1.  These rasters can be found in 

Appendix B. 

3.2.6 Southeast Area Monitoring and Assessment Program (SEAMAP) Larval Abundance 

This Gulf States Marine Fisheries Commission initiative is a 35+ year fisheries-

independent ichthyoplankton dataset comprising of seasonal surveys in the northern GoM.  

Ichthyoplankton and egg counts per bongo or neuston tow are recorded along with location, 

depth, and total water filtered.  Ichthyoplankton samples are identified to the lowest taxonomic 

level possible (Rester 2012; Lyczkowski-Shultz et al. 2013).   

Ichthyoplankton counts and taxonomy were used to create an overlapping 1° latitude x 1° 

longitude grid of estimated abundance by species for the GoM.  Samples included came from 

seasonal surveys from 2000 to 2015 collected via bongo nets.  Standardized abundance was 

calculated for each sample as the estimated number of organisms under a 10 m2 surface area.  

These standardized abundances were then aggregated across all years and all samples within 

each 1°x1° grid and divided by the total number of samples within that block.  More information 

regarding the sampling techniques, species selection, and standardized abundance calculations 

from raw counts can be found in Chancellor (2015).  A total of 58 species of larval fishes were 

included in the calculations (Table 3.3).    
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The distribution of the standardized abundance (StanAbundance) is heavily skewed left 

with few very high values and is distributed at the 1°x1° longitude/latitude resolution (Figure 

3.4B) while the distributions of the Proportion_of_Probability rasters for the fish, mammal, 

and turtle species are skewed right and are created at the 0.5°x0.5° longitude/latitude grid 

resolution (Figure 3.4A).    

To create a comparable presence/absence distribution for the larval fish which could then 

be combined with other rasters, I created a LarvalPresence field such that all values above or 

equal to the median StanAbundance were set to the median StanAbundance and all values less 

than the median conserved their values: 

LarvalPresencei = StandAbuni   when StandAbuni < median(StandAbunall)    

and 

LarvalPresencei = median(StandAbunall)  when StandAbuni >= median(StandAbunall)  Eq. 3.8 

Then I created a LarvalIndex field such that: 

LarvalIndexi = LarvalPresencei/sum(LarvalPresenceall)      Eq. 3.9 

where i represents the value at grid cell i and all represents the array of the corresponding 

LarvalPresence values for all i values.  I converted the LarvalIndex from the 1°x1° 

latitude/longitude grid resolution to the 0.5°x0.5° latitude/longitude grid resolution by dividing 

the LarvalIndex value by four and assigning it to each of the four 0.5°x0.5° latitude/longitude 

grid resolution blocks within the original 1°x1° block.  The final distribution of the LarvalIndex 

field is skewed right, sums to 1, and has a 0.5°x0.5° latitude/longitude grid resolution 

comparable to the proportion of suitable habitat of the individual species (Figures 3.4A, B) 
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The LarvalIndex field was converted to a raster using the Rasterize tool in the 

Processing Toolbox of ArcMap (Appendix B).   

3.2.7 Deep-Sea Coral Habitat 

 Presence data for deep-sea soft and stony corals is publicly available for the Gulf of 

Mexico region via the NOAA Deep-Sea Coral Data Portal (NOAA 2020) which is funded in part 

by NOAA’s Deep-Sea Coral Research and Technology Program (DSCRTP).  The standard 

download file contains the following fields: catalog number, data provider, scientific name, 

vernacular name category, taxonomic rank, station, shallow flag, observation date, position 

(latitude, longitude), locality, location accuracy, depth, depth method, repository, identification 

qualifier, sampling equipment, record type, event ID, survey ID, dataset ID, and sample ID.  The 

standard download file for the GoM was downloaded in April 2020.  Catalog number records 

were identified as stony or soft based on their scientific name and vernacular name category.  

Records within the GoM study area were selected from the full data download in QGIS using the 

Extract by Location tool in Vector Selection menu of the Processing Toolbox with the IHO shape 

file for the GoM (Figure 3.1; Flanders Marine Institute 2018).  These points were converted to a 

0.5°x0.5° latitude/longitude raster with a value of 1 if at least one coral was present in the grid 

cells and 0 if not.  This raster was created using the Rasterize tool in the Processing toolbox of 

ArcMap and was snapped to an existing 0.5°x0.5° raster for species distribution using the 

Processing Extent option.  Lack of identified presence in a grid cell was treated as a confirmed 

absence, due to the relatively complete coverage of the surveys and the relatively large size of 

the grid cells.  This raster was converted to a proportion of habitat raster by dividing the presence 

value of 1 by the total number of grid cells within the GoM study area where corals were 

identified (n=194).  The scores for this new raster sum to 1 and are similarly comparable to the 
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spatial distributions of proportion of habitat for the individual species and larval fish.  This raster 

can be found in Appendix B. 

3.2.8 Creation of Cumulative Environmental Sensitivity Indices (C-ESIs) 

 This study created seven candidate Cumulative ESIs (C-ESIs) combined from the 

resource distribution rasters and a published Python script which can be used to generate 

additional C-ESIs from a set of input resource distribution rasters and a list of optional weights.   

The C-ESIs created in this study are: 

1. Mammals C-ESI – unweighted 

2. Turtles C-ESI – unweighted 

3. Fish species C-ESI – unweighted 

4. Fish species C-ESI – weighted (four levels) 

5. Species Richness C-ESI – unweighted 

6. Commercial Fisheries C-ESI – unweighted 

7. Mammals, Turtles, Fish, Larval abundance, Corals C-ESI – unweighted 

 

The Cumulative Sensitivity equation was modeled as a multi-attribute linear utility function 

(Huber 1974) combining the resource attributes such that the Cumulative Sensitivity (CS) at grid 

cell j is: 

 

                                                            𝐶𝑆𝑗 =  ∑ 𝑘𝑖 ∗ (𝑉𝐼𝑖𝑗)𝑁
𝑖=1   / N   Eq. 3.10 

 

where N is the number of included sensitivity attributes, ki is the optional weight coefficient 

assigned to the ith resource attribute, and VIij is the indexed score of the ith resource attribute at 

grid cell j.  The resolution of the C-ESI raster is the same as the resolution of the input attribute 

rasters.  For all of the C-ESIs except for the Species Richness C-ESI (ID 5), the value of each 
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grid cell in the C-ESI represents the proportion of the value of the C-ESI within that grid cell.  

The sum of the values of all the cells within each C-ESI sum to one. 

 For the Species Richness C-ESI, the Cumulative Sensitivity (Eq. 3.10) is a function of the 

three indices (each ranging [0,1]).  The value of each grid cell in the Species Richness C-ESI 

theoretically ranges [0,1].  A grid cell with a CSj = 1 would represent a grid cell with the 

maximum species richness for each included layer.  The sum of the values of all the cells within 

the Species Richness C-ESI sum to 227.331. 

 The C-ESI rasters were created from the summation of the resource distribution rasters 

using the r.series command from the GRASS package in QGIS.  The r.series (method: sum; 

weights: array of weights) command performs a selected calculation on a set of rasters with a set 

of optional provided weights.   

3.2.9 Contribution of Individual Components and Identifying Tradeoffs 

 For each C-ESI, the score for each grid cell is a cumulative score from the resource 

rasters.  I ranked the scores from the C-ESI for the grid cells from highest to lowest and graphed 

the resulting cumulative distribution to visually represent the degree of variation within the C-

ESI scores (See Section 3.3.3 below).  To identify which components are contributing the most 

(or least) to the final score, I graphed the cumulative distribution of each of the individual 

components (See Section 3.3.3 below).  The graphing of the individual components was 

performed in Python using the seaborn package for each of the C-ESIs.   

3.2.10 Weighted Fish Species ESIs and Exploration of Sensitivity 

 The CS function identified in Eq. 3.10 contains an optional weighting component that 

was set to one for all resources in the unweighted C-ESI scenarios.  Four weighted C-ESIs were 
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created to demonstrate the functionality of the weighting component in the C-ESI creation 

process and explore the sensitivity of the C-ESI to the weighting of one or multiple resources.   

Species-specific vulnerability to petrochemical exposure is not known for all species, but 

species-specific vulnerability can be estimated by using a trait-based framework to rank relative 

vulnerability and identify sensitive species (Polidoro et al. 2020; Schwing et al. 2020; Murawski 

et al. 2021; Sarrazin et al. 2021).  Within the framework described in Polidoro et al. (2020), 18 

species-specific traits in the categories of likelihood of exposure (due to habitat), individual 

species sensitivity (characteristics of the species), and population resistance (characteristics of 

the population), were identified and defined to categorize species vulnerabilities.  This 

framework of identified traits was applied to GoM fishes in Woodyard et al. (2022).  

Vulnerability scores for the 13 selected fish species were provided by Polidoro and Woodyard in 

2021 as part of a preliminary unpublished assessment for use in creating the weighted C-ESIs 

used in this study.  For the purposes of the weighted C-ESIs, I divided the species into two 

categories based on their provided ranking (eight species defined as high vulnerability and five 

species defined as medium vulnerability).    

 The weighted C-ESIs were created with the same fish species and methodology as the 

unweighted C-ESIs.  One C-ESI was created to establish the functionality of the weighting 

process and sensitivity of the addition of weight to one species. In this C-ESI, the lanternfish 

component was heavily weighted (weight of 10), and other fish species components maintained a 

weight of 1.  Lanternfish may be an important indicator species for diel vertical migrating 

mesopelagic species that are likely quite vulnerable to oil spill effects (Romero et al. 2018) and 

were likely highly impacted by DWH (Sutton et al. 2020).  I chose lanternfish as the single 

weighted species for the potential use of this C-ESI as indicator of the vulnerabilities of 
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mesopelagic species and because their distribution was the most unlike that of the other included 

fish species due to their deep-water presence and therefore a change in their weighting would be 

expected to have the largest noticeable impact on the final C-ESI.   

 Three additional C-ESIs were created to evaluate the sensitivity of the C-ESI to the 

weighting of a suite of species (fish species previously defined as high vulnerability).  For these 

weighted C-ESIs, I used three levels of weighting for the highly vulnerable species (weight = 2, 

4, and 8) and maintained the weight of 1 to the medium vulnerable species.  These weights were 

applied as the ki coefficients in Eq. 3.10. 

3.2.11 Note for successfully running published scripts 

  This script and the other scripts published in this study were written in the Python Console 

plugin in QGIS Desktop 3.8.0 with GRASS 7.6.1.  These scripts must be run in a Python 

environment and will not run in QGIS without GRASS enabled.  In addition, the pandas, numpy, 

and seaborn dependencies were used in the scripts published in this study which must be loaded 

into any Python environment.   

For this study I installed QGIS with GRASS using the OSGeo Installer (QGIS Installers, 

2020).  I installed third party package dependencies in the OSGeo4W Shell using the procedures 

found in Yusuf (2018). 

3.3 Results  

3.3.1 Spatial Distributions of Offshore Resources 

 A total of 33 resource raster distributions were created for use in combining ESIs (Table 

3.4, Appendix B).  Rasters created for larval abundance, deep-sea coral, and fish, mammal, and 

turtle species have values that sum to one over the entire distribution as the values represent 

proportion of suitable habitat.  Rasters created for the three species richness categories and the 
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five economic fisheries have grid cells that range from 0 to 1, as they are calculated on a [0,1] 

index. 

3.3.2 Dissimilarity in Species Distributions 

A dissimilarity score was calculated using mean average difference (MAD) for each pair 

of probability of occurrence distributions for the fish and mammal species.  This dissimilarity 

score represents the mean difference between two corresponding grid cells from a pair of 

probability distribution rasters (i.e., lower scores indicate higher similarity; Figure 3.5A).  Pair-

wise dissimilarity scores between species ranged from [0.03,0.8].  Species pairs with the lowest 

pair-wise dissimilarity scores (and therefore indicated higher similarity) were Red snapper and 

Greater amberjack (0.03), Pantropical spotted dolphin and False killer whale (0.05), King 

mackerel and Red snapper (0.07), Dolphinfish and Atlantic spotted dolphin (0.08), and King 

mackerel and Greater amberjack (0.08).  Species pairs with the highest pair-wise dissimilarity 

scores were Sperm whale and Greater amberjack (0.8), Sperm whale and Red snapper (0.8), and 

Sperm whale and King mackerel (0.78).   

The average pair-wise dissimilarity score was also calculated for each species with Sperm 

whale, Lanternfish, and Swordfish having the highest average dissimilarity scores respectively 

(Figure 3.5A).  This average dissimilarity score provides a measure of how different these 

species distributions vary from the suite of other included species.  Sperm whale and lanternfish 

had a pair-wise dissimilarity score of 0.13 showing that while they differed the most from the 

other included species, they were relatively close in similarity to each other.  

The cluster map was created for the probability distributions of fish and mammal species 

as a more qualitative view of the dissimilarity between distributions (Figure 3.5B).  The cluster 

map identifies in a hierarchical way the relationships of species (x-axis) and of site locations (y-
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axis).  For example, the three most similar pairs of species are Pantropical spotted dolphin/False 

killer whale, Swordfish/Bluefin tuna, and Red snapper/Greater amberjack respectively (Figure 

3.5B).  This cluster map has the advantage over the dissimilarity scores in indicating the complex 

relationships among all species and site groups.  There are three major groupings of species in 

the hierarchy, corresponding to (1) deep water mammal species and lanternfishes, (2) large 

pelagic bony fishes and (3) coastal/continental shelf species.   

3.3.3 Cumulative Environmental Sensitivity Indices (C-ESIs) 

 Six unweighted C-ESIs were created during this study from different sets of input rasters 

(Table 3.5).  Each finalized C-ESI is a raster in the same resolution as the input rasters and can 

be found in Appendix B.  The finalized C-ESIs varied both in the number of grid cells identified 

as “hot-spots” and the spatial distribution of the “hot-spots” with many C-ESIs showing “hot-

spots” on the continental shelf. 

The scores from the C-ESI grid cells were ordered from greatest to least and the 

cumulative sum of the scores was graphed for each C-ESI.  The scores from the individual 

components were also graphed for each C-ESI.  In a scenario where all the C-ESI scores for all 

grid cells were equal, this would result in an y = x distribution line.  The steepness of the slope of 

the initial line represents the variance in the C-ESI scores, with C-ESI scenarios with a very 

steep slope indicating the presence of very important grid cells (e.g., “hot-spots” of distribution), 

with a more flat line (x-y bisector) indicating more uniform distributions.  Additionally, for each 

C-ESI, I also graphed the cumulative distribution of the individual components ordered by the 

scores of the total C-ESI.  This graphing of the individual components serves as a visual 

representation of which components are best represented by the C-ESI.  The steeper the slope of 
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the individual component, the more the distribution of that component is represented by the C-

ESI.   

The mammals C-ESI, which included probability of occurrence distributions for six 

species, had the highest C-ESI scores along the continental slope in the northern GoM as well as 

the continental slope on the western side off the Yucatan Peninsula (Figure 3.6).  The cumulative 

sum of the individual components shows that the Pygmy killer whale, Pantropical spotted 

dolphin, and False killer whale were the best represented by this C-ESI as the cumulative 

distribution of these individual components had the steepest graphed slope (Figure 3.6).  In a 

second group, Bottlenose dolphin and Atlantic spotted dolphin had the next steepest (and similar) 

slopes, followed by the Sperm whale.  The Sperm whale has the distribution most unlike the 

other species, and the widest range, corresponding to a relatively low total C-ESI score.   

 For the Turtles C-ESI, the highest hotspot areas were located on the continental shelf to 

the slope break and occurred in areas shallower than as in the Mammals C-ESI (Figure 3.7).  The 

slope of the cumulative sum was also steeper than that of the Mammals C-ESI.  This steepness 

indicates that there is more variation within the Turtles C-ESI scores than the Mammals C-ESI.  

The corresponding individual component graph shows three species of turtles that are very 

similarly represented (Loggerhead, Kemp’s Ridley, and Hawksbill) but with one species less 

well represented (Leatherback).  Like the Mammals C-ESI example, these three species of turtles 

have more similar distributions in terms of overall size and location of range, while the 

Leatherback turtle has a wider range and is therefore less well represented in the C-ESI.   

 The Fish species C-ESI also identified “hot-spots” on the continental slope and on the 

shelf break but there was more variation between adjacent grid cells within these areas compared 
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to the Mammals and Turtles C-ESIs due to the increased number of species included (Figure 

3.8).   

 The Fish Species C-ESI was chosen to demonstrate both the functionality of weighting 

different resource features and the sensitivity of the C-ESI to the addition of weights.  In the 

initial cumulative distribution of the resource components for the Fish Species C-ESI, the 

lanternfish species was found to be the least represented with the shallowest slope (Figures 3.9 

A).  This species, like the sperm whale, is least represented because it has the distribution most 

unlike the other combined species and a large geographic range.  To test the expected 

functionality of adding weights to the C-ESI, I weighted the lanternfish species at two levels 

(weight = 10, 20) while maintaining the weight of 1 for the other fish species.  If the algorithm 

performed as expected, the resulting C-ESI with high lanternfish weights should favor the 

lanternfish distribution and prioritize offshore waters that indicate lanternfish presence.  I 

expected that the individual component line for the lanternfish would be steeper than that of the 

other species.  These expected results were realized as can be seen in the graph of the individual 

components for the Lanternfish weighted scenario vs the unweighted Fish Species scenario 

(Figure 3.8; Figure 3.9A).  In the Lanternfish weighted scenario, grid cells containing both 

lanternfish and other species were prioritized first (e.g., Golden tilefish) but then cells containing 

only lanternfish were selected over grid cells containing other species which is demonstrated by 

the dramatic flattening of the component lines of the other fish species (Figure 3.9A).  This effect 

was seen in both weighting scenarios (weight equal to 10 and 20) with the effect being more 

extreme in the weight = 20 scenario as expected. 

Once the functionality of adding the weights was established, I then created three 

additional C-ESIs with varying weights applied to the suite of eight preselected “highly 
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vulnerable” species to observe the sensitivity of the C-ESIs to these weights (weights: 2, 4, and 

8).  As the weights of these eight species were increased, the C-ESI scores on the slope increased 

while the C-ESI scores for the grid cells on the shelf decreased (Figure 3.8).  Resource 

components for species that were weighted in these scenarios were marked by a solid line, while 

resource components for species that remained unweighted were represented by a dashed line 

(Figure 3.9B).  When the resource components were graphed, there was less noticeable 

movement between the resource component lines than with the weighted Lanternfish example.  

This was primarily due to the equal weighting of each of the vulnerable species and the 

conflicting spatial distributions between species that were similarly weighted.  Some weighted 

species did see increases in their C-ESI representation (Golden tilefish, Warmingii’s lanternfish, 

Atlantic blue marlin), while the representation of the other weighted species stayed about the 

same or decreased marginally (King mackerel, Greater amberjack, Red snapper).  Some of the 

unweighted species did see decreases in their representation (Red drum, Striped mullet), while 

one unweighted species, Red grouper, increased their representation, probably as a byproduct of 

having a similar distribution to one or more weighted species.  There were four species that had 

very straight slopes closest to y = x due to their widespread distribution, two weighted (Common 

dolphinfish and Atlantic swordfish) and two unweighted (Atlantic sailfish and Atlantic bluefin 

tuna) and these remained mostly unchanged within all the weighting scenarios.  I created another 

run with a weight of 25 which seemed virtually identical to the run with a weight of 8, indicating 

this was the convergent solution for the uniform weighting of this suite of species (Figure 3.9B). 

The Species Richness C-ESI was comprised of the three species richness rasters for 1) 

ray finned fishes, 2) sharks and rays, and 3) mammals.  The highest C-ESI areas traced the 

continental slope break which occurs as an overlap area for many species’ distribution (Figure 
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3.10).  The slopes of the cumulative sum of the individual resource components show that the 

Ray finned fishes were the most represented in the C-ESI followed by the Sharks and Rays, and 

then Mammals, but all three were well represented.   

The Fisheries C-ESI (ID 6) differed from the other C-ESIs created in this study due to its 

1.0°x1.0° resolution (versus the 0.5°x0.5° resolution of the other C-ESIs) and its spatial 

coverage.  The spatial coverage of this C-ESI was only in the northern GoM (e.g., no current US 

fisheries in Mexico or Cuban waters and spatial data for fisheries landings unavailable for 

Mexico and Cuba).  This C-ESI was created from five layers: coastal species fisheries, highly 

migratory species fisheries, and the brown shrimp, pink shrimp, and white shrimp fisheries.  The 

three shrimp fisheries were created as separate layers due to their very different spatial 

distributions (Appendix B).  These resources also differed in their absolute revenue levels, with 

estimated combined revenue between 2011-2016 for the brown, white, and pink shrimp landings 

equal to $999 million (M), $675M, and $100M respectively and coastal species fisheries 

estimated combined revenue from landings equal to $318M between 2013-2017.  These fisheries 

resource layers were treated as unweighted using a relative index to avoid heavy bias towards the 

more valuable brown and white shrimp industries.  The brown shrimp fishery occurs mostly in 

the western GoM with additional landings occurring in the central GoM.  The majority of the 

white shrimp landings are from the central GoM. The majority of the pink shrimp landings were 

reported from one grid cell on the west Florida Shelf and this grid cell expectedly received the 

highest score in the combined C-ESI.  The final Fisheries C-ESI has good coverage with visible 

“hot-spots” where all three of these shrimp fisheries primarily occur (Figure 3.11).  We see the 

same results in the component graph, where the very first grid cell selected is the grid cell with 
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approximately 60% of the pink shrimp revenue.  The other four resource layers are well 

represented with all slopes greater than 1. 

An additional C-ESI (named “All Layers”, ID 7) explored the incorporation of more 

features into the C-ESI and to test if these features could still be well represented.  For this C-

ESI, I combined rasters for all fish, mammal, and turtle species, and rasters of suitable habitat for 

the larval abundance of fishes and deep-sea corals for a total of twenty-five layers (Figure 3.12).  

Generally, the species that were well represented in their previous C-ESIs were still well 

represented even when combined with the additional layers.  The sperm whale was the least well 

represented mammal species in the Mammals C-ESI and the least well represented species 

overall in the “All Layers” C-ESI.  Tilefish were the most well represented species in the Fish 

Species C-ESI and the most well represented species overall in the “All Layers” C-ESI.  

Lanternfish were the least well represented species in the Fish Species C-ESI and were the least 

well represented fish species in the “All Layers” C-ESI.  Leatherback sea turtles were the least 

well represented turtle species in the Turtles C-ESI and were still the least well represented turtle 

species in the “All Layers” C-ESI.  In the two new layers that were created, larval fish were 

under-represented while deep-sea corals were well represented by the “All Layers” C-ESI. 

3.4 Discussion 

A variety of fishery-independent sampling data and fishery landings describe various 

aspects of biodiversity resources and can be combined to develop ESIs for the increasingly 

important deep-water areas of the GoM.  The objective of this study was to demonstrate a 

methodology for converting disparate information sources for offshore resources into spatially- 

distributed grids (rasters) of the same resolution, standardizing the values within the grids to be 

quantifiably comparable, and then combining quantifiably comparable grids to create cumulative 
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ESIs (C-ESIs).  These C-ESIs can then be used to identify “hot-spot” areas that may be 

especially vulnerable to deep-water oil spills.  Such information can be used in initial 

determination of where and where not to site oil and gas facilities and to inform oil spill 

responders in the event of significant spills.  The C-ESIs created in this study show vulnerability 

“hot-spots” in areas where deep sea oil drilling is taking place or proposed.  C-ESIs created via 

this method can then be used as a potential decision-making tool when identifying areas and 

resources most at risk for an oil-well blowout or for special attention during oil spill responses.  

The C-ESIs created in this chapter also serve as necessary inputs for further analysis when 

comparing these resource layers to hypothetical oil spill scenarios (Chapter 4) and for 

optimization networks of areas potentially to be reserved from oil and gas development using the 

Marxan spatial planning tool (Chapter 5; Ball et al. 2009). 

The majority of the C-ESIs created from this study are unweighted, but the addition of 

weights to some resources may be desirable and that functionality is demonstrated through the 

creation of several weighted C-ESIs.  The weighting of one or multiple resources may be 

desirable due to either the increased vulnerability or importance of the specific resource(s) or 

because the resource(s) may be underrepresented within the C-ESI.  In particular, offshore 

mesopelagic species, represented by a typical lanternfish species, may be particularly vulnerable 

to oil spills, with little resilience once polluted (Romero et al. 2018; Sutton et al. 2020).  In this 

case, up weighting this species seems particularly important to the overall outcome especially 

since the majority of USA oil production in the GoM now comes from waters >1,500 m, which 

overlaps the distribution range of lanternfishes almost exactly (Murawski et al. 2020). 

Species-specific vulnerability assessments often are scored as a combination of life 

history traits contributing to a species’ individual vulnerability as well as a probability of 
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exposure score (Polidoro et al. 2021; Murawski et al. 2021).  This study used preliminary 

vulnerability assessment scores based on previous frameworks (Woodyard et al. 2022) to weight 

a suite of GoM fishes by vulnerability score.  The C-ESI created from weighting a suite of 

species was robust to changes in weights with the final C-ESI of the weighted fish species (ID 4) 

being comparable to the C-ESI for the unweighted fish species (ID 3), even at high levels of 

weighting (Figure 3.8, Figure 3.9 A, B).  This is likely due to the number of weighted species (8 

of 13) and the conflicting distribution ranges of the weighted species.  A smaller number of 

weighted species, or weighted species with similar distribution ranges would likely result in a 

more significant change in the final C-ESI.   Weighting an individual resource component may 

also be desirable if the resource component is more valuable than other resource components.  

For example, in the Fisheries C-ESI (ID 6) where the Brown Shrimp revenue is larger than the 

revenues of the other industries, a C-ESI looking at the total Revenue for fisheries in the GoM 

may want to weight these resources proportionally. 

The weighting of individual resource components may also be desirable if a single 

resource component, or suite of resource components, is under-represented by the C-ESI.  This 

can happen in situations where multiple resource components have similar distributions, leading 

to other resource components being under-represented.  This study includes two tools that can be 

utilized in the potential determination of weighting an under-represented resource component.  

The first is to graph the individual components of the C-ESI and the second is to evaluate the 

dissimilarity between two or more resource components via a dissimilarity score or cluster map 

(e.g., Figure 3.5B) to interpret the individual component graph and make decisions regarding the 

weighting of individual resource components.   
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C-ESI scores for individual grid cells were ordered from greatest to least for each C-ESI.  

The cumulative sum was graphed for each C-ESI giving a measure of the variation of the C-ESI 

scores, as cumulative sum graphs with steeper slopes indicate more variation in the C-ESI scores.  

A uniform C-ESI would result in a slope of y = x as all C-ESI scores would have the same value.  

The cumulative sum of the resource components was graphed as it accumulates within the 

ordered C-ESI grid cells.  The graphing of the individual components serves as a visual 

representation of which components are under-represented by the C-ESI.  The steeper the line of 

the individual component, the more the distribution of that component mimics the distribution of 

the C-ESI.  Resource component lines with shallow slopes represent resources that are being 

under-selected for compared to other resources.  Weighting of underrepresented resource 

components would increase the slope of that line (and representation in the C-ESI of that 

resource component) while flattening others.  In the unweighted Turtles C-ESI (ID 2), three 

species of turtles have more similar native ranges (size and location), while the Leatherback 

turtle has a larger native range and is therefore less well represented.  An increase in the 

weighting of the Leatherback turtle species (e.g., due to its highly endangered status) within this 

C-ESI would result in a more equitable representation of all four species within the C-ESI.  This 

result was demonstrated within the Fish Species C-ESI (ID 3) by the creation of a C-ESI where 

Warmingii lanternfish were the only species weighted (Figure 3.9A).  In the unweighted C-ESI, 

the Warmingii lanternfish component had the shallowest slope and was the least well 

represented.  Changing the weight of the Warmingii lanternfish species to a weight of 10 

increased the slope of that component so that it was the most well represented.  A further 

increase in the weighting of Warmingii lanternfish to 20 further steepened this slope while 

flattening that of the other species.   
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The component graph along with the dissimilarity scores and cluster map can also be 

used to identify tradeoffs between species expected to occur if weights were added to one 

species, or group of species.  Species with similar distributions (low pair-wise dissimilarity 

scores or clusters indicating high similarity) would be directionally impacted by the weighting of 

one or more species in that set.  The contribution to the C-ESI of species outside of that group 

(and therefore their representation) would be lessened.  In the Mammals C-ESI example, (ID 1, 

Figure 3.6) the Pygmy killer whale, Pantropical spotted dolphin, and False killer whale were the 

species most well represented by this C-ESI.  This grouping is expected as Pygmy killer whale, 

Pantropical spotted dolphin, and False killer whale all have distributions with low dissimilarity 

scores and are clustered together indicating similarity in their distributions (Figures 3.5 A, B).  

Increasing the weight of Pygmy killer whale, Pantropical spotted dolphin, and/or False killer 

whale would result in a steeper component line (and more representation) for all three of these 

species while the contribution to the C-ESI of the other three species would lessen (and therefore 

their representation).  Dissimilarity scores and cluster map were developed in this chapter to 

identify which species have similar distributions and therefore will respond to changes in 

weighting together.  An application of weights and subsequent examination of this component 

graph could be used to identify weights such that all resource components were similarly well 

represented.  An obvious extension to this work would be to compute the average 

sensitivities/resilience potential of the species components within the species clusters (Fig. 3.5B) 

to see if various species groups indeed are deserving of particular attention due to their lack of 

resilience potential.  Thus, the “hot-spot” becomes a species group and not a single species. 

The C-ESIs created via these methods demonstrates that C-ESIs with different suites of 

included resources (e.g., fishery components versus mammal distributions) result in spatially 
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different C-ESI distributions (e.g., Mammals C-ESI vs. Fisheries C-ESI (Figure 3.6, Figure 

3.11)), different distributions of the same resources would also be likely to create spatially 

different C-ESIs.  This study used probability of suitable habitat as a proxy for probability of 

occurrence, but this likely does not scale with abundance.  For example, while AquaMaps 

reported red grouper occurrence data in the western GoM (Figure 3.13), other studies have 

shown that red grouper were not found there and were found in higher abundances on the west 

Florida shelf (Figure 3.14; Murawski et al. 2018).  The included species, larval, and coral 

distributions treat all grid blocks with probability of occurrence = 1 as being equally important to 

a species, which makes these layers easily comparable.  A similar C-ESI model which used 

standardized abundance estimates would potentially produce different results thus implying that 

there are other determinants of spatial distribution not included in the AquaMaps algorithm of 

habitat suitability.  

The information created in this chapter is used in subsequent chapters to model the 

potential impacts on sensitive species to theoretical oil spills and to consider the selection of 

areas to reserve from future development activities owing to the occurrence of sensitive species 

(Chapters 4 and 5). 

The methodology in this study is presented along with the published Python scripts for 

the creation of the C-ESIs and for the graphing of the component resources from a set of 

resource component rasters and optional weights. 
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3.5 Tables 

Table 3.1 Common and scientific names for selected species whose individual probability of 

occurrence distributions were included in this study.  Species abbreviations are used in 

subsequent Figures.  
 

Category Genus Species Common name Abbreviations 

Fish Ceratoscopelus warmingii Warmingii's lanternfish W.lantern 

Fish Istiophorus albicans Atlantic sailfish A.sailfish 

Fish Thunnus thynnus Atlantic bluefin tuna B.tuna 

Fish Makaira nigricans Atlantic blue marlin B.marlin 

Fish Coryphaena  hippurus Common dolphinfish Mahi-mahi 

Fish Seriola  dumerili Greater amberjack G.amberjack 

Fish Scomberomorus cavalla King mackerel K.mackerel 

Fish Sciaenops ocellatus Red drum R. drum 

Fish Epinephelus morio Red grouper R. grouper 

Fish Lutjanus campechanus Red snapper R. snapper 

Fish Mugil cephalus Striped mullet S. mullet 

Fish Xiphias gladius Atlantic swordfish Swordfish 

Fish Lopholatilus chamaeleonticeps Great northern tilefish Tilefish 

Turtle Lepidochelys kempii Kemp's Ridley Kemps 

Turtle Eretmochelys imbricata Hawksbill Hawksbill 

Turtle Caretta caretta Loggerhead Logger 

Turtle Dermochelys coriacea Leatherback Leather 

Mammal Tursiops truncates Bottlenose dolphin Bottlenose 

Mammal Stenella attenuate Pantropical spotted dolphin PS. dolphin 

Mammal Stenella frontalis Atlantic spotted dolphin AS. dolphin 

Mammal Physeter macrocephalus Sperm whale S. whale 

Mammal Feresa attenuate Pygmy killer whale PK. whale 

Mammal Pseudora crassidens False killer whale FK. whale 
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Table 3.2 Common and scientific names of species of fishes and shrimp used in developing indices for coastal reef fishes, coastal 

pelagic fishes, shrimp, and highly migratory fishes.  

 

Grouping Scientific name Common name Grouping Scientific name Common name
Shrimp Farfantepenaeus aztecus Shrimp, brown Coastal Species Euthynnus alletteratus Tuna, little (tunny)

Shrimp Litopenaeus setiferus Shrimp, white Coastal Species Haemulidae Grunts

Shrimp Penaeus duorarum Shrimp, pink Coastal Species Haemulon album Margate

Highly Migratory Isurus oxyrinchus Shark, mako Coastal Species Haemulon plumieri Grunt, white

Highly Migratory Katsuwonus pelamis Tuna, skipjack Coastal Species Lachnolaimus maximus Hogfish

Highly Migratory Lamna nasus Shark, porbeagle Coastal Species Lopholatilus chamaeleonticeps Tilefish

Highly Migratory Prionace glauca Shark, blue Coastal Species Lutjanidae Snappers, unc

Highly Migratory Thunnus alalunga Tuna, albacore Coastal Species Lutjanus analis Snapper, mutton

Highly Migratory Thunnus albacares Tuna, yellowfin Coastal Species Lutjanus apodus Snapper, schoolmaster

Highly Migratory Thunnus obesus Tuna, bigeye Coastal Species Lutjanus buccanella Snapper, blackfin

Highly Migratory Thunnus thynnus Tuna, bluefin Coastal Species Lutjanus campechanus Snapper, red

Highly Migratory Xiphias gladius Swordfish Coastal Species Lutjanus cyanopterus Snapper, cubera

Coastal Species Acanthocybium solandri Wahoo Coastal Species Lutjanus griseus Snapper, mangrove

Coastal Species Apsilus dentatus Snapper, black Coastal Species Lutjanus jocu Snapper, dog

Coastal Species Archosargus probatocephalus Sheepshead, Atlantic Coastal Species Lutjanus synagris Snapper, lane

Coastal Species Balistes capriscus Triggerfish, gray Coastal Species Lutjanus vivanus Snapper, silk

Coastal Species Balistes vetula Triggerfish, queen Coastal Species Malacanthus plumieri Tilefish, sand

Coastal Species Calamus bajonado Porgy, jolthead Coastal Species Mycteroperca bonaci Grouper, black

Coastal Species Calamus leucosteus Porgy, whitebone Coastal Species Mycteroperca microlepis Grouper, gag

Coastal Species Calamus nodosus Porgy, knobbed Coastal Species Mycteroperca phenax Scamp

Coastal Species Canthidermis sufflamen Triggerfish, ocean Coastal Species Mycteroperca venenosa Grouper, yellowfin

Coastal Species Carangidae Jacks, unc. Coastal Species Ocyurus chrysurus Snapper, yellowtail

Coastal Species Caulolatilus microps Tilefish, blueline Coastal Species Pagrus pagrus Porgy, red, unc

Coastal Species Centropristis striata Sea bass, Atlantic, black, unc Coastal Species Pomatomus saltatrix Bluefish

Coastal Species Coryphaena Dolphinfish Coastal Species Pristipomoides aquilonaris Wenchman

Coastal Species Ephippididae Spadefish Coastal Species Rachycentron canadum Cobia

Coastal Species Epinephelus adscensionis Hind, rock Coastal Species Rhomboplites aurorubens Snapper, vermilion

Coastal Species Epinephelus cruentatus Graysby Coastal Species Scomberomorus Mackerel, king

Coastal Species Epinephelus drummondhayi Hind, speckled Coastal Species Scomberomorus maculatus Mackerel, Spanish

Coastal Species Epinephelus flavolimbatus Grouper, yellowedge Coastal Species Seriola dumerili Amberjack, greater

Coastal Species Epinephelus guttatus Hind, red Coastal Species Seriola fasciata Amberjack, lesser

Coastal Species Epinephelus morio Grouper, red Coastal Species Seriola rivoliana Jack, Almaco

Coastal Species Epinephelus mystacinus Grouper, misty Coastal Species Seriola zonata Banded rudderfish

Coastal Species Epinephelus nigritus Grouper, Warsaw Coastal Species Serranidae Groupers

Coastal Species Epinephelus niveatus Grouper, snowy Coastal Species Sparidae Scups or porgies, unc

Coastal Species Etelis oculatus Snapper, queen
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Table 3.3 Larval Species used in larval abundance raster 

Scientific and common names of fish species used in developing the larval abundance resource.  

Data were collected on SEAMAP larval fish sampling cruises.  More details on the species 

selection and calculation of standardized abundance can be found in Chancellor (2015). 

 

Scientific Name Common Name Scientific Name Common Name 

Acanthocybium solandri Wahoo Margrethia obtusirostra Bighead portholefish 

Aplatophis chauliodus Tusky eel Micropogonias undulatus Croaker, Atlantic 

Bairdiella chrysoura Silver perch Mugil cephalus Mullet, striped 

Benthosema suborbitale Lanternfish, smallfin Mugil curema Mullet, silver 

Bonapartia pedaliota Longray fangjaw Myrophis punctatus Speckled worm eel 

Bregmaceros cantori Striped codlet Nesiarchus nasutus Black gemfish 

Carapus bermudensis Atlantic pearlfish Notolychnus valdiviae Lanternfish, topside 

Ceratoscopelus warmingii Lanternfish, warming's Oligoplites saurus Leatherjack 

Chlorophthalmus agassizi Shortnose greeneye Ophichthus gomesii Shrimp eel 

Chloroscombrus chrysurus Atlantic bumper Ophichthus rex King snake eel 

Cynoscion arenarius Sea trout, white Opisthonema oglinum 
Herring, Atlantic 

thread 

Cynoscion nebulosus Sea trout, spotted Peprilus burti Butterfish, gulf 

Decapterus punctatus Scads, round Peprilus paru Harvestfish 

Diogenichthys atlanticus Lanternfish, longfin Pollichthys mauli Lightfish, stareye 

Diplospinus multistriatus Striped escolar Pomatomus saltatrix Bluefish 

Engyophrys senta Founder, spiny Pristipomoides aquilonaris Wenchman 

Etrumeus teres Herring, round Rachycentron canadum Cobia 

Euthynnus alletteratus Tuna, little (tunny) Rhomboplites aurorubens Snapper, vermilion 

Gempylus serpens Snake mackerel Sardinella aurita Sardine, Spanish 

Harengula jaguana Herring, scaled Sciaenops ocellatus Drum, red 

Hygophum reinhardtii Lanternfish, reinhardt's Scomber colias 
Mackerel, Atlantic 

chub 

Katsuwonus pelamis Tuna, skipjack Scomberomorus cavalla Mackerel, king 

Lagodon rhomboides Pinfish Scomberomorus maculatus Mackerel, Spanish 

Larimus fasciatus Drum, banded Selar crumenophthalmus Scads, bigeye 

Leiostomus xanthurus Spot Serraniculus pumilio Pygmy sea bass 

Lobotes surinamensis Atlantic tripletail Stellifer lanceolatus Drum, star 

Lutjanus campechanus Snapper, red Thunnus thynnus Tuna, bluefin 

Lutjanus griseus Snapper, mangrove Trachurus lathami Scads, rough 

Luvarus imperialis Louvar Xiphias gladius Swordfish 
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Table 3.4 List of Raster files with resolution level and ID number. 

Type Raster Layer Resolution ID Number 

Fish Warmingii's lanternfish 0.5 degree 1 

Fish Atlantic sailfish 0.5 degree 2 

Fish Atlantic bluefin tuna 0.5 degree 3 

Fish Atlantic blue marlin 0.5 degree 4 

Fish Common dolphinfish 0.5 degree 5 

Fish Greater amberjack 0.5 degree 6 

Fish King mackerel 0.5 degree 7 

Fish Red drum 0.5 degree 8 

Fish Red grouper 0.5 degree 9 

Fish Red snapper 0.5 degree 10 

Fish Striped mullet 0.5 degree 11 

Fish Atlantic swordfish 0.5 degree 12 

Fish Great northern tilefish 0.5 degree 13 

Turtle Kemp's Ridley 0.5 degree 14 

Turtle Hawksbill 0.5 degree 15 

Turtle Loggerhead 0.5 degree 16 

Turtle Leatherback 0.5 degree 17 

Mammal Bottlenose dolphin 0.5 degree 18 

Mammal Pantropical spotted dolphin 0.5 degree 19 

Mammal Atlantic spotted dolphin 0.5 degree 20 

Mammal Sperm whale 0.5 degree 21 

Mammal Pygmy killer whale 0.5 degree 22 

Mammal False killer whale 0.5 degree 23 

Species Richness Bony Fishes 0.5 degree 24 

Species Richness Elamobranchs 0.5 degree 25 

Species Richness Mammals 0.5 degree 26 

Economic Fishery Coastal Species 1 degree 27 

Economic Fishery Highly Migratory Species 1 degree 28 

Economic Fishery Brown shrimp 1 degree 29 

Economic Fishery White shrimp  1 degree 30 

Economic Fishery Pink shrimp 1 degree 31 

Larval Fish Abundance 0.5 degree 32 

Benthic Deep-sea coral 0.5 degree 33 
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Table 3.5 List of C-ESIs and contributing rasters IDs from Table 3.4. 

ESI ID Name of ESI 
Raster ID numbers included in 
calculation 

1 Mammals 18-23 

2 Turtles 14-17 

3 Fish Species – Unweighted 1-13 

4 Fish Species – Weighted (Four Levels of Weights) 1-13 with weights 

5 Species Richness 24-26 

6 Commercial Fisheries 27-31 

7 
Mammals, Turtles, Fish, Larval Abundance, Deep-sea Coral 
habitat 1-23, 32, 33 
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3.6 Figures 

 
 

Figure 3.1 IHO Ocean shape file for the spatial extent of the GoM visualized in QGIS.   

This shapefile was composed by the Flanders Marine Data and Information Centre using the 

publication 'Limits of Oceans & Seas, Special Publication No. 23' published by the International 

Hydrographic Organization (IHO) in 1953 (Flanders Marine Institute 2018).  
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Figure 3.2 Coastal species revenue boxplots  

Boxplots of distribution of Coastal Species Revenue (dollars in thousands, 2013-2017 combined) 

by species excluding top three species (top), and by grid block (bottom).  The top and bottom of 

each box represent the 25th and 75th percentiles of the revenue estimates, respectively.   
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Figure 3.3 Highly migratory species landings boxplots  

Boxplots of distribution of Highly Migratory Landings (thousands of lbs, 2013-2016 combined) 

by species (left), and by grid block (right).  The top and bottom of each box represent the 25th 

and 75th percentiles of the landing estimates, respectively. 
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Figure 3.4A Distribution of probability of occurrence and proportion of suitable habitat for fish 

species 

Distribution of Probability of Occurrence (A) and Proportion of Suitable Habitat (B) scores for 

fish species.  Full name of fish species listed on x-axis labels can be found in Table 3.1. 

 

A 

B 
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Figure 3.4B Distribution of proportion of suitable habitat for larval abundance 

Distribution of Standardized Larval Abundance (before data transformation, (A)) and created 

variable Larval Index (after data transformation, (B)).  Index was created for larval abundance 

layer to be comparable with proportion of suitable habitat layers shown in Figure 3.4A. 

   

  

A B 
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Figure 3.5A Dissimilarity scores for mammals and fish  

Dissimilarity scores calculated for included fish and mammal species.  Scores are the average of 

the absolute value of the differences between the probabilities of occurrence across all grid cells.  

Higher scores correspond to higher dissimilarity.  Avg Score is the average dissimilarity score 

between each species and the 17 other species.  

 

Avg Score

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 Atlantic spotted dolphin 0 0.32

2 Bottlenose dolphin 0.13 0 0.31

3 False killer whale 0.41 0.41 0 0.40

4 Pantropical spotted dolphin 0.44 0.37 0.05 0 0.40

5 Pygmy killer whale 0.3 0.31 0.12 0.16 0 0.36

6 Sperm whale 0.58 0.64 0.26 0.31 0.36 0 0.54

7 Atlantic sailfish 0.12 0.25 0.48 0.54 0.38 0.46 0 0.37

8 Bluefin tuna 0.19 0.27 0.31 0.36 0.2 0.41 0.18 0 0.34

9 Dolphinfish 0.08 0.15 0.38 0.43 0.28 0.54 0.11 0.15 0 0.32

10 Greater amberjack 0.26 0.2 0.57 0.53 0.49 0.8 0.38 0.43 0.3 0 0.35

11 King mackerel 0.32 0.26 0.55 0.51 0.51 0.78 0.43 0.47 0.35 0.08 0 0.37

12 Lanternfish 0.49 0.56 0.21 0.25 0.27 0.13 0.37 0.32 0.45 0.72 0.72 0 0.48

13 Red drum 0.49 0.37 0.46 0.41 0.48 0.7 0.61 0.55 0.5 0.24 0.19 0.63 0 0.43

14 Red grouper 0.29 0.26 0.52 0.49 0.42 0.74 0.39 0.36 0.34 0.1 0.15 0.66 0.3 0 0.36

15 Red snapper 0.28 0.21 0.57 0.53 0.48 0.8 0.4 0.43 0.31 0.03 0.07 0.72 0.22 0.11 0 0.36

16 Striped mullet 0.39 0.27 0.52 0.47 0.5 0.76 0.51 0.51 0.4 0.13 0.09 0.7 0.11 0.22 0.13 0 0.39

17 Swordfish 0.23 0.34 0.6 0.65 0.5 0.38 0.12 0.3 0.22 0.48 0.55 0.42 0.71 0.51 0.5 0.6 0 0.46

18 Tilefish 0.44 0.34 0.36 0.33 0.3 0.61 0.55 0.38 0.45 0.24 0.26 0.52 0.3 0.18 0.23 0.28 0.67 0 0.38

Species column numbers correspond to labeled species row numbers
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Figure 3.5B Cluster map for fish and mammal species  

Cluster map created from the AquaMaps probability distributions for mammal and fish species 

using the seaborn package.  Clusters for species are grouped on top x-axis, with the height of the 

cluster being proportional to the difference between the groups.   
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Figure 3.6 Mammals C-ESI (ID 1) 

(A) Finalized raster of Cumulative Sensitivity for Mammals C-ESI ID 1 (Table 3.5).  Proportion 

of resource by ranked grid square for Cumulative Sensitivity (B) and by individual component to 

the Cumulative Sensitivity (C).  

A 

B C 
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Figure 3.7 Turtles C-ESI (ID 2) 

(A) Finalized raster of Cumulative Sensitivity for Sea turtles C-ESI ID 2 (Table 3.5).  Proportion 

of resource by ranked grid square for Cumulative Sensitivity (B) and by individual component to 

the Cumulative Sensitivity (C). 

A 

B C 
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Figure 3.8 Fish species C-ESIs (ID 3 & 4) 

Finalized raster of Cumulative Sensitivity for Unweighted Fish Species C-ESI and four weighted 

fish species C-ESIs ID 3 & 4 (Table 3.5).  Weighted C-ESIs are for one species weighted 

(Warmingii lanternfish) and three levels of weighting (highly vulnerable species weighted at 2, 

4, and 8 times that of the medium vulnerable species). 

 

Fish Species Unweighted 

Fish Species: Vul Species = 2X Fish Species: Vul Species = 4X 

Fish Species: Vul Species = 8X 

Fish Species: Lanternfish = 10X 
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Figure 3.9A Cumulative sum by component for single weighted species 

Proportion of resource by individual component to the Cumulative Sensitivity for fish species for 

the unweighted scenario and the weighting of one species (Warmingii lanternfish) at two levels 

(weight = 10, weight = 20) 
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Figure 3.9B Cumulative sum by component for weighted suite of fish species 

Proportion of resource by individual component to the Cumulative Sensitivity for the unweighted 

and weighted suite of species at 4 levels (2, 4, 8, 25).  Species marked with a solid line were 

weighted in the group weighted scenarios.  
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Figure 3.10 Species Richness C-ESI (ID 5) 

 

Figure 3.10 Species Richness C-ESI (ID 5) 

(A) Finalized raster of Cumulative Sensitivity for Species Richness C-ESI ID 5 (Table 3.5).  

Proportion of resource by ranked grid square for Cumulative Sensitivity (B) and by individual 

component to the Cumulative Sensitivity (C). 

A 

B 
C 
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Figure 3.11 Commercial Fisheries C-ESI (ID 6) 

(A) Finalized raster of Cumulative Sensitivity for Commercial fisheries C-ESI ID 6 (Table 3.5).  

Proportion of resource by ranked grid square for Cumulative Sensitivity (B) and by individual 

component to the Cumulative Sensitivity (C). 

A 

B 
C 
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Figure 3.12 Cumulative All Layers C-ESI (ID 7) 

(A) Finalized raster of Cumulative Sensitivity for All Layers C-ESI ID 7 (Table 3.5).  Proportion 

of resource by individual component to the Cumulative Sensitivity (B). 

A 

B 
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Figure 3.13 Red grouper point occurrence data used for creation of AquaMaps distribution. 

Graphic from http://www.obis.org.au/cgi-bin/cs_map.pl.  This distribution includes the point at 

[90.25°W, 25.75°N] which was removed. 

 

 
 

Figure 3.14 Red grouper catches from longline surveys in the GoM. 

Graphic included with permission from data published in Murawski et al. (2018).  

http://www.obis.org.au/cgi-bin/cs_map.pl
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Chapter 4. Using Cumulative Environmental Sensitivity Indices (C-ESIs) to Identify 

Vulnerable Resource Impacts from Hypothetical Oil Well Blowouts 

 

4.1 Introduction 

 Chapter 3 of this study focused on defining and demonstrating the methodology to create 

spatial distributions of offshore resources using disparate data sets of varying spatial resolution, 

and to combine these resource maps into Cumulative Environmental Sensitivity Indices (C-

ESIs).  Additionally, Chapter 3 outlined methodologies to weight these resource maps 

prioritizing specific resources (e.g., a higher revenue Shrimp species), resource specific 

vulnerabilities (e.g., weighting a suite of previously identified vulnerable species), or weighting 

of one or more resources to ensure substantial representation within the final C-ESI (e.g., 

weighting Warmingii lanternfish to prevent under representation).  The resulting C-ESIs created 

in Chapter 3 identify “hot-spots” within the GoM which would be differentially susceptible to a 

significant oil well spill.  In particular, the shelf slope region was a congregation area for many 

vulnerable species, which is also a region of intensive oil and gas development, especially 

recently (Murawski et al. 2020).    

 This chapter aims to demonstrate how the C-ESIs created in Chapter 3 can be used both 

to proactively identify offshore resources that may be potentially impacted due to hypothetical 

oil well blowouts, and as a reactive tool to identify potentially vulnerable offshore resources if an 

oil well blowout has occurred (e.g., as an aid to oil spill responders to prioritize response 

measures.)   
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This study uses distributions of surface oil for four hypothetical oil well blowout 

scenarios created using the Connectivity Modeling System (CMS) at the University of Miami 

(Paris et al. 2013; Berenshtein et al. 2020a). The origins of two of the simulations mimic the 

Deepwater Horizon (DWH) spill, but at two different times of year (spring and autumn).  The 

other two simulations represent spring origin locations in the western GoM (where drilling is 

currently occurring) and the eastern GoM (currently withdrawn under 2021 Congressional 

Moratorium).  These four location-specific scenarios with changes in origin location and time of 

year have previously been shown to have differing impacts on the suite of larval fish exposed to 

oil (Chancellor 2015).  The oil well blowout scenarios will be used to demonstrate the utility of 

the C-ESIs (developed in Chapter 3) in evaluating of vulnerability of the suite of resources to the 

oil well blowouts and for identifying specific resources that may be differentially vulnerable in 

the event of these oil well blowout scenarios.  The surface oil expressions from the modeled oil 

well blowouts are used to estimate which grid cells (rastered) are likely to encounter oil and at 

what concentrations of oil (relative to critical concentrations resulting in biological effects).   

Marine organisms are exposed to oil through four major pathways: absorption of 

bioavailable hydrocarbon compounds into skin via direct contact with oil (e.g., sea turtles and 

mammals surfacing and diving), inhalation and aspiration (air-breathing animals may breathe in 

aerosol compounds), and ingestion (ingestion of water or sediments containing oil) (Westerholm 

and Rauch 2016).  Polycyclic aromatic hydrocarbon (PAH) concentration levels and duration of 

exposure determine lethal and sublethal effects to biological resources through absorption.   

Toxicity tests are performed to identify critical thresholds (i.e., toxicity endpoints) in fish and 

invertebrate species to oil and dispersants used in oil cleanup.  Toxicity endpoints calculated 

include EC50 (i.e., effect concentration at which 50% of the test population is affected), IC50 
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(i.e., inhibitory concentration) and LC50 (i.e., lethal concentration).  EC50 or IC50 is primarily 

reported in chronic (i.e., days or weeks) toxicity tests and is the concentration at which 50% of 

the exposed organisms experience sublethal or lethal effects (positively correlated response = 

EC, negatively correlated response = IC) at a specified duration (e.g., 96-hour EC50).  LC50 is 

primarily reported in acute (i.e., < 96 hours) toxicity tests and is the concentration where 

mortality in 50% of the exposed test organisms occurs (e.g., 24-hour LC50; Westerholm and 

Rauch 2016).   

Fish eggs, larval fish, juveniles, and adult fish all can suffer lethal and/or sublethal effects 

from PAH exposure.  Early life stages of fishes can suffer cardiac and morphological defects at 

levels as low as PAH = 0.5 µg/L ΣPAHs at the surface and PAH = 1 µg/L ΣPAHs at deeper 

waters (Carls et al. 1999; Incardona et al. 2004; Hicken et al. 2011; Incardona et al. 2013; 

Westerholm and Rauch 2016).  Two cardiac effects, edema (pericardial fluid accumulation) and 

bradycardia (reduction in heart rate) were observed for three large pelagic species, Bluefin tuna, 

Yellowfin tuna, and amberjack using DWH MC252 oil at ΣPAH concentrations similar to those 

sampled during the spill (Incardona et al. 2014).  The EC50 values for edema for Bluefin tuna, 

Yellowfin tuna, and amberjack, occurred at 0.8, 2.3, 12.4 µg/L ΣPAHs respectively. The 

thresholds for edema ranged from 0.3–0.6 µg/L, 0.5–1.3 µg/L, and 1.0–6.0 µg/L ΣPAHs for 

bluefin tuna, yellowfin tuna, and amberjack respectively, meaning that these effects begin to be 

observed in larvae at these lower concentrations (Incardona et al. 2014).  The IC50 values for 

bradycardia (reduction in heart rate) occurred at 7.7, 6.1, and 18.2 μg L− 1 ΣPAH for bluefin, 

yellowfin tuna, and amberjack respectively while the exposure thresholds were in the range of 

4.0–8.5 µg/L, 1.0–2.6 µg/L, 2.2–6.5 µg/L respectively.  An estimated ~20% of water samples 

collected in the DWH sampling had concentrations higher than the edema thresholds and ~30% 
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had concentrations higher than the bradycardia thresholds (Incardona et al. 2014).  Additionally, 

there is evidence to suggest that toxicity to eggs and larval fish increases when oil is weathered.  

In embryonic mahi-mahi, acute lethality (96 h LC50) occurred at 45.8 μg L− 1 ΣPAH (range 

28.4–63.1) for wellhead oil collected at the source.  When oil samples collected from the surface 

slick were used (representing the weathered oil), the acute lethality occurred at the significantly 

lower concentration of 8.8 μg L− 1 ΣPAH (range (7.4–10.3) for samples collected from the 

surface slick; Esbaugh et al. 2016).  DWH occurred during the spawning seasons of these fish 

species and in concentrations above those thresholds listed here, therefore impacts to early life 

stage fishes may have been large and occurring over a large spatial extent.    

The impacts caused by oil exposure to these early life stages can persist into adulthood 

for surviving larvae.  In the laboratory, Mahi-mahi larvae/embryos that were exposed to 48 h 

exposure of 1.2 ± 0.6 μg L–1 ΣPAH and then raised for 25 days experienced acute sublethal 

impacts leading to a reduced critical swimming velocity of 37% (Mager et al. 2014).  Juvenile 

and adult species also experience sublethal impacts when exposed to oil.  Juvenile Mahi-mahi 

exposed to 24 h exposure of 30 ± 7 μg L–1 ΣPAH experienced acute sublethal impacts leading to 

a 22% decrease in critical swimming velocities (Mager et al. 2014).  Adult red drum experienced 

12.6% reduction in critical swimming velocity when exposed to 24-hour exposure of 4.1 μg L−1 

ΣPAH and additional 18.4% reduction in aerobic scope at a higher exposure level of 12.1 μgL−1 

ΣPAH (Esbaugh et al. 2016).  Adult Mahi-mahi experience acute sublethal toxicity with 

significant reductions in critical swimming velocity (14%) and optimal swimming velocity 

(10%) and a 20% reduction in maximum metabolic rate at ΣPAH concentrations of 

8.4 ± 0.6 µg L−1 (8.4 ppb) over a 24-hour exposure period (Stieglitz et al. 2016).  Sublethal 

impacts in swimming characteristics are likely to have negative impacts on Mahi-mahi, Red 
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drum, and other large predatory species which rely on swimming performance to hunt and, in 

some highly migratory species, cover large migration distances (Stieglitz et al. 2016).  

Additionally, increased numbers of skin lesions were found on adult fishes in 2011 and 2012 

after the DWH oil spill which impact species’ health and fitness (Murawski et al. 2014). 

Marine mammals are at risk of oil exposure through all four pathways since they breathe 

at the air/surface interface and can be exposed to oil through ingestion and respiration (Neff 

1988; Marsili et al. 2001).  Routine toxicological experimentation cannot generally be performed 

on mammals due to the Marine Mammal Protection Act (MMPA) and the Endangered Species 

Act, so toxicity data on marine mammals comes from the aftermath of accidental oil exposure in 

the case of a spill or historical studies.  Bottlenose dolphins exposed to DWH oil experienced 

decreased immune function, higher rates of anemia, bacterial pneumonia, pulmonary 

abnormalities, and decreased reproductive success (Schwacke et al. 2014; Lane et al. 2015; De 

Guise et al. 2017; White et al. 2017; Ruberg et al. 2021).  Increased dolphin strandings were also 

associated with exposure to DWH oil (Venn-Watson et al. 2015).  According to a report 

published by the U.S. Fish and Wildlife Service (2011), 157 marine mammal deaths were 

attributed to the DWH oil spill, but this number is likely only a small percent of the true 

mortality due to the historical cetacean carcass-recovery proportion being around 2% (Williams 

et al. 2011).  The combination of lethal and sublethal impacts observed in these studies likely 

negatively contributed to population levels for many marine mammals as eleven species of 

cetaceans were observed swimming through petroleum contaminated waters following DWH 

including five of the mammal species included in this study (i.e., Atlantic spotted dolphin, 

bottlenose dolphin, pantropical spotted dolphin, pygmy sperm whale, and sperm whale [Dias et 

al. 2017]).   
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The surface oil distributions from the four hypothetical oil well blowout scenarios were 

used to identify the maximum daily oil concentration (MDOCs) observed over the entire 

scenario time period for each 0.02°x0.02° latitude/longitude grid cell within the GoM study area 

(Figure 4.1).  Minimum oil concentration threshold (MOCT) polygons of grid cells were created 

from the MDOC values and represent contiguous areas exposed to at least the MOCT for at least 

one day.  These MOCT polygons, which represent critical toxicity thresholds throughout the 

range of observed oil concentrations, were then overlayed with the C-ESIs created in Chapter 3 

to estimate the exposure of various resources to different oil concentration levels, using GIS 

methods.    

The objectives of this chapter are therefore: (1) to demonstrate methodology to create 

MOCT polygons from modeled or actual surface oil expression, (2) compare the estimated 

impacts of the four oil well blowout scenarios using the C-ESIs and the MOCT polygons, (3) 

identify the most vulnerable resources to a given oil well blowout scenario using the C-ESIs and 

their components, and (4) provide open source scripting for the replication of this study.  This 

available script can be used to create an MOCT polygon from any oil distribution, for any oil 

concentration level, and any duration of exposure and then find the intersection of this MOCT 

polygon with any resource or any suite of resources combined in a C-ESI.    

4.2 Methods 

4.2.1 Creation of Surface Oil Maximum Daily Oil Concentration (MDOC) Files 

Four oil well blowouts were modeled using the open-source Connectivity Modeling 

System (CMS) adapted with an oil spill module (Paris et al. 2012; Paris et al. 2013; Berenshtein 

et al. 2020a).  Origin locations for the scenarios were chosen at similar depths to the DWH 

blowout (e.g., an ultra-deep blowout) and to represent locations where drilling is currently 
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occurring or has previously been proposed.  For each scenario, oil droplets were released for 87 

days (as per DWH) and tracked for a total of 90 days.  In each scenario, oil droplets were 

released at a depth of 1,222 m (slightly shallower than DWH at 1,500 m) in accordance with the 

conditions of the DWH oil well blowout (Berenshtein et al. 2020a).  Total oil concentrations 

(ppb) are obtained by normalizing the total oil mass to the mass of water by 0.02°x0.02° 

latitude/longitude grid resolution in the upper 20m, and the daily averages are further determined 

from the 2-hourly output products (Berenshtein et al. 2020a).  Note that the raster dimensions of 

the oil spill simulation are much smaller than the grids used to compile C-ESIs (Chapter 3).   

The four simulated oil well blowout scenarios used in this study (i.e., Fig. 4.1) are: 

(1) Deepwater Horizon control (DWH) – Located in the central GoM with a DWH origin point 

Origin:  28.736 N, 88.365 W   Start Date: April 20th, 2010  

 

(2) Deepwater Horizon Fall (DWH Fall) – Located in the central GoM with a DWH origin point 

and a September start date 

Origin:   28.736 N, 88.365 W   Start Date: September 1st, 2010 

 

(3) Western GoM – Located in the western GoM where drilling is currently active. 

Origin:  27.000 N, 85.168 W   Start Date: April 20th, 2010 

 

(4) West Florida Slope (WFS) – Located in the eastern GoM on the continental slope where 

drilling has been prohibited until 2032.  

Origin:  26.600 N, 93.190 W   Start Date: April 20th, 2010 

 

  

Daily oil concentrations (ppb) by 0.02°x0.02° latitude/longitude grid resolution in the upper 

20m were provided for each of the oil spill scenarios.  This study calculated the maximum daily 

oil concentration (MDOC; ppb) over the entire 90 days for each 0.02°x0.02° latitude/longitude 

grid cell.  The distributions of the MDOC were mapped in QGIS (QGIS Development Team, 

2020) for each oil well blowout scenario (Figure 4.1) 
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4.2.2 Creation of Minimum Oil Concentration Threshold (MOCT) Polygons 

To create a boundary enclosing all the 0.02°x0.02° latitude/longitude grid cell where the 

MDOC was equal or greater to a predefined threshold, I used the v.hull command within the 

GRASS (GRASS Development Team, 2020) module in QGIS as described in van Breugel 

(2103).  The v.hull command in GRASS builds a convex hull, or boundary, around a grouping of 

points and converts this boundary to a polygon (as .shp file).  I chose twelve levels of minimum 

oil concentration thresholds (MOCT) (ppb) [Xc = 1, 5, 10, 25, 50, 100, 150, 200, 400, 800, 1500, 

2000] as these concentrations cover the full range of the MDOC observed and created a polygon 

surrounding all the 0.02°x0.02° latitude/longitude points where the oil concentrations met or 

exceeded each Xc concentration.  This set of nested polygons was created for each of the twelve 

Xc values for each of the four oil well blowout scenarios for a total of 48 polygons (Figures 4.2A, 

B).   

4.2.3 Calculating Intersection of C-ESIs and MOCT Polygons 

The Zonal Statistics tool within QGIS’ raster analysis package calculates the intersection 

of a polygon (with at least one zone) with the mathematical expression (e.g., sum, max, average) 

of a value field in a raster.  I used seven of the rastered C-ESIs (Table 4.1), 33 of the resource 

component rasters (Table 4.2) from Chapter 3, and the 48 MOCT polygons described above and 

calculated the intersection between each C-ESI raster and MOCT polygon for each oil well 

blowout scenario.  The intersection between the MOCT polygon and the selected C-ESI 

(hereafter referred to as Cumulative Impact Proportion [CIP]) for each oil well blowout is then 

calculated as:  

𝐶𝐼𝑃𝑘𝑋𝑐 =  ∑ (𝐶𝑆𝑖𝑗 ∗ (𝐷𝑖𝑗))𝑛
𝑖=1  )         Eq. 4.1 



74 

where CIPkXc is the CIP of oil well blowout k at MOCT level Xc, CSij is the Cumulative 

Sensitivity of the C-ESI (or individual raster) at grid cell (i, j), and Dij is a dummy variable 

equaling 1 when grid cell (i, j) is within MOCT polygon kXc and 0 when it is not.  The CISkXc 

value then represents the proportion of the C-ESIs entire value which lies inside the MOCT 

polygon kXc with an example value of 0.75 representing that 75% of the cumulative value of the 

selected C-ESI lies within the MOCT polygon created from oil well blowout k at MOCT level 

Xc.  

 Likewise, the intersection between the MOCT polygons and each resource component 

(hereafter referred to as Resource Impact Proportion [RIP]) for each oil well blowout was 

calculated by the same method (Eq. 4.1). 

This study calculated an excess of 1500 intersections (48 MOCT shape files, 7 C-ESIs 

rasters, and 33 individual component rasters).  I created a Python script to run these intersections, 

load the results into a data frame, and graph the results.  This script is available as open source 

on https://github.com/echancellor/dissertation-scripts.  It requires the pandas and seaborn 

dependencies to be installed in the Python environment and was run in the Python Console in 

QGIS Desktop 3.8.0 with GRASS 7.6.1 (GRASS Development Team, 2020).   

4.2.4 Toxicity Threshold Conversion to MOCT 

 In order to define the modeled intersections between the resource distributions and the 

MOCT polygons in terms of well-established toxicity thresholds, PAH thresholds (µg/L ΣPAHs) 

were converted to total petroleum hydrocarbons (TPH) values (ppb, µg/L) using the PAH-THP 

linear relationship described in Berenshtein et al. (2020a).   Berenshtein et al. (2020a) identified 

two significant linear relationships, one for waters with depth ≤ 1 m (p < 0.001, R2 = 0.9, n = 34) 

and one for depths > 1 m (p < 0.001, R2 = 0.3, n = 641):    
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log10(TPH+1) =1.733+1.0074×log10(PAH+1), for surface waters (depth≤1m)  Eq. 4.2 

log10(TPH+1) =1.58357+0.85257×log10(PAH+1), for deeper waters (depth>1m)  Eq. 4.3 

 The toxicity amplification in Eq. 4.2 is due to the increased toxic effect of PAH 

combined with and UV radiation (Berenshtein et al. 2020a).  PAH thresholds and their 

corresponding MOCT value (calculated as the TPH) are included in Table 4.5 for surface and 

deeper waters. 

4.3 Results 

4.3.1 Proportion of C-ESI within each MOCT Polygon 

 The Cumulative Impact Proportion (CIP) was calculated between the 48 MOCT polygons 

and the seven C-ESIs (Table 4.3).  Summary statistics for the CIPs were calculated by oil well 

blowout scenario and C-ESI (Tables 4.4).  The Resource Impact Proportion (RIP) was calculated 

between the MOCT polygons and the 33 resource components.  The CIP or RIP between the C-

ESI/resource component layer and the MOCT polygon represents the proportion of the C-ESI or 

resource component within the MOCT polygon respectively.  Therefore, a CIP of 0.45 would 

represent that 45% of the resources included in that C-ESI were potentially exposed to oil at a 

concentration meeting or exceeding that of the MOCT polygon for at least one day.   

4.3.2 Ranking Oil Well Blowout Scenarios by Resource Vulnerability  

 The CIP scores for the seven C-ESIs were used to create a “swarm” plot to rank the oil 

well blowout scenarios by their potential impact to the resources represented in the entire suite of 

created C-ESIs (Figures 4.3 A, B; generated from data from Table 4.3).    The WGoM scenario 

had the lowest average CIP score with only one CIP score being larger than 0.34 and no CIP 

scores above 0.43.  This is likely due in part to the smaller size of the MOCT polygons (i.e., the 

smaller overall footprint of the spill) generated in the WGoM scenario.  The WGoM scenario 
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generated the smallest surface area of the MOCT polygons among the four scenarios, but had the 

largest high concentration MOCT polygons, indicating that the oil from the WGoM scenario may 

have been less dispersed, but with higher concentrations.  The Fall and DWH scenarios had CIP 

scores that were distributed between 0 and 0.8, but still skewed left with more than two thirds of 

CIP scores below 0.5.  Between the DWH and Fall scenarios, the Fall scenario indicated more 

vulnerability in the low MOCT ranges, with more CIP scores above 0.6 than the DWH scenario, 

but DWH indicated increased vulnerability at mid MOCT ranges, which are more likely to cause 

negative impacts to resources (e.g., toxicity to organisms, and fishery closures; Table 4.5; 

Berenshtein et al. 2020b).  The WFS scenario had the highest average CIP score with most CIP 

scores falling between 0.2 and 0.6 for low to med MOCT ranges.  These results indicate that the 

resources represented by this combined suite of C-ESI’s would be most vulnerable to the WFS 

scenario, followed by DWH, Fall, and WGoM.   

4.3.3 Resource Vulnerability to Oil Well Blowout Scenarios by C-ESI 

The RIP scores for each resource included in each C-ESI were used to create a set of six 

plots for each of the six C-ESIs and each oil well blowout scenario (Figures 4.4-9).  The 

weighted fish species C-ESIs were not included separately as the resource components for each 

of these C-ESIs are the same and would plot identically.  Plots of the RIP scores for each of the 

individual resource components show the potential vulnerability of each resource component to 

the specified oil well blowout scenario.  These graphs can help to identify resources that may be 

especially vulnerable within the C-ESI, and which contribute the most to the C-ESI CIP score 

listed in Table 4.3.  Selected PAH concentrations of 0.5, 1.0, and 10.0 µg/L ΣPAHs were 

converted to MOCT µg/L concentrations using Eq. 4.3.  PAH conversions are included in Table 

4.5 along with PAH toxicity endpoints identified for fish species as previously described above 
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(Section 4.2.4).  Vertical lines representing the estimated MOCT of these selected PAH 

concentrations were added to the plots of the RIP scores (Figures 4.4-8). 

The Fisheries C-ESI graph of components (Figure 3.11) showed that one grid cell was 

responsible for ~60% of the Pink Shrimp fishery catch.  This grid cell lies within the lowest 

MOCT polygon for two of the oil spill scenarios (DWH, and Fall) and within a moderate MOCT 

polygon for the WFS scenario (Figure 4.4).  Mammals were the most impacted group within the 

Species Richness C-ESI across all four scenarios (Figure 4.5).  For the Mammals C-ESI, in the 

DWH, Fall, and WFS scenarios, Pantropical spotted dolphin had the highest vulnerability scores 

while Atlantic spotted dolphin and Sperm whale had the lowest.  In the WGoM scenario, Sperm 

whale was the most vulnerable and Common bottlenose dolphin the least (Figure 4.6).  For the 

Turtles C-ESI, the order of most to least vulnerable was conserved in all four scenarios and 

though the entire concentration range, although the magnitude of the difference in the RIP scores 

varied (Figure 4.7).  Leatherback sea turtle was identified as the most potentially vulnerable 

turtle species and Loggerhead sea turtle was the least vulnerable turtle species in all four 

scenarios (Figure 4.7).  The Fish Species C-ESI had the most variation in the vulnerability 

rankings of the species between oil well blowout scenarios (Figure 4.8).  When the resource 

layers for deep-sea corals and larval fish were added to the species layers for the Fish, Mammals, 

Turtles, Larval Fish, Deep Sea Corals C-ESI, the rankings of these layers were well conserved 

with deep sea corals being more vulnerable than larval fish for all four scenarios, but larval fish 

also being more vulnerable than other species (Figure 4.9).  

4.4 Discussion 

The objective of this study was to demonstrate the potential use of C-ESIs created in 

Chapter 3 to identify potentially vulnerable offshore resources which may be impacted by 
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simulated oil well blowouts in various origin locations across the northern Gulf of Mexico (USA 

waters).  I used the seven C-ESIs created in Chapter 3 to analyze potential impacts of four 

modeled hypothetical oil well blowouts.  The methodology presented in this chapter includes: 1) 

the creation of maximum daily oil concentration (MOCT) polygons from modeled oil blowout 

scenarios, 2) the calculation of cumulative impact proportion (CIP) scores between C-ESIs and 

MOCT polygons and individual resource impact proportion (RIP) scores between resource 

components and MOCT polygons and 3) the subsequent use of these scores in ranking oil well 

blowout scenarios in terms of potential vulnerability of various biological resources, and 4) 

identifying individual resources (e.g., species and fisheries) that are potentially vulnerable to 

specific oil well blowout scenarios.  This methodology is designed to be replicable for virtually 

any oil well blowout scenario (hypothetical or actual) and can use existing and other candidate 

C-ESIs and associated resource components.   

This study was designed to provide methodology to answer three major questions.  1) Are 

there significant differences between oil well blowout scenarios in terms of total potential 

impacts to the resources represented by the suite of C-ESIs? 2) Given a specific oil spill scenario, 

which suite of resources represented by individual C-ESIs are potentially the most vulnerable? 

and 3) Given a specific oil spill scenario and C-ESI, which resource components are potentially 

the most vulnerable and contributing the most to the CIP score?  

This study illustrates that CIP scores from a suite of C-ESIs can give an overall estimate 

of vulnerability risk of an oil well blowout scenario (Figure 4.3A).  For example, the WFS 

scenario was identified as potentially having the most impact on the suite of included C-ESIs 

(Table 4.3, Figure 4.3A). 
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When looking at a specific scenario, as would be the case in the event of an actual oil 

well blowout, the ability to analyze potential impacts to resources at two additional levels of 

detail is especially useful.  Comparing individual CIPs within an oil well blowout scenario will 

give a medium level of detail regarding which resources may be vulnerable during that blowout 

scenario and an estimate of the magnitude of that potential vulnerability.  For example, the 

Fisheries C-ESI shows the most potential vulnerability to the DWH scenario over the other C-

ESIs (Figure 4.3B).  The CIP score of 0.24 for the Fisheries C-ESI in the DWH Scenario at the 

400 MOCT (ppb) level represents 24% of the total value of the resources represented in the 

Fisheries C-ESI was potentially exposed to at least 400 MOCT (ppb) for at least one day (Table 

4.3).  Individual RIPs within the Fisheries C-ESI for the DWH scenario at 400 MOCT (ppb) 

represent the fractions of the resources potentially exposed to at least 400 MOCT (ppb) for at 

least one day (i.e., ~50% of highly migratory species and ~20% of white shrimp; Figure 4.4).   

While this study provides methodology to determine what proportion of resources were 

potentially exposed to oil at different MOCTs, the potential impacts of those exposures will 

differ based on resource sensitivity.  Early life stages of fishes are especially vulnerable to oil 

exposure with cardiac deformities in embryonic Bluefin tuna at PAH concentrations as low as 

0.3 µg/L (Incardona et al. 2014).  While similar cardiac and morphological effects on larvae are 

observed to be consistent among fish species, the oil concentration level and duration of the 

exposure differs between species (Incardona et al. 2014).  Larvae of Bluefin tuna, Yellowfin 

tuna, and Greater amberjack all develop edema with exposure to oil, but the E50 for these species 

was observed at 0.8, 2.3, and 12.4 µg/L ΣPAHs respectively and the threshold for edema was 

0.3–0.6 µg/L, 0.5–1.3 µg/L, and 1.0–6.0 µg/L ΣPAHs respectively (Incardona et al. 2014; Table 

4.5).  These species would likely have differing degrees of impacts to their populations following 
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an oil well blowout, even if both species had equal densities of larvae present.  Adult fish species 

also exhibited sublethal impacts from oil exposure on swimming performance, causing 

reductions in critical and optimal swimming speeds (Stieglitz et al. 2016; Esbaugh et al. 2016; 

Table 4.5).  Reduced swimming performance could likely lead to losses in adult populations for 

some species as swimming performance can be crucial for predatory success, predation 

avoidance, and migration to spawning sites.  Impacts to marine mammals are less precisely 

quantified as designed experiments are prohibited, but observations on marine mammals after a 

spill serve as useful starting points for estimating exposure (Schwacke et al. 2014; Takeshita et 

al. 2021).  Eleven species of marine mammals were observed swimming through petroleum 

waters after the DWH event and 157 reported marine mammal deaths were attributed to the 

DWH event (U.S. Fish and Wildlife Service 2011; Dias et al. 2017).  These deaths are likely 

underreported due to historical carcass recovery percentage estimates (about 2%) (Williams et al. 

2011).  For other human-use resources, important MOCT concentrations might be at what 

concentration a resource is closed (e.g., a shrimp fishery).     

Due to the differing degrees of impacts to various resources the results generated from 

this methodology are most beneficial when combined with relevant toxicity thresholds.  For 

biological resources such as Bluefin tuna or Bottlenose dolphin, the MOCT polygon giving the 

best estimate of impacts may vary with species sensitivity to oil and even the season.  For 

example, if estimating impacts to Bluefin tuna in the event of an oil spill, an MOCT of 50 ppb 

might be the most useful for a spill occurring in April (like DWH) since Bluefin tuna primarily 

spawn during April to May and their larvae begin to experience cardiological defects at 0.3 μg 

L–1 ΣPAH (Incardona et al. 2014).  If an oil spill occurred in September, e.g., the Fall scenario, 

an MOCT of 250 ppb might be more insightful, since adult Bluefin tuna emigrate from the Gulf 
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following spawning and adult fish of most species display reduced swimming and aerobic 

capabilities at higher PAH concentrations (Stieglitz et al. 2016; Esbaugh et al. 2016; Table 4.5). 

Future Inclusion for Changes in Duration of Exposure 

PAH toxicity in fish species is dependent upon both concentration and duration of oil 

exposure.  For this study, the MDOC (ppb) was calculated as the maximum oil concentration 

identified for at least one day for each 0.02°x0.02° latitude/longitude grid block.  A different 

exposure duration could be easily included by changing the input data creating the MOCT 

polygons.  Oil distribution point data can be produced where the maximum oil concentration 

column is no longer representative of the one-day maximum, but, for example, the maximum 

concentration that is sustained for at least five days or “oil days” as per Murawski et al. (2014).   

Model Elaboration for the Depth Distributions of Oil Concentrations and Resources 

The distributions of oil concentrations used in this study represent the oil at the surface 

(0-20m) from the oil well blowout scenarios, but additional oil is found throughout the water 

column both in actual oil well blowouts (e.g., DWH and IXTOC-1) and accounted for in the 

simulated oil spills as modeled with the CMS.  Vulnerable offshore resources are also distributed 

throughout the water column (Sutton et al. 2020) and in the benthos (Schwing et al. 2021).  To 

identify additional potential vulnerabilities to resources found within the water column and the 

benthos, additional analysis could be completed using the methodology described in this study 

but with oil concentration files created for different depth ranges within the water column and 

spatial distributions of resources at corresponding depths.  

While the resource components included in this study are not limited to the surface (e.g., 

deep-sea coral, tilefish, sperm whale), this study estimated impacts to these resources based on 

the surface expression of oil distribution.  While some oil in surface waters may indeed descend 
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into deeper water and accumulate in the benthos via Marine Oil Snow Sedimentation and 

Flocculent Accumulation (MOSSFA, Schwing et al. 2021), the addition of resource distributions 

present at depth, and oil concentrations at depth may provide more accurate predictions of 

potential impact to those resources. 

Limitations of Polygons created using the Convex Hull Algorithm 

 This study used the convex hull command within the GRASS module to create MOCT 

polygons.  This method creates a polygon by drawing a boundary which meets a pre-defined set 

of requirements (i.e., MOCT level) and then encloses all points within the linear segments of that 

boundary.  This method will therefore enclose any “holes” or “ribbons” within the oil 

distribution where the grid cell does not meet the MOCT threshold but is enclosed or surrounded 

by grid cells that do meet the MOCT threshold (e.g., voids).  Therefore, this method will 

potentially result in a larger estimate of the areas exposed to a MOCT than the CMS model 

alone.  While this conservative method has the advantage of more accurately predicting exposure 

to species who may move through these grid cells and allowing a buffer for the CMS model 

estimates, alternate less-conservative methods could be employed to create MOCT polygons that 

more accurately fit the CMS surface area model.  
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4.5 Tables 

 

Table 4.1 List of C-ESIs and contributing resource raster IDs from Table 4.2. 

ESI ID Name of ESI 
Raster ID numbers included in 
calculation 

1 Mammals 18-23 

2 Turtles 14-17 

3 Fish Species – Unweighted 1-13 

4 Fish Species – Weighted (Weight = 4) 1-13 with weights 

5 Species Richness 24-26 

6 Commercial Fisheries 27-31 

7 
Mammals, Turtles, Fish, Larval Abundance, Deep-sea Coral 
habitat 1-23, 32, 33 
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Table 4.2 List of Raster files with resolution level and ID number. 

Type Raster Layer Resolution ID Number 

Fish Warmingii's lanternfish 0.5 degree 1 

Fish Atlantic sailfish 0.5 degree 2 

Fish Atlantic bluefin tuna 0.5 degree 3 

Fish Atlantic blue marlin 0.5 degree 4 

Fish Common dolphinfish 0.5 degree 5 

Fish Greater amberjack 0.5 degree 6 

Fish King mackerel 0.5 degree 7 

Fish Red drum 0.5 degree 8 

Fish Red grouper 0.5 degree 9 

Fish Red snapper 0.5 degree 10 

Fish Striped mullet 0.5 degree 11 

Fish Atlantic swordfish 0.5 degree 12 

Fish Great northern tilefish 0.5 degree 13 

Turtle Kemp's Ridley 0.5 degree 14 

Turtle Hawksbill 0.5 degree 15 

Turtle Loggerhead 0.5 degree 16 

Turtle Leatherback 0.5 degree 17 

Mammal Bottlenose dolphin 0.5 degree 18 

Mammal Pantropical spotted dolphin 0.5 degree 19 

Mammal Atlantic spotted dolphin 0.5 degree 20 

Mammal Sperm whale 0.5 degree 21 

Mammal Pygmy killer whale 0.5 degree 22 

Mammal False killer whale 0.5 degree 23 

Species Richness Bony Fishes 0.5 degree 24 

Species Richness Elasmobranchs 0.5 degree 25 

Species Richness Mammals 0.5 degree 26 

Economic Fishery Coastal Species 1 degree 27 

Economic Fishery Highly Migratory Species 1 degree 28 

Economic Fishery Brown shrimp 1 degree 29 

Economic Fishery White shrimp  1 degree 30 

Economic Fishery Pink shrimp 1 degree 31 

Larval Fish Larval fish presence 0.5 degree 32 

Benthic Deep-sea coral presence 0.5 degree 33 
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Table 4.3 Cumulative Impact Proportion (CIP) Scores by C-ESI (columns) within each oil well 

blowout scenario at MOCT level (oil ppb).  C-ESIs are color ranked by value within each row. 

 

 

 

 

 

 

Scenario oil ppb Fisheries FishWeighted FishUnweighted SpeciesRichness Mammals Turtles Species,Larval,Coral

WFS 1 0.8545 0.5982 0.5839 0.6291 0.6650 0.5380 0.6074

WFS 5 0.6057 0.4748 0.4631 0.4970 0.5320 0.4133 0.4770

WFS 10 0.5726 0.4505 0.4390 0.4678 0.4987 0.3935 0.4509

WFS 25 0.5507 0.4152 0.4036 0.4333 0.4670 0.3585 0.4169

WFS 50 0.4539 0.3749 0.3631 0.3844 0.4163 0.3240 0.3741

WFS 100 0.4488 0.3531 0.3382 0.3658 0.4023 0.2985 0.3525

WFS 150 0.4430 0.3421 0.3274 0.3541 0.3908 0.2888 0.3418

WFS 200 0.4176 0.3305 0.3165 0.3433 0.3848 0.2770 0.3322

WFS 400 0.0790 0.1147 0.1068 0.1352 0.1510 0.0808 0.1172

WFS 800 0.0255 0.0351 0.0318 0.0443 0.0470 0.0235 0.0356

WFS 1500 0.0022 0.0043 0.0034 0.0060 0.0073 0.0010 0.0043

WFS 2000 0.0017 0.0039 0.0035 0.0052 0.0054 0.0022 0.0039

DWH 1 0.8545 0.5635 0.5557 0.5766 0.6103 0.5218 0.5746

DWH 5 0.8242 0.5134 0.5063 0.5124 0.5400 0.4790 0.5185

DWH 10 0.7322 0.3850 0.3719 0.3897 0.4295 0.3428 0.3903

DWH 25 0.4647 0.3210 0.3092 0.3381 0.3927 0.2653 0.3295

DWH 50 0.4396 0.2851 0.2746 0.3072 0.3635 0.2303 0.2955

DWH 100 0.2537 0.2185 0.2060 0.2575 0.3220 0.1500 0.2316

DWH 150 0.2535 0.1913 0.1797 0.2293 0.2857 0.1280 0.2039

DWH 200 0.2343 0.1494 0.1411 0.1829 0.2263 0.1030 0.1618

DWH 400 0.2144 0.1168 0.1111 0.1437 0.1788 0.0805 0.1281

DWH 800 0.0783 0.0540 0.0513 0.0715 0.0895 0.0383 0.0619

DWH 1500 0.0514 0.0124 0.0123 0.0164 0.0195 0.0125 0.0150

DWH 2000 0.0053 0.0045 0.0050 0.0048 0.0030 0.0060 0.0049

WGOM 1 0.4218 0.2711 0.2623 0.3172 0.3095 0.2405 0.2807

WGOM 5 0.3385 0.2289 0.2179 0.2633 0.2628 0.2023 0.2362

WGOM 10 0.3385 0.2030 0.1930 0.2342 0.2408 0.1770 0.2125

WGOM 25 0.2717 0.1739 0.1638 0.2047 0.2225 0.1425 0.1849

WGOM 50 0.2463 0.1543 0.1449 0.1826 0.1952 0.1278 0.1635

WGOM 100 0.1334 0.0965 0.0881 0.1323 0.1445 0.0703 0.1070

WGOM 150 0.1334 0.0918 0.0839 0.1239 0.1355 0.0678 0.1015

WGOM 200 0.1150 0.0870 0.0793 0.1165 0.1285 0.0635 0.0955

WGOM 400 0.0935 0.0743 0.0671 0.0970 0.1123 0.0508 0.0819

WGOM 800 0.0362 0.0312 0.0273 0.0500 0.0642 0.0130 0.0385

WGOM 1500 0.0053 0.0029 0.0026 0.0065 0.0073 0.0010 0.0045

WGOM 2000 0.0049 0.0028 0.0025 0.0057 0.0068 0.0010 0.0042

Fall 1 0.8216 0.7273 0.7103 0.8109 0.7938 0.6645 0.7313

Fall 5 0.7711 0.6074 0.5787 0.6797 0.7218 0.5080 0.6155

Fall 10 0.5943 0.4873 0.4590 0.5651 0.6443 0.3725 0.5025

Fall 25 0.3418 0.2378 0.2285 0.2777 0.3352 0.1735 0.2552

Fall 50 0.3032 0.1970 0.1897 0.2274 0.2735 0.1445 0.2103

Fall 100 0.2986 0.1623 0.1568 0.1866 0.2188 0.1288 0.1743

Fall 150 0.2956 0.1543 0.1490 0.1779 0.2085 0.1240 0.1661

Fall 200 0.2007 0.1132 0.1108 0.1316 0.1490 0.0960 0.1228

Fall 400 0.1383 0.0542 0.0552 0.0646 0.0755 0.0508 0.0621

Fall 800 0.0455 0.0119 0.0131 0.0150 0.0137 0.0160 0.0143

Fall 1500 0.0006 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001

Fall 2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 4.4 Summary statistics of CIP by oil well blowout scenarios (A) and C-ESI (B) 
                    

A Oil Scenario mean min 25% 50% 75% max     
  DWH 0.26 0.00 0.09 0.23 0.39 0.85     
  Fall 0.25 0.00 0.05 0.17 0.35 0.82     
  WFS 0.30 0.00 0.07 0.35 0.45 0.85     
  WGoM 0.13 0.00 0.06 0.12 0.20 0.42     
                    
                    

B Cumulative ESI Name mean min 25% 50% 75% max     

  
Fish, Turtles, Mammals, Larval 
Fish, Coral 0.22 0.00 0.06 0.18 0.34 0.73     

  Fish Species - Unweighted 0.21 0.00 0.05 0.16 0.33 0.71     
  Fish Species - Weighted 0.22 0.00 0.05 0.17 0.34 0.73     
  Fisheries  0.31 0.00 0.08 0.26 0.45 0.85     
  Mammals 0.26 0.00 0.09 0.22 0.40 0.79     
  Species Richness 0.24 0.00 0.07 0.20 0.36 0.81     
  Turtles 0.18 0.00 0.05 0.13 0.29 0.66     
                    
                    
                    
 

Table 4.5 Published PAH μg L–1 ΣPAH toxicity thresholds converted to estimated MOCT ppb 

by use of three methods: two linear regression equations published in Berenshtein et al. 2020a., 

and a 1.5% estimator.  Rows highlighted in yellow and bolded are graphed as vertical lines on 

Figures 4.4-4.8. 

 
 

  

Toxicity threshold description PAH μg L–1 ΣPAH >1 m MDOC ppb Surface MDOC ppb PAH ~1.5% of TPH Source of threshold

begin threshold edema bluefin tuna larvae 0.3 46.94 69.43 20.00 Incardona et al. 2014

larval fish toxicity at surface 0.5 53.16 80.34 33.33 NRDAT

E50 Edema in Bluefin tuna larvae 0.8 62.27 96.74 53.33 Incardona et al. 2014

larval fish toxicity deeper 1.0 68.22 107.68 66.67 NRDAT

Mahi-mahi larvae - reduced swim -37% 1.2 74.08 118.62 80.00 Mager et al. 2014

E50 Edema in Yellowfin tuna larvae 2.3 105.08 178.95 153.33 Incardona et al. 2014

Adult red drum - reduced swim -12.6% 4.1 152.75 277.95 273.33 Johansen and Esbaugh. 2017

I50 bradycardia Yellowfin tuna larvae 6.1 202.86 388.24 406.67 Incardona et al. 2014

I50 bradycardia Bluefin tuna larvae 7.7 241.42 476.63 513.33 Incardona et al. 2014

Adult mahi-mahi - reduced reduced swim -14% 8.4 257.96 515.34 560.00 Stieglitz et al. 2016

96 h LC50 Mahi-mahi larvae (surface slick) 8.8 267.32 537.47 586.67 Esbaugh et al. 2016

Conversion for vertical line on graph at 10 PAH 10.0 295.09 603.90 666.67

Adult red drum - reduced aerobic scope -18.4% 12.1 342.65 720.26 806.67 Johansen and Esbaugh. 2017

E50 Edema in amberjack larve 12.4 349.35 736.89 826.67 Incardona et al. 2014

I50 bradycardia amberjack larvae 18.2 475.07 1058.95 1213.33 Incardona et al. 2014

Juvenile mahi-mahi - reduced swim -22% 30.0 715.24 1716.12 2000.00 Mager et al. 2014

96 h LC50 Mahi-mahi larvae (wellhead) 45.8 1016.59 2598.79 3053.33 Esbaugh et al. 2016
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4.6 Figures 

 
 

Figure 4.1 Surface distribution of the maximum daily oil concentration (ppb) for four oil well 

blowout scenarios visualized in QGIS.   

DWH = Deepwater Horizon; SEPT = DWH occurring in September; WFS = West Florida Slope, 

WGoM = Western Gulf of Mexico.  Origin of oil well blowout marked with white star 
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Figure 4.2A Convex hull minimum oil concentration threshold (MOCT) polygons created from 

the maximum daily oil concentration (MDOC) for DWH and FALL oil spill scenarios.   

DWH = Deepwater Horizon; FALL = DWH occurring in September  

DWH 

FALL 
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Figure 4.2B Convex hull minimum oil concentration threshold (MOCT) polygons created from 

the maximum daily oil concentration (MDOC) for WFS and WGoM spill scenarios.   

WFS = West Florida Slope, WGoM = Western Gulf of Mexico.   

 

WFS 

WGoM

MO 



90 

 

  
 

Figure 4.3A Comparison of CIP scores by oil well blowout scenario and MOCT level 

Swarm plot of proportion of C-ESI (i.e., CIP) by oil well blowout scenario and MOCT level.  

WFS has highest CIP scores within the mid MOCT levels, while WGoM has the least. 
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Figure 4.3B Comparison of CIP scores by oil well blowout scenario and C-ESI. 

Swarm plot of proportion of C-ESI (i.e., CIP) by oil well blowout scenario and C-ESI.  This 

graph is used to identify which C-ESI within each oil well blowout has the highest CIP values 

(e.g., The Fisheries C-ESI has the highest CIP values within the DWH scenario). 
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Figure 4.4 Fisheries C-ESI:  Comparison of oil spill scenarios 

Resource Impact Proportion (RIP) scores (y-axis) within each MOCT polygon (x-axis) by oil 

well blowout scenario.  RIP score equals the proportion of the resource component value within 

the MOCT polygon, and therefore potentially exposed to at least that MOCT value.   
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Figure 4.5 Species Richness C-ESI:  Comparison of oil spill scenarios 

Resource Impact Proportion (RIP) scores (y-axis) within each MOCT polygon (x-axis) by oil 

well blowout scenario.  RIP score equals the proportion of the resource component value within 

the MOCT polygon, and therefore potentially exposed to at least that MOCT value.   
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Figure 4.6 Mammals C-ESI:  Comparison of oil spill scenarios 

Resource Impact Proportion (RIP) scores (y-axis) within each MOCT polygon (x-axis) by oil 

well blowout scenario.  RIP score equals the proportion of the resource component value within 

the MOCT polygon, and therefore potentially exposed to at least that MOCT value.   
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Figure 4.7 Turtles C-ESI:  Comparison of oil spill scenarios 

Resource Impact Proportion (RIP) scores (y-axis) within each MOCT polygon (x-axis) by oil 

well blowout scenario.  RIP score equals the proportion of the resource component value within 

the MOCT polygon, and therefore potentially exposed to at least that MOCT value.   
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Figure 4.8 Fish Species C-ESI:  Comparison of oil spill scenarios 

Resource Impact Proportion (RIP) scores (y-axis) within each MOCT polygon (x-axis) by oil 

well blowout scenario.  RIP score equals the proportion of the resource component value within 

the MOCT polygon, and therefore potentially exposed to at least that MOCT value.   
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Figure 4.9 Fish, Mammals, Turtles, Larval Fish, Deep Sea Corals C-ESI:  Comparison of oil spill scenarios   

Resource Impact Proportion (RIP) scores (y-axis) within each MOCT polygon (x-axis) by oil well blowout scenario.  RIP score equals 

the proportion of the resource component value within the MOCT polygon, and therefore potentially exposed to at least that MOCT 

value.    
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Chapter 5: Connecting Networks of Vulnerability “Hot-Spots” of Resources to Oil Spills 

with C-ESIs and the MARXAN Spatial Planning Solver 

 

5.1 Introduction 

Chapters 3 and 4 of this study combined spatial distributions of offshore living resources 

into Cumulative Environmental Sensitivity Indices (C-ESIs) and demonstrated the potential use 

of these C-ESIs to identify “hot-spots” within the GoM which could be susceptible to specific oil 

well blowout scenarios.  This chapter demonstrates how C-ESIs developed in Chapter 3 might be 

used to identify regions for siting of oil production facilities by maximizing benefits to oil 

production while conserving vulnerable ecological resources.  This study develops explicit 

tradeoff functions between oil production and spatial exclusion owing to the resources included 

in the C-ESIs.  The utility of the tradeoff functions is demonstrated by using marine spatial 

planning (MSP) software, Marxan (Ball et al. 2009), to identify contiguous networks of 

ecological “hot-spots” with and without the inclusion of current oil production placement.  “Hot-

spot” networks identified without the inclusion of oil production represent the most ecologically 

important areas in a system in which no oil production occurs while “hot-spot” networks 

identified incorporating the tradeoff functions represent the most ecological areas to conserve 

given current oil production placement.  The efficacy of the current Congressional Moratorium 

on oil/gas/mineral leasing off the gulf coast of Florida is then evaluated by calculating the 

proportion of the C-ESIs and Marxan “hot-spot” networks within the spatial boundaries of the 
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current Congressional Moratorium (Figure 5.1; Geospatial Services Division, Department of 

Interior - Bureau of Ocean Energy Management - Office of Strategic Resources, 2021). 

 Marine areas often have multiple sectors with demands for spatial allocation.  These 

sectors may have mutually exclusive demands (cannot occur in the same place) or allow some 

degree of cooperation (can occur in the same place).  Ecosystem based MSP aims to maximize 

the combined benefit from the ecosystem to all sectors.  The MSP approach was mandated for 

marine resource management in the U.S. via executive order in 2005 (McLeod et al. 2005).  

Quantifying trade-offs between sectors requires an optimization approach often modeled as a 

Pareto horizon trade off analysis (White et al. 2012; Khiali-Miab et al. 2022).  An example 

framework was demonstrated in White et al. 2012 via use of the proposed Cape Wind project 

and a set of three competing industries in this Nantucket area (Executive Office of Energy and 

Environmental Affairs (EEA) 2009).  The sectors included in spatial planning for Cape Wind 

were the offshore wind development industry, and three competing sectors: the winter flounder 

fishery, the American lobster fishery, and the whale watching and conservation sector.  White et 

al. (2012) compared the total ecosystem benefit of several wind energy siting plans created by 

single-sector management strategies (siting based solely on the value to one sector) and multi-

sector management strategies (maximizing the benefit to all sectors).  Sector tradeoffs were 

evaluated by plotting benefit values from sector A against benefit values for sector B such that 

each (X, Y) point represents a different theoretical management strategy that allocates X% of the 

area to sector A and Y% of the area to sector B.  In their example in White et al. (2012), the wind 

energy sector and the flounder fishery sector were mutually exclusive, in that the industries could 

not occur in the same area, and both industries directly competed for the same grid cells.  A 

development of the wind energy sector to its full capacity within a specified area would 
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necessarily require the flounder industry to be zero within the area occupied by the wind turbines 

and related buffer zones.  This severe relationship is represented as the negatively sloped line by 

the tradeoff curve in Figure 5.2 (reproduced from White et al. 2012).  The relationship between 

the wind energy sector and the lobster fishery sector as well as between the wind energy sector 

and the whale watching sector were less severe as these industries did not compete directly for 

the same habitat and thus could co-occur to a limited extent (Figure 5.2; White et al. 2012).  

Comparing a wind-siting plan developed by a single-sector management strategy with a plan 

developed by a multi-sector management strategy demonstrated the potential added value to the 

entire four sector system by incorporating a multi-sector planning approach (White et al. 2012).   

 This study uses a procedure similar to that employed in White et al. (2012) to 

parameterize pairwise tradeoffs between current oil production locations in the northern (USA) 

sector of the GoM and three C-ESIs created in Chapter 3 (i.e., Fisheries C-ESI, Mammals only 

C-ESI, and the Mammals, Fish, Turtles, Larvae, Coral (MFTLC) combined C-ESI.   

The marine oil and gas industry in the GoM produces about 1.2 billion barrels of oil 

annually with oil production moving into deeper waters to meet demand (Murawski et al. 2020). 

Leases for oil drilling are sold by the U.S. Department of the Interior (DOI).  The Bureau of 

Ocean Energy Management (BOEM) within the DOI produces and utilizes environmental impact 

assessment as part of their decision-making process on which areas to make available to oil 

drilling.  Oil and natural gas leasing on new lands is highly contested.  In January 2021, 

President Biden signed an executive order blocking all new oil and gas drilling, but a subsequent 

judgment in March 2021 negated this pause on an existing sale for 80 million acres in the Gulf of 

Mexico proposed in 2017 (Nilsen 2021).  This ruling was reversed in January 2022 citing that 

the DOI’s analysis of the climate impacts of the leases was incomplete (Nilsen 2022).  The west 
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Florida shelf is also a major area of contention and has historically been included in potential 

plans for drilling (DOI 2018).  The west Florida shelf is currently under a Congressional 

moratorium until 2032 via executive order issued by President Trump (Schwartz 2020; Figure 

5.1). 

While current oil production is not mutually exclusive with the existence of the resources 

represented in the C-ESIs, these resources are particularly at risk in the event of an oil well 

blowout (as detailed in Chapter 4) and so for the tradeoff curves created in this study, each 

0.5°x0.5° latitude/longitude resolution grid cell will be allocated exclusively to either oil 

production or conservation of C-ESI resources.  The importance of each grid cell varies by 

sector, with some grid cells being particularly important to oil production or particularly 

sensitive in the C-ESI (such as in the pink shrimp fishery where 60% of the value of the fishery 

is located within one grid cell).  Like the wind energy/lobster fishery comparison (White et al. 

2012), the tradeoff plots are generated with: (1) the oil production siting based on a single-sector 

approach (developing the highest producing sites first) and a multi-sector approach (including 

the net benefit to the C-ESI in the ranking of sites to develop).  These tradeoff curves can 

identify sites that should potentially be reserved from oil production because they offer minimum 

benefit to the oil production sector and are identified by the C-ESI as being particularly sensitive.  

Importantly, not all the available locations within the spatial domain of the study are currently 

producing or have produced oil (more yet to be explored).  However, quantifying the likely oil 

reserves is in unexplored lease blocks is highly speculative and is perhaps the topic for future 

research.  Thus, in this example I used existing production data for the GoM. 

 “Hot-spot” areas in conservation are characterized as areas with high concentrations of 

endemic species and face threats of destruction (Myers. 1988, Myers. 1990).  Identification and 
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protection of these “hot-spot” areas allows conservationists to focus their efforts on protecting 

areas which will provide the greatest pay-off (Myers. 1990).  This study looks at identifying a 

minimum-set “hot-spot” network for two of the C-ESIs in both 1.) a pristine environment with 

no current oil production but where siting for oil production is being planned and 2.) the current 

oil production environment.  These “hot-spot” networks are created through use of the Marxan 

spatial planning solver (Ball et al. 2009).  Marxan is an optimization solver which can identify 

reasonably optimal network solutions to spatial network “knapsack” or “minimum-set” problems 

(Ball et al. 2009).   

Linear multiple-choice knapsack problems (Kozanidis 2009) have been used for bi-

objective decision-making problems looking to place multiple locations within an overall 

network.  Knapsack problems aim to find an optimized solution of a set of elements to be 

included to maximize benefit while subject to a series of constraints.  An example, and the origin 

of the name, is given by a hiker deciding what to pack in his knapsack to maximize comfort 

(benefit) while staying under a critical total weight for the bag (a constraint).  In knapsack 

problems, each element is given cost and benefit values, and components are added until a 

constraint is met (Salkin and de Kluyver 1975; Martello and Toth 1990).  Knapsack problems 

have been used by civil planning organizations to find optimized solutions to project selection 

when total budget and/or time are constrained (Brill 1979; Curtis and Molnar 1997; Ferreira 

1997; Guikema and Milke 2003).    

The “minimum-set problem” in conservation planning refers to finding a spatial planning 

solution with the least cost (e.g., area within no extraction zones, or cost to procure or manage a 

site) while meeting set conservation targets.  In these types of problems, the region is divided 

into sites, and each site is associated with a cost of inclusion.  The most basic formulation of this 
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problem includes minimizing the total cost of all sites included in the solution while meeting a 

minimum conservation goal for each species (Moilanen et al. 2009).  An example of a minimum-

set problem is the set-covering problem, which finds the minimum number of sites which cover 

at least one instance for all species (Possingham et al. 2000).  Set-covering problems run the risk 

of not being effective for conservation since the solution may include only one site per organism 

which may not be enough sites to protect the species to a perturbation (Moilanen et al. 2009).  

Instead, a marine protected area (MPA) network is more likely to be modeled as a minimum-set 

problem, where conservation targets are set to a proportion of habitat or resource.  These targets 

are then modeled as constraints (e.g., X% of coverage for each species, Y% of each habitat 

included) with the aim of minimizing the cost (i.e., the sum of the cost of the cells selected) of 

the MPA solution.  These decision-making methods have been applied to a wide variety of 

environmental management problems (Possingham et al. 2000; Kobayashi and Polovina 2005; 

Sanchirico and Wilen 2005).  Murawski et al. (2001) illustrated a similar optimization 

methodology for minimizing impacts on spatially disaggregated fishery catches while also 

maximizing the protection of species rarity (e.g., determining the boundaries of marine protected 

areas (MPAs) by selecting solutions sets of areas to be included in the MPAs).   

Initial solutions to minimum-set problems included heuristic algorithms which rank sites on 

largest number of organisms not in the solution (greedy) or the largest number of rare species 

(rarity), add the highest ranked site, and then recalculate the rank for the remaining sites.  Sites 

would be added until each species is represented (Possingham et al. 2000).  These heuristic 

algorithms are not able to find an optimal solution and they only work for set-covering problems, 

as once a species is included in the solution, its abundance in other locations is no longer 

considered.  The benefit to this approach is that a solution is quick to find.   
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As computing power has progressed, researchers have modeled minimum-set problems using 

linear integer programming (IP).  In integer programming, one or more variables are restricted to 

being integers.  Minimum-set problems in spatial planning are often modeled as binary IP 

problems because the decision to include or not include a site in the solution is a binary choice.  

The strength of linear IP to solve minimum set problems is the optimal solution can be found by 

using algorithms such as branch-and-bound (Possingham et al. 2000).  It also allows for the 

addition of many different constraints that can be defined quantitatively.  The weaknesses of a 

linear IP approach to solving a minimum set problem are the heavy computational requirements.  

These problems are difficult to solve with many sites (more than 20 or 30) (Possingham et al. 

2000; Moilanen et al. 2009).   

The two methods described above only solve for one solution and do not present 

alternatives which may be useful for decision makers to evaluate (e.g., their solutions may be 

inherently extreme, sparse, and ruthless, [Shepherd and Garrod 1981]).  An alternative method is 

called simulated annealing.  This minimization method works by calculating the “cost” of an 

initial random reserve solution, and then iteratively adding or subtracting sites from the solution 

set and recalculating the “cost” of this new solution.  If the new solution is better (lower cost or 

more coverage), this change is made to the solution and the process continues until no other 

improvements can be made.  The algorithm becomes more selective in terms of cost over 

coverage, which can help to prevent the solution at a local minimum where no single change can 

improve the solution, but a more optimal solution does exist elsewhere.  The weakness of this 

method is that it is not necessarily able to identify an optimal solution to the minimum set 

problem, but it does outperform the previously explained heuristic methods.  The benefits of this 

method are that it requires less computational power than linear IP (although more than the 
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heuristic methods mentioned) and can identify multiple solutions which can then be analyzed by 

the decision maker (Possingham et al. 2000).   

The Marxan spatial planning solver uses simulated annealing to provide multiple minimum-

set solutions and has been widely used to identify potential networks for marine protected areas 

with biodiversity management constraints.  Marine spatial planning of aquaculture zones was 

designed using Marxan for regions off Portugal to minimize impacts to existing wild capture 

fisheries (Henriques et al. 2017).  Marxan has also been used for rezoning of the Great Barrier 

Reef, designing a decision-making framework for assigning MPAs in the Caribbean, and is 

widely used in the US (Fernandes et al. 2005; Ball et al. 2009; Schill et al. 2015).  Terrestrial and 

marine conservation planning efforts often uses total number of sites or total area as a proxy for 

cost.  Including the actual cost of these plans is often beneficial and can create management 

plans that meet conservation goals at a fraction of the price compared to plans that only minimize 

total area included within exclusionary boundaries (Naidoo et al. 2006).  Examples of costs that 

are not always directly proportional to total area include acquisition costs (purchase prices of 

areas to be included), management costs (cost to manage or oversee the area), and opportunity 

cost (i.e., value of an industry that is currently present that would be lost if it was removed; 

Naidoo et al. 2006).  The Marxan spatial planning solver allows for the addition of these costs 

through use of a cost layer where each planning unit is assigned a cost and the total cost is 

minimized as opposed to the total area.  The Marxan spatial planning solver requires a grid of 

selectable planning units with a cost per planning unit to minimize, and a set of feature files 

overlapping these planning units which are selected to meet constraints.   

Given current oil production in the GoM, are there locations of resource concentration 

“hot-spots” that should be potentially reserved from development given their vulnerability to the 
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effects of oil spills?  Are there differences in “hot-spot” networks created solely based on 

features in a “pristine” environment vs “hot-spot” networks created with the current status quo of 

oil production?  What proportion of the resources represented in the C-ESIs are included within 

the existing Congressional moratorium?  How does the spatial distribution of the existing 

Congressional moratorium compare to the “hot-spot” network identified by the Marxan solver?  

This study investigates these questions by developing tradeoff analyses for three C-ESIs created 

in Chapter 3 to quantifiably identify 0.5°x0.5° latitude/longitude resolution grid cells that should 

potentially be considered reserved from oil production and using the Marxan optimization 

framework to simulate two “hot-spot” networks, one created in a pristine environment versus one 

in the existing oil production environment.   

5.2 Methods 

5.2.1 Distribution of Current Oil and Natural Gas Production 

Oil and natural gas production volume by well and lease number is public information 

made available by BOEM of the US Department of the Interior (DOI; BOEM 2018a, b) and was 

used in this study to model the spatial distribution of current oil and natural gas production.  A 

total of 870 leases reported positive production in 2018 of which 226 leases produced natural gas 

only, eight leases produced oil only, and 636 leases produced both natural gas and oil (Figures 

5.3, Figure 5.4).  The total production of oil in 2018 in the GoM was reported as 612 MMbbl 

(million barrels) and the total production of natural gas was reported as 984 MMCF (million 

cubic feet).  Maximum natural gas production by lease was 31 MMCF and maximum oil 

production by lease was 35 MMbbl.  The maximum depth of the leases was 2936 m.  The 

maximum depth for each lease was grouped into seven bins of 500 m width.  Within each bin, 
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the count of leases, the distribution of lease production by type, and the total production by type 

was modeled in Figure 5.4.   

Oil and natural gas production was also reported by well location in addition to by lease 

block.  A total of 929 individual wells produced oil and/or natural gas in 2018: 629 produced oil 

and 836 produced natural gas.  Oil and natural gas production by well number for the year 2018 

was plotted as points and used to create a heat map for these resources in the GoM (Figure 5.3).   

Oil and natural gas production by well was converted to oil and natural gas production by 

0.5°x0.5° latitude/longitude resolution grid cells by summing up the total production within each 

grid cell and finding the proportion of the total production that occurred in each grid block.  

5.2.2 Development of Single-Sector Tradeoff Curves 

 The single-sector management strategy for the oil and gas sector was designed as 

“retaining” each grid block in order from most to least productive.  In Figure 5.2 (reproduced 

from White et al. 2012), the y-intercept is plotted at (0,1) and represents a solution where the 

wind energy is developed to the full capacity and therefore the sector represented on the x-axis is 

completely undeveloped (e.g., lobster fishery).  The x-intercept represents the proportion of the 

second sector (e.g., lobster) when the first sector (i.e., wind energy) is completely undeveloped.  

To replicate this, the proportion of oil production per grid block was paired with the proportion 

of the C-ESI value within that grid block and graphed via a scatterplot (Figures 5.5 A-G).  The 

grid blocks were then sorted in ascending order of oil or natural gas production and the 

cumulative proportion of the total oil or natural gas production was calculated for the addition of 

each ordered grid block (y-axis) (Figure 5.6).  The proportion of the C-ESI that lies outside of 

the oil production area at point y was graphed on the x-axis such that every point (x,y) on this 

single-sector line represents a theoretical allocation where the proportion of the current oil 
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production lies on the y-axis (giving up lower oil producing cells first) and the x-axis represents 

the proportion of the C-ESI within the total oil production area which is NOT in the current 

theoretical allocation of oil.  The point (0,1) represents the current oil and natural gas production 

(all of the area available to oil and natural gas production) and the point (1,0) represents zero oil 

development and therefore total reserve of the resources represented in the C-ESI as being 

unexposed to oil production and corresponding risks.    These single-sector curves were created 

for oil production vs the Fisheries C-ESI, the Mammals C-ESI, and the Fish, Mammals, Turtles, 

Coral C-ESI (Figure 5.6).   

I also modeled a theoretical opposite tradeoff scenario with the Mammals C-ESI, where I 

prioritized Mammal conservation by selecting a series of grid blocks to identify a theoretical 

mammal “hot-spot”.  Grid cells were sorted by their C-ESI value and graphed on the y-axis with 

oil production proportion graphed on the x-axis (Figure 5.7).  The y-intercept of (0,1) then 

represents a solution with zero oil production and full mammal conservation from oil drilling 

exposure and the x-intercept of (1,0) then represents a solution with oil and natural gas 

production at the current production.  Every point on this line therefore represents a theoretical 

allocation where Y% of Mammals C-ESI is reserved from oil production and X% of the current 

oil production is allocated for production. 

5.2.3 Development of Multi-Sector Tradeoff Curves 

 For the multi-sector tradeoff curves, instead of sorting the grid blocks by the single 

component (e.g., oil production or mammal reservation from oil production, etc.), I created a 

third value which combined the proportion of the primary component and subtracted the 

proportion of the secondary component: 

Multi-Sector Valuejk = Pjk + (1 – Sjk) *W       Eq. 5.1 
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such that Pjk is the proportion of the primary component at grid block (j, k), Sjk is the proportion 

of the secondary component at grid block (j, k) and W is a fractional weight applied to Sjk such 

that the secondary component does not dominate the first.  The mutually beneficial multi-sector 

value described in Eq. 5.1 gives the desired result of prioritizing grid blocks with a high 

proportion of the primary component (e.g., oil production) and a low proportion of the secondary 

component (e.g., mammal C-ESI) over grid blocks with high proportions of the primary 

component and the secondary component (e.g., high oil production/high mammal sensitivity).  

The mutually beneficial multi-sector value also penalizes the selection of cells with high 

proportions of the secondary components and low proportions of the primary component (e.g., 

penalizes selecting low oil productivity/high mammal sensitivity sites).  The degree of the weight 

applied will determine the degree of this incentive/penalty.  This creation of a weighted mutual 

benefit equation is described in White et al. (2012) although the exact equation is not provided 

(e.g., Eq. 5.1).   

 The grid blocks were then sorted by this multi-sector value and then the same (x, y) 

points were graphed (Proportion of Y within the area vs, proportion of X outside of the area).  

The multi-sector value is not graphed and is only created for the modified sort.  The multi-sector 

tradeoff curves were graphed on the same plots as the single-sector curves to compare the two 

methods. 

 Multi-sector tradeoff curves were created for Oil Production vs Mammals C-ESI, 

Fisheries C-ESI, and the combined Fish, Mammals, Turtles, Larvae, Coral C-ESI.  An additional 

tradeoff curve was created for the theoretical example of siting mammal reserves around the oil 

production sites (Figure 5.6, Figure 5.7). 
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5.2.4 Use of Marxan to Identify Minimum-Set Conservation Networks 

Marxan “hot-spot” network solutions select a network of planning units from an overall 

set of possible planning units to optimize the minimum-set solution.  Running a Marxan scenario 

requires the Marxan.exe file and a set of well-defined input files.  Marxan.exe does not contain a 

user interface to either create these input files or visualize the solutions and so another 

visualization program must be used.  Both ArcMap (ArcMap 2016) and QGIS (QGIS 

Development Team, 2020) have published packages to help create input files and can be used to 

visualize solutions.  Zonae Cogito is an additional package that provides a user interface to 

visualize Marxan solutions and edit and calibrate input parameters (Segan et al. 2011).  The 

Zonae Cogito user interface allows the user to explore how changing of certain parameters in 

Marxan impacts the solution.  The input files for all scenarios in this study were created using the 

QMarxan Toolbox plug-in in QGIS.  Methods for creating these files are described in the Marxan 

training handbook (Serra-Sogas and Lieverknecht 2019) created by Pacific Marine Analysis and 

Research Association (PacMARA) and taught during an Introduction to Marxan course by 

PacMARA in Victoria, BC in August of 2019.  Exploration and calibration of solutions were 

performed in Zonae Cogito.  Final solutions with calibrated parameters were visualized in QGIS. 

5.2.5 Development of Marxan Scenarios 

 This study used Marxan spatial planning software to illustrate differences between 

networks of “hot-spots” assuming a pristine environment with no oil production (single-sector 

approach) and networks of “hot-spots” including current oil production (multi-sector approach).  

Two scenarios (Fisheries and Mammals) were chosen to simulate siting reserves based only on 

the resource layers included and ignoring the lost opportunity cost of oil production.  These two 

scenarios used a uniform cost layer in Marxan representing area.  The second two scenarios 

simulated multi-sector planning and included oil production in the cost file, such that the cost of 
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each grid cell was equal to the proportion of production plus 0.001 and all other grid cell costs 

were set to 0.001.  Oil production is treated as the cost to minimize to create the tradeoff between 

the C-ESI and the oil production as seen in Figure 5.6.  This cost file therefore ensured that the 

solution would still minimize area and boundary length, while adding additional cost to selecting 

cells that were particularly valuable to oil.  The list of scenarios created for this study with their 

included rasters from Chapter 3 are given in Table 5.1 and Table 5.2).    

5.2.6 Creation of Input Files for Scenarios 

 In this study, a 0.5°x0.5° latitude/longitude resolution planning unit grid was created in 

QGIS (named: pulayer.shp) and used for all scenarios (Figure 5.8).  Each scenario required a 

unique set of six additional input files.  The cost file (pu.dat) assigns a cost value to each 

planning unit in pulayer.shp.  This cost file will be minimized by the solver.  I created two cost 

files for the Marxan runs: (1) a uniform cost file where each planning unit had the same cost to 

represent the single-sector management strategy of selecting cells based solely on the features 

being protected (2) a cost file where each planning unit had a cost representative of the 

proportion of the 2018 oil production within that grid cell representing a multi-sector strategy of 

selecting cells based on the lost opportunity cost of oil production. 

Feature files represent the spatial distribution of a feature to conserve (i.e., habitat or 

species distribution). The puvsp.dat and puvsporder.dat files assign a proportion of each feature 

present to each planning unit.  Following methodology published by PacMARA (Serra-Sogas 

and Lieverknecht 2019), this was done by using the Raster Analysis tool in QGIS and finding the 

proportion of intersection between each planning unit and the presence/absence feature.  The 

feature value of each planning unit therefore ranges between 0 and 1, with zero representing the 

feature is not found in the planning unit and one representing the feature covers the entire 
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planning unit.  The species feature files used in this study are rastered probability of occurrence 

with values [0,0.5-1], and the economic fishery files are rastered index with values [0,1] and 

therefore must be calculated differently than in Serra-Sogas and Lieverknecht (2019).  This study 

therefore used the Zonal Statistics tool within QGIS which calculates the expression (e.g., sum, 

mean, max) of a raster within a .shp file (in this case, the pulayer.shp file).  This study used the 

maximum expression with Zonal Statistics, so each planning unit was assigned the 

corresponding probability or proportion value from the feature raster.  The maximum expression 

was used instead of the sum or average expression for cases in which the resolution of the feature 

raster does not match the resolution of the 0.5°x0.5° latitude/longitude grid resolution planning 

unit file (e.g.  Fisheries resources are aggregated at 1°x1° latitude/longitude grid resolution), 

using the average expression (or maximum) over the sum ensures that the resulting smaller 

planning units will maintain the same probability of occurrence as the larger raster from which 

they were calculated.  A boundary file (bound.dat) was auto generated with the QMarxan 

Toolbox based off the planning units.  A species file (spec.dat) was also created giving the 

desired target proportion of each feature to be maintained (i.e., 30%).  Scenarios in this study 

used 30% as a target proportion goal which serves as a common starting point for analysis for 

conservation goals in Marxan (Watts et al. 2009) and was used in exploratory scenarios 

described in Serra-Sogas and Lieverknecht (2019).  The 30% conservation goal is also addressed 

in both President Biden’s 2021“Conserving and Restoring America the Beautiful” report which 

details the Presidents goal of conserving 30% of America’s lands and waters by 2030 (Jenkins 

and Naftel 2022) and The United Nations Convention on Biological Diversity 2021 meeting with 

their proposed “30X30” target to conserve 30% of the global ocean by 2030 (Kubiak 2020).  The 

Species Penalty Factor (SPF) is included to increase the penalty for not meeting the conservation 
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targets and was created with a default value of 1 and calibrated in later steps (for scenarios where 

necessary). 

5.2.7 Running Marxan and Generating Output Files 

 The initial set of Marxan solutions are created by running a copy of the Marxan.exe 

application within a folder which contains of a set of correctly named folders and input files 

(generated above 5.2.6).  The solver runs in the command prompt and produces a set of output 

files.  The number of minimum-set solutions provided by Marxan can be set in the input files and 

was set to 10 for this study.  Therefore, each scenario run resulted in 10 minimum-set network 

solutions. 

The set of output files produced from a successful Marxan run (e.g., named scenario X) 

include (1) a summary file (named scenario_sum) which compares the cost, number of planning 

units, boundary length, and penalty of the 10 identified minimum-set network solutions, (2) a 

frequency of solutions file (named scenario_ssoln) listing each planning unit and the number of 

solutions it was included in (0 to 10), (3) a solution set file (named scenario_r00001-n) for each 

of the n=10 identified solutions which displays the planning unit ID and a value 1 if the planning 

unit is included in the solution and a 0 if it is not (used for visualizing the solution via GIS 

methods), and (4) a solution detail file (named scenario_mv00001-n) for each of the n=10 

identified solutions detailing the proportion of each feature that was selected in each solution and 

which features (if any) did not meet the target (i.e., 30%).   

5.2.8 Calibration of Boundary Length Modifier (BLM) and Species Penalty Factor (SPF) in 

Zonae Cogito 

 Zonae Cogito was used to visualize the minimum-set network solutions and frequency of 

solutions for each scenario.  Zonae Cogito also allows for calibration of parameters within the 
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user interface and will modify the input files.  Therefore, this study followed best practices 

described in Serra-Sogas and Lieverknecht (2019) and made a new copy of each scenario before 

exploring parameter sensitivity, as the original input files will be written over during calibration.  

This study used Zonae Cogito to analyze and calibrate two parameters: Boundary Length 

Modifier (BLM) and Species Penalty Factor (SPF). 

 The default BLM for each scenario was set to 0.  Increasing the BLM adds cost to the 

boundary portion of the Marxan optimization equation.  As BLM is increased, the total cost of 

the solution increases while the total boundary length of the solution decreases (Marxan chooses 

a more compact solution).  When calibrating BLM in Zonae Cogito, BLM is varied over a 

defined set of values and the total cost is calculated for the resulting solutions.  Graphs of cost vs. 

total boundary length were created in Zonae Cogito and a value was selected which adds a small 

percentage of cost and a large decrease in total boundary length per Marxan best practices 

(Serra-Sogas and Lieverknecht 2019).   

 The SPF for each scenario was set to the default value of 1.  Under the default SPF, some 

solutions will not meet conservation targets for each feature.  Increasing the SPF increases the 

cost of failing to meet the target requirement in the Marxan optimization equation.   During 

calibration, the SPF is varied over a defined set of values and the resulting missing values score 

is calculated for the resulting solution.  Graphs of SPF vs Missing Values were created in Zonae 

Cogito and a new SPF value was chosen as the lowest SPF value where the missing values 

approach zero per Marxan best practices (Serra-Sogas and Lieverknecht 2019). 

The BLM and SPF calibration was performed on the initial solution for all scenarios.  

Where a new BLM and/or SPF value was identified, the Marxan scenario was rerun with the new 
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parameter(s).  The best solution and frequency of solution from the rerun scenario are referred to 

as the final best solution and final frequency of solution. 

5.3 Results 

5.3.1 Scatterplots of C-ESI Proportions vs. Oil and Gas Production 

 The proportion of the total GoM C-ESI that lies within the current US oil and natural gas 

production area was ~40%, ~20%, and ~18% for the Fisheries C-ESI, Mammals C-ESI, and the 

Mammals, Fish, Turtles, Larvae, Coral (MFTLC) C-ESI respectively.  Scatterplots of the 

proportion of oil and gas production versus the proportion of the C-ESI within the current 

production area were created for the Mammals C-ESI, the Fisheries C-ESI, and the MFTLC C-

ESI (Figures 5.5A-F).  These plots serve as an initial classification of grid cells into four 

quadrants: (Q1) high productivity-high sensitivity, (Q2) high productivity-low sensitivity (Q3), 

low productivity-low sensitivity and (Q4) low productivity-high sensitivity.  Much of the 

potential benefit of implementing multi-sector marine spatial planning comes from prioritizing 

high productivity-low sensitivity (Q2) grid cells over high productivity-high sensitivity (Q1) grid 

cells and potentially avoiding low productivity-high sensitivity (Q4) grid cells completely.  The 

scatter plots do not have a high proportion of points in both Q1 and Q2.  In some cases, there are 

points in Q2 but not in Q1, indicating that most of the high oil productivity grid cells are of low 

sensitivity in the C-ESI (and therefore no way to optimize) or there are points in Q1 but not in 

Q2, representing that most of the high productivity cells are also high sensitivity and therefore 

important to the C-ESI, but there are no high productivity-low sensitivity cells (from Q2) to 

prioritize over them.   

 As a means of comparison, I also created a scatterplot of the Mammals C-ESI proportions 

from the entire GoM vs oil production (Figure 5.5G).  In this scatterplot, there are many points in 
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Q1 and Q2 which indicates that there are many high sensitivity points both within and outside of 

the high oil productivity areas indicating potential benefit from multi-sector MSP.   

 In scatterplots from Figures 5.5 A-F, points that lie in Q4 (low production-high 

sensitivity) would be the first grid cells to consider reserving from oil production as they do not 

add much value to the oil production sector and are of high value to the C-ESI.  In Figure 5.5G, 

points that lie in Q4 (low sensitivity-high productivity) would be the most valuable grid cells to 

include for the siting of oil production facilities.  The tradeoff between including or excluding 

each additional grid cell is made quantifiably explicit through the development of the tradeoff 

curves.  

5.3.2 Single-sector and Multi-sector Tradeoff Curves 

Single-sector and multi-sector tradeoff curves were developed for oil production versus 

the three C-ESIs.  As anticipated from the scatter plots there was not much space between the 

two lines which represents the additional improvement possible to the system of area closures by 

implementing a multi-sector MSP strategy.  Nevertheless, the tradeoff functions are still useful in 

identifying specific grid cells to be potentially removed from production.  At the top left side of 

the curve in Figure 5.5A (Oil production versus Mammals C-ESI), the oil production ranges 

from (0,1) to ~(0.4,0.98).  These two points represent potential reservation proportions such that 

all the grid cells included to the left of X=0.4 effectively decrease the oil production by ~2% 

while adding ~40% of the benefit to the Mammals C-ESI.  The grid cells making up this part of 

the tradeoff curve are therefore likely points with low production of oil and relatively high 

sensitivity levels to the C-ESI.  These grid cells might be worth reserving from oil production 

entirely since the lost benefit to the whole production industry is low and the benefit to the 

resources represented by the C-ESI is high.   
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For comparison, I also ran the single-sector and multi-sector tradeoff curves on the 

hypothetical mammal reserve scenario.   As expected, these plots look more similar to the plots 

from White et al. (2012) and indicates the multi-sector scenario may offer considerable benefit to 

both sectors accruing from an optimized system of closures where marine spatial planning might 

be useful (Figure 5.7).  When comparing the single-sector plot to the multi-sector plot, the value 

of the benefit to the whole system can be easily compared by comparing two points on the same 

horizontal line or vertical line.  For example, on the single-sector tradeoff function, there exists a 

point at ~(0.4,0.91) where 60% of the oil production is reserved and 91% of the mammals C-ESI 

is reserved.  On the multi-sector line, there also exists a point at ~(0.4,0.98) which adds benefit to 

mammals at no cost to oil production (no change in X, positive change in Y), a point at ~(0.93, 

0.91) which adds benefit to oil production at no additional cost to mammals (positive change in 

X, no change in Y), and a point at ~(0.92,0.93) which increases the benefit to both sectors 

(positive change in X and Y).  The y-axis on this plot ends at 0.8 since only 20% of the 

mammal’s C-ESI overlaps with the oil production sector.  Similar to the top left of the Oil 

Production with Mammals C-ESI graphed in Figure 5.5A and discussed above, the bottom right 

of this plot also represents the set of grid blocks with high importance to the mammals C-ESI 

and low importance to the oil production sector.   

5.3.3 Scenario 1: Fisheries Marxan Solution – uniform cost, single sector 

 A Fisheries Marxan scenario was run to identify a network of planning units which would 

minimize cost (area) and conserve 30% of each of the five fishing industry distributions created 

in Chapter 3 (i.e., brown shrimp, white shrimp, pink shrimp, coastal species, highly migratory 

species).  For the scenario, a uniform cost layer was used with the cost of each planning unit 

corresponding to estimated square meters within the block.  The same indexed files for each of 
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the fisheries used in the creation of the C-ESI were used as the feature files.  Based on best 

practices described by in Serra-Sogas and Lieverknecht (2019), these feature file proportions 

were multiplied by the number of the kilometers in each planning unit (3086 square kilometers in 

a 0.5°x0.5° latitude/longitude grid square).  In the reference models in Serra-Sogas and 

Lieverknecht (2019), the cost per planning unit was about half of the value of the area per 

planning unit, so this study used a uniform value of 1500 for each planning unit in the pu.dat 

input file.  The boundary length value in bound.dat was the length (in kms) of one of the 

planning units, or 55.56.  The same planning unit shapefile was used for all four scenarios 

(Figure 5.8). 

The Fisheries scenario was run to find 10 solutions with initial parameters BLM = 0 and 

SPF = 1.  All 10 solutions were very similar in cost with 34 planning units selected in each 

solution and total scores ranging from [55,963.94, 56,163.98] and the selected initial best 

solution was run 9 (Appendix C).  The initial best solution (set of chosen planning units) and 

frequency of solution (number of times each planning unit was part of one of the ten solutions) 

were visualized in QGIS (Figure 5.9).  In all 10 solutions, four out of five solutions met their 

target, with the highly migratory species feature target not being met in any of the 10 runs 

(Appendix C).   

The default BLM value was 0 and this was calibrated in Zonae Cogito by looking at a 

range of BLM values from 0 to 100 and, after identifying an inflection point at 22, from 0 to 22.  

BLM modifier of 7.33 was chosen as the inflection point as it added a 13% increase in cost and a 

23% reduction in Total Boundary Length (Appendix C).  

 The default SPF was set to 1 and the Marxan solution at this SPF value did not meet all 

species targets.  This value was calibrated in Zonae Cogito by graphing the Missing Values on 
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the y axis versus a range of SPF values [1,10] on the x axis and identifying the SPF value where 

the Missing Values approaches 0 (Appendix C).  The selected SPF value was identified as 9.44. 

Marxan was rerun with the same input files but with BLM = 7.33 and SPF = 9.44 and the 

results were visualized in QGIS (Figure 5.9).  The total scores of the new set of solutions ranged 

from [73104, 76620], the number of selected planning units in the solution ranged from 40 to 42, 

all targets were met, the solution was more compact, and the final best solution was run 9 

(Appendix C). 

5.3.4 Scenario 2: Mammals Marxan Solution 

 Similar methodology applied in Scenario 1: Fisheries in 5.3.3 was applied in Scenario 2: 

Mammals.  For this scenario, the same cost file was used as for Scenario 1: Fisheries, with 

uniform cost distribution of 1500 and the feature files being created from the six mammal 

species probability distributions as created in Chapter 3 (Table 5.1 and 5.2).   

All 10 solutions were again very similar in cost and number of planning units selected 

(124-126 planning units) and the selected initial best solution was run 9 (Appendix C).  The 

initial best solution (set of chosen planning units) and frequency of solution (number of times 

each planning unit was part of one of the ten solutions) were visualized in QGIS (Figure 5.10).  

In all 10 solutions all targets were met.   

The default BLM value was 0 and this was calibrated in Zonae Cogito by looking at a 

range of BLM values.  A BLM modifier of 4.44 was identified from the large reduction in Total 

Boundary Length (-63%) and the negligible increase in Total Cost (Appendix C).  

 The default SPF was set to 1 and all targets were met at this level of SPF, so this 

parameter was not calibrated.  Marxan.exe was rerun with the same input files and BLM = 4.44 
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and SPF = 1 and the results were visualized in QGIS (Figure 5.11).  The number of planning 

units in the final solution as well as the total cost remained relatively unchanged, but the 

connectivity score decreased from 16296 to 5992 (Appendix C).   

5.3.5 Scenario 3: Fisheries with Oil Production as Cost 

 The Scenario 3: Fisheries with Oil Production as Cost was modeled with the same input 

files as Scenario 1, except the cost file was edited to be the proportion of the oil production per 

grid cell plus 0.001 (to give each grid cell a non-zero cost).  This cost file was multiplied by 

1,500,000 to bring the cost file into similar range of the cost file for Scenario 1 (cost in Scenario 

1 was 1500 for all planning units and minimum cost in Scenario 3 was 1500).  This scenario used 

the same bound.dat, and pu.dat, and planning unit file as the previous two scenarios.  The best 

solution and frequency of solution was visualized in QGIS (Figure 5.12).   

5.3.6 Scenario 4: Mammal Species with Oil Production as Cost 

 The Scenario 4: Mammal Species with Oil Production as Cost was modeled with the 

same input files as Scenario 2, except the cost file was the same oil production cost file that was 

used in Scenario 3.  The best solution and frequency of solution was visualized in QGIS (Figure 

5.13).   

5.3.7 Evaluation of 2032 Congressional Moratorium 

 The spatial boundaries of the Congressional Moratorium were mapped from the shape 

file provided by the Department of the Interior (Geospatial Services Division, Department of 

Interior - Bureau of Ocean Energy Management - Office of Strategic Resources, 2021).  The 

intersection between the Congressional Moratorium area and each of the C-ESIs created in 

Chapter 3 was found using the Zonal Statistics tool within QGIS.  The Moratorium area covers 
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20.3% of the study area (132 of 650 0.5°x0.5° latitude/longitude resolution grid cells) and 

contains between 17.5% and 20.7% of the value of each C-ESI (Table 5.3, Figure 5.14).   

 In the Marxan Scenario 2, the mammal “hot-spot” networks identified without the 

inclusion of current oil production consisted of 124 0.5°x0.5° latitude/longitude resolution grid 

cells of which 49 (39.5%) were located within the boundaries of the Congressional Moratorium.  

In Marxan Scenario 4, where the tradeoff function was used to identify the mammal “hot-spot” 

network, the network consisted of 137 0.5°x0.5° latitude/longitude resolution grid cells of which 

73 (53.2%) were located within the moratorium area (Figures 5.15 A, B).  

5.4 Discussion 

 The C-ESIs created in Chapter 3 of this study and current or proposed marine oil 

production can be used to create explicit tradeoffs between the resources represented by the C-

ESIs and oil production on a grid cell level.  These tradeoffs combined with MSP software can 

then be used to create “hot-spot” networks which maximize the system-wide benefit to both 

sectors by maximizing oil production while protecting sensitive “hot-spot” areas.  Both tradeoff 

functions and “hot-spot” networks created in this study or in this manner could serve as 

additional tools in the decision making of areas to be made available for, or reserved from, 

offshore oil production. 

 This chapter developed tradeoff curves between C-ESIs and oil production to identify the 

quantifiably explicit tradeoff value for each grid cell where oil production was reported in 

BOEM Offshore Statistics by Water Depth for 2018 (BOEM 2018b).  The (x, y) points on the 

tradeoff curves represent theoretical allocations of grid cells to oil production or reservation from 

oil production such that Y% of the oil production is conserved and X% of the resource value in 

the C-ESI is conserved.  These curves then allow for quantifiably explicit comparisons between 
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theoretical allocations.  These tradeoff curves also identify grid cells with low oil production and 

high resource sensitivity which should potentially be reserved from oil production as their 

exclusion from oil production would have minimal negative impact on the oil production 

industry as a whole and are identified as ecologically important by the C-ESI.  These tradeoff 

functions and subsequently identified grid cells can act as an additional decision-making tool as 

part of an environmental assessment when looking at sites to be included or excluded from future 

or current oil exploration. 

 While the tradeoff functions described above identify the tradeoff between the two 

sectors of environmental sensitivity and oil production at the grid cell level, it is often 

impractical to assign individual grid cells to a specific sector.  MSP selects groups of grid cells 

using the same tradeoff values to develop a solution consisting of one or more contiguous areas.  

This study used Marxan MSP software to identify a minimum-set “hot-spot” network for the 

resources represented in the Fisheries C-ESI and the Mammals C-ESI both in a hypothetical 

pristine system with no oil drilling yet occurring and the current state of oil production as of 

2018.   These minimum-set “hot-spot” networks represent groupings of grid cells that are 

potentially most important to protect in a hypothetical environment where drilling is not 

currently occurring, but production sites are being planned, as well as the most important grid 

cells to protect in a system which has already allocated grid cells to oil production.  For both 

scenarios, the addition of the reported 2018 oil production as cost resulted in an increased 

number and frequency of selected grid cells in the WFS in the minimum-set “hot-spot” network.  

This result indicates that in a hypothetical reserve created to protect a significant proportion of 

offshore marine resources and sited around existing oil production, the grid cells on the WFS 

would be most valuable to that solution.   
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The two mammal “hot-spot” network solutions were compared to the area currently 

protected and withdrawn from oil production under the Congressional Moratorium.  The areas 

withdrawn under the moratorium are fairly aligned with the “hot-spot” networks identified in this 

study with 39.5% of the “hot-spot” network identified in Scenario 2 being located within the 

withdrawn areas.  In Scenario 4, where the mammal reserve is sited around current oil 

production, the overlap is even larger with 53.2% of the “hot-spot” network being located within 

the withdrawn areas.  The “hot-spot” networks identified in this study can potentially be utilized 

in the decision-making process supporting the continued closure of these withdrawn areas.  

Evaluation of the Best Solution for Marxan Scenarios 

 The final minimum-set network solutions created for the four Marxan scenarios differed 

from one another in size (number of planning units selected in the solution), location within the 

Gulf of Mexico, and the frequency of selection within the solutions due to the differences in the 

distributions of the included features and the differences in the cost files.   

For each of the four scenarios, the number of planning units included in each of the 10 

best solutions was relatively constant (+/- 2 planning units selected between solutions within 

each scenario), showing that while the individual planning units chosen to make up the solution 

varied between runs in the Scenarios, the Marxan process was consistent in minimizing the total 

number of planning units required to meet the criteria.   

 The location within the Gulf of Mexico of the network solution also varied between the 

scenarios.  For Scenario 1: Fisheries – Pristine System, the identified solution consisted of four 

to five small networks spanning across the northern GoM.  This is an expected result since the 

fisheries making up these features are diverse and do not extensively overlap.  This solution was 

able to therefore identify and include grid cells important for each fishery resource.  For Scenario 



124 

2: Mammals, the final minimum-set network solution consisted of two reserve areas with the 

larger area covering much of the continental slope and an additional smaller area off the coast of 

Mexico in the eastern GoM.  For Scenario 3: Fisheries – Oil Production as Cost, the network 

solution grid included more cells on the WFS and WGoM.  In Scenario 4: Mammals – Oil 

Production as Cost, the two reserves created from Scenario 1: Mammals -Pristine System were 

replaced by a single reserve covering much of the eastern Gulf of Mexico (much of which is 

currently in the Congressional moratorium region).   

Evaluation of the Frequency of Solutions for Marxan Scenarios 

Each Marxan scenario performed in this study consists of ten solutions from separate 

runs.  The two files visualized in QGIS and included in this study are a “best solution” and a 

“frequency of solutions”.  The “best solution” will be a network of planning units where each 

planning unit is either selected (value of 1) or unselected (a value of 0).  The best solution is 

picked from the 10 solutions based on the Total Score of the ten solutions.  The “frequency of 

solutions” represents the number of times (up to the total number of runs) the planning unit was 

chosen as part of the solution network.  While the “best solution” is useful in a situation where 

one is identifying and/or designing a reserve area where only one solution can be implemented, 

the “frequency of solutions” gives insight into how interchangeable and robust the solutions are.  

Planning units that are selected in all 10 solutions are vital to the solution, planning units that are 

selected in some runs are important, but have characteristics that are similar to other areas, and 

planning units that are not selected in any runs are of the lowest priority to the solution.   

Areas for Future Study 

 This study identifies grid cells with low oil production and high sensitivity as most 

desirable to remove from oil production, but it is likely that the probability of an oil well blowout 
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occurring in one of these grid cells is substantially lower than in grid cells where more oil is 

being produced and there are likely increased numbers of wells.   

 Additionally, the tradeoff curves and minimum-set “hot-spot” networks developed in this 

chapter treat the consequences of oil production as potentially occurring on a grid cell by cell 

basis.  Oil spills originating in a particular grid cell may have spatial footprints far beyond the 

source grid, as illustrated in the CMS oil spill simulations (Chapter 4; Figure 4.1).  Thus, if there 

are larger scale regions that encompass these trajectories it may provide a more realistic view of 

inherent tradeoffs. While the BLM was used in the Marxan minimum-set networks to group grid 

cells together, this BLM could be further revised to better represent expected oil spill coverage 

based on the origin point of the spill.  
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5.5 Tables 

Table 5.1 List of Raster files included in this chapter with resolution level and ID number.  

Reproduced as a subset from Chapter 4 Table 4.2 

Type Raster Layer Resolution ID Number 

Mammal Bottlenose dolphin 0.5 degree 18 

Mammal Pantropical spotted dolphin 0.5 degree 19 

Mammal Atlantic spotted dolphin 0.5 degree 20 

Mammal Sperm whale 0.5 degree 21 

Mammal Pygmy killer whale 0.5 degree 22 

Mammal False killer whale 0.5 degree 23 

Economic Fishery Coastal Species 1 degree 27 

Economic Fishery Highly Migratory Species 1 degree 28 

Economic Fishery Brown shrimp 1 degree 29 

Economic Fishery White shrimp 1 degree 30 

Economic Fishery Pink shrimp 1 degree 31 

 

Table 5.2 List of Marxan Scenarios and contributing raster IDs from Table 5.1 

Scenario ID Name of ESI 
Raster ID numbers 
included in calculation 

1 Commercial Fisheries with uniform cost 27-31 

2 Mammals with uniform cost 18-23 

3 Fisheries with oil production use as cost 27-31 

4 Mammals with oil production used as cost 18-23 

 

Table 5.3 Proportion of the value of each C-ESI within the Congressional Moratorium area. 
C-ESI Proportion(C-ESI) 

within Moratorium 
Turtles 0.197 

Mammals 0.178 

Fishes Unweighted 0.200 

Fishes Weight = 2 0.203 

Fishes Weight = 4 0.206 

Fishes Weight = 8 0.207 

Fishes Lanternfish = 10 0.175 

Fisheries  0.194 

All Layers 0.198 

Species Richness 0.177 
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5.6 Figures 

 

 

 

Figure 5.1 Boundaries for areas withdrawn from oil/gas/mineral leasing off the gulf coast of 

Florida under the Congressional Moratorium and extended by Presidential proclamation until 

June 30, 2032  
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Figure 5.2 Pairwise tradeoffs in sector values for Nantucket Cape Wind proposal. 

Figure is reproduced from White et al. 2012 to illustrate the pairwise tradeoff functions between 

the wind energy sector and three other sectors (i.e., flounder fishery, lobster fishery, whale 

watching and conservation).  
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Figure 5.3 Oil and natural gas production in the Gulf of Mexico 

Oil production in barrels (bbls) by well location (A) and heatmap (B) and natural gas production 

in cubic feet (CF) by well location (C) and heatmap (D) produced from publicly available 

production data from Bureau of Ocean Energy Management Offshore Statistics by Water Depth 

(BOEM. 2018b) https://www.data.boem.gov/.   
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Figure 5.4 Count and mean production of leases of oil and natural gas production in the Gulf of 

Mexico by depth. 

A total of 870 leases with positive production in 2018 were binned by depth in 500m increments.  

A total of 226 leases produced natural gas, 8 leases produced oil only with 636 leases producing 

both oil and natural gas (A).  The distribution of the producing leases by each time displayed as a 

box plot (B).  The total sum of production by type for each depth bin (C).   
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Figure 5.5A-D Scatterplots of C-ESI proportions by natural gas and oil production proportions. 

Scatterplots of the proportion of the natural gas production (A, C) or oil production (B, D) versus 

the proportion of the selected C-ESI within the oil and natural gas production area. 

Bisecting lines (orange) represent the approximate midpoints of the range of x and y. 

Q1 = High Production, High Sensitivity Q2 = High Production, Low Sensitivity 

Q3 = Low Production, Low Sensitivity Q4 = Low Production, High Sensitivity 
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Figure 5.5E-G Scatterplots of C-ESI proportions by oil or natural gas proportions. 

Scatterplots represent the proportion of the natural gas production (E) or oil production (F) 

versus the proportion of the MFTLC C-ESI within the oil and natural gas production area.  

Scatterplot (G) is the proportion of the Mammals C-ESI (all grid blocks included) versus the 

proportion of the oil production per grid block. 

Bisecting lines (orange) represent the approximate midpoints of the range of x and y. 

Q1 = High Production, High Sensitivity Q2 = High Production, Low Sensitivity 

Q3 = Low Production, Low Sensitivity Q4 = Low Production, Low Sensitivity 

E 

 

F 

G 

Q3 

Q2 Q1 

Q4 

Q3 

Q2 Q1 

Q4 Q3 

Q2 Q1 

Q4 



133 

  

 
 

Figure 5.6 Single- vs. Multi-Sector tradeoff curves for oil production sector vs ESI. 

Tradeoff curves between proportion of oil production (y-axis) and proportion of C-ESI (x-axis). 

A 

B 
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Figure 5.7 Single- vs. Multi-Sector tradeoff curves for a hypothetical mammal reservation.  

Tradeoff curves of a single-sector siting strategy (blue line) and a multi-sector siting strategy 

including lost opportunity to the Oil Production sector (orange line) 

 

 

 

 

 

 



135 

 
 

Figure 5.8 Planning unit shapefile. 

Planning unit shapefile (A) used for all Marxan scenarios created as an intersection of a 

0.5°x0.5° latitude/longitude resolution grid and the IHO ocean shape file (Flanders Marine 

Institute 2018) (B).  Planning unit shapefile created from methods described in Serra-Sogas and 

Lieverknecht (2019). 
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Figure 5.9 Best and Frequency for Scenario 1: Fisheries – Pristine System. 

Initial Best Solution for Marxan Scenario 1 before calibration of Boundary Length Modifier 

(BLM) and Species Penalty Factor (SPF) (A).  Initial Frequency of Solution for Marxan Scenario 

1 before calibration of BLM and SPF (B).  Results visualized in QGIS.  
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Figure 5.10 Initial Best and Frequency for Scenario 2: Mammals – Pristine System. 

Initial Best Solution for Marxan Scenario 1 before calibration, Boundary Length Modifier 

(BLM)=0 and Species Penalty Factor (SPF)=1 (top).  Initial Frequency of Solution for Marxan 

Scenario 1 before calibration, BLM=0 and SPF=1 (bottom).  Results visualized in QGIS.  

 

A 
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Figure 5.11 Final Best and Frequency Scenario 2: Mammals - Pristine System. 

Final Best Solution for Marxan Scenario 2 with Boundary Length Modifier (BLM) = 4.44 and 

Species Penalty Factor (SPF) = 1 (A).   

Final Frequency of Solution for Marxan Scenario 1 with BLM = 4.44 and SPF = 1 (B).      

Results visualized in QGIS.  

 

A 
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Figure 5.12 Final Best and Frequency Scenario 3: Fisheries – Oil Production as Cost. 

Final Best Solution for Marxan Scenario 3 using a weighted cost layer representing oil 

production (A).   

Final Frequency of Solution for Marxan Scenario 3 (B).       

Results visualized in QGIS.  
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Figure 5.13 Final Best Solution and Frequency Scenario 4: Mammals - Oil Production as Cost. 

Final Best Solution for Marxan Scenario 4 using a weighted cost layer representing oil 

production (A).   

Final Frequency of Solution for Marxan Scenario 4 (B).  Results visualized in QGIS. 

A 
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Figure 5.14 C-ESIs mapped with the Congressional Moratorium  

Proportion of the total value of the C-ESI within the current boundary for the Congressional 

Moratorium (Geospatial Services Division, Department of Interior - Bureau of Ocean Energy 

Management - Office of Strategic Resources, 2021). 

 

 

Fish Species C-ESI 

Pr(C-ESI) in Moratorium = 0.200 
All Layers C-ESI 

Pr(C-ESI) in Moratorium = 0.198 

Fisheries C-ESI 

Pr(C-ESI) in Moratorium = 0.194 

Species Richness C-ESI 

Pr(C-ESI) in Moratorium = 0.177 

Mammals C-ESI 

Pr(C-ESI) in Moratorium = 0.178 
Turtles C-ESI 

Pr(C-ESI) in Moratorium = 0.197 
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Figure 5.15 Mammal Scenario 4 solution mapped with the Congressional Moratorium 

Boundaries for the Congressional Moratorium on oil/gas/mineral leasing off the gulf coast of 

Florida extended by Presidential proclamation until June 30, 2032  

Boundary for the Congressional Moratorium (Geospatial Services Division, Department of 

Interior - Bureau of Ocean Energy Management - Office of Strategic Resources, 2021) mapped 

with mammal “hot-spot” networks identified in Scenarios 2 (A) and 4 (B).  

B 

A 
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Chapter 6: Conclusions 

 

 The main objectives of this study are to spatially quantify offshore marine resources and 

to explore the utility of these spatial distributions in identifying individual locations and/or 

networks of “hot-spot” locations which are particularly vulnerable to negative effects of oil 

exposure in the event of an oil spill.  The identified locations can be used in the decision-making 

process in prioritizing areas for oil spill response, for the initial siting process for oil production 

facilities (e.g., reserving highly sensitive areas), and for justification to open or maintain current 

areas withdrawn from oil production (e.g., areas withdrawn from oil/gas/mineral leasing off the 

gulf coast of Florida under Congressional Moratorium until 2032).  

 In Chapter 3, spatial distributions of marine resources from multiple sources with 

different resolutions, scales, and measurements were scaled and/or transformed to an index to 

represent gridded proportions of the occurrence of each resource.  These gridded resource maps 

were then concatenated to create multiple Cumulative Environmental Sensitivity Indices (C-

ESIs).  This chapter demonstrated the methodology for adding weights to certain resources (e.g., 

species or fisheries of special concern) within the C-ESI based on species-specific vulnerability 

provided by a separate vulnerability index (Polidoro et al. 2021; Woodyard et al. 2022).  This 

chapter also illustrated the use of dissimilarity measures and clustering to provide input on which 

pairs or groups of resources might be spatially correlated.   Hot-spot areas of combined 

sensitivity were identified by the C-ESIs particularly along the continental slope. 
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In Chapter 4, the maximum daily oil concentration (MDOC) was calculated for each cell 

in the 0.02°x0.02° latitude/longitude grid in the upper 20 m of the water column for four 

hypothetical oil well blowout scenarios in the Gulf of Mexico.  The four oil well blowout 

scenarios were modelled using the Connectivity Modeling System (CMS; Paris et al. 2013) with 

two start dates and three origin locations and with depth and duration of oil release comparable 

to the DWH event.  As PAH toxicity to biological resources and fishery closures are generally 

defined by exceeding a set threshold, GIS polygons were drawn around all grid cells with 

MDOC values equal to or exceeding a defined minimum oil concentration threshold (MOCT).  

These MOCT polygons represent contiguous areas which were likely exposed to at least the 

MOCT for at least one day and covered a range of oil concentrations.  Intersections were then 

calculated between each MOCT polygon and C-ESI to find the Cumulative Impact Value (CIP).  

Intersections were also calculated between each MOCT polygon and resource layer to find the 

Resource Impact Value (RIP).  These intersections represent the proportion of the C-ESI value or 

resource value exposed to at least the MOCT for at least one day.  The results from Chapter 4 

suggest that of the four modeled oil well blowouts included in this study, the blowout occurring 

on the West Florida Shelf would have had the largest impact on the suite of C-ESIs.  The 

modeled oil spill scenarios indicated that while a spill off the continental shelf near Texas would 

have the smallest overall footprint, it would affect fisheries more severely than two simulated 

spills near DWH (spring and autumn) and a spill in the eastern Gulf. 

Marine organisms experience lethal and sublethal impacts from oil exposure over a wide 

spectrum of oil concentrations.  Species-specific toxicity endpoints are determined through 

toxicity experiments and are generally defined by both the concentration and duration of the 

exposure.  For protected species, toxicity experiments generally cannot be performed and must 
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be estimated from observations after an oil spill.  While the MOCT polygons are based on a one-

day duration and cover a wide range of oil concentrations, polygons could be customized for 

target species by changing both the MOCT concentration and the duration of the exposure used 

to make the polygon.  If estimating impacts to Bluefin tuna in the event of an oil spill, an MOCT 

of 50 ppb might be the most useful for a spill occurring in April (like DWH) since Bluefin tuna 

primarily spawn during April to May and their larvae begin to experience cardiological defects at 

0.3 μg L–1 ΣPAH (Incardona et al. 2014).  If an oil spill occurred in September, like the Fall 

scenario, an MOCT of 250 ppb might be more useful, as Bluefin tuna larvae would likely not be 

present and adult fish species begin to display reduced swimming and aerobic capabilities only at 

these higher PAH concentrations (Stieglitz et al. 2016; Esbaugh et al. 2016; Table 4.5). 

Chapter 5 demonstrated how the C-ESIs developed in Chapter 3 might be used to identify 

siting opportunities that would maximize benefit to both the oil production sector and the 

conservation of resources through the development of quantifiably explicit tradeoff functions 

between oil production and the resources included in the C-ESIs.  Oil and natural gas production 

for 2018 by oil well and location was used to create a 0.5°x0.5° latitude/longitude resolution grid 

of the 2018 oil production (BOEM Offshore Statistics by Water Depth; BOEM. 2018b).  The oil 

production grid was converted to proportion of oil production and directly compared at the grid 

cell level to the resource layers and C-ESIs.  The value of each grid cell to each sector could then 

be explicitly compared.  A multi-sector marine spatial planning approach was used to rank grid 

cells based on their total benefit to the system consisting of two sectors: oil production and 

resource conservation.  The ranked grid cells are then mapped to create tradeoff curves.  The (x, 

y) points on the tradeoff curves then represent theoretical allocations of grid cells to oil 

production or reservation from oil production such that Y% of the oil production is conserved 
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and X% of the resource value in the C-ESI is conserved.  These tradeoff curves were able to 

identify grid cells with low oil production and high resource sensitivity that should potentially be 

reserved from oil production as their exclusion from oil production would have a minimal 

negative impact on the oil production sector as a whole and are identified as important to 

resources by the C-ESI.  Chapter 5 also demonstrated the use of the C-ESIs created in Chapter 3 

to build a minimum set “hot-spot” network using the marine spatial planning (MSP) software, 

Marxan.  The Marxan solver creates a minimum-set solution of grid cells by minimizing the cost 

(defined by a cost layer) while conserving a set percentage of each included resource (called 

features).  By using the resource layers created in Chapter 3 as the feature files and the oil 

production grid created in Chapter 5 as an optional cost layer, this study created two “hot-spot” 

networks for both the Fisheries C-ESI and the Mammals C-ESI representing a hypothetical 

pristine environment for which oil production is being considered (grid cell cost is uniform) and 

for the current production environment (grid cell cost is based on the 2018 oil production grid).  

The pristine network represents groupings of grid cells that are potentially most important to 

protect in a hypothetical environment where no drilling is currently occurring and siting facilities 

are being considered, while the current production network represents the most important grid 

cells to protect in a system which has already allocated some grid cells to oil production.  For 

both scenarios, the current production “hot-spot” network resulted in increased number and 

frequency of grid cells in the WFS that were selected as part of the minimum-set “hot-spot” 

network.  These WFS grid cells identified as part of the “hot-spot” network overlap with the 

areas currently protected and withdrawn from oil leasing/production under the 2021 

Congressional Moratorium with 39.5% of the pristine mammal “hot-spot” network and 53.2% of 

the current production mammal “hot-spot” network being located within the withdrawn areas.  
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This overlap indicates that these WFS grid cells are important to include in a hypothetical 

reserve created to conserve environmental sensitivity in a hypothetical pristine GoM where oil 

production siting is being considered.  The importance of these WFS grid cells increases when 

considering a hypothetical reserve created to conserve environmental sensitivity in a GoM where 

some areas are already set aside for oil production (i.e., the current environment).  Therefore, in 

the current oil production environment, the current areas withdrawn under the 2021 

Congressional moratorium serve as a reserve to conserve this environmental sensitivity.  The 

“hot-spot” networks identified in this study can potentially be utilized in the decision-making 

regarding the continued closure of these withdrawn areas.  

The integrated collection of methods presented here are designed to add to the crucial 

knowledge base for planning and prioritizing oil spill response, predicting impacts from an oil 

spill to individual resources and groups of resources, and to assist in the decision-making process 

for making new and existing sites available to oil production.  

 

  



148 

 

 

 

 

 

References 

 

Adler, E., Inbar, M., 2007. Shoreline sensitivity to oil spills, the Mediterranean coast of Israel: 

Assessment and analysis. Ocean & Coastal Management 50, 24–34. 

https://doi.org/10.1016/j.ocecoaman.2006.08.016 

Alves, T.M., Kokinou, E., Zodiatis, G., 2014. A three-step model to assess shoreline and 

offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined 

marine basins. Marine Pollution Bulletin 86, 443–457. 

https://doi.org/10.1016/j.marpolbul.2014.06.034 

Antonio, F.J., Mendes, R.S., Thomaz, S.M., 2011. Identifying and modeling patterns of tetrapod 

vertebrate mortality rates in the Gulf of Mexico oil spill. Aquatic Toxicology 105, 177–179. 

https://doi.org/10.1016/j.aquatox.2011.05.022  

ArcMap (version 10.5. 1), 2016. Software. Redlands, CA: Esri Inc, 2016. 

Ball, I.R., Possingham, H.P., Watts, M., 2009. Marxan and Relatives: Software for Spatial 

Conservation Prioritization. Oxford University Press. 

Bejarano, A.C., Barron, M.G., 2014. Development and practical application of petroleum and 

dispersant interspecies correlation models for aquatic species. Environmental science & 

technology 48, 4564–4572. 

Bejarano, A.C., Barron, M.G., 2016. Aqueous and tissue residue-based interspecies correlation 

estimation models provide conservative hazard estimates for aromatic compounds. 

Environmental Toxicology and Chemistry 35, 56–64. 

Bejarano, A.C., Mearns, A.J., 2015. Improving environmental assessments by integrating 

Species Sensitivity Distributions into environmental modeling: Examples with two 

hypothetical oil spills. Marine Pollution Bulletin 93, 172–182. 

Bejarano, A.C., Wheeler, J.R., 2020. Scientific basis for expanding the use of Interspecies 

Correlation Estimation models. Integrated Environmental Assessment and Management 16, 

528–530. 

Berenshtein, I., Perlin, N., Ainsworth, C.H., Ortega-Ortiz, J.G., Vaz, A.C., Paris, C.B., 2020a. 

Comparison of the Spatial Extent, Impacts to Shorelines, and Ecosystem and Four-

Dimensional Characteristics of Simulated Oil Spills, in: Murawski, S.A., Ainsworth, C.H., 

Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., Wetzel, D.L. (Eds.), Scenarios and 

Responses to Future Deep Oil Spills: Fighting the Next War. Springer International 

Publishing, Cham, pp. 340–354. https://doi.org/10.1007/978-3-030-12963-7_20 

Berenshtein, I., Perlin, N., Murawski, S.A., Joye, S.B., Paris, C.B., 2020b. Evaluating the 

Effectiveness of Fishery Closures for Deep Oil Spills Using a Four-Dimensional Model, in: 

Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., 

Wetzel, D.L. (Eds.), Scenarios and Responses to Future Deep Oil Spills: Fighting the Next 

War. Springer International Publishing, Cham, pp. 390–402. https://doi.org/10.1007/978-3-

030-12963-7_23 

https://doi.org/10.1016/j.ocecoaman.2006.08.016
https://doi.org/10.1016/j.marpolbul.2014.06.034
https://doi.org/10.1016/j.aquatox.2011.05.022
https://doi.org/10.1007/978-3-030-12963-7_20
https://doi.org/10.1007/978-3-030-12963-7_23
https://doi.org/10.1007/978-3-030-12963-7_23


149 

Bureau of Ocean Energy Management (BOEM). 2018a. 2019-2024 National Outer Continental 

Shelf Oil and Gas Leasing Draft Proposed Program.  Available online: 

https://www.boem.gov/NP-Draft-Proposed-Program-2019-2024  380 pp. 

Bureau of Ocean Energy Management (BOEM). 2018b. Bureau of Ocean Energy Management 

Offshore Statistics by Water Depth. Available online: 

https://www.data.bsee.gov/Leasing/OffshoreStatsbyWD/Default.aspx   

Bureau of Ocean Energy Management (BOEM). 2021. Gulf of Mexico Energy Security Act 

(GOMESA) Available online:  https://www.boem.gov/oil-gas-energy/energy-

economics/gulf-mexico-energy-security-act-gomesa (accessed 7.16.22). 

Brill, E.D., 1979. The Use of Optimization Models in Public-Sector Planning. Management 

Science 25, 413–422. https://doi.org/10.1287/mnsc.25.5.413  

Carls, M.G., Rice, S.D., Hose, J.E., 1999. Sensitivity of fish embryos to weathered crude oil: Part 

I. Low-level exposure during incubation causes malformations, genetic damage, and 

mortality in larval pacific herring (Clupea pallasi). Environmental Toxicology and 

Chemistry 18, 481–493. https://doi.org/10.1002/etc.5620180317 

Carmichael, R.H., Graham, W.M., Aven, A., Worthy, G., Howden, S., 2012. Were Multiple 

Stressors a ‘Perfect Storm’ for Northern Gulf of Mexico Bottlenose Dolphins (Tursiops 

truncatus) in 2011? PLOS ONE 7, e41155. https://doi.org/10.1371/journal.pone.0041155 

Carmona, S.L., Gherardi, D.F.M., Tessler, M.G., 2006. Environment Sensitivity Mapping and 

Vulnerability Modeling for Oil Spill Response along the São Paulo State Coastline. Journal 

of Coastal Research 1455–1458. 

Castanedo, S., Pombo, C., Fernandez, F., Medina, R., Puente, A., Juanes, J.A., 2008. Oil spill 

vulnerability atlas for the Cantabrian Coast (Bay of Biscay, Spain). International Oil Spill 

Conference Proceedings 2008, 137–144. https://doi.org/10.7901/2169-3358-2008-1-137 

Chancellor, E., 2015. Vulnerability of larval fish populations to oil well blowouts in the Northern 

Gulf of Mexico. (Unpublished master’s thesis). College of Marine Science, University of 

South Florida, Saint Petersburg, FL 

Chancellor, E., Murawski, S.A., Paris, C.B., Perruso, L., Perlin, N., 2020. Comparative 

environmental sensitivity of offshore Gulf of Mexico waters potentially impacted by ultra-

deep oil well blowouts, in: Scenarios and Responses to Future Deep Oil Spills. Springer, pp. 

443–466. 

Chen, Y., 2017. Fish resources of the Gulf of Mexico, in: Habitats and Biota of the Gulf of 

Mexico: Before the Deepwater Horizon Oil Spill. Springer, pp. 869–1038. 

Computer generated distribution maps for Caretta caretta (Loggerhead sea turtle), with modelled 

year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 10 Jun. 2020. 

Computer generated distribution maps for Ceratoscopelus warmingii (Warmingii’s lanternfish), 

with modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020 

Computer generated distribution maps for Coryphaena hippurus (Common dolphinfish), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 16 Jun. 2020 

Computer generated distribution maps for Dermochelys coriacea (Leatherback sea turtle), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 10 Jun. 2020. 

https://www.boem.gov/oil-gas-energy/energy-economics/gulf-mexico-energy-security-act-gomesa
https://www.boem.gov/oil-gas-energy/energy-economics/gulf-mexico-energy-security-act-gomesa
https://doi.org/10.1287/mnsc.25.5.413
https://doi.org/10.1002/etc.5620180317
https://doi.org/10.1371/journal.pone.0041155
https://doi.org/10.7901/2169-3358-2008-1-137


150 

Computer generated distribution maps for Epinephelus morio (Red grouper), with modelled year 

2050 native range map based on IPCC RCP8.5 emissions scenario. www.aquamaps.org, 

version 10/2019 preliminary version. Accessed 9 Jun. 2020 

Computer generated distribution maps for Eretmochelys imbricata (Hawksbill sea turtle), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 10 Jun. 2020. 

Computer generated distribution maps for Feresa attenuate (Pygmy killer whale), with modelled 

year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020. 

Computer generated distribution maps for Istiophorus albicans (Atlantic sailfish), with modelled 

year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020 

Computer generated distribution maps for Lepidochelys kempii (Kemp’s Ridley sea turtle), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 10 Jun. 2020. 

Computer generated distribution maps for Lopholatilus chamaeleonticeps (Great northern 

tilefish), with modelled year 2050 native range map based on IPCC RCP8.5 emissions 

scenario. www.aquamaps.org, version 10/2019 preliminary version. Accessed 10 Jun. 

2020. 

Computer generated distribution maps for Lutjanus campechanus (Red snapper), with modelled 

year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020 

Computer generated distribution maps for Makaira nigricans (Blue marlin), with modelled year 

2050 native range map based on IPCC RCP8.5 emissions scenario. www.aquamaps.org, 

version 10/2019 preliminary version. Accessed 9 Jun. 2020. 

Computer generated distribution maps for Mugil cephalus (Striped mullet), with modelled year 

2050 native range map based on IPCC RCP8.5 emissions scenario. www.aquamaps.org, 

version 10/2019 preliminary version. Accessed 9 Jun. 2020 

Computer generated distribution maps for Physeter macrocephalus (Sperm whale), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020. 

Computer generated distribution maps for Pseudora crassidens (False killer whale), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020. 

Computer generated distribution maps for Sciaenops ocellatus (Red drum), with modelled year 

2050 native range map based on IPCC RCP8.5 emissions scenario. www.aquamaps.org, 

version 10/2019 preliminary version. Accessed 10 Jun. 2020. 

Computer generated distribution maps for Scomberomorus cavalla (King mackerel), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 10 Jun. 2020. 

Computer generated distribution maps for Seriola dumerili (Greater amberjack), with modelled 

year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 16 Jun. 2020. 

Computer generated distribution maps for Stenella attenuate (Pantropical spotted dolphin), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020. 



151 

Computer generated distribution maps for Stenella frontalis (Atlantic spotted dolphin), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020. 

Computer generated distribution maps for Thunnus thynnus (Atlantic bluefin tuna), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020 

Computer generated distribution maps for Tursiops truncates (Bottlenose dolphin), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020. 

Computer generated distribution maps for Xiphias gladius (Atlantic swordfish), with modelled 

year 2050 native range map based on IPCC RCP8.5 emissions scenario. 

www.aquamaps.org, version 10/2019 preliminary version. Accessed 9 Jun. 2020 

Computer Generated Richness Map for Actinopterygii. www.aquamaps.org, version Oct. 2019. 

Web. Accessed 17 Jul. 2020. 

Map generated 2020-07-13. 

Computer Generated Richness Map for Elasmobranchii. www.aquamaps.org, version Oct. 2019. 

Web. Accessed 17 Jul. 2020. 

Map generated 2020-07-13 

Computer Generated Richness Map for Mammalia. www.aquamaps.org, version Oct. 2019. 

Web. Accessed 17 Jul. 2020. 

Map generated 2020-07-13. 

Curtis, F.A., Molnar, G.S., 1997. A municipal infrastructure management systems model. 

Canadian Journal of Civil Engineering 24, 1040. 

De Guise, S., Levin, M., Gebhard, E., Jasperse, L., Hart, L.B., Smith, C.R., Venn-Watson, S., 

Townsend, F., Wells, R., Balmer, B., 2017. Changes in immune functions in bottlenose 

dolphins in the northern Gulf of Mexico associated with the Deepwater Horizon oil spill. 

Endangered Species Research 33, 291–303. 

Dias, L.A., Litz, J., Garrison, L., Martinez, A., Barry, K., Speakman, T., 2017. Exposure of 

cetaceans to petroleum products following the Deepwater Horizon oil spill in the Gulf of 

Mexico. Endangered Species Research 33, 119–125.  

DOI, 2018. Secretary Zinke Announces Plan for Unleashing America’s Offshore Oil and Gas 

Potential [WWW Document]. URL https://www.doi.gov/pressreleases/secretary-zinke-

announces-plan-unleashing-americas-offshore-oil-and-gas-potential (accessed 10.1.18). 

Drexler, M., Ainsworth, C.H., 2013. Generalized Additive Models Used to Predict Species 

Abundance in the Gulf of Mexico: An Ecosystem Modeling Tool. PLOS ONE 8, e64458. 

https://doi.org/10.1371/journal.pone.0064458 

Edgar, G.J., Russ, G.R., Babcock, R.C., 2007. Marine protected areas. Marine ecology 27, 533–

555. 

Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and 

prediction across space and time. Annual review of ecology, evolution, and systematics 40, 

677–697. 

Energy Information Administration (EIA). 2018. Energy Information Administration Gulf of 

Mexico Fact Sheet. Available online: https://www.eia.gov/special/gulf_of_mexico/ 

(accessed on October 2018). 

https://www.doi.gov/pressreleases/secretary-zinke-announces-plan-unleashing-americas-offshore-oil-and-gas-potential
https://www.doi.gov/pressreleases/secretary-zinke-announces-plan-unleashing-americas-offshore-oil-and-gas-potential
https://doi.org/10.1371/journal.pone.0064458


152 

Energy Information Administration (EIA). 2021. Energy Information Administration Gulf of 

Mexico Fact Sheet. Available online: https://www.eia.gov/energyexplained/oil-and-

petroleum-products/offshore-oil-and-gas-in-depth.php (accessed on June 2022). 

Esbaugh, A.J., Mager, E.M., Stieglitz, J.D., Hoenig, R., Brown, T.L., French, B.L., Linbo, T.L., 

Lay, C., Forth, H., Scholz, N.L., 2016. The effects of weathering and chemical dispersion 

on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life 

stages. Science of the Total Environment 543, 644–651. 

Etnoyer, P.J., Wickes, L.N., Silva, M., Dubick, J.D., Balthis, L., Salgado, E., MacDonald, I.R., 

2016. Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf 

of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35, 77–90. 

Executive Office of Energy and Environmental Affairs (EEA). 2009. Draft Massachusetts Ocean 

Management Plan (Executive Office of Energy and Environmental Affairs, 

Commonwealth of Massachusetts, Boston) Vol 1, pp 1–140. 

Fattal, P., Maanan, M., Tillier, I., Rollo, N., Robin, M., Pottier, P., 2010. Coastal vulnerability to 

oil spill pollution: the case of Noirmoutier Island (France). Journal of Coastal Research 26, 

879–887. 

Feeny, D., Furlong, W., Torrance, G.W., Goldsmith, C.H., Zhu, Z., DePauw, S., Denton, M., 

Boyle, M., 2002. Multiattribute and single-attribute utility functions for the health utilities 

index mark 3 system. Medical care 40, 113–128. 

Felder, D.L., Camp, D.K., Tunnell Jr, J.W., 2009. An introduction to Gulf of Mexico 

biodiversity assessment. Gulf of Mexico origin, waters, and biota 1, 1–13. 

Fernandes, L., Day, J.O.N., Lewis, A., Slegers, S., Kerrigan, B., Breen, D.A.N., Cameron, D., 

Jago, B., Hall, J., Lowe, D., 2005. Establishing representative no-take areas in the Great 

Barrier Reef: large-scale implementation of theory on marine protected areas. Conservation 

biology 19, 1733–1744. 

Ferreira, L., 1997. Planning Australian freight rail operations: an overview. Transportation 

Research part A: Policy and practice 31, 335–348. 

Flanders Marine Institute (2018). IHO Sea Areas, version 3. Available online at 

https://www.marineregions.org/ https://doi.org/10.14284/323 

Frasier, K.E., 2020. Evaluating Impacts of Deep Oil Spills on Oceanic Marine Mammals, in: 

Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., 

Wetzel, D.L. (Eds.), Scenarios and Responses to Future Deep Oil Spills: Fighting the Next 

War. Springer International Publishing, Cham, pp. 419–441. https://doi.org/10.1007/978-3-

030-12963-7_25 

Friedland, K.D., Stock, C., Drinkwater, K.F., Link, J.S., Leaf, R.T., Shank, B.V., Rose, J.M., 

Pilskaln, C.H., Fogarty, M.J., 2012. Pathways between primary production and fisheries 

yields of large marine ecosystems. PloS one 7, e28945.  

Geospatial Services Division, Department of Interior - Bureau of Ocean Energy Management - 

Office of Strategic Resources, Office Chief, 2021. BOEM Outer Continental Shelf Areas 

Withdrawn from Leasing [WWW Document]. URL 

https://metadata.boem.gov/geospatial/BOEM_OCS_Areas_Withdrawn_from_leasing_2021.

xml 

GRASS Development Team, 2020. Geographic Resources Analysis Support System (GRASS) 

Software, Version 7.6.1 

Guikema, S.D., Milke, M.W., 2003. Sensitivity analysis for multi-attribute project selection 

problems. Civil Engineering and Environmental Systems 20, 143–162. 

https://doi.org/10.14284/323
https://doi.org/10.1007/978-3-030-12963-7_25
https://doi.org/10.1007/978-3-030-12963-7_25
https://metadata.boem.gov/geospatial/BOEM_OCS_Areas_Withdrawn_from_leasing_2021.xml
https://metadata.boem.gov/geospatial/BOEM_OCS_Areas_Withdrawn_from_leasing_2021.xml


153 

Henriques, N.S., Monteiro, P., Bentes, L., Oliveira, F., Afonso, C.M., Gonçalves, J.M., 2017. 

Marxan as a zoning tool for development and economic purposed areas-Aquaculture 

Management Areas (AMAs). Ocean & Coastal Management 141, 90–97. 

Hicken, C.E., Linbo, T.L., Baldwin, D.H., Willis, M.L., Myers, M.S., Holland, L., Larsen, M., 

Stekoll, M.S., Rice, S.D., Collier, T.K., 2011. Sublethal exposure to crude oil during 

embryonic development alters cardiac morphology and reduces aerobic capacity in adult 

fish. Proceedings of the National Academy of Sciences 108, 7086–7090. 

Huber, G.P., 1974. Multi-attribute utility models: A review of field and field-like studies. 

Management science 20, 1393–1402. 

Incardona, J.P., Collier, T.K., Scholz, N.L., 2004. Defects in cardiac function precede 

morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. 

Toxicology and applied pharmacology 196, 191–205. 

Incardona, J.P., Gardner, L.D., Linbo, T.L., Brown, T.L., Esbaugh, A.J., Mager, E.M., Stieglitz, 

J.D., French, B.L., Labenia, J.S., Laetz, C.A., 2014. Deepwater Horizon crude oil impacts 

the developing hearts of large predatory pelagic fish. Proceedings of the National Academy 

of Sciences 111, E1510–E1518. 

Incardona, J.P., Swarts, T.L., Edmunds, R.C., Linbo, T.L., Aquilina-Beck, A., Sloan, C.A., 

Gardner, L.D., Block, B.A., Scholz, N.L., 2013. Exxon Valdez to Deepwater Horizon: 

comparable toxicity of both crude oils to fish early life stages. Aquatic toxicology 142, 303–

316. 

Jenkins, M.E., Naftel, H., 2022. Public Interest Comment: Interagency Efforts to Develop the 

American Conservation and Stewardship Atlas. The Center for Growth and Opportunity. 

Jensen, J.R., Halls, J.N., Michel, J., 1998. A systems approach to Environmental Sensitivity 

Index (ESI) mapping for oil spill contingency planning and response. Photogrammetric 

Engineering and Remote Sensing 64, 1003–1014. 

Jensen, J.R., RAMSEY III, E.W., Holmes, J.M., Michel, J.E., Savitsky, B., Davis, B.A., 1990. 

Environmental sensitivity index (ESI) mapping for oil spills using remote sensing and 

geographic information system technology. International Journal of Geographical 

Information System 4, 181–201.  

Kankara, R.S., Subramanian, B.R., 2007. Oil Spill Sensitivity Analysis and Risk Assessment for 

Gulf of Kachchh, India, using Integrated Modeling. coas 23, 1251–1258. 

https://doi.org/10.2112/04-0362.1 

Kankara, R.S., Arockiaraj, S., Prabhu, K., 2016. Environmental sensitivity mapping and risk 

assessment for oil spill along the Chennai Coast in India. Marine Pollution Bulletin 106, 

95–103. https://doi.org/10.1016/j.marpolbul.2016.03.022 

Kaschner, K., Kesner-Reyes, K., Garilao, C., Rius-Barile, J., Rees, T., Froese, R., 2010. 

Predicted range maps for aquatic species. 

Kassomenos, P.A., 2004. Risk analysis for environmental hazards: the case of oil spills, in Crete. 

Global Nest: the International Journal 6, 39–51. 

Kazanis, E., Maclay, D., Shepard, N., 2015. Estimated oil and gas reserves Gulf of Mexico OCS 

region December 31, 2013. Bureau of Ocean Energy Management (BOEM) report. 

Khiali-Miab, A., Grêt-Regamey, A., Axhausen, K.W., van Strien, M.J., 2022. A network 

optimisation approach to identify trade-offs between socio-economic and ecological 

objectives for regional integrated planning. City and Environment Interactions 13, 100078. 

https://doi.org/10.1016/j.cacint.2021.100078 

https://doi.org/10.2112/04-0362.1
https://doi.org/10.1016/j.marpolbul.2016.03.022
https://doi.org/10.1016/j.cacint.2021.100078


154 

Kinlan, B.P., Winship, A.J., White, T.P., Christensen, J., 2016. Modeling at-sea occurrence and 

abundance of marine birds to support Atlantic marine renewable energy planning: Phase I 

report. 

Knudsen R, Druyor R (2009) USCG Sector St Petersburg - Digital Area Contingency Plan for 

Oil Spill Response. C. f. S. Analysis. St Petersburg, Florida, Florida Fish and Wildlife 

Conservation Commission - Fish and Wildlife Research Institute.  

Kobayashi, D.R., Polovina, J.J., 2005. Evaluation of time-area closures to reduce incidental sea 

turtle take in the Hawaii-based longline fishery: generalized additive model (GAM) 

development and retrospective examination. 

Kozanidis, G., 2009. Solving the linear multiple choice knapsack problem with two objectives: 

profit and equity. Computational Optimization and Applications 43, 261–294. 

Kubiak, L. 2020. Why the world must commit to protecting 30 percent of the planet by 2030 

(30X30). Natl. Resour. Def. Counc (NRDC). 

Lan, D., Liang, B., Bao, C., Ma, M., Xu, Y., Yu, C., 2015. Marine oil spill risk mapping for 

accidental pollution and its application in a coastal city. Marine pollution bulletin 96, 

220–225. 

Lane, S.M., Smith, C.R., Mitchell, J., Balmer, B.C., Barry, K.P., McDonald, T., Mori, C.S., 

Rosel, P.E., Rowles, T.K., Speakman, T.R., 2015. Reproductive outcome and survival of 

common bottlenose dolphins sampled in Barataria Bay, Louisiana, USA, following the 

Deepwater Horizon oil spill. Proceedings of the Royal Society B: Biological Sciences 

282, 20151944. 

Lee, M., Jung, J.-Y., 2015. Pollution risk assessment of oil spill accidents in Garorim Bay of 

Korea. Marine Pollution Bulletin 100, 297–303. 

Lyczkowski-Shultz, J., Hanisko, D.S., Sulak, K.J., Konieczna, M., Bond, P.J., 2013. 

Characterization of ichthyoplankton in the northeastern Gulf of Mexico from SEAMAP 

plankton surveys, 1982-1999. Gulf and Caribbean Research 25, 43–98. 

Mager, E.M., Esbaugh, A.J., Stieglitz, J.D., Hoenig, R., Bodinier, C., Incardona, J.P., Scholz, 

N.L., Benetti, D.D., Grosell, M., 2014. Acute embryonic or juvenile exposure to Deepwater 

Horizon crude oil impairs the swimming performance of mahi-mahi (Coryphaena hippurus). 

Environmental science & technology 48, 7053–7061. 

Maitieg, A., Lynch, K., Johnson, M., 2018. Coastal resources spatial planning and potential oil 

risk analysis: case study of Misratah’s coastal resources, Libya, in: 19th International 

Conference on Geography and Environmental Studies. Https://Www. Researchgate. 

Net/Publication/323445887_Coastal_Resources_Spatial_Planning_and_Potential_Oil_Risk

_Analysis_Case_Study_of_Misratah% 27s_Coastal_Resources_Libya. 

Marsili, L., Caruso, A., Fossi, M.C., Zanardelli, M., Politi, E., Focardi, S., 2001. Polycyclic 

aromatic hydrocarbons (PAHs) in subcutaneous biopsies of Mediterranean cetaceans. 

Chemosphere 44, 147–154. 

Martello, S., Toth, P., 1990. Knapsack problems: algorithms and computer implementations. 

John Wiley & Sons, Inc. 

Matisziw, T.C., Grubesic, T.H., 2013. Geographic perspectives on vulnerability analysis. 

GeoJournal 78, 205–207. https://doi.org/10.1007/s10708-011-9420-z 

Mccrea-Strub, A., Kleisner, K., Sumaila, U.R., Swartz, W., Watson, R., Zeller, D., Pauly, D., 

2011. Potential impact of the Deepwater Horizon oil spill on commercial fisheries in the 

Gulf of Mexico. Fisheries 36, 332–336.  

https://doi.org/10.1007/s10708-011-9420-z


155 

McLeod, K. L., J. Lubchenco, S. R. Palumbi, and A. A. Rosenberg. 2005. Scientific Consensus 

Statement on Marine Ecosystem-Based Management. Signed by 217 academic scientists 

and policy experts with relevant expertise and published by the Communication 

Partnership for Science and the Sea at http://compassonline.org/?q=EBM.  

Moilanen, A., Wilson, K., Possingham, H., 2009. Spatial conservation prioritization: quantitative 

methods and computational tools. Oxford University Press. 

Murawski, S.A., Fogarty, M., Rago, P., Brodziak, J., 2001. Quantitative methods for MPA 

design, with application to the NE USA. Marine protected areas: design and implementation 

for conservation and fisheries restoration. Woods Hole Oceanographic Institution 27–29. 

Murawski, S.A., Hogarth, W.T., Peebles, E.B., Barbeiri, L., 2014. Prevalence of external skin 

lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-

Deepwater Horizon. Transactions of the American Fisheries Society 143, 1084–1097. 

Murawski, S.A., Hollander, D.J., Gilbert, S., Gracia, A., 2020. Deepwater oil and gas production 

in the Gulf of Mexico and related global trends, in: Scenarios and Responses to Future Deep 

Oil Spills. Springer, pp. 16–32. 

Murawski, S.A., Kilborn, J.P., Bejarano, A.C., Chagaris, D., Donaldson, D., Hernandez Jr, F.J., 

MacDonald, T.C., Newton, C., Peebles, E., Robinson, K.L., 2021. A synthesis of Deepwater 

Horizon impacts on coastal and nearshore living marine resources. Frontiers in Marine 

Science 7, 1212. 

Murawski, S.A., Peebles, E.B., Gracia, A., Tunnell Jr, J.W., Armenteros, M., 2018. Comparative 

abundance, species composition, and demographics of continental shelf fish assemblages 

throughout the Gulf of Mexico. Marine and Coastal Fisheries 10, 325–346. 

Myers, N., 1988. Threatened biotas:" hot spots" in tropical forests. Environmentalist 8, 187–208. 

Myers, N., 1990. The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10, 

243–256. 

Naidoo, R., Balmford, A., Ferraro, P.J., Polasky, S., Ricketts, T.H., Rouget, M., 2006. 

Integrating economic costs into conservation planning. Trends in ecology & evolution 21, 

681–687. 

Neff, J.M., 1988. Composition and fate of petroleum and spill-treating agents in the marine 

environment. Synthesis of effects of oil on marine mammals. 

Nelson, J.R., Grubesic, T.H., 2018. The implications of oil exploration off the Gulf Coast of 

Florida. Journal of Marine Science and Engineering 6, 30. 

Nelson, J.R., Grubesic, T.H., Sim, L., Rose, K., Graham, J., 2015. Approach for assessing coastal 

vulnerability to oil spills for prevention and readiness using GIS and the Blowout and Spill 

Occurrence Model. Ocean & Coastal Management 112, 1–11. 

Niedoroda A, Davis S, Bowen M, Nestler E, Rowe J, Balouskus R, Schroeder M, Gallaway B, 

Fechhelm R (2014) A Method for the Evaluation of the Relative Environmental 

Sensitivity and Marine Productivity of the Outer Continental Shelf.  Prepared by URS 

Group, Inc., Normandeau Associates, Inc., RPS ASA, and LGL Ecological Research 

Associates, Inc. for the U.S. Department of the Interior, Bureau of Ocean Energy 

Management. Herndon, VA OCS Study BOEM 616. 80 pp. + appendices  

Nilsen, E., 2021. Biden administration reopens oil and gas leasing in the Gulf of Mexico - 

CNNPolitics [WWW Document]. URL https://www.cnn.com/2021/11/17/politics/biden-oil-

gas-leasing-gulf-of-mexico-climate/index.html (accessed 5.22.22a). 

https://www.cnn.com/2021/11/17/politics/biden-oil-gas-leasing-gulf-of-mexico-climate/index.html
https://www.cnn.com/2021/11/17/politics/biden-oil-gas-leasing-gulf-of-mexico-climate/index.html


156 

Nilsen, E., 2022. Federal judge cancel oil and gas leases in Gulf of Mexico citing climate crisis - 

CNNPolitics [WWW Document]. URL https://www.cnn.com/2022/01/27/politics/judge-

cancels-oil-gas-leases-gulf-of-mexico-climate/index.html (accessed 5.22.22b). 

NOAA, 2020. National Database for Deep-Sea Corals and Sponges (version 02005120).  

https://deepseacoraldata.noaa.gov/; NOAA Deep Sea Coral Research & Technology 

Program. 

NOAA, 2018. Office of Response and Restoration. Environmental Sensitivity Index (ESI) Maps  

https://response.restoration.noaa.gov/maps-and-spatial-data/environmental-sensitivity-

index-esi-maps.html. Accessed October 2018 

Olita, A., Cucco, A., Simeone, S., Ribotti, A., Fazioli, L., Sorgente, B., Sorgente, R., 2012. Oil 

spill hazard and risk assessment for the shorelines of a Mediterranean coastal archipelago. 

Ocean & Coastal Management 57, 44–52.  

Orr, R., Hammerle, K., Frye, M., 2018. Development of the 2019-2024 National Oil and Gas 

Leasing Program on the United States Outer Continental Shelf. Presented at the 2018 

AAPG International Conference and Exhibition. 

Paris, C.B., Helgers, J., Van Sebille, E., Srinivasan, A., 2013. Connectivity Modeling System: A 

probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in 

the ocean. Environmental Modelling & Software 42, 47–54. 

Paris, C.B., Hénaff, M.L., Aman, Z.M., Subramaniam, A., Helgers, J., Wang, D.-P., Kourafalou, 

V.H., Srinivasan, A., 2012. Evolution of the Macondo well blowout: simulating the effects 

of the circulation and synthetic dispersants on the subsea oil transport. Environmental 

science & technology 46, 13293–13302. 

Perlin, N., Paris, C.B., Berenshtein, I., Vaz, A.C., Faillettaz, R., Aman, Z.M., Schwing, P.T., 

Romero, I.C., Schlüter, M., Liese, A., 2020. Far-field modeling of a deep-sea blowout: 

sensitivity studies of initial conditions, biodegradation, sedimentation, and subsurface 

dispersant injection on surface slicks and oil plume concentrations, in: Deep Oil Spills. 

Springer, pp. 170–192. 

Peterson, J., 2002. Environmental sensitivity index guidelines: Version 3.0. 

Polidoro, B., Matson, C.W., Ottinger, M.A., Renegar, D.A., Romero, I.C., Schlenk, D., Wise Sr, 

J.P., González, J.B., Bruns, P., Carpenter, K., 2021. A multi-taxonomic framework for 

assessing relative petrochemical vulnerability of marine biodiversity in the Gulf of Mexico. 

Science of The Total Environment 763, 142986. 

Possingham, H., Ball, I., Andelman, S., 2000. Mathematical methods for identifying 

representative reserve networks, in: Quantitative Methods for Conservation Biology. 

Springer, pp. 291–306. 

Pulster, E.L., Gracia, A., Snyder, S.M., Romero, I.C., Carr, B., Toro-Farmer, G., Murawski, 

S.A., 2020. Polycyclic Aromatic Hydrocarbon Baselines in Gulf of Mexico Fishes, in: 

Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M., 

Wetzel, D.L. (Eds.), Scenarios and Responses to Future Deep Oil Spills: Fighting the Next 

War. Springer International Publishing, Cham, pp. 253–271. https://doi.org/10.1007/978-3-

030-12963-7_15  

QGIS Development Team, 2020. QGIS Geographic Information System. Open Source 

Geospatial Foundation. URL http://qgis.org  

QGIS Installers, 2020. URL https://www.qgis.org/en/site/forusers/alldownloads.html  

 

https://www.cnn.com/2022/01/27/politics/judge-cancels-oil-gas-leases-gulf-of-mexico-climate/index.html
https://www.cnn.com/2022/01/27/politics/judge-cancels-oil-gas-leases-gulf-of-mexico-climate/index.html
https://response.restoration.noaa.gov/maps-and-spatial-data/environmental-sensitivity-index-esi-maps.html.%20Accessed%20October%202018
https://response.restoration.noaa.gov/maps-and-spatial-data/environmental-sensitivity-index-esi-maps.html.%20Accessed%20October%202018
https://doi.org/10.1007/978-3-030-12963-7_15
https://doi.org/10.1007/978-3-030-12963-7_15
http://qgis.org/
https://www.qgis.org/en/site/forusers/alldownloads.html


157 

Rebai, S., Azaiez, M.N., Saidane, D., 2012. Sustainable Performance Evaluation of Banks using 

a Multi-attribute Utility Model: An Application to French Banks. Procedia Economics and 

Finance, 2nd Annual International Conference on Accounting and Finance (AF 2012) and 

Qualitative and Quantitative Economics Research (QQE 2012) 2, 363–372. 

https://doi.org/10.1016/S2212-5671(12)00098-6 

Rester, J.K., 2012. SEAMAP Environmental and Biological Atlas of the Gulf of Mexico, 2012. 

Gulf States Marine Fisheries Commission No. 206. 

Romero, A.F., Abessa, D.M.S., Fontes, R.F.C., Silva, G.H., 2013. Integrated assessment for 

establishing an oil environmental vulnerability map: Case study for the Santos Basin region, 

Brazil. Marine Pollution Bulletin 74, 156–164. 

https://doi.org/10.1016/j.marpolbul.2013.07.012 

Romero, I., Sutton, T., Carr, B., Quintana-Rizzo, E., Ross, S., Hollander, D., Torres, J., 2018. 

Decadal Assessment of Polycyclic Aromatic Hydrocarbons in Mesopelagic Fishes from the 

Gulf of Mexico Reveals Exposure to Oil-Derived Sources. Environmental Science & 

Technology 52, 10985–10996. https://doi.org/10.1021/acs.est.8b02243 

Ruberg, E.J., Elliott, J.E., Williams, T.D., 2021. Review of petroleum toxicity and identifying 

common endpoints for future research on diluted bitumen toxicity in marine mammals. 

Ecotoxicology 30, 537–551. https://doi.org/10.1007/s10646-021-02373-x 

Salkin, H.M., De Kluyver, C.A., 1975. The knapsack problem: A survey. Naval Research 

Logistics Quarterly 22, 127–144. https://doi.org/10.1002/nav.3800220110 

Sanchirico, J.N., Wilen, J.E., 2005. Optimal spatial management of renewable resources: 

matching policy scope to ecosystem scale. Journal of Environmental Economics and 

Management 50, 23–46. https://doi.org/10.1016/j.jeem.2004.11.001 

Santos, C., Carvalho, R., Andrade, F., 2013a. Quantitative assessment of the differential coastal 

vulnerability associated to oil spills. Journal of Coastal Conservation 17, 25–36. 

https://doi.org/10.1007/s11852-012-0215-2 

Santos, C., Michel, J., Neves, M., Janeiro, J., Andrade, F., Orbach, M., 2013b. Marine spatial 

planning and oil spill risk analysis: Finding common grounds. Marine pollution bulletin 74. 

https://doi.org/10.1016/j.marpolbul.2013.07.029 

Sarrazin, V., Kuhs, V., Kullmann, B., Kreutle, A., Pusch, C., Thiel, R., 2021. A sensitivity-based 

procedure to select representative fish species for the Marine Strategy Framework Directive 

indicator development, applied to the Greater North Sea. Ecological Indicators 131, 108161. 

https://doi.org/10.1016/j.ecolind.2021.108161 

Schill, S.R., Raber, G.T., Roberts, J.J., Treml, E.A., Brenner, J., Halpin, P.N., 2015. No Reef Is 

an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale 

Marine Protected Area Networks. PLOS ONE 10, e0144199. 

https://doi.org/10.1371/journal.pone.0144199 

Schwacke, L.H., Smith, C.R., Townsend, F.I., Wells, R.S., Hart, L.B., Balmer, B.C., Collier, 

T.K., De Guise, S., Fry, M.M., Guillette, L.J., Lamb, S.V., Lane, S.M., McFee, W.E., Place, 

N.J., Tumlin, M.C., Ylitalo, G.M., Zolman, E.S., Rowles, T.K., 2014. Health of common 

bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the 

deepwater horizon oil spill. Environ Sci Technol 48, 93–103. 

https://doi.org/10.1021/es403610f 

Schwartz, M.S., 2020. As Election Nears, Trump Expands Moratorium On Exploratory Drilling 

In Atlantic. NPR.  

https://doi.org/10.1016/S2212-5671(12)00098-6
https://doi.org/10.1016/j.marpolbul.2013.07.012
https://doi.org/10.1021/acs.est.8b02243
https://doi.org/10.1007/s10646-021-02373-x
https://doi.org/10.1002/nav.3800220110
https://doi.org/10.1016/j.jeem.2004.11.001
https://doi.org/10.1007/s11852-012-0215-2
https://doi.org/10.1016/j.marpolbul.2013.07.029
https://doi.org/10.1016/j.ecolind.2021.108161
https://doi.org/10.1371/journal.pone.0144199
https://doi.org/10.1021/es403610f


158 

Schwing, P.T., Machain-Castillo, M.L., Brooks, G.R., Larson, R.A., Fillingham, J.N., Sanchez-

Cabeza, J.A., Ruiz-Fernández, A.C., Hollander, D.J., 2021. Multi-proxy assessment of 

recent regional-scale events recorded in Southern Gulf of Mexico sediments. Marine 

Geology 434, 106434. https://doi.org/10.1016/j.margeo.2021.106434 

Schwing, P.T., Montagna, P.A., Joye, S.B., Paris, C.B., Cordes, E.E., McClain, C.R., Kilborn, 

J.P., Murawski, S.A., 2020. A Synthesis of Deep Benthic Faunal Impacts and Resilience 

Following the Deepwater Horizon Oil Spill. Frontiers in Marine Science 7. 

Segan, D.B., Game, E.T., Watts, M.E., Stewart, R.R., Possingham, H.P., 2011. An interoperable 

decision support tool for conservation planning. Environmental Modelling & Software 26, 

1434–1441. https://doi.org/10.1016/j.envsoft.2011.08.002 

Serra-Sogas, N., Lieverknecht, L. 2019. Introduction to Marxan. Training Handbook. Pacific 

Marine Analysis and Research Association. Victoria, Canada 

Shepherd, J.G., Garrod, D.J., 1981. Modelling the response of a fishing fleet to changing 

circumstances, using cautious non-linear optimization. ICES Journal of Marine Science 

39, 231–238. https://doi.org/10.1093/icesjms/39.3.231  

Sim, L.H., 2013. Blowout and spill occurrence model. 

Stieglitz, J.D., Mager, E.M., Hoenig, R.H., Benetti, D.D., Grosell, M., 2016. Impacts of 

Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim 

performance. Environ Toxicol Chem 35, 2613–2622. https://doi.org/10.1002/etc.3436 

Sutton, T., Cook, A., Moore, J., Frank, T., Judkins, H., Vecchione, M., Nizinski, M., 

Youngbluth, M., 2017. Inventory of Gulf oceanic fauna data including species, weight, 

and measurements. Meg Skansi cruises from Jan. 25 - Sept. 30, 2011 in the Northern 

Gulf of Mexico. Gulf of Mexico Research Initiative Information and Data Cooperative 

(GRIIDC). https://doi.org/10.7266/N7VX0DK2 

Sutton, T.T., Frank, T., Judkins, H., Romero, I.C., 2020. As Gulf Oil Extraction Goes Deeper, 

Who Is at Risk? Community Structure, Distribution, and Connectivity of the Deep-Pelagic 

Fauna, in: Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., 

Schlüter, M., Wetzel, D.L. (Eds.), Scenarios and Responses to Future Deep Oil Spills: 

Fighting the Next War. Springer International Publishing, Cham, pp. 403–418. 

https://doi.org/10.1007/978-3-030-12963-7_24 

Szlafsztein, C., Sterr, H., 2007. A GIS-based vulnerability assessment of coastal natural hazards, 

state of Pará, Brazil. J Coast Conserv 11, 53–66. https://doi.org/10.1007/s11852-007-0003-6 

Takeshita, R., Bursian, S.J., Colegrove, K.M., Collier, T.K., Deak, K., Dean, K.M., De Guise, S., 

DiPinto, L.M., Elferink, C.J., Esbaugh, A.J., Griffitt, R.J., Grosell, M., Harr, K.E., 

Incardona, J.P., Kwok, R.K., Lipton, J., Mitchelmore, C.L., Morris, J.M., Peters, E.S., 

Roberts, A.P., Rowles, T.K., Rusiecki, J.A., Schwacke, L.H., Smith, C.R., Wetzel, D.L., 

Ziccardi, M.H., Hall, A.J., 2021. A review of the toxicology of oil in vertebrates: what we 

have learned following the Deepwater Horizon oil spill. Journal of Toxicology and 

Environmental Health, Part B 24, 355–394. 

https://doi.org/10.1080/10937404.2021.1975182 

Tran, T., Yazdanparast, A., Suess, E.A., 2014. Effect of Oil Spill on Birds: A Graphical Assay of 

the Deepwater Horizon Oil Spill’s Impact on Birds. Comput Stat 29, 133–140. 

https://doi.org/10.1007/s00180-013-0472-z  

U.S. Fish and Wildlife Service (2011) Deepwater Horizon Response Consolidated Fish and 

Wildlife Collection Report. USFWS and NOAA. 

https://doi.org/10.1016/j.margeo.2021.106434
https://doi.org/10.1016/j.envsoft.2011.08.002
https://doi.org/10.1093/icesjms/39.3.231
https://doi.org/10.1002/etc.3436
https://doi.org/10.7266/N7VX0DK2
https://doi.org/10.1007/978-3-030-12963-7_24
https://doi.org/10.1007/s11852-007-0003-6
https://doi.org/10.1080/10937404.2021.1975182
https://doi.org/10.1007/s00180-013-0472-z


159 

Valverde, R.A., Holzwart, K.R., 2017. Sea Turtles of the Gulf of Mexico, in: Ward, C.H. (Ed.), 

Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill: Volume 

2: Fish Resources,  Fisheries,  Sea Turtles,  Avian Resources,  Marine Mammals, Diseases 

and Mortalities. Springer, New York, NY, pp. 1189–1351. https://doi.org/10.1007/978-1-

4939-3456-0_3 

van Breugel, P., 2013. Point coordinates to polygon – part I . Ecostudies - Using Open Source in 

Ecology and Biodiversity Research [WWW Document]. ECODIV.EARTH. URL 

https://pvanb.wordpress.com/2013/01/17/point-to-polygon-part-i/ 

Venn-Watson, S., Colegrove, K.M., Litz, J., Kinsel, M., Terio, K., Saliki, J., Fire, S., 

Carmichael, R., Chevis, C., Hatchett, W., Pitchford, J., Tumlin, M., Field, C., Smith, S., 

Ewing, R., Fauquier, D., Lovewell, G., Whitehead, H., Rotstein, D., McFee, W., 

Fougeres, E., Rowles, T., 2015. Adrenal Gland and Lung Lesions in Gulf of Mexico 

Common Bottlenose Dolphins (Tursiops truncatus) Found Dead following the Deepwater 

Horizon Oil Spill. PLOS ONE 10, e0126538. 

https://doi.org/10.1371/journal.pone.0126538  

Waskom, M.L., 2021. seaborn: statistical data visualization. Journal of Open Source Software 6, 

3021. https://doi.org/10.21105/joss.03021 

Watts, M.E., Ball, I.R., Stewart, R.S., Klein, C.J., Wilson, K., Steinback, C., Lourival, R., 

Kircher, L., Possingham, H.P., 2009. Marxan with Zones: Software for optimal 

conservation based land- and sea-use zoning. Environmental Modelling & Software, 

Special issue on simulation and modelling in the Asia-Pacific region 24, 1513–1521. 

https://doi.org/10.1016/j.envsoft.2009.06.005 

Westerholm, D. A., Rauch III, S. D., 2016. Deepwater Horizon oil spill: Final programmatic 

damage assessment and restoration plan and final programmatic environmental impact 

statement. 

White, C., Halpern, B., Kappel, C., 2012. Ecosystem service tradeoff analysis reveals the value 

of marine spatial planning for multiple ocean uses. Proceedings of the National Academy of 

Sciences of the United States of America 109, 4696–701. 

https://doi.org/10.1073/pnas.1114215109 

White, N.D., Godard-Codding, C., Webb, S.J., Bossart, G.D., Fair, P.A., 2017. Immunotoxic 

effects of in vitro exposure of dolphin lymphocytes to Louisiana sweet crude oil and 

CorexitTM. Journal of Applied Toxicology 37, 676–682. https://doi.org/10.1002/jat.3414 

Williams, R., Gero, S., Bejder, L., Calambokidis, J., Kraus, S.D., Lusseau, D., Read, A.J., 

Robbins, J., 2011. Underestimating the damage: interpreting cetacean carcass recoveries in 

the context of the Deepwater Horizon/BP incident. Conservation Letters 4, 228–233. 

https://doi.org/10.1111/j.1755-263X.2011.00168.x 

Woodyard, M., Polidoro, B.A., Matson, C.W., McManamay, R.A., Saul, S., Carpenter, K.E., 

Collier, T.K., Di Giulio, R., Grubbs, R.D., Linardich, C., Moore, J.A., Romero, I.C., 

Schlenk, D., Strongin, K., 2022. A comprehensive petrochemical vulnerability index for 

marine fishes in the Gulf of Mexico. Science of The Total Environment 820, 152892. 

https://doi.org/10.1016/j.scitotenv.2021.152892 

Würsig, B., 2017. Marine Mammals of the Gulf of Mexico, in: Ward, C.H. (Ed.), Habitats and 

Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Spill: Volume 2: Fish 

Resources,  Fisheries,  Sea Turtles,  Avian Resources,  Marine Mammals, Diseases and 

Mortalities. Springer, New York, NY, pp. 1489–1587. https://doi.org/10.1007/978-1-4939-

3456-0_5 

https://doi.org/10.1007/978-1-4939-3456-0_3
https://doi.org/10.1007/978-1-4939-3456-0_3
https://pvanb.wordpress.com/2013/01/17/point-to-polygon-part-i/
https://doi.org/10.1371/journal.pone.0126538
https://doi.org/10.21105/joss.03021
https://doi.org/10.1016/j.envsoft.2009.06.005
https://doi.org/10.1073/pnas.1114215109
https://doi.org/10.1002/jat.3414
https://doi.org/10.1111/j.1755-263X.2011.00168.x
https://doi.org/10.1016/j.scitotenv.2021.152892
https://doi.org/10.1007/978-1-4939-3456-0_5
https://doi.org/10.1007/978-1-4939-3456-0_5


160 

Yusuf, U., 2018. How to Install Third-party Python Modules in QGIS 3.x [WWW Document]. 

URL https://youtu.be/94W51WuDKzA 

  

https://youtu.be/94W51WuDKzA


161 

 

 

 

 

 

Appendix A: Published Chapter 

 

 

Comparative environmental sensitivity of offshore Gulf of Mexico waters potentially 

impacted by ultra-deep oil well blowouts 

 

Chancellor, E., Murawski, S.A., Paris, C.B., Perruso, L., Perlin, N., 2020. Comparative 

environmental sensitivity of offshore Gulf of Mexico waters potentially impacted by ultra-deep 

oil well blowouts, in: Scenarios and Responses to Future Deep Oil Spills. Springer, pp. 443–466. 
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Appendix B: Finalized rasters for all resource components created in Chapter 3 and used 

as inputs in Chapter 4 and Chapter  

 

 
 

Figure B1 Raster of proportion of revenue for Coastal Species at 1°x1° latitude/longitude grid 

resolution.  The values of this raster sum to 1 and is used in the created C-ESIs. 
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Figure B2 Raster of proportion of revenue index for Highly Migratory Species at 1°x1° 

latitude/longitude grid resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B3 Raster of proportion of revenue index for White Shrimp Species at 1°x1° 

latitude/longitude grid resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B4 Raster of proportion of revenue index for Brown Shrimp Species at 1°x1° 

latitude/longitude grid resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B5 Raster of proportion of revenue index for Pink Shrimp Species at 1°x1° 

latitude/longitude grid resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B6 Raster of original standardized abundance of larval fish at 1°x1° latitude/longitude 

grid resolution. 
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Figure B7 Raster of created presence index of larval fish at 0.5°x0.5° latitude/longitude 

resolution.  The values of this raster sum to 1 and is used in the created C-ESIs. 
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Figure B8 Raster of created presence index of the proportion of deep-sea coral habitat at 

0.5°x0.5° latitude/longitude resolution.  The values of this raster sum to 1 and is used in the 

created C-ESIs. 
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Figure B9 Raster of proportion of suitable habitat for Atlantic sailfish at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B10 Raster of proportion of suitable habitat for Atlantic bluefin tuna at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B11 Raster of proportion of suitable habitat for Atlantic blue marlin tuna 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B12 Raster of proportion of suitable habitat for Common dolphinfish at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 



198 

 
 

Figure B13 Raster of proportion of suitable habitat for Greater amberjack at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B14 Raster of proportion of suitable habitat for King mackerel at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B15 Raster of proportion of suitable habitat for Warmingii Lanternfish at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created          

C-ESIs. 
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Figure B16 Raster of proportion of suitable habitat for Red drum at 0.5°x0.5° latitude/longitude 

resolution.  The values of this raster sum to 1 and is used in the created C-ESIs. 
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Figure B17 Raster of proportion of suitable habitat for Red grouper at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B18 Raster of proportion of suitable habitat for Red snapper at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B19 Raster of proportion of suitable habitat for Striped mullet at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B20 Raster of proportion of suitable habitat for Great northern tilefish at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B21 Raster of proportion of suitable habitat for Swordfish at 0.5°x0.5° latitude/longitude 

resolution.  The values of this raster sum to 1 and is used in the created C-ESIs. 
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Figure B22 Raster of proportion of suitable habitat for Hawksbill sea turtle at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B23 Raster of proportion of suitable habitat for Kemp’s Ridley sea turtle at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B24 Raster of proportion of suitable habitat for Leatherback sea turtle at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B25 Raster of proportion of suitable habitat for Loggerhead sea turtle at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B26 Raster of proportion of suitable habitat for Atlantic spotted dolphin 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B27 Raster of proportion of suitable habitat for Bottlenose dolphin at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B28 Raster of proportion of suitable habitat for False killer whale at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B29 Raster of proportion of suitable habitat for Pantropical spotted dolphin at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B30 Raster of proportion of suitable habitat for Pygmy killer whale at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B31 Raster of proportion of suitable habitat for Sperm whale at 0.5°x0.5° 

latitude/longitude resolution.  The values of this raster sum to 1 and is used in the created C-

ESIs. 
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Figure B32 Raster of species richness for ray finned fishes at the 0.5°x0.5° latitude/longitude 

resolution.  The values of this raster sum to 1 and the raster is used in the created C-ESIs. 
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Figure B32 Raster of species richness for sharks and rays at the 0.5°x0.5° latitude/longitude 

resolution.  The values of this raster sum to 1 and the raster is used in the created C-ESIs. 
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Figure B33 Raster of species richness for mammals at the 0.5°x0.5° latitude/longitude 

resolution.  The values of this raster sum to 1 and the raster is used in the created C-ESIs. 
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Appendix C: Additional Tables and Figures from Running Marxan Spatial Planning 

Solver 

 

Table C1 Initial Best Solution Summary Scenario 1: Fisheries. 

Comparison of the best solutions from ten Marxan runs.  Score (total score of the solution), Cost 

(sum of the costs of all the planning units), Planning_Units (number of planning units in 

solution), Connectivity (based on Connectivity), Penalty (from the Shortfall), Shortfall (Sum of 

unmet targets), Missing_Values (Number of features not met at 98%), MPM = minimum percent 

missing (the percent of the feature with the minimum covered).  Based on the table below, Run9 

was selected as the initial best with lowest score, connectivity, and missing values. 
 

Run_Number Score Cost Planning_Units Connectivity Penalty Shortfall Missing_Values MPM 

1 56548.74 51000 34 4368 5548.74 10021.33 2 0.763 

2 56529.69 51000 34 4480 5529.69 9989.53 2 0.724 

3 56041.02 51000 34 3920 5041.02 9252.97 2 0.758 

4 56163.98 51000 34 4032 5163.98 9434.80 2 0.763 

5 56018.9 51000 34 4144 5018.90 9231.06 1 0.759 

6 55963.94 51000 34 4032 4963.94 9131.04 1 0.759 

7 56163.98 51000 34 4144 5163.98 9434.80 2 0.763 

8 55963.94 51000 34 4032 4963.94 9131.04 1 0.759 

9 55963.94 51000 34 3920 4963.94 9131.04 1 0.759 

10 56110.89 51000 34 4032 5110.89 9337.87 2 0.763 
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Table C2 Initial Best Solution by Feature Scenario 1: Fisheries. 

Table from the initial Marxan Best solution before Boundary Length Modifier (BLM) and 

Species Penalty Factor (SPF) calibration for Marxan Scenario 1: Fisheries.  Targets met for all 

conservation features except highly migratory species. 

 

Conservation 

Feature 
Target Amount Held 

Target 

Met 
MPM 

white shrimp 14852.79 15394.869 yes 1 

brown shrimp 32834.88 32240.628 yes 0.981902 

pink shrimp 4666.618 6430.221 yes 1 

highly migratory 33833.21 25680.753 no 0.75904 

coastal species 39743.58 39359.25 yes 0.99033 

 

Table C3 Final Best Solution Summary Scenario 1: Fisheries. 

Comparison of the best solutions from ten Marxan runs with modified BLM = 7.33 and SPF = 

9.44.  Best Score has risen from 55963 to 86950, Planning Units have increased from 34 to 41, 

all targets are met (MPM = 1). Based on the table below, Run9 was selected as the initial best 

with lowest score, connectivity, and missing values. 

 

Run Number Score Cost Planning Units Connectivity Penalty Shortfall 
Missing 
Values 

MPM 

1 87912.64 60000 40 3808 0 0 0 1 

2 90375.52 60000 40 4144 0 0 0 1 

3 91473.48 61500 41 4032 418.92 39.82 1 0.999 

4 87091.68 60000 40 3696 0 0 0 1 

5 87091.68 60000 40 3696 0 0 0 1 

6 91285.25 60000 40 4256 88.76 7.41 1 1 

7 91054.56 61500 41 4032 0 0 0 1 

8 87912.64 60000 40 3808 0 0 0 1 

9 86949.76 61500 41 3472 0 0 0 1 

10 89598.08 61500 41 3584 1827.36 155.58 2 0.998 
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Table C4 Final Best Solution by Feature Scenario 1: Fisheries. 

Table from the final Marxan Best solution with BLM = 7.33 and SPF = 9.44 for Marxan 

Scenario 1: Fisheries.  Targets met for all conservation features. 

 

Conservation 

Feature 
Target Amount Held 

Target 

Met 
MPM 

white shrimp 14852.7918 16790.193 yes 1 

brown shrimp 32834.8755 33111.162 yes 1 

pink shrimp 4666.6179 6396.264 yes 1 

highly migratory 33833.2113 34707.141 yes 1 

coastal species 39743.5815 40381.047 yes 1 

 

Table C5 Initial Best Solution Summary Scenario 2: Mammals 

Comparison of the best solutions from ten Marxan runs.  Score (total score of the solution), Cost 

(sum of the costs of all the planning units), Planning_Units (number of planning units in 

solution), Connectivity (based on Connectivity), Penalty (from the Shortfall), Shortfall (Sum of 

unmet targets), Missing_Values (Number of features not met at 100%), MPM = minimum 

percent missing (the percent of the feature with the minimum covered).  Based on the table 

below, Run9 was selected as the initial best with lowest score.  All runs meet feature targets with 

excess of 98% covered.  No SPF calibration needed for this scenario. 

 

Run_Number Score Cost Planning_Units Connectivity Penalty Shortfall 
Missing 
Values 

MPM 

1 186890.8 186000 124 15232 890.81 1823.83 2 0.9956 

2 188982.5 187500 125 17080 1482.53 3045.88 2 0.9929 

3 187533.2 187500 125 16408 33.24 67.89 1 0.9997 

4 188878.1 187500 125 16576 1378.09 2814.43 1 0.9889 

5 187967.9 187500 125 17640 467.90 959.75 2 0.9982 

6 189123.9 189000 126 17136 123.91 253.05 1 0.9990 

7 186253.7 186000 124 16408 253.72 521.53 1 0.9985 

8 187500 187500 125 17304 0.00 0.00 0 1.0000 

9 186163.6 186000 124 16296 163.64 336.37 1 0.9991 

10 186915.6 186000 124 16128 915.65 1879.37 3 0.9971 
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Table C6 Final Best Solution Summary Scenario 2: Mammals 

Comparison of the best solutions from ten Marxan runs with modified BLM = 4.44 and SPF = 1.  

Planning Units and Cost are unchanged from the initial solution but Connectivity score of the 

best solution has decreased from 16296 to 5992.  Based on the table below, Run1 was selected as 

the final best with lowest score. 

 

Run Number Score Cost Planning Units Connectivity Penalty Shortfall 
Missing 
Values 

MPM 

1 212604.5 186000 124 5992 0 0 0 1 

2 218820.5 186000 124 7392 0 0 0 1 

3 218331.4 187500 125 6944 0 0 0 1 

4 212626.7 186000 124 5992 22.22 27.77 1 0.999922 

5 214034.6 184500 123 6608 195.04 243.79 1 0.999318 

6 213603 187500 125 5824 244.42 305.51 1 0.999146 

7 214184.7 187500 125 5992 80.22 98.75 1 0.999612 

8 213420.2 186000 124 6104 318.48 398.09 1 0.998887 

9 213776.7 186000 124 6216 177.65 219.11 2 0.999247 

10 212873.6 186000 124 5992 269.10 336.37 1 0.99906 
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