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N2O production by mussels:
Quantifying rates and
pathways in current and
future climate settings
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1Royal Belgian Institute of Natural Sciences (RBINS), Operational Directorate Natural Environment,
Marine Ecology and Management, Brussels, Belgium, 2Marine Biology Research Group, Department of
Biology, Ghent University, Ghent, Belgium, 3Department of Estuarine and Delta Systems, Royal
Netherlands Institute for Sea Research (NIOZ), Yerseke, Netherlands, 4Isotope Bioscience Laboratory
(ISOFYS), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
Blue mussels (Mytilus edulis) are an abundant and economically important species

across the North Sea. Partly because of their potent filter feeding and associated

shell biofilm, they are able to influence and alter the surrounding marine

ecosystem. As a result of proliferating offshore wind farms (OWFs), whose

turbine foundations are rapidly colonised by suspension feeding artificial hard

substrate communities dominated by M. edulis, as well as planned co-location

strategies of these OWFs with mussel mariculture, their numbers will only increase

towards the future. On top of these local stressors, global climate change is

exerting additional pressure on the marine environment. This study focusses on

the link betweenM. edulis, its microbial shell biofilm and the local nitrogen cycling

by quantifying the magnitude and underlying pathways of mussel-associated

nitrous oxide (N2O) production. A set of closed-core incubations established

nitrifier denitrification as the main chemical pathway of M. edulis related N2O

production, although ammonium, nitrite and nitrate all acted as possible

precursors. Additional future-climate experiments revealed that blue mussel’s

total N2O production, as well as its metabolic activity and the relative

contribution of its shell biofilm, were affected by warming (+ 3°C), acidification

(- 0.3 pH units), or the combination of both. Because the effects of temperature

and acidity were often of an antagonistic nature, the results suggest a relatively

small net effect on local N2O production in future-climate marine environments.

However, N2O production rates were several orders of magnitude lower than

other measured N species (NH+
4 , NO

−
2 and NO�

3 ), making substantial mussel-

associated N2 production likely. This would greatly affect the local

eutrophication levels or even bioavailable nitrogen concentrations.
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1 Introduction

After carbon dioxide (CO2) and methane (CH4), nitrous oxide

(N2O) is an impactful long-lived greenhouse gasses (GHGs),

substantially contributing to global warming (estimated 6 %) and to

the depletion of the stratospheric ozone layer (IPCC, 2021). It has a

long atmospheric lifetime (average of 114 years) and its warming

effect on the global climate through radiative forcing (Global

Warming Potential of 273 for a 100-year timescale) therefore

persists for over a century after its emission (Smith and Sharp,

2012; Myhre et al., 2013; IPCC, 2021). N2O is produced by (de)

nitrifying bacteria and archaea in both terrestrial and aquatic

environments, mainly associated with agricultural practices and

invertebrate presence or activities (Mosier et al., 1998; Stein and

Yung, 2003; Heisterkamp et al., 2010). The biogenic emission of N2O

by freshwater invertebrates is correlated with their feeding type, due

to the denitrifying activity of ingested bacteria in the anoxic digestive

system (Stief et al., 2009). In the marine environment, N2O is emitted

by denitrifying gut bacteria as well, but also by microbial biofilms on

the surfaces of e.g. bivalves and gastropods (Heisterkamp et al., 2010;

Heisterkamp et al., 2013). These shell biofilms can generate N2O

through three main pathways (Figure 1): (1) as a by-product of

ammonium oxidation, the first step in (oxic) nitrification by

ammonium-oxidising bacteria (AOB) and archaea (AOA), (2) as an

intermediate in the reduction of nitrite during AOB- and AOA-

mediated suboxic nitrifier denitrification and (3) as an intermediate in

the reduction of nitrate during anoxic denitrification by heterotrophic

bacteria. The latter comprises the final steps in the pathway of coupled
Frontiers in Marine Science 02
nitrification-denitrification (CND), in which (heterotrophic)

denitrification is carried out by a different set of actors compared to

(autotrophic) nitrifier denitrification and nitrification (Figure 1).

An important shell-bearing organism in coastal ecosystems is the

blue mussel Mytilus edulis. It has an important ecological relevance

through its high filtration capacity and ‘bio-engineering’ role in

habitat creation and food provision (Cranford, 2019; Degraer et al.,

2020). In the North Sea, it is one of the main colonising species on

artificial hard substrate [AHS] (De Mesel et al., 2015), readily

available due to the proliferating European offshore wind farm

[OWF] industry (IEA, 2019; GWEC, 2021). Partly due to the blue

mussel’s presence, these AHSs act as an artificial reef and as a biofilter,

redirecting organic material from the water column towards the

benthic environment (Slavik et al., 2019; Ivanov et al., 2021).

Furthermore, this species has a high economical value because of its

prominent role in aquaculture (Costello et al., 2020), a practice that

might progressively be combined with OWF operations (Schupp

et al., 2019; MSP, 2020) as a favourable way of minimising the

impacted seafloor footprint (Buck and Langan, 2017; Steins

et al., 2021).

All three of the N2O-producing pathways (Figure 1) could

potentially occur in and on the blue mussel. Firstly, M. edulis

accommodates a selection of ingested denitrifying bacteria in its

anoxic digestive system, where organic carbon and different N-

species are readily available (Stief et al., 2009). Additionally, it has a

microbial biofilm on the outer surface of its shell, within which a

variable oxygenation allows different pathways of N2O emission

(Heisterkamp et al., 2010; Heisterkamp et al., 2013). Furthermore,
FIGURE 1

Relevant pathways in the marine nitrogen cycle with possible sources of N2O emission and oxygenation demands. The result of a targeted inhibition by
NaClO3 is indicated. NIT: oxic nitrification (autotrophic); DNO2: suboxic nitrifier denitrification (autotrophic); DNO3: anoxic denitrification (heterotrophic)
coupled to nitrification. Adapted from Zhu et al. (2013).
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these biofilm emissions can be sustained through the pumping

activity of the mussel replenishing its surroundings with nutrient-

enriched waters (Heisterkamp et al., 2013). This could potentially

decouple the shell biofilm’s N2O production from (outside)

environmental nitrogen cycling and fluctuations, establishing a

relatively stable capacity for N2O emission. In an OWF or

aquaculture environment, where mussels are typically present in

high densities, this could potentially generate high local N2O

emissions (Voet et al., manuscript in preparation)1.

The abundance of mussels could well rise towards the future due

to their potential in offshore and integrated multi-trophic aquaculture

projects (Avdelas et al., 2021). When investigating the production of a

potent greenhouse gas by such a marine species, the link with marine

climate change and its global effects on the oceanic environment

needs to be taken into account. The IPCC predicts a sea surface

temperature rise of ca. 3 °C and a drop in oceanic pH of ca. 0.3 by the

end of this century (Bindoff et al., 2019; Fox-Kemper et al., 2021;

IPCC, 2021), changing the biochemistry in marine environments and

potentially affecting the N2O emissions by mussel aggregations. The

objective of this study was therefore to investigate the production of

N2O byM. edulis and its associated shell biofilm in current conditions

and to describe the potential effects of seawater temperature and pH

on both. This was done by experimentally (1) quantifying the relative

contribution of the microbial shell biofilm to M. edulis’ entire N2O

production and (2) unravelling the different chemical pathways and

precursors of M. edulis’ N2O production. Experiments were

performed in a fully-crossed design of temperature and pH,

representing current and future climate conditions.
2 Methodology

2.1 Organism collection and
incubation set-up

In summer 2018 and 2020, a respective total of 800 and 240 adult

blue mussels (Mytilus edulis) with a mean soft tissue dry weight (±

SD) of 0.79 ± 0.28 g were sampled from a M. edulis longline in an

offshore aquaculture pilot project approximately 10 km off the Belgian

coast (51°11.02’N - 02°39.88’E). All samples were stored in aerated

seawater and transported to the experimental facilities within 4 hours.

On both occasions, organisms were evenly and randomly

distributed across four identical aquaria (100 × 5 × 0 cm). These

were equipped with a continuous flow-through mechanism, allowing

the homogenisation of approximately 400 L natural seawater in

circulation per system. All aquaria were continuously aerated and

pre-set at laboratory conditions mimicking the in situ seawater

salinity, temperature and pH at the time of sampling (34 PSU, 20°C

and pH 7.96; LifeWatch Belgium, 2015). After an initial

acclimatisation period of minimum 48 h under ambient conditions,

both seawater temperature and pH were manipulated individually
1 Voet, H. E. E., De Luca, L. V., Vanaverbeke, J., and Soetaert, K. (manuscript in

preparation). Modelling the combined effects of climate change on an offshore

wind farm ecosystem with blue mussel (Mytilus edulis) aquaculture in

multifunctional co-use.
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across the aquaria. This resulted in a 2 × 2 factorial design with four

experimental treatments: a control treatment [CTRL: in situ

temperature and pH], an ocean acidification treatment [OA: in situ

temperature and lowered pH], an ocean warming treatment [OW:

elevated temperature and in situ pH] and a climate change treatment

[CC: combined elevated temperature and lowered pH].

For each treatment, stepwise manipulations were imposed over

the course of three days, with a daily seawater temperature increase of

1°C and/or pH decrease of 0.1 pH unit. Seawater temperature was

regulated using TECO TK2000 heaters and pH was manipulated

through the controlled bubbling of 100 % CO2 in the OA and CC

treatment tanks using the IKS AquaStar aquaristic computer system,

simultaneously logging temperature and pH records every 15 minutes

throughout the six-week experiments (Table 1; Appendix A-

Appendix B). This resulted in environmental conditions of +3°C

and/or -0.3 pH units in the corresponding treatments compared to

the control settings, reflecting the IPCC RCP-SSP8.5 projections for

ocean warming and acidification towards the end of this century

(Hoegh-Guldberg et al., 2014; IPCC, 2021). These conditions were

maintained for six weeks and organisms were fed three times a week

by adding 5 mL Shellfish Diet 1800® (Instant Algae® mix by Reed

Mariculture Inc.) to each aquarium. Glass pH electrodes were

calibrated weekly using Hanna Instruments™ NIST Reference

Buffer Solutions (4.01 and 7.01) and each aquarium was sampled

weekly to determine Total Alkalinity (TA) using a CONTROS

HydroFIA™TA alkalinity system. One third of each flow-through

system’s water was renewed weekly. The carbonate chemistry of the

seawater was calculated using CO2SYS software (Pierrot et al., 2006)

with the thermodynamic constants of Mehrbach et al. (1973).
2.2 Experimental procedures

2.2.1 Relative contribution of shell biofilm
to N2O production

Weekly, triplicated individual closed-core incubations were set up

in each experimental treatment (CTRL, OA, OW and CC) to measure

N2O production by the mussel itself and its shell biofilm (see Appendix

C: Experiment 1). Whole mussels [WHOLE] and dissected mussel

shells [SHELL] were incubated separately, along with a control

incubation without mussels or shells [EMPTY] to correct for

background N2O presence. An additional control consisted of whole

mussels in a 1 % ZnCl2 seawater solution inhibiting all biological

activity [ZNCL] (Heisterkamp et al., 2013). Each incubation core of 1.5

L held one individual or dissected shell of one individual (except

EMPTY), along with manipulated seawater from the respective

treatment, and was kept at the correct temperature throughout 3h

the incubations. A magnetic stirrer ensured an evenly mixed water

column in the cores. Discrete 30 mL water samples were taken at the

start and end of the closed-core incubations and stored at room

temperature in dark conditions. Each sample filled, to overflowing, a

30 mL airtight serum bottle and was fixed with 100 μL saturated HgCl2
solution for N2O analysis. Quantification of dissolved N2O was done by

gas chromatography (SRI Instruments, ECD) and the N2O production

rates (PR) of whole organisms and dissected shells were calculated

according to Equation 1:
frontiersin.org
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PR (nmol ind−1 h−1)   =
V (C1 − C0)
(t1 − t0)

Equation 1

with V the volume (L) of the incubation core corrected for the biovolume

of the whole organism or shell and with C0 and C1 the concentrations of

N2O (nmol L-1) at the start and finish of the closed-core incubation, t0
and t1 (h), respectively. The relative contribution of the shell biofilm to

whole animal N2O production was calculated by dividing each SHELL

PR by the corresponding WHOLE PR in each week and treatment.

2.2.2 Pathways of N2O production: Nutrient flux
and inhibition by NaClO3

After three and six weeks of manipulations [WK3 and WK6,

respectively], triplicated closed-core incubations with individual

whole organisms were set up and sampled as described above (see

Appendix C: Experiment 2). Along with biomass-specific N2O

production rates [PRB] (calculated according to Equation 2), NH+
4 ,

NO�
2 and NO�

3 concentrations were measured through discrete

sampling (25 mL; automated colorimetric analyses performed on

SKALAR SAN++ CFA) at the start and finish of closed-core

incubations, with and without the addition of 20 mM NaClO3 to

inhibit CND (Belser and Mays, 1980; see Figure 1). NaClO3 inhibits

the oxidation of nitrite (NO�
2 ) to nitrate (NO�

3 ) in the nitrification

pathway (Figure 1), meaning N2O is produced either though

nitrification (as a by-product during ammonium oxidation) or

through nitrifier denitrification (as result of denitrification of
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nitrite; Tallec et al., 2008), as well as through denitrification of

nitrate already present in the incubation core (Figure 1).

Nutrient flux was calculated according to Equation 3;

PRB (nmol g−1DW h−1Þ  =  
V (C1 − C0)
DW (t1 − t0)

Equation 2

Nutrient flux (μmol g−1DW h−1) =
V (C1 − C0)
DW (t1 − t0)

Equation 3

with parameters identical as in Equation 1, C the concentration of

N2O (nmol L-1) and nutrients NH+
4 , NO

�
2 or NO�

3 (μmol L-1) in

Equation 2 and Equation 3, respectively, and DW the dry weight (g)

of the mussel’s soft tissue.

2.2.3 Pathways of N2O production: 15N stable
isotope tracer experiments

Three different labelled N-tracer treatments were designed to

distinguish the production of double-15N-labelled N2O (46N2O) from

either nitrification [NIT], nitrifier denitrification [DNO2] or CND

[DNO3], in which NH+
4 , NO

�
2 or NO�

3 act as a precursor to N2O

production, respectively (Table 2 and Figure 1). The composition of

these N-tracer treatments, in which 15N was introduced using either
15NH4Cl [NIT], Na

15NO2 [DNO2] or Na15NO3 [DNO3], and the

resulting concentrations in the incubation cores were identical to

those in Heisterkamp et al (2013; adapted in Table 2).
TABLE 1 Average (± SD) seawater temperature (°C), pH and salinity of four experimental treatments.

CTRL OW OA CC

Temperature (°C)

Summer 2018 20.02 ± 0.13 23.15 ± 0.24 19.99 ± 0.29 23.13 ± 0.31

Summer 2020 19.92 ± 0.27 23.07 ± 0.36 20.01 ± 0.34 23.11 ± 0.49

pH

Summer 2018 7.96 ± 0.01 7.97 ± 0.02 7.65 ± 0.02 7.65 ± 0.01

Summer 2020 7.96 ± 0.02 7.96 ± 0.02 7.63 ± 0.05 7.65 ± 0.01

Salinity

Summer 2018 32.9 ± 0.5 33.8 ± 0.5 32.4 ± 0.4 33.0 ± 0.5

Summer 2020 33.9 ± 1.4 34.6 ± 0.7 33.7 ± 1.1 34.5 ± 0.7
[CTRL, control; OW, ocean warming; OA, ocean acidification and CC, climate change] throughout both experiments.
TABLE 2 Nitrogen tracer treatments NIT, DNO2 and DNO3 with the targeted N2O-producing pathway and precursor, the concentrations of 15N and 14N
added to the tracer treatments and the possible combinations of 14N and 15N to form 45N2O and 46N2O, respectively.

NIT DNO2 DNO3

Pathway Nitrification Nitrifier denitrification Coupled nitrification- denitrification

Precursor oxidation of NH+
4 denitrification of NO�

2 denitrification of NO�
3

15N added 15NH+
4 (50μM) 15NO�

2 (50μM) 15NO�
3 50μM)

15N added 14NO�
2 (500μM) 14NO�

3 (500μM) –

45N2O 14NH+
4=

14NH�
X +15 NH+

4
14NO�

X +15 NO�
2

14NO�
X +15 NO�

3

45N2O 15NH+
X +15 NH+

4
15NO�

2 +15 NO�
2

15NO�
3 +15 NO�

3

14NO�
X    represents either

14NO�
2  or   

14 NO�
3 . Adapted from Heisterkamp et al. (2013).
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Before manipulations took place [WK0] and at WK3 and WK6,

triplicated closed-core incubations for all three N-tracers were set up

in all four experimental treatments (CTRL, OA, OW and CC; see

Appendix C: Experiment 3). The 125mL incubation cores held one

individual in seawater from its respective experimental treatment

amended with the respective N-tracer. Cores were incubated for 4

hours on a shaking table to ensure adequate mixing. Hourly, 1mL

samples were taken with a surgical syringe and transferred to 12mL

He-flushed exetainers. These were prefilled with 100μL saturated

HgCl2 and 20 nmol natural N2O with known isotopic composition.

The HgCl2 was added to fixate the N2O, while the addition of

unlabelled N2O ensured the detection limit of the isotope ratio

mass spectrometer was reached. Since only 4 % of the core volume

was sampled by the end of the incubation, under-pressure was not

considered to be an issue, and the withdrawn volume was not

replaced. The excess 45N2O and 46N2O content was determined

from the 45N2O/44N2O and 46N2O/44N2O ratio of the samples

compared to a reference N2O spiked blank sample using a ANCA-

TGII interfaced with a SerCon 20-20 IRMS (SysCon electronics) with

cryogenic trapping and focusing of samples. Production of 44N2O

could not be determined in this assay due to the presence of the added

20 nmol N2O spike. The linear increase of 45N2O and 46N2O over

time was used to calculate net PRB (nmol g-1DW h-1). The

contribution of the different pathways to the total 15N-labelled N2O

production was calculated by dividing the respective 46N2O PRB by

the sum of 45N2O and 46N2O PRB in each N-tracer experiment.

2.2.4 Shell biofilm oxygen microprofile
As a proxy for metabolic activity of shell biofilms, a vertical oxygen

profile of the microbial biofilm on three replicate M. edulis shells was

measured before seawater manipulations started [WK0] and in each

experimental treatment after three and six weeks of manipulations

[WK3 andWK6, respectively]. Individuals were carefully dissected with

a scalpel to isolate the mussel shell without damaging the associated

biofilm and dissected shells were placed in aerated seawater from the

respective experimental treatments. A Unisense™ MicroProfiling

System was used to position the sensor tip of a PyroScience™

retractable fiber oxygen microsensor on the shell surface and a

vertical dissolved oxygen concentration profile was recorded in

increments of 50 or 100 μm through the biofilm between 0-3000 μm

above the shell surface. Oxygen microprofiles were measured at three

random positions on the shell of each replicate organism and

conducted in dark conditions to avoid net oxygen production.
2.3 Data analysis

The effect of temperature (current or elevated) and pH (current or

lowered) on the production of N2O in theWHOLE, SHELL, NaClO3-

inhibited and non-inhibited incubations was investigated using linear

mixed effects models, with incubation core and/or experimental week

added as a random factor in the models. If none of the random factors

could explain left-over variance, a linear regression model was fitted.

The effect of temperature, pH and experimental week (WK3 orWK6)

on nutrient flux was analysed using linear regression models.

Significance of the two-way interaction ‘temperature x pH’ and

post-hoc pairwise comparison of the group means was used to
Frontiers in Marine Science 05
identify possible combination effects of increased temperature and

lowered pH. Normality of the residuals and model assumptions were

checked using Shapiro-Wilk, Gaussian error distributions were used

and model selection was based on the parametric bootstrap and

Kenward Roger methods for mixed model comparison (Halekoh and

Højsgaard, 2014) or on the backwards selection procedure for linear

regression models. Statistical analyses were conducted using R v3.6.1

(R Core Team, 2019), linear mixed effects models were built using the

R package lme4 (Bates et al., 2015) and linear regression models were

fitted using the stats package (R Core Team, 2019).

To test for differences between oxygen microprofiles between

experimental treatments in WK3 and WK6 (to keep a balanced

design), a multivariate matrix was constructed with the oxygen

concentrations at each distance above the shell (Widdicombe et al.,

2013). Differences in the shell biofilm oxygen microprofiles were

tested using permutational ANOVA (PERMANOVA) with

experimental treatment and week as fully-crossed factors and with

all profiles on all shells considered as replicates within the Euclidian

distance matrix. For all significant PERMANOVA factors, post-hoc

pairwise testing was used and homogeneity of multivariate dispersion

was tested using PERMDISP. The SIMPER routine was used to

identify which distances from the shell contributed most to any

observed differences. Multivariate analyses were carried out in

Primer v6.0 with PERMANOVA+ add-on software (Clarke and

Gorley, 2006; Anderson et al., 2008).
3 Results

Mean seawater temperature (± SD) in CTRL treatments was 19.97 ±

0.20°C and ranged between 23.07 ± 0.36°C and 23.15 ± 0.24°C in the

warmed treatments (OW andCC).Mean seawater pH (± SD) in acidified

treatments (OA and CC) ranged between 7.63 ± 0.05 and 7.65 ± 0.02,

compared to an average CTRL seawater pH of 7.96 ± 0.02 (Table 1;

Appendix A - Appendix B). Seawater salinity differed slightly between the

treatments but was well within the natural occurring salinity range. The

total alkalinity (TA) fluctuated according to the pH levels (1985-2123

μmol kg-1) and the average aragonite/calcite seawater saturation states

(W; ± SD) ranged between 1.70 ± 0.25 – 2.97 ± 0.52 in the non-acidified

treatments and between 0.82 ± 0.16 – 1.51 ± 0.24 in the acidified

treatments (Table 3).

For an overview of ecophysiological effects of increased

temperature and lowered seawater pH on M. edulis, see Voet et al.

(2021). In this study, the same experimental treatments (CTRL, OW,

OA and CC) were imposed for six weeks. Significant results included

a decreased survival rate and growth in acidified treatments, enhanced

growth rates in warmed treatments and an additive effect of higher

temperatures and lower pH levels on respiration and clearance rates

(Voet et al., 2021).
3.1 Relative contribution of shell biofilm
to N2O production

In all treatments, N2O was produced in both the WHOLE and

SHELL incubations, whereas no N2O production was measured in the

poisoned ZNCL incubations. In CTRL, whole animals produced on
frontiersin.org
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average (± SD) 4.55 ± 0.18 nmol N2O ind-1 h-1 and throughout the

experiment, the shell biofilm contribution ranged between 65-75%

(Figure 2). In OW, the average WHOLE production rate gradually

increased from 5.47 ± 0.23 to 15.84 ± 0.48 nmol N2O ind-1 h-1 over six

weeks, while the shell biofilm contribution remained stable at 68%

(Figure 2). In both acidified treatments, the relative contribution of

the shell biofilm to whole organism N2O production decreased over

time. In OA, theWHOLE N2O production rate was stable throughout

the experiment (mean 5.79 ± 0.33 nmol N2O ind-1 h-1), but the
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contribution of the shell biofilm decreased from 63% to 23% over the

course of six weeks (Figure 2). Whole animals in CC produced on

average 9.10 ± 1.82 nmol N2O ind-1 h-1, while the associated shell

biofilm contribution decreased from 60% to 12% over time, after an

initial rise to 65% in the second week of experiments. Overall,

temperature and pH had a significant, antagonistic effect on the

parts of the animal that emitted N2O, with an increasing production

in warmer environments and a decreasing production in acidified or

combined climate change conditions (Table 4).
FIGURE 2

Estimated mean relative contribution of dissected Mytilus edulis shells [SHELL] to whole animal [WHOLE] N2O emission rates (nmol N2O ind-1 h-1) in four
experimental treatments [CTRL, control; OA, ocean acidification; OW, ocean warming and CC: climate change]. Relative contribution of M. edulis itself
[MUSSEL] represents the calculated difference between the two.
TABLE 3 Average (± SD) seawater carbonate chemistry of four experimental treatments.

CTRL OW OA CC

TA (µmol kg-1)

Summer 2018 2107 ± 248 2113 ± 268 1985 ± 280 2038 ± 317

Summer 2020 2119 ± 229 2123 ± 264 1996 ± 264 2048 ± 315

pCO2 (µatm)

Summer 2018 652 ± 65 650 ± 59 1361 ± 178 1420 ± 208

Summer 2020 656 ± 90 664 ± 53 1421 ± 216 1412 ± 246

CT (µmol kg-1)

Summer 2018 1967 ± 231 1951 ± 245 1951 ± 276 1991 ± 312

Summer 2020 1976 ± 224 1960 ± 243 1963 ± 260 1996 ± 312

WA

Summer 2018 1.70 ± 0.25 1.95 ± 0.34 0.82 ± 0.14 0.96 ± 0.17

Summer 2020 1.72 ± 0.19 1.94 ± 0.33 0.82 ± 0.16 0.99 ± 0.16

WC

Summer 2018 2.63 ± 0.39 2.97 ± 0.52 1.27 ± 0.22 1.46 ± 0.26

Summer 2020 2.65 ± 0.29 2.96 ± 0.50 1.27 ± 0.24 1.51 ± 0.24
[CTRL, control; OW, ocean warming; OA, ocean acidification and CC, climate change] throughout both experiments, Total Alkalinity (TA; μmol kg-1); partial pressure of CO2 (pCO2; μatm); total
inorganic carbon concentration (CT; μmol kg-1) and saturation state of the seawater with respect to aragonite (WA) and calcite (WC).
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3.2 Pathways of N2O production

3.2.1 Nutrient flux and inhibition of coupled
nitrification-denitrification

When the CND pathway was inhibited by the addition of NaClO3,

average N2O production rates were 4 to 16 times higher compared to

incubations where the inhibitor was absent (Figure 3). Regardless of the

presence of the inhibitor, temperature and pH had an antagonistic effect

on the production of N2O by M. edulis and the highest average N2O

production rates were measured in OW (Figure 3 and Table 5).

Inhibition by NaClO3 significantly lowered ammonium flux,

which additionally decreased significantly in WK6 compared to

WK3 (Figure 3 and Table 6). Lowered pH and elevated temperature

antagonistically affected ammonium flux (production or oxidation

rates; Table 6), with the lowest average NH+
4 flux in OW and a

significantly higher flux when combined with lowered pH in

CC (Figure 3).

There was no significant effect of the inhibitor NaClO3 on nitrite

flux and in general, nitrite flux decreased with time (Figure 3 and

Table 6). Elevated temperature and lowered pH significantly

increased NO�
2 flux (Table 6).

Nitrate flux was negative across all experimental treatments and

not affected by the presence of the inhibitor (Figure 3 and Table 6).

Nitrate consumption (negative flux) significantly increased with time

and the significant decreasing effect of a lowered pH was further

amplified when combined with an elevated temperature in

CC (Table 6).

3.2.2 N2O precursors: 15N stable isotope tracers
45N2O and 46N2O was detected in all 15N-tracer experiments across

all treatments and weeks, showing that NH+
4 , NO

�
2 and NO�

3 all serve

as potential precursors and nitrification, nitrifier denitrification and

coupled nitrification-denitrification (respectively) all serve as potential

pathways of N2O production byM. edulis and its shell biofilm (Table 7

and Figure 4).

In the NIT incubations, targeting the production of N2O through

nitrification (precursor NH+
4 ), no or very low amounts of 46N2O (0.00

– 0.09 nmol g-1DW h-1) were produced across all experimental

treatments and weeks (Table 7 and Figure 4). The contribution of

nitrification to the total 15N-labelled N2O production (46N2O +
45N2O) by M. edulis and its shell biofilm in this series of

experiments was very low, ranging between 1 % in CTRL to 3 % in

OA. The production rate of 45N2O, on the other hand, was ± 10 to 500
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times higher (0.03 – 2.95 nmol g-1DW h-1), started after an initial lag

phase of 3 hours (Figure 4 and Table 7) and was the result of either

random isotope paring, nitrifier denitrification or CND (Table 2).

The DNO2 incubations, targeting nitrifier denitrification

(precursor NO�
2 ), showed the highest average 46N2O production

rates of all 15N-tracer treatments, with highest average values (2.08

± 0.96 nmol g-1DW h-1) recorded in CC after 6 weeks (Table 7).

Nitrifier denitrification contributed, on average, 46 % to the total

labelled N2O production of whole animals in CTRL and up to 59 %

the OA treatment. In general, the 45N2O production rates were ± 1.2

to 3 times lower compared to 46N2O and produced by the

combination of 15NO�
2 with 14NO�

3 or 14NO�
2 present or produced

during the incubation (Table 7 and Figure 4).

Average 46N2O production rates in DNO3 incubations, targeting

the CND pathway (precursor NO�
3 ), was relatively high at the start of

the experiment (WK0; 0.12 ± 0.18 nmol g-1DW h-1) and contributed

approximately 40 % of the total labelled N2O production in that week.

In subsequent weeks, 46N2O production rates decreased 2- to 42-fold

and all manipulated treatments had higher average 46N2O production

rates compared to CTRL (Table 7 and Figure 4). On average, CND

contributed between 4 % in CRTL up to 15 % in OW in the

subsequent weeks. Average 45N2O production rates were 2 to 46

times higher across all experimental treatments compared to 46N2O

and occurred in the DNO3 tracer treatment as a result of the random

pairing of 15NO�
3 with 14NO�

3 or 14NO�
2 that were present or

produced during the incubation (Tables 2, 7).

3.2.3 Oxygen microprofile
The biofilm oxygen microprofiles differed significantly between

experimental treatments (PERMANOVA; pseudo-F=93.98; p=0.001),

while the effect of week or the 2-way interaction of both was not

significant (PERMANOVA; pseudo-F=0.92 and 1.23, respectively;

both p>0.29). Pairwise testing revealed significant differences in

oxygen microprofiles between all experimental treatments

(p=0.001), except for the profiles measured in OA and CC

(p=0.24). SIMPER revealed that at least 90% of the differences

between CTRL and the other experimental treatments could be

attributed to the first 600μm above the shell surface. In OW,

oxygen concentrations above the shell declined faster and stronger,

while in both acidified treatments (OA and CC), the onset of the

decline in oxygenation was closer to the shell surface (biofilm

thickness declined) and the magnitude of the decline was lower (net

biofilm oxygen consumption decreased) (Figure 5).
TABLE 4 Structure of final linear mixed effects models for N2O production [nmol N2O ind-1 h-1] by whole animals [WHOLE] and shell biofilms [SHELL]:
significance of fixed effects Temperature (TEMP), pH (PH) and two-way interaction (TEMP x PH), and identity of random effects, including random
intercept (format = 1|random) and potential random slope (format = 1+fixed|random).

FIXED EFFECT

Temperature
FIXED EFFECT

pH
FIXED EFFECT

Temperature × pH
RANDOM EFFECT

WHOLE

p=0.004 p=0.033 p=0.387 1+TEMP×PH|WEEK

SHELL

p=0.004 p=0.379 p=0.007 1+TEMP×PH|WEEK
Significance indicated in bold. [WEEK = experimental week].
frontiersin.org

https://doi.org/10.3389/fmars.2023.1101469
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Voet et al. 10.3389/fmars.2023.1101469
4 Discussion

This study confirmed the contribution by the abundant and

economically important blue mussel Mytilus edulis to marine N2O

production (Stief et al., 2009; Heisterkamp et al., 2010; Bonaglia et al.,

2017), as well as the relative importance of shell biofilms in this process
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(Heisterkamp et al., 2013). Our results on the magnitude and underlying

processes of this N2O production show that nitrification, nitrifier

denitrification and coupled nitrification-denitrification all served as

potential pathways in N2O production. In contrast to earlier research

by Heisterkamp et al. (2013) on dissected shell biofilms, nitrification of

NH+
4 was not an important contributor to the total production by both
FIGURE 3

N2O production rates (nmol g-1DW h-1 ± SE) and nutrient flux (µmol g-1DW h-1 ± SE) of whole animals incubated with and without the addition of
NaClO3, inhibiting the oxidation of nitrite to nitrate, in four experimental treatments [CTRL, control; OW, ocean warming; OA, ocean acidification and
CC,: climate change]. Note different scale and unit in left panels.
TABLE 5 R2 of final linear regression models with significance of Temperature (TEMP), pH (PH), two-way interaction (TEMP x PH) and week (WEEK) in
incubations with and without inhibitor NaClO3 for production of N2O [nmol g-1DW h-1].

R2 temp pH TEMPxPH WEEK

N2O [nmol g-1DW h-1]

With NaClO3 0.67 p=0.631 p=0.007 p=0.037 p=0.936

Without NaClO3 0.76 p=0.010 p=0.405 p=0.002 p=0.858
Significance is indicated in bold.
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the mussels and its shell biofilm. Additionally, we suggest that future

climate change will not substantially affect total N2O production by blue

mussels as the increase caused by higher temperatures is counteracted by

a decreased shell biofilm activity due to ocean acidification and overall,

N2O production declined over time in the climate change environment.
4.1 Pathways and contributions
to N2O production

The current climate [CTRL] N2O production of blue mussels

(including their associated shell biofilm) was in line with other studies

(e.g. Heisterkamp et al., 2010; Heisterkamp et al., 2013; Gárate et al.,

2019) and exclusively biological, as ZnCl2 poisoning fully inhibited N2O
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production. The shell biofilm contribution to total N2O production byM.

edulis was important (± 70 %) and remained stable through time, as did

the total N2O production rate. Although still a considerable contribution,

the partitioning measured in this study was lower than previously

reported by Heisterkamp et al. (2013), where N2O production

originated almost exclusively from the shell biofilm (± 94 %). Possibly,

methodological differences such as the use of natural seawater and a

regular feeding regime in our experiments could have prompted the

adept filter feeder M. edulis, with an established rich intestinal microbial

system capable of considerable N2O production, to continue to do so

throughout the duration of this experiment.

Nitrifiers, a combination of ammonium-oxidising bacteria and

archaea, produce N2O during nitrification in oxic environments and

during nitrifier denitrification in suboxic environments. Another set of
TABLE 7 45N2O and 46N2O production rate (nmol g-1DW h-1 ± SD) of whole animals before seawater manipulations started [WK0] and after three [WK3]
and six [WK6] weeks of manipulations with three N-tracer targeting nitrification [NIT], nitrifier denitrification [DNO2] or coupled nitrification-
denitrification [DNO3], in which NH+

4 , NO�
2 or NO�

3 act as a precursor to N2O emission, respectively, in four experimental treatments.

CTRL OW OA CC

NIT

WK0 45N2O
46N2O

0.536 ± 0.277
0.001 ± 0.007

WK3 45N2O
46N2O

0.768 ± 0.789
0.014 ± 0.015

0.294 ± 0.150
0.000 ± 0.004

0.501 ± 0.510
0.003 ± 0.012

0.300 ± 0.057
0.004 ± 0.010

WK6 45N2O
46N2O

2.263 ± 2.074
0.019 ± 0.003

0.032 ± 0.049
0.004 ± 0.007

2.949 ± 1.562
0.086 ± 0.121

0.382 ± 0.173
0.006 ± 0.004

DNO2

WK0 45N2O
46N2O

0.545 ± 0.472
1.479 ± 1.417

WK3 45N2O
46N2O

0.910 ± 1.254
1.137 ± 1.291

0.365 ± 0.366
0.317 ± 0.332

0.343 ± 0.084
0.415 ± 0.069

0.473 ± 0.408
0.724 ± 0.799

WK6 45N2O
46N2O

2.309 ± 1.811
0.622 ± 0.436

0.793 ± 0.699
1.199 ± 0.966

0.359 ± 0.275
0.590 ± 0.491

1.540 ± 0.970
2.081 ± 0.956

DNO3

WK0 45N2O
46N2O

0.182 ± 0.126
0.119 ± 0.110

WK3 45N2O
46N2O

0.131 ± 0.032
0.003 ± 0.061

0.294 ± 0.200
0.040 ± 0.045

0.058 ± 0.065
0.007 ± 0.010

0.069 ± 0.078
0.021 ± 0.027

WK6 45N2O
46N2O

0.145 ± 0.126
0.008 ± 0.012

0.359 ± 0.355
0.072 ± 0.092

0.651 ± 0.189
0.026 ± 0.006

0.391 ± 0.431
0.019 ± 0.015
[CTRL, control; OA, ocean acidification; OW, ocean warming and CC, climate change].
TABLE 6 R2 of final linear regression models with significance of Temperature (TEMP), pH (PH), two-way interaction (TEMP x PH), week (WEEK) and
addition of inhibitor sodium chlorate (NaClO3) for nutrient flux (ammonium NH+

4 , nitrite NO2 and nitrate NO3) [µmol g-1 DW h-1].

R2 TEMP PH TEMPxPH WEEK NaClO3

NH+
4 µmol g-1DW h-1]

0.82 p=0.002 p<0.001 p<0.001 p<0.001 p=0.003

NO�
2 µmol g-1DW h-1]

0.65 p<0.001 p<0.001 p=0.734 p<0.001 p=0.244

NO�
3 µmol g-1DW h-1]

0.83 p=0.459 p<0.001 p<0.001 p<0.001 p=0.524
Significance is indicated in bold.
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bacteria, denitrifiers, produce N2O during anaerobic denitrification in

anoxic environments, comprising the final steps of CND. These three

pathways are considered to be the main oceanic sources of N2O

production, while the main sink is the further reduction of N2O to N2

by (nitrifier) denitrification in sub- or anoxic environments (Bange et al.,

2010). In this study, each of these three N2O producing pathways were

observed. Contrary to Heisterkamp et al. (2013), where only dissected

shells were used in a similar experiment, nitrification apparently did not

play as an important role when whole animals (incl. shell biofilm) were

incubated. Most likely, the presence of the living and digesting animal

itself caused the resulting total N2O production to lean towards a more

prominent inclusion of anoxic or suboxic pathways.

Denitrification of nitrite, targeted by the DNO2 precursor

incubations, was the most dominant pathway of N2O production

by M. edulis in the current climate scenario, corroborating the

findings of Heisterkamp et al. (2013). Production of N2O in the

presence of NaClO3, actively preventing the oxidation of nitrite to

nitrate, was on average an order of magnitude higher than without the

inhibitor present. As such, we suggest that the availability of nitrite

might be a limiting factor in the production of N2O and that

incomplete (nitrifier) denitrification of nitrite, where further
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reduction to N2 has not (yet) happened, is indeed a major pathway

of N2O production byM. edulis and its biofilm. An overestimation of

said denitrification due to anaerobic ammonium oxidation

(anammox), where ammonium oxidises to N2 using nitrite under

anoxic conditions, was assumed negligible since no anammox activity

has been associated with mussel biofilms before (Marzocchi

et al., 2021).

Denitrification of nitrite can be associated with the presence of M.

edulis in different ways, both in and on the organism. The incomplete

denitrification of nitrite to N2O by denitrifiers in the mussel’s anoxic

digestive system could be the result of a high lysozyme activity, cutting

short the denitrification pathway (Birkbeck and McHenery, 1982;

Heisterkamp et al., 2013; Gárate et al., 2019). Additionally, this last

step in the nitrifier denitrification pathway has only be attributed to a

certain genus of nitrifying bacteria, Nitrosomonas sp., whose biofilm

presence and/or (differential) activity is related to oxygen and nutrient

availability (Schramm et al., 2000; Shrestha et al., 2002) and substrate

affinity and availability (Foesel et al., 2008; Zhu et al., 2013). With the

variable oxygenation of the shell biofilm measured in this study in mind,

this could further explain why the produced N2O is not always readily

reduced to N2 in a heterogeneous microbial biofilm on M. edulis’s outer
FIGURE 4
45N2O (circles) and 46N2O (triangles) emission (nmol L-1 g-1DW ± SE shaded area) of M. edulis before seawater manipulations [WK0] and after three [WK3]
or six [WK6] weeks of manipulations with 3 N-tracers targeting nitrification [NIT], nitrifier denitrification [DNO2] or coupled nitrification-denitrification
[DNO3], in which NH+

4 , NO
�
2 or NO�

3 act as a precursor to N2O emission, respectively, in 4 experimental treatments [CTRL: control, OA: ocean
acidification, OW: ocean warming and CC: climate change]. Missing data due to faulty GC-IRMS. Note difference in scale.
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shell. However, as the N2O flux was several orders of magnitude lower

than that of the other measured N species (NH+
4 , NO

�
2 and NO�

3 ),

reduction of N2O to N2 must still have occurred to close the nitrogen

budget in the experimental incubations. Research by Marzocchi et al.

(2021) suggests that mussel-associated N2 production, although currently

often overlooked, might be substantial. The high CTRL nitrate

consumption rates observed in this study comply with this assumption.
4.2 Climate change effects on
N2O production

By nature, adult blue mussels have a wide thermal tolerance

window (e.g. Seuront et al., 2019; Kamermans and Saurel, 2022). Since

this species has adapted to survive in such variable conditions, this

study opted to push towards the boundaries of its natural tolerances

in order to get the most realistic stress response to variable climate

scenarios. In the North Sea, the highest mean temperatures occur over

the summer period (when organisms were sampled) when the mean

seawater pH is fairly stable (LifeWatch Belgium, 2015), meaning the

adopted climate manipulations should elicit a relatively accurate

physiological response outside M. edulis’ natural tolerances. Results

show that the effects of seawater temperature rise and ocean

acidification were generally of an antagonistic nature. N2O

production rates of whole animals, as well as the production rate of

dissected shells with an intact microbial biofilm, significantly

increased with a higher temperature and significantly decreased in
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an acidified environment (whole animals) or a combined high

temperature/low pH climate change environment (biofilm).

These experiments were set up to mimic North Sea summer

conditions in CTRL, with additional manipulations in terms of

temperature and/or pH levels according to the experimental

treatments. Although this summer setting is the most relevant in

terms of studying potential stress responses due to climate change, the

temperature-dependent nature of physiological and microbial

processes suggest that the absolute values of these responses would

differ between the seasons (Lesser et al., 2010; Boulêtreau et al., 2012;

Múgica et al., 2015). However, whether the observed patterns and

nature of the interaction between ocean warming and acidification

varies seasonally remains to be confirmed.

The increasing effect of elevated temperature on N2O production

rates byM. edulis and its associated shell biofilm are most likely linked

to the mussel’s concomitantly increasing filtration rates in

combination with temperature-induced increased biofilm activity.

As bivalve filter feeding increases with temperature (Kittner and

Riisgård, 2005; Ong et al., 2017; Voet et al., 2021), more

denitrifying microorganisms might be ingested and/or the

concentration of available N precursors in the digestive system

might increase. In addition, general microbial activity increases

with warmer temperatures (Kroeze and Seitzinger, 1998; Boulêtreau

et al., 2012). This study showed that even though the N2O production

by whole animals increased with temperature, the relative

contribution of the microbial shell biofilm remained stable over

time in the ocean warming [OW] scenario. Indeed, this would
FIGURE 5

Vertical oxygen profiles of the microbial biofilm on Mytilus edulis shells, 1500µm above the shell surface, before seawater manipulations started (WK0) and
after three and six weeks of manipulations (WK3 and WK6, respectively) in each experimental treatment [CTRL: control, OA: ocean acidification, OW: ocean
warming and CC: climate change]. Profiles were measured on three random locations per replicate M. edulis shell (n=3) per timepoint and treatment.
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suggest a similar positive effect of warmer environments on both the

animal’s and the shell biofilm’s N2O producing capacities. Moreover,

increased feeding rates will result in higher biodeposition rates and in

turn, a higher nutrient load, potentially further stimulating (de)

nitrification activities in the microbial shell biofilm.

On the other hand, the relative contribution of the shell biofilm to

N2O production evidently decreased over time in both acidified

scenarios, on top of the overall decrease in whole animal N2O

production rates. A negative effect of ocean acidification on the

marine nitrogen cycle was previously observed by Beman et al.

(2011), reporting reduced oceanic nitrification at even relatively

small experimental pH reductions (0.05-0.14). Together with a

profound effect of reduced pH on the community composition of

marine biofilms (Espinel-Velasco et al., 2021), this could potentially

explain the observed lower N2O production rates under acidified

conditions, as well as the decreasing relative contribution of the

microbial biofilm. The latter is most likely also tied to a thinner,

patchier or even disappearing shell biofilm, as is suggested by this

study’s significantly affected oxygen microprofiles in both acidified

conditions. The microprofile analysis indeed confirmed an adverse

effect of pH on the metabolic activity (respiration) and composition of

the shell biofilm. In both acidified treatments, perceived biofilm

thickness considerably decreased, as well as the net biofilm oxygen

consumption. Furthermore, net oxygen consumption at the shell

surface sometimes dropped to (near) zero under acidified

conditions, indicating either an incomplete biofilm cover or a

profound shift in functional metabolism and/or the biofilm’s

microbial makeup. A more in-depth functional analysis of M.

edulis’ shell biofilm under climate change conditions is described in

more detail by Dairain et al. (manuscript in preparation)2. Nitrifier

denitrification, shown to be the dominant N2O producing pathway

for M. edulis (e.g. this study and Heisterkamp et al., 2013), gained

even more importance in the OA treatment. Affirmingly, this could

(in part) be a result of the increasing prevalence of suboxic conditions

provided within a thinning and/or receding shell biofilm.
4.3 Towards ecosystem-level effects

The blue mussel is by far the most abundant mollusc species

colonising North Sea artificial hard substrates (Coolen et al., 2020)

and these numbers will multiply even further by planned co-location

strategies involving offshore wind farms and bivalve mariculture

(Schupp et al., 2019; MSP, 2020; Steins et al., 2021). Considering

the prevalence of these organisms and the potential biofilm-substrate

they provide are on the rise, their role in the local emission of the

potent GHG nitrous oxide could be noteworthy and a valuable

research topic. On the other hand, this study also suggested that

reduction of this GHG to inert N2 could be prevalent in or around

these mussels, as was the case in other recent mussel microbiome

research (Marzocchi et al., 2021). This would suggest that colonising
2 Dairain, A., Voet, H. E. E., Vafeiadou, A.-M., de Meester, N., Rigaux, A., van

Colen, C., et al. (manuscript in preparation). Structurally stable but functionally

disrupted marine epi-microbial communities under a future climate change

scenario: impact on the nitrogen cycle.
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and aquaculture mussel communities could play a role in the removal

of nitrogen from the water column, actively counteracting marine

eutrophication. Contrary to climate change-induced changes in (i.a.)

survival or ecophysiology of blue mussels (Voet et al., 2021), the

antagonistic effects of temperature and pH on N2O production

described in this study would most likely not amount to large-scale

enhancements of future mussel-associated N2O emissions. With the

expansion of the offshore renewable energy effort in a necessary

attempt to abate GHG emissions causing global climate change,

insights such as described in this study are paramount.

Complementary, marine climate science would benefit greatly from

further research into the link between impacts of future climate effects

on current marine communities and the potential effects of

adaptation and ecophysiological acclimatisation over longer

time periods.
5 Conclusion

The blue mussel Mytilus edulis and its microbial shell biofilm

produce N2O through three potential pathways, i.e. nitrification,

denitrification (CND) and nitrifier denitrification (using

ammonium, nitrate and nitrite as a precursor, respectively), but

nitrifier denitrification proved to be the main pathway. The relative

importance of these pathways and the relative contribution of the

shell biofilm to the blue mussel’s total N2O production, as well as the

biofilm thickness, metabolic activity and coverage are all affected by

warming, acidification, or the combination of both. The effects of

temperature and pH were often of an antagonistic nature, predicting a

relatively small net effect on local N2O production in future climate

environments. In a future setting with increasing blue mussel

densities, such as proliferating offshore wind farms in possible

multifunctional co-use with bivalve mariculture, animal-associated

N2O and N2 production will play a major role in local nitrogen

cycling and have potential knock-on effects on local greenhouse gas

emissions, eutrophication levels and bioavailable nitrogen

concentrations. An understanding of the underlying pathways and

inner dynamics of the OWF- and aquaculture-bound N cycling will

therefore be indispensable to face and mitigate the additional impact

of a changing marine climate.
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