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ABSTRACT 

Energy-based biodiversity hypotheses suggest that lower annual variation, 

higher cumulative, and higher minimum energy flux into an ecosystem should each 

support higher biodiversity. Satellite derived energy indices support these general 

hypotheses for terrestrial taxa. However, these hypotheses have not been broadly 

tested in marine systems. Here, we calculate five different marine versions of these 

energy indices with satellite data. These are photosynthetically available radiation, sea 

surface temperature, chlorophyll-a, primary production, and benthic flux of particulate 

organic carbon. We paired these five different marine proxies for energy indices to 

global fish species richness data in order to be the first study to test the three energy 

biodiversity hypotheses in the marine environment. Results indicated that for marine 

fishes, energy indices based on photosynthetically active radiation, sea surface 

temperature, primary production, and benthic flux of particulate organic carbon are 

broadly consistent with the three energy hypotheses. Our findings show that these 

biodiversity theories may be applicable in marine systems and indicate that 

fundamental underlying drivers of biodiversity on Earth are not limited by the marked 

differences between terrestrial and marine environments. 
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Chapter 1 

INTRODUCTION 

Global biodiversity conservation is a major concern among scientists, 

governments, and nongovernmental and intergovernmental organizations such as the 

United Nations, the Intergovernmental Platform on Biodiversity and Ecosystem 

Services (IPBES), the Ocean Health Index, and the International Union for 

Conservation of Nature (IUCN)). The United Nations Convention on Biodiversity 

released a framework document in January 2020 that calls for urgent changes and sets 

ambitious goals to “live in harmony with nature” by 2050, and includes the target for 

“Genetic diversity [to be] maintained or enhanced on average by 2030, and for 90% of 

species by 2050” (Convention on Biological Diversity 2020). Biodiversity is 

considered a critical resource for several reasons. Maintenance of biodiversity is 

associated with ecosystem stability (Pasari et al. 2013; McCann 2000) which can be 

explained as the “portfolio effect”: the more diversified assets are, the more resilient 

the entire system will be. Biodiversity loss has been found to degrade ecosystem 

services; for example, fisheries are more likely to collapse, water quality decreases, 

and ecosystems are less likely to recover from perturbations (Worm et al. 2006).  

It is well documented that human actions are rapidly changing Earth’s climate, 

ecosystems, and species distributions (Kareiva et al. 2007; O. E. Sala and Jackson 

2006; Brook, Sodhi, and Bradshaw 2008). Approximately 50% of the world’s forests 

have been removed, and converted into grazing or cropland (Millennium Ecosystem 

Assessment 2005). Some researchers have expressed recent loss of species as the 6th 
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mass extinction, as 322 species of terrestrial vertebrates have become extinct and 67% 

of monitored invertebrate populations showed decline in the last 500 years (Dirzo et 

al. 2014). More than 16,000 species of animals and plants are currently considered 

“threatened” by the International Union for Conservation of Nature (IUCN 2020). In 

the ocean, approximately one-third of fisheries stocks are overfished, 75% of coral 

reefs are threatened, and some of the richest regions of biodiversity are located in 

areas most affected by climate change (Kubiak 2019; Lauretta Burke et al. 2011; 

Ramírez et al. 2017). Additionally many economically important species have shifted 

their ranges both latitudinally and vertically in recent years in response to temperature 

changes. (Nye et al. 2009; US EPA 2016; Poloczanska et al. 2013; Oremus et al. 

2020).    

Because of the anthropogenic threats to marine biodiversity, it is important 

discover, monitor, and predict it. Marine biodiversity studies are challenging, due to 

the remoteness and inaccessibility of sample sites, the immense area, volume, and 

fluid nature of the oceans, and the movements of marine organisms. One- to two-thirds 

of the predicted 1 million total marine species have yet to be identified (Appeltans et 

al. 2012). Despite these issues, researchers have made progress in documenting marine 

diversity. For example, the Census of Marine Life was a 10-year (2000-2010) 

international ocean sampling effort which generated of over 45 million observations of 

marine species that are compiled into the Ocean Biogeographic Information System 

(OBIS), an open-access repository (Census of Marine Life 2010). The Census of 

Marine Life identified over 1200 new marine species (Penman, Pearce, and Morton 

2011; O’Dor, Miloslavich, and Yarincik 2010; Ellis et al. 2011; Priede et al. 2013). 

This important work inspired the creation of the US Marine Biodiversity Observation 
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Network (MBON), co-sponsored by the US Integrated Ocean Observing System, 

NOAA, NASA, Office of Naval Research, and the Bureau of Ocean Energy 

Management. MBON is a collaborative network of scientists and resource managers 

that works to integrate existing data and novel studies to increase understanding of 

global biodiversity and ecosystem functions. They have made a variety of data 

available via an online portal (https://mbon.ioos.us/), which allows for comparisons 

between real-time and historical data, and across disciplines (physical, chemical, 

biological).  

Comprehensive efforts to collect and standardize global biodiversity data 

facilitate the ability of researchers to develop models that predict biodiversity. For 

example, spatial regression analysis on the distribution of 13 marine taxonomic groups 

found that satellite-measured sea surface temperature was a significant predictor of the 

spatial richness distribution all groups, while yearly primary productivity (VGPM) 

was a significant predictor of a few taxa (non-oceanic sharks, pinnipeds, cetaceans, 

and euphausiids) (Tittensor et al. 2010). Additionally, machine learning has been used 

to create predictive models of terrestrial and ocean diversity based on several 

environmental factors as drivers, such as satellite-measured temperature, primary 

production (proxied by chlorophyll-a), sunlight, and topography/bathymetry (Gagné et 

al. 2020). This approach indicated that bathymetry (depth) is the strongest predictor of 

marine biodiversity, followed by water temperature and sunlight.  

While various studies provide interesting insight on the statistical linkages 

between marine biodiversity and environment, they do not directly test existing 

biodiversity theories in the global marine environment, which is the focus of this 

manuscript. Here, we test three energy-related hypotheses that link energy to the 
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maintenance of biodiversity, and collectively refer to them in this study as the energy 

biodiversity hypotheses:   

1) Available Energy Hypothesis  

2) Environmental Stress Hypothesis  

3) Environmental Stability Hypothesis   

The Available Energy Hypotheses proposes that greater annual cumulative 

energy availability facilitates species richness, and it is supported by both in situ and 

in vivo studies. For example, the annual net primary productivity on islands around the 

world is positively related to resident bird diversity, predicting 70-80% of island bird 

richness (Wright 1983). In the lab setting, increasing food resources in Drosophila 

microcosm experiments yield both higher abundance of individuals and species 

richness in these flies (Hurlbert 2006). Secondly, the Environmental Stress Hypothesis 

proposes that higher minimum available energy facilitates higher species richness, by 

meeting the minimum physiological tolerance requirements of various species, 

allowing more species to persist. There is evidence that climactic tolerance can limit 

species distributions (Currie et al. 2004). For example, winter boundaries of North 

American bird species correspond to their metabolic needs. The Northern Boundary 

Metabolic Rate is 2 to 2.6x the Basal Metabolic Rate, indicating a physiological limit 

that determines a spatial range boundary for these species (Root 1988). In French lake 

fishes, increased mean annual air temperature facilitates species richness by allowing 

populations of species with specialized niches to persist (Mason et al. 2008). Lastly 

the Environmental Stability Hypothesis proposes that lower intra-annual variability of 

available energy facilitates richness. For example, strong seasonal changes can create 

resource bottlenecks. In Australia, annual dry seasons decrease food availability 
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(insects, nectar, and fruit) for bird species, and therefore decrease bird abundance and 

richness (S. E. Williams and Middleton 2008).  

Terrestrial biodiversity researchers have investigated these three hypotheses to 

examine the effects of energy availability on terrestrial biodiversity, called the 

Dynamic Habitat Indices (Hobi et al. 2017; Radeloff et al. 2019). The DHIs were 

calculated (annual variation, cumulative, and minimum) for global terrestrial 

ecosystems with five different remote sensing proxies for energy. These include the 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), 

Fraction of Photosynthetically Active Radiation absorbed by vegetation (fPAR), Leaf 

Area Index (LAI), and Gross Primary Productivity (GPP). These products were chosen 

because vegetation productivity is a proxy for food resource availability to animals, 

and productivity measures are known predictors of species richness (Mittelbach et al. 

2001). NDVI and EVI are measurements of green land cover, or the 

photosynthetically active biomass in a given area (Tucker 1979). LAI is defined as the 

ratio of one-sided leaf area per unit of ground area, and fPAR is a related parameter as 

it is the fraction of Photosynthetically Active Radiation absorbed by that leaf area 

(Myneni, Nemani, and Running 1997). Finally, GPP is a calculation of actual 

production from photosynthesis, in milligrams of Carbon. Terrestrial GPP values are 

calculated by NASA using MODIS-Aqua and Terra data (RUNNING et al. 2004).  

These terrestrial energy indices were compared to species richness maps for 

North American breeding bird species and to global ranges of amphibians, mammals, 

and resident birds species (Hobi et al. 2017; Radeloff et al. 2019). In the North 

America study, the relationship of richness of breeding birds in 6 functional guilds 

from the North American Breeding Bird Survey was compared to DHIs in 85 



 6 

ecoregions. Univariate and multiple regression models showed that different 

functional guilds were better predicted by different energy proxies. GPP had the 

strongest relationship with the most guilds, but Leaf Area Index was most strongly 

associated with woodland bird species and grassland species were most strongly 

associated with fPAR. In the 2019 study, the energy proxies were calculated globally 

and compared to species range maps of amphibians, mammals, and birds. Through 

univariate and multiple regression models, the DHIs based on GPP correlate well with 

global species richness, predicting half to two-thirds of the distributions, depending on 

taxa. These studies showed agreement with the three hypothesized fundamental 

relationships of energy to diversity (negative relationship of variation to diversity, and 

positive relationships of cumulative and minimum energy to diversity). These results 

indicate support of the energy biodiversity hypotheses to elucidate the underlying 

mechanisms driving diversity on land. Theories linking energy and biodiversity are 

not inherently limited to terrestrial ecosystems, but these three hypotheses have not yet 

been tested in the global marine environment. Testing these hypotheses in the marine 

systems may indicate whether or not there are universal biodiversity drivers on Earth.  

Terrestrial and marine ecology are sometimes considered to be incomparable, 

as these ecosystems have several important differences. The most basic difference is 

the density of the fluid medium. The greater density of water allows organisms in the 

oceans to be supported mid-water, which means they do not necessarily need to be 

associated with a hard substrate. This allows for the development of rich open water 

pelagic habitats and ecosystems. In contrast, most terrestrial taxa are highly associated 

with hard substrate. Due to the lower density of air, only some terrestrial species fly, 

and all of them eventually return to a hard substrate as part of their life history. 
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Another major difference in marine and terrestrial systems is the availability of water. 

Water is not limiting in marine systems like it is in terrestrial systems, where 

distribution of water is associated with biodiversity patterns of many plants and 

animals (Hawkins et al. 2003). The ocean ecosystem is considered to be much more 

“open”, as currents facilitate transport of materials such as nutrients, plankton, and 

larvae to relatively great distances compared to the terrestrial environment 

(Strathmann 1990; Denny 1993). Many marine taxa have larval offspring, which are 

subject to being driven spatially by physical water flows because of their small size 

and therefore low Reynolds number. Larvae dispersal of invertebrates and fish to great 

distances (on the order of 100 km) can lead to decoupling of offspring from adult 

habitats, in contrast to the limited dispersal of most terrestrial vertebrate animals 

(Shanks, Grantham, and Carr 2002; Waser and Jones 1983). The higher 

interconnectedness of ocean environments and greater distance of dispersal leads to 

lower endemism as compared to land. The smallest endemic areas in the ocean are on 

the order of 10s of km2, while on land endemic areas can be a few 100 m2 (Boeuf 

2011).  

The temporal scales of physical and biological processes in terrestrial and 

marine systems are also vastly different (Steele 1991). In terrestrial systems, the 

primary producers are generally much longer lived (months-centuries) than in the 

marine systems (weeks-months), but the rate of change of change for physical 

atmospheric features is faster than that in the ocean (ex. weather fronts vs eddies) 

(Steele 1978; 1991). The effects of climate change also differ between the two 

environments, as the median rate of warming from 1960 to 2009 was three times faster 

on land than in the oceans (Burrows et al. 2011), but climate-driven leading edge 
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expansion of marine species ranges have been ~10x faster than terrestrial shifts 

(average of 72 km/decade for marine organisms) (Poloczanska et al. 2013).  

Despite their differences, there are also important similarities between 

terrestrial and marine ecology. At the level of macroecology, there is a general 

decrease in diversity with increased latitude in both environments (Latitudinal 

Richness Gradient), indicating some base level of similar underlying functionality 

(Hillebrand 2004). In terrestrial and marine ecology, there are analogous community 

structures, like coral reefs and tropical rainforests where the rarity and dispersion of 

conspecifics is driven by predation by specialized natural enemies (Connell 1971).  

There are also analogies between taxa and functional groups of species. Out of the 31 

currently identified animal phyla, 19 occur both in terrestrial and marine environments 

(Boeuf 2011), such as mollusks, arthropods, annelids, etc. Similar functional groups 

occur in both environments, including primary producers, consumers, and top 

predators. Some behavioral interactions are markedly similar, such as Dugong 

avoidance to predator Tiger sharks which is strikingly similar to Elk and Wolves 

(Wirsing and Ripple 2011).  

While the marine environment is more subject to material and larval transport, 

it is not homogeneous. Just as the terrestrial environment has a variety of ecoregions 

with differing properties, the ocean also has bottom-associated ecoregions (reef, kelp 

forest, etc.) and open ocean ecoregions, also called biogeochemical/biogeographic 

provinces or seascapes (Oliver and Irwin 2008; Reygondeau et al. 2013; Kavanaugh et 

al. 2014).  These regions can be classified using remote-sensed data, which highlights 

their dynamic boundaries. Marine community structures can follow seascape 

delineations, with some organisms such as sturgeon preferentially inhabiting their 
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seascape of choice (Gómez-Pereira et al. 2010; Breece et al. 2016; Montes et al. 

2020). Furthermore, geographical speciation is common in the oceans as well as in 

terrestrial systems (Mayr 1954; Palumbi 1994; Dawson and Hamner 2003; Meyer, 

Geller, and Paulay 2005).  

These factors indicate that marine organism distributions are influenced by 

regional environmental patterns, just as terrestrial ones are. However, while the 

fundamental environmental drivers of terrestrial diversity are water and energy (Currie 

1991; Allen, Brown, and Gillooly 2002), water is a non-limiting resource in the 

marine environments, suggesting that energy may be especially important for marine 

biodiversity patterns. This reasoning leads us to hypothesize that energy biodiversity 

hypotheses may be broadly applicable in the marine environment. Indeed, there is 

evidence that energy in the form of temperature or primary production drives diversity 

patterns in the marine environment (Roy et al. 1998; Kerr and Packer 1999; Tittensor 

et al. 2010; Gagné et al. 2020). However the three biodiversity energy hypotheses 

have not been tested in the oceans, which is what we undertake within this study.  
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Chapter 2 

METHODS 

Fish richness 

While biodiversity metrics can be calculated in a variety of ways, we decided 

to use species richness as the biodiversity metric for this study, which is defined by the 

sum of species within a given area. Global marine fish species richness was calculated 

from a database of fish species occurrence data with 55 km resolution, provided by 

collaborator / committee member Dr. Gabriel Reygondeau. To construct the database, 

he undertook several collection and cleaning steps. The name of each species was 

checked in the World Register of Marine Species (WoRMS) to identify any species 

synonyms. The occurrence and metadata for each species was amassed from in situ 

sampling efforts (Ocean Biogeographic Information System, the Global Biodiversity 

Information Facility, FishBase, International Union for the Conservation of Nature). 

The metadata included habitat designations (pelagic, demersal, etc) and the depth 

range of the species’ occurrence.  These steps resulted in occurrence maps for over 

18,000 fish species, however some species occurrence was based solely on point 

observations, while other species have had their ranges defined by experts. In situ 

observed diversity is highly subject to sampling biases depending on the type of 

sampling gear and sampling effort. So, we decided to retain only the expert-defined 

range maps (4000 spp) for this study, which therefore represents the potential fish 

biodiversity per pixel.  

To obtain the richness metric for this study, we summed the expert-defined fish 

ranges per pixel, for both the full species list (“all-fish”) and habitat subsets. The 

subsets were based on metadata for each species where it was available. Our “pelagic 
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group” (500 spp) included the metadata categories of Pelagic, Bathypelagic, Pelagic-

Oceanic, and Pelagic-Neritic. Our “demersal group” (1642 spp) included the Demersal 

and Bathydemersal categories, and should be representative of fish that do not directly 

interact with surface energy signals. Our “reef fish group” included only reef fish 

shallower than 50 m (1274 spp) so it is representative of reef fish which likely do 

interact with surface energy signals. Because we excluded deep reef fish, we did not 

use the reef fish data in the offshore region tests described later.  

Satellite data 

We calculated five different available energy proxies using data from NASA 

MODIS Aqua 9 km resolution, 8-day composite products 

(https://oceandata.sci.gsfc.nasa.gov/directaccess/MODIS-Aqua/Mapped/8-Day/9km/). 

Photosynthetically available radiation, sea surface temperature, chlorophyll-a, primary 

production via the Vertically Generalized Production Model (Behrenfeld and 

Falkowski 1997), and benthic particulate organic carbon flux were the proxies chosen 

as representations of available energy. These proxies can be sorted into two major 

groups, which are radiative/thermal energy (PAR and SST), and metabolic energy, 

which is stored within biological tissues (chlorophyll-a, primary production, and 

POC).  

PAR is defined as the spectrum of visible light from 400-700 nm, which are 

the wavelengths that provide energy to the process of photosynthesis (McCree 1971; 

1972). The MODIS Aqua PAR product utilizes Top-of-Atmosphere radiances in the 

400-700 nm range and an algorithm originally designed for the SeaWiFS satellite 

(Frouin, Franz, and Wang, n.d.) (https://oceancolor.gsfc.nasa.gov/atbd/par/ ). PAR is 
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reported as a rate flux per day (E m-2 d-1), but each of the files represents an 8-day 

composite of data.  

Temperature is generally not a direct energy source for organisms (Huston et 

al. 2003). However, it is positively related to respiration and primary production (Tait 

and Schiel 2013; Davison 1991; Clarke and Johnston 1996). Studies suggest that 

temperature is a driver of global diversity distributions (Latitudinal Diversity 

Gradient) (Currie 1991; J. R. G. Turner 2004; Gillman and Wright 2014), potentially 

due to physiological thermal tolerances of organisms (Currie et al. 2004). Remote 

sensed sea surface temperature is the thermal surface skin temperature of the ocean, 

less than 1mm of water thickness (Donlon et al. 2007; Wong and Minnett 2018) 

(https://oceancolor.gsfc.nasa.gov/atbd/sst/ ), but it is considered to be representative of 

the upper mixed layer of the ocean.  

Chlorophyll-a concentration indicates the presence of primary producers and is 

commonly used to estimate the standing stock of algal biomass (Berkman and Canova 

2007). Ocean chlorophyll can be calculated from an empirical relationship derived 

from in situ measurements of chlorophyll and blue and green remote sensing 

reflectances. The MODIS-Aqua chl-a product combines the OCX algorithm and Hu’s 

color index (O’Reilly et al. 1998; Hu, Lee, and Franz 2012) 

(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ ).   

Measurements of chlorophyll are a proxy for biomass, not necessarily primary 

production (carbon fixation rates), so ocean primary production was calculated using 

the Vertically Generalized Production Model (Behrenfeld and Falkowski 1997), which 

has an output of mg C m-2 d-1 and includes production vertically to the euphotic depth. 

The Aqua products used for this calculation were SST, PAR, Chl-a, and euphotic 
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depth (Lee et al. 2007), along with hours of daylight calculated by the R package 

“photobiology” (Aphalo 2015).  

Particulate organic carbon (POC) is defined as suspended and sinking particles 

greater than or equal to 0.2µm, and is comprised of both allochthonous and 

autochthonous materials including live bacteria and detritus such as fecal pellets, dead 

cells, and shells (Kharbush et al. 2020).  Sinking POC is the main export flux of 

surface primary productivity to the deep ocean, a mechanism known as the “biological 

pump”, which exports an estimated 4-12 Pg of Carbon per year to the deep ocean 

(Eppley and Peterson 1979; Laws et al. 2000; DeVries and Weber 2017). These 

particles are either sequestered in benthic sediments or become an important food 

source for pelagic or benthic heterotrophs (J. T. Turner 2015; Longhurst and Glen 

Harrison 1989). Here, benthic POC was calculated with surface calculations of POC 

(https://oceancolor.gsfc.nasa.gov/atbd/poc/ ) and the Martin Curve (Martin et al. 

1987). The Martin Curve is an empirically derived power law equation with b 

parameter values specific to ocean basins:  

Flux at depth Z = (POC flux at 100 m) * (Z/100)-0.82 

We made the assumption that the satellite-measured surface value of POC was 

equal to the 100 m flux. To calculate the global benthic flux of depths greater than 100 

m, we used a global average of the b parameter of -0.82 (William M. Berelson 2001), 

and bathymetry values from the Global Multi-Resolution Topography Data Synthesis 

(https://www.gmrt.org/) as the Z parameter.  

Because the fish richness dataset represents the average fish biodiversity 

conditions in the oceans over the full record of available data over time, the energy 

proxies needed to be transformed to average conditions as well. Average yearly energy 
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curves were created for each of the energy proxies by averaging the corresponding 8-

day composite files over the available data (2003-2019). Importantly, as a year is not 

equally divisible by 8 days, the 46th time period is a 4- or 5- day composite and was 

excluded from each climatological year when the energy indices were computed. For 

each average energy curve, the coefficient of variation, cumulative, and minimum 

values were calculated. Because these data are satellite derived, they are intrinsically 

limited by seasonal availability of incident sunlight. Because of this, our analysis is 

limited between -50 and 50 degrees latitude to avoid areas in the polar regions which 

are often missing data.   

Additionally, we considered the difference between coastal and open ocean 

spatial complexity. Coastal regions generally have higher environmental variability, 

while the open ocean has larger areas of similar environmental factors. For example, 

in coastal regions such as the Sea of Japan, surface ocean temperature and salinity 

correlation scales range from approximately 200-450km, and in Buzzards Bay, 

Massachusetts the chlorophyll scale is around 100 km and temperature scale is 250-

340 km (Chu, Guihua, and Chen 2002; Jossart et al. 2020). In contrast, the scale of 

thermal signals in the tropical Pacific are up to 1500 km (Sprintall and Meyers 1991; 

White and Bernstein 1979; Molinari and Festa 2000), and sea surface salinity has 

homogeneous scales of more than 2000 km in the tropics (Tzortzi et al. 2016). 

Therefore, we defined a “shallow” and “offshore” spatial region and analyzed them 

separately. The shallow region is defined as the coastal regions with bathymetry < 200 

m, while the offshore region is defined as ocean >500 km from the coast. We retained 

the 55 km grid size for the shallow region and rescaled the offshore region to a coarser 
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grid cell size of 550 km so that the grid cells in each region represent a rough average 

of 2 to 4 observations per homogeneous spatial unit of ocean. 

Data matching and statistical analysis 

The fish richness and energy data maps were not initially generated on the 

same raster scale. In order to pair pixels of richness and energy data together spatially, 

the energy index datasets were interpolated (exponentially weighted average) to match 

the 55 km and 550 km grids. Once the energy index and fish data were matched to the 

same pixel scale, the raster data could be matched spatially 1:1 and plotted in x-y scale 

(2D density plots). Data were log10 transformed (fish richness in all cases, and most 

of the energy data, see figures) to meet normality assumptions for statistical analysis 

(model II regressions – Ranged Major Axis method, npermutations = 99 ) (Legendre 

2018). Model II regression was chosen as it minimizes the residuals in both the x and 

y direction, which is appropriate when there is uncertainty in both variables. This 

study uses measured environmental data as the x variable, not a controlled 

experimental condition, so Model II regression is appropriate. In the Ranged Major 

Axis method, the variables are standardized by their ranges, and then the sum square 

of lines perpendicular to the regression line are minimized. This method is appropriate 

for conditions where the scale and/or units of the variables differ, as is the case with 

the data in this study. The regressions were considered significant when p < 0.01. 

Additionally, Pearson correlation matrices were generated between all the energy 

proxies in the shallow and offshore region datasets.  
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Chapter 3 

RESULTS 

Fish richness 

When all of the fish ranges were summed to create the richness metric, global 

patterns in biodiversity can be observed (figure 1). In the shallow region (figure 1a), 

the latitudinal richness gradient can be seen, as highest richness is observed in 

equatorial regions, and decreases toward the poles.  The offshore region (1b) 

highlights the pattern where highest richness is also generally found near to shore and 

decreases with increased distance from coast.  
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Figure 1 All-fish richness in the shallow (a) and offshore subsets (b). Black dotted 
lines indicate -50 to 50 degrees latitude, the extent of the dataset that was 
used in regression analysis. The global latitudinal richness gradient can 
be seen clearly in the shallow region, with higher species richness in low 
latitudes. Additionally highest richness is found in the coastal regions, 
with decreased richness offshore. 

Satellite data 

For visualization purposes, the energy indices were plotted in Red-Green-Blue 

color scale, to visualize the spatial patterns of the energy indices. Variation in energy 

is plotted in red, cumulative in green, and minimum in blue. Figures 2 and 3 show 

PAR and benthic POC energy indices (see supplemental figures for the remainder of 

the energy figures). PAR is dominated by a latitudinal signal, where cumulative and 

minimum values are highest in low latitudes, and variation is highest in high latitudes. 

However other features like the intertropical convergent zones that are prone to 

persistent cloud cover display lower levels of cumulative and minimum PAR values.  

In contrast, the benthic POC map does not have an apparent latitudinal gradient, but 

rather a depth-driven pattern. Higher cumulative and minimum values occur in 

shallower areas, such as continental shelves and mid-ocean ridges. Highest variation in 

benthic POC is seen near river outflows, such as the Amazon River in South America 

and Congo in western Africa.  
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Figure 2 Energy indices calculated from Photosynthetically Available Radiation 
(E m-2). Annual variation in PAR (a) is highest in temperate and polar 
regions. Annual cumulative (b) and annual minimum (c) in PAR is 
highest in tropical and subtropical regions (b), although regions of high 
cloud cover are evident in equatorial regions. Combining these indices 
into a RGB representation shows where each of the different indices 
dominate the signal (d). White dotted lines indicate -50 to 50 degrees 
latitude, the extent of the dataset that was used in regression analysis.  
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Figure 3 Energy indices calculated from benthic POC (mg m-2). Annual variation 
in benthic POC (a) is highest is seen near large river outflows (ex. 
Amazon and Congo) and monsoonal regions in the Indian Ocean. Annual 
cumulative (b) and annual minimum (c) in benthic POC both have their 
highest values in coastal regions.  Combining these indices into a RGB 
representation show where each of the different indices dominate the 
signal (d). White dotted lines indicate -50 to 50 degrees latitude, the 
extent of the dataset that was used in regression analysis.  

Correlation matrices were generated for all of the aspects of the energy proxies 

in the shallow and offshore region datasets (Figures 4 and 5). As mentioned 

previously, there are two groups of energy variables that are associated with each 

other (radiative/thermal and metabolic energy), and the energy proxies were found to 

generally correlated to each other within these groups. The first group are the PAR and 
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SST indices, which are mechanistically related through the radiative transfer theory. 

The second group are the Chlorophyll, VGPM, and benthic POC indices which are 

related through the production and export of organic matter. In the shallow region 

(Figure 4), PAR and SST are positively correlated in all three categories. Chlorophyll, 

VGPM, and benthic POC are also positively correlated to each other. Variation in 

VGPM is somewhat correlated to variation in PAR and SST, as both are inputs into 

the VGPM algorithm, but otherwise the two groups of energy proxies are not strongly 

correlated, indicating that they may be good independent energy proxies.  

In the offshore region (Figure 5), PAR and SST are strongly correlated in the 

cumulative and minimum groups but not in variation. VGPM is positively correlated 

to variation in PAR and cumulative Chlorophyll (> 0.7), but all other correlations are 

relatively weak.  

 

 

Figure 4 Correlation matrix (Pearson) of energy proxies in the shallow region 
dataset. PAR and SST are strongly positively correlated to each other, but 
not to the other proxies.  Chlorophyll, VGPM, and Benthic POC are often 
positively correlated to each other. PAR and SST have slight negative 
correlation values to Chl, VGPM, and Benthic POC in the cumulative 
and minimum categories, and slight positive correlation in the variation 
category.  
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Figure 5 Correlation matrix (Pearson) of energy proxies in the offshore region 
dataset. The most highly correlated variables are PAR and SST in the 
cumulative and minimum categories. VGPM is positively correlated with 
variation in PAR and cumulative Chlorophyll. All other correlations are 
relatively weak. 

Data matching and statistical analysis 

Pixels of fish richness data and energy index data were paired with Ranged 

Major Axis regression lines overlaid, to visualize the relationship between the 

variables. Figure 6 shows a set of examples using the PAR energy indices and the 

shallow region fish richness (all-fish). In each of these cases, the regression was 

significant (p-value < 0.01). They showed a negative relationship of variation in 

energy to fish richness, and positive relationships of cumulative and minimum energy 

to fish richness, which are all in agreement with initial energy biodiversity hypotheses. 

This analysis was undertaken for each pair of energy index and fish richness subsets 

(see supplemental figures).  
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Figure 6 2D density plots of PAR energy vs all-fish richness (Shallow region). All 
data were limited -50 to 50 degrees latitude. Ranged Major Axis 
regression lines shown in gray, all p-values < 0.01. 

Table 1 summarizes the results of all the combinations carried out with the 

shallow region subsets (reorganized to highlight fish groups in supplemental figures, 

table 3). PAR and SST both showed general agreement with the three biodiversity 

hypotheses for nearly all of the fish groups. Only the results for demersal fish versus 

variation in SST energy disagreed with the hypotheses. Chlorophyll and Benthic POC 

followed similar patterns to each other, where the cumulative and minimum results 

only followed the hypothesized results in the Demersal group. VGPM often agreed 

with hypothesized results in the variation and minimum energy categories. Reef fish 

results showed opposite patterns to the demersal fish, even though they are both 

bottom-associated organisms. In Chlorophyll, VGPM, and benthic POC, only the 

variation category followed hypothesized results, and cumulative and minimum 

energy showed significant negative regressions. Contrastingly, all three energy 

biodiversity hypotheses were followed for reef fish in the PAR and SST energy 

proxies. 
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Table 1 Summary of results from shallow region analysis (significance of model 
II regressions, Ranged Major Axis method). Green checkmarks indicate 
significant RMA regressions in agreement with the energy biodiversity 
hypotheses: negative slopes for variation, and positive slopes for 
cumulative and minimum. Red x’s indicate regressions that significantly 
disagreed with the hypotheses, and non-significant tests are marked as 
NS. PAR and SST most often support the hypotheses.  Chlorophyll and 
benthic POC are less often correlated with richness, but notably seem to 
affect the deep fishes (Demersal group). 

    Var Cum Min     Var Cum Min 

PAR 

All-fish ✓ ✓ ✓ 

SST 

All-fish ✓ ✓ ✓ 
Pelagic  ✓ ✓ ✓ Pelagic  ✓ ✓ ✓ 
Demersal ✓ ✓ ✓ Demersal ✕ ✓ ✓ 
Reef ✓ ✓ ✓ Reef ✓ ✓ ✓ 

    Var Cum Min     Var Cum Min 

Chl 

All-fish ✓ ✕ ✕ 

Benthic POC 

All-fish ✓ ✕ ✕ 
Pelagic  ✓ ✕ ✕ Pelagic  ✓ ✕ ✕ 
Demersal ✕ ✓ ✓ Demersal ✕ ✓ ✓ 
Reef ✓ ✕ ✕ Reef ✓ ✕ ✕ 

    Var Cum Min      

VGPM 

All-fish ✓ ✕ ✓      
Pelagic  ✓ ✕ ✓      
Demersal NS ✓ ✓      
Reef ✓ ✕ ✕      

 

 

Figure 7 shows an example of 2D plot results in the offshore dataset (PAR 

energy vs. all-fish species). Once again, this example shows significant results 

supporting all three of the energy biodiversity hypotheses. The summary of all of the 

offshore tests is seen in table 2 (reorganized to highlight fish groups in supplemental 

figures, table 4). Note that these offshore tests exclude reef fish, as our reef group did 

not include the deep reef fishes that would be found in the offshore region. Similarly 

to the shallow results, PAR and SST tests agreed with the biodiversity energy 
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hypotheses in most cases, except with demersal fish. VGPM followed the hypotheses 

in many cases with both surface and deep fishes. Chlorophyll and benthic POC only 

agreed with the hypotheses in the demersal group, with cumulative and minimum 

energy indices. 

 

 

Figure 7 2D density plots of PAR energy vs all-fish richness (Offshore region). 
All data were limited -50 to 50 degrees latitude. Ranged Major Axis 
regression lines shown in gray, all p-values < 0.01.  
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Table 2 Summary of results from offshore region analysis (based on significance 
of model II regressions, Ranged Major Axis method). Green checkmarks 
indicate significant RMA regressions in agreement with the energy 
biodiversity hypotheses: negative slopes for variation, and positive slopes 
for cumulative and minimum. Red x’s indicate regressions that 
significantly disagreed with the hypotheses, and non-significant tests are 
marked as NS. PAR and SST show significance in agreement with the 
energy hypotheses in most cases. The surface signals of PAR and SST do 
not seem to affect demersal fish diversity where VGPM, Chl, and benthic 
POC do affect diversity of demersal fish. 

    Var Cum Min     Var Cum Min 

PAR 
All-fish ✓ ✓ ✓ 

SST 
All-fish ✓ ✓ ✓ 

Pelagic  ✓ ✓ ✓ Pelagic  ✓ ✓ ✓ 
Demersal NS NS NS Demersal NS NS NS 

    Var Cum Min     Var Cum Min 

Chl 
All-fish NS ✕ ✕ 

Benthic POC 
All-fish NS NS ✕ 

Pelagic  NS ✕ ✕ Pelagic  NS ✕ ✕ 
Demersal ✕ ✓ ✓ Demersal ✕ ✓ ✓ 

    Var Cum Min      

VGPM 
All-fish ✓ NS ✓      
Pelagic  ✓ NS ✓      
Demersal ✕ ✓ ✓      
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Chapter 4 

DISCUSSION 

Global biodiversity patterns are often described in terms of the latitudinal 

diversity gradient, which was first recognized in the early 1800s (Roy et al. 1998; 

Allen, Brown, and Gillooly 2002; Hillebrand 2004; Mannion 2020). In both terrestrial 

and marine ecosystems, species richness generally decreases with increased distance 

from the equator. Several explanations have been proposed for the underlying 

mechanisms driving the latitudinal diversity gradient. One explanation for higher 

diversity near the Equator has to do with the physical shape of the Earth and the 

species-area relationship. In general, larger areas of similar composition tend to 

contain higher species richness, (Preston 1962). Low latitudes on either side of the 

Equator represent a large contiguous environment, contrasted to higher latitude 

environments in the northern and southern hemispheres that have a smaller area due to 

the spherical shape of the Earth, leading to increased diversity in the tropics 

(Rosenzweig 1992; 1995). However, the general latitudinal pattern of species diversity 

is often disrupted by other environmental features, such as continental margins, 

topography / bathymetry, and aridity, indicating that environmental conditions and 

resource availability also play a large role in driving global diversity patterns.  

Studies show that diversity of higher trophic level species in both terrestrial 

and marine environments can be correlated to aspects of available energy, which often 

have a latitudinal gradient (Mittelbach et al. 2001; Hawkins et al. 2003; Schipper et al. 

2008; Rombouts et al. 2009; Radeloff et al. 2019; Saupe et al. 2019). Available energy 

can take several different forms and affect trophic groups differently. For example, 

radiation energy from the sun is used directly by photosynthetic organisms (PAR). 
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Hypothetically, higher PAR energy should be associated with increased diversity of 

photosynthetic primary producers. However, higher levels of PAR are not directly 

associated with higher diversity of terrestrial primary producers. Instead, variations in 

terrestrial plant diversity are associated with a combination of the factors of water 

availability and temperature (Currie 1991; O’Brien 1998; Francis and Currie 2003).  

In addition to radiation energy, thermal energy (temperature and 

evapotranspiration), is often used as a proxy for available energy in biodiversity 

studies (Terent’ev 1963; Kerr and Packer 1999; Kerr and Currie 1999; Badgley and 

Fox 2000; Allen, Brown, and Gillooly 2002). These studies show that temperature is 

generally positively correlated with higher speciation.  For example, higher thermal 

energy measurements of mean summer air temperature, annual potential 

evapotranspiration, and mean annual sea surface temperatures are associated with 

greater species richness in British breeding birds, North American Epicauta beetles, 

and eastern Pacific marine gastropods (respectively) (Lennon, Greenwood, and Turner 

2000; Kerr and Packer 1999; Roy et al. 1998). Additionally, both radiation and 

thermal energy are significant drivers in global models of terrestrial and marine 

richness. For example, SST was the only significant driver of diversity across 13 

marine taxa ranging from corals, zooplankton, fish, and mammals (Tittensor et al. 

2010) and temperature and sunlight were in the top three important statistical 

predictors in both global terrestrial and marine biodiversity models (Gagné et al. 

2020).  

Here, we use fish richness to test whether the energy biodiversity hypotheses 

are supported when using PAR or SST as energy proxies in the marine environment. 

We found that the patterns in annual variation, cumulative, and minimum values in 
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PAR and SST meet the expectations of the energy biodiversity hypotheses. In our 

shallow region (Figure 1a), lower variation, higher cumulative, and higher minimum 

values in these energy proxies were associated with higher diversity in almost all of 

the fish groups (all-fish, pelagic, demersal, and reef), except in the case of SST 

variation in demersal fishes (Table 1). In our offshore region (Figure 1b), PAR and 

SST were also congruent with the energy biodiversity hypotheses in the all-fish and 

pelagic groups but were not significant in the demersal group (Table 2). These results 

show that radiative and thermal energy seem to be fundamentally related to global fish 

diversity and provide theoretical support to previous multivariate biodiversity studies 

(Tittensor et al. 2010; Zhang et al. 2019; Gagné et al. 2020). Energy proxies of PAR 

(Figure 2) and SST (Figure 8) energy indicate the general latitudinal patterns of these 

parameters, which may be an explanation for the general latitudinal pattern in species 

richness on Earth. There is a temptation to use latitude in biodiversity model 

development because it is powerful, but organisms don't sense latitude, they sense its 

correlates. Our results suggest that using an average cumulative measurement of 

sunlight or temperature as a latitudinally associated factor may be more appropriate 

instead.  

 Another form of energy that is widely investigated as a diversity driver is 

chemically stored metabolic energy (Hurlbert and Haskell 2003; Wright 1983; 

Balmford et al. 2001; Kaspari, O’Donnell, and Kercher 2000). This encompasses the 

energy in the form of fixed carbon that is stored within body tissues of all organisms. 

There are several different ways to estimate or quantify metabolic energy availability, 

including measurements of the standing stock of chlorophyll biomass, rates of primary 

production, or production of particulate organic matter. Indeed, primary productivity is 
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an important driver of terrestrial and freshwater diversity (Mittelbach et al. 2001; 

Hawkins et al. 2003).  Meta analysis of 171 studies on the relationships between 

productivity and richness of terrestrial and aquatic plants, vertebrates, and 

invertebrates found there were often unimodal (“hump-shaped”) or positive 

relationships between these variables, particularly in cross-community analysis and on 

continental to global scales (Mittelbach et al. 2001). Individual studies show that 

NDVI can predict over 60% of North American bird richness, NPP is positively 

associated with island bird richness and has a unimodal relationship to African 

vertebrate richness (birds, mammals, snakes, amphibians, humans), and ground ant 

assemblages have a positive decelerating relationship with net aboveground 

productivity (Hurlbert and Haskell 2003; Wright 1983; Balmford et al. 2001; Kaspari, 

O’Donnell, and Kercher 2000).  

Stored metabolic energy was also investigated in terrestrial studies with the 

three energy biodiversity hypotheses, in the forms of Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Fraction 

Photosynthetically Active Radiation absorbed by vegetation (fPAR), Leaf Area Index 

(LAI), and Gross Primary Productivity (GPP) (Hobi et al. 2017; Radeloff et al. 2019).  

The different energy proxies have varying predictive power in North American 

breeding bird guilds, but GPP is the strongest predictor of richness for most groups 

(Hobi et al. 2017). All three GPP metrics are predictive of the global ranges of 

amphibians, mammals, and resident birds species (> 60% predictive power) (Radeloff 

et al. 2019). Additionally, the cumulative energy proxy is the most important predictor 

of richness, followed by minimum and finally variation. Aside from prediction, 

inspection of the individual facets of these terrestrial analyses show agreement with 
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the three hypothesized fundamental relationships of energy to diversity (negative 

relationship of variation to diversity, and positive relationships of cumulative and 

minimum energy to diversity). 

 In this study, we tested the same three energy biodiversity hypotheses with 

analogous metabolic energy proxies in marine systems. These included chlorophyll 

biomass, primary productivity via the Vertically Generalized Production Model, and 

benthic flux of POC. These three energy sources were generally positively correlated 

to each other in the shallow region (0.56 to 0.87, Figure 4). In the offshore region, 

cumulative VGPM and Chlorophyll were positively correlated (> 0.7), but all other 

correlations are relatively weak (+/- 0.5, Figure 5).  The tests of these energy sources 

had similar patterns of results, which makes sense as they are generally correlated 

together. The variation hypothesis was most often supported. In our shallow region 

fishes (Figure 1a), variation in all three metabolic energy proxies (Chl (Figure 9), 

VGPM (Figure 10), and benthic POC (Fig 3)) support the hypothesis that lower annual 

variation in energy leads to higher species richness in the all-fish and pelagic groups. 

In the offshore region, the variation hypothesis is followed in primary production. The 

fact that the variation hypotheses is often supported in the marine metabolic energy 

proxies is a notable contrast to the terrestrial studies, where cumulative and minimum 

energy were found to be the strongest drivers of diversity.  However cumulative and 

minimum metabolic energy were important in certain cases in the fish groups. In both 

the shallow and offshore region, cumulative and minimum hypotheses were 

significantly followed with the demersal fishes. In the all-fish and pelagic groups, the 

minimum hypothesis was supported with primary production energy (VGPM).  
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While the influence of the radiation and thermal energy sources are limited to 

the euphotic zone of the oceans, the metabolic energy sources affect both surface and 

deeper energy biodiversity. Photosynthetic organisms in the surface oceans transform 

radiative energy into metabolic energy (fixed carbon) via photosynthesis which 

supplies energy to the marine ecosystem. Organic carbon is further transformed into 

particulate organic carbon, including live bacteria and detritus such as fecal pellets, 

dead cells, and shells (Kharbush et al. 2020). Sinking POC exports an estimated 4-12 

Pg of carbon per year to the deep ocean in the process known as the “biological pump” 

(Eppley and Peterson 1979; Laws et al. 2000; DeVries and Weber 2017), and is an 

important food source for pelagic or benthic heterotrophs (J. T. Turner 2015; 

Longhurst and Glen Harrison 1989).  

In this study, we investigated the patterns of diversity in both surface-

associated fish (pelagic group) and benthic-associated fish (demersal group). We 

expected that the demersal offshore fishes would not interact directly with surface 

energy signals (PAR and SST) (Table 2), but rather would be affected by the energy 

source of POC that sinks to the deep ocean. Our results support our expectation, as 

benthic POC was only in agreement with the cumulative and minimum hypotheses in 

the demersal group fishes in both the shallow and offshore region tests. The benthic 

POC energy map (Fig 3) shows higher cumulative and minimum POC values in 

shallower areas (continental shelves and mid-ocean ridges), as compared to the deep 

abyssal plain areas. Gagne et al 2020 demonstrated that ocean depth was a significant 

driver of their neural network model.  Our results suggest that using depth in a model 

may actually be a proxy for benthic energy flux.   
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Interestingly, even though reef fish are substrate-associated like the demersal 

group, their results showed different patterns. The richness of reef fish follows all 

three energy biodiversity hypotheses in the cases of PAR and SST, but not in the 

metabolic energy proxies like the demersal fishes did. In chlorophyll, VGPM, and 

benthic POC, only the variation hypothesis was supported, and for cumulative and 

minimum energy we found significant negative regressions (opposite to the 

biodiversity hypotheses). These results may be due to the unique nature of reef 

systems. Reefs are found in oligotrophic waters, where nutrient limitations suppress 

planktonic algae growth and productivity, but corals are highly productive (Darwin 

1976; Sammarco et al. 1999). This paradox is likely resolved by the fact that corals 

with their symbiotic zooxanthellae are highly efficient at uptake and recycling of 

nutrients (Wild et al. 2004; de Goeij et al. 2013). Overall coral reefs contribute an 

estimated 0.05% of global carbon fixation, much of which is recycled within the coral 

tissue itself, however approximately 20 x 1012 g of carbon per year is produced in 

excess and exported to the surrounding environments (Douglas 2009; Crossland, 

Hatcher, and Smith 1991). In this study, we only included surface-measured 

planktonic productivity, not benthic energy sources like coral. Potentially more 

detailed construction of the energy proxies including benthic energy sources on coral 

reefs would yield a better test of the energy biodiversity hypotheses in the case of reef 

fishes.  

While outside the scope of this study, the energy biodiversity hypotheses 

should continue to be tested in the future with more marine richness data. First, there 

is currently only a subset of fish species which have expert-defined ranges (4000spp). 

This study should be repeated with fish data as more comprehensive species range 
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maps are become available in the ocean. Second, this analysis could be expanded to 

many other groups of organisms, defined by either taxa or functional groups. For 

example, the response of marine mammal or reptile richness to environmental energy 

could be compared to their terrestrial counterparts, or the distributions of primary 

consumers or tertiary predators in both environments could be compared. It would also 

be interesting to investigate the response of organisms that are sessile (benthic 

invertebrates). As fish are mobile organisms, in many cases they could shift their 

range on a relatively short time scale in response to environmental conditions and food 

availability (Nye et al. 2009; US EPA 2016). However individual adults of sessile 

species can’t escape local conditions as readily. Instead, their range shifts would 

depend on broadcast spawning and recruitment to suitable conditions, so they might 

have a slower response to changes in energy availability.  

Under climate change, the energy proxies investigated in this study will likely 

change. Solar irradiance delivered to the top of Earth’s atmosphere will continue 

following normal solar cycles (average +/- 1 Watt m-2) (Lindsey 2021), but changes in 

cloud cover will affect the irradiance that reaches Earth’s surface. Cloud cover is 

expected to decrease at low latitudes and increase in thickness at high latitudes (R. G. 

Williams, Ceppi, and Katavouta 2020), so the latitudinal pattern in the sunlight energy 

proxy will remain but the intensity of the gradient between low and high latitudes 

could increase. Cumulative and minimum values in sunlight will increase near the 

equator and decrease in low latitudes. Changes in cloud cover are predicted to 

contribute an overall warming effect in addition to greenhouse gas warming. The 

IPCC’s Fifth Assessment report stated that over 90% of the heat from greenhouse gas 

emissions since 1970 had been absorbed by global oceans, causing rising 
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temperatures, and they predict 1-4ºC ocean warming on average by 2100 (IPCC 2014). 

Predictions of the spatial variation in surface ocean warming are expected to partially 

depend on ocean circulation patterns. Upwelling of deep ocean water in the Southern 

Ocean is expected to have a dampening effect to the warming in that ocean area, in 

contrast to the more intense warming of the Arctic (Xie 2020). However meridional 

overturning is also expected to slow (Held and Soden 2006), so it is unclear how much 

Southern Ocean upwelling will be able to mitigate warming. Additionally, evaporation 

can dampen surface heating, so areas like the eastern Equatorial Pacific with low mean 

evaporation would warm relatively quickly (Xie et al. 2010). Overall the cumulative 

and minimum values of thermal energy would increase globally, with greater increases 

in the Arctic. Additionally, extreme El Nino events are also expected to become more 

frequent (Cai et al. 2014), leading to increased SST variation in the Equatorial Pacific.   

In addition, the metabolic energy proxies are likely to change in distribution as 

well. Models disagree about the overall change in ocean primary productivity in the 

next 100 years, ranging from a global NPP increase of >30% to a decrease of >10% 

(Bopp et al. 2005; Schmittner et al. 2008; Tagliabue, Bopp, and Gehlen 2011). This 

lack of consensus is due to differences in model construction, in which environmental 

factors are considered. Photosynthesis increases with increased temperatures from 0 to 

20ºC , after which the rate of photosynthesis decreases with further increasing 

temperature (Hew, Krotkov, and Canvin 1969). So ocean areas that currently are 

relatively low temperature, such as high latitudes, would likely experience higher rates 

of photosynthesis as ocean warming progresses and sea ice retreats. However, 

increased temperatures in low latitude, tropical regions would likely cause decreased 

photosynthetic rates. Additionally, ocean primary productivity is driven by nutrient 
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availability via upwelling, and warming will likely cause stronger stratification at the 

tropics, further contributing to decreased productivity in those areas. Overall 

cumulative and minimum photosynthesis energy would therefore increase in high 

latitudes and decrease in low latitudes.  

To summarize, the objective of this study was to investigate whether three 

hypotheses relating energy to the maintenance of biodiversity are relevant to marine 

fish biodiversity.  We found that the energy biodiversity hypotheses are broadly 

applicable to marine fishes. In general, lower variation, higher minimum, and higher 

cumulative energy had a relationship to greater fish richness. Our analysis is the first 

to investigate the underlying patterns of diversity in the global marine fishes from the 

perspective of the three energy biodiversity hypotheses, and with several types of 

energy proxies (radiation, thermal, and chemical/metabolic). We found that the 

radiation and thermal proxies (PAR and SST) supported all three hypotheses relating 

energy to fish richness in most cases (all-fish, pelagic, reef), except for the deeper 

dwelling fish group (demersal). These two latitudinally-associated proxies support the 

idea of energy sources as an explanation of the global Latitudinal Diversity Gradient. 

In the chemical/metabolic energy analysis, the hypotheses were followed in many 

cases, often in the variation and minimum energy tests, and including both surface 

dwelling and deep fishes in the case of primary productivity (VGPM). The hypotheses 

were less often supported with Chlorophyll or benthic POC as the energy source, with 

the important exception of the deep dwelling fish group (demersal group), usually in 

cumulative and minimum energy categories. Overall, this study shows that aspects of 

available energy support higher biodiversity in fish, as long as the energy source is 

matched to the environment inhabited by those species groups. These results support 
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the idea that energy is a fundamental underlying driver of biodiversity on Earth, not 

limited by the marked differences between terrestrial and marine environments.  
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Appendix 

SUPPLEMENTAL FIGURES 

Energy Indices 

 

Figure 8 Energy indices calculated from SST (K). Highest variation in SST (a) is 
seen in the high northern latitudes and along coastlines in upwelling 
zones (ex. Peru), and in boundary currents (ex. Gulf Stream).  Highest 
cumulative (b) and minimum (c) SST are seen at low latitudes. 
Combining these indices into a RGB representation show where each of 
the different indices dominate the signal (d). White dotted lines indicate -
50 to 50 degrees latitude, the extent of the dataset that was used in 
regression analysis.  
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Figure 9 Energy indices calculated from Chlorophyll (mg m-3). These patterns are 
dominated by distance from coast. Highest annual variation (a), 
cumulative (b), and minimum (c) values are all found along coastlines. 
Higher variation is also seen at the edges of ocean basin gyres. 
Combining these indices into a RGB representation show where each of 
the different indices dominate the signal (d).  White dotted lines indicate 
-50 to 50 degrees latitude, the extent of the dataset that was used in 
regression analysis.  
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Figure 10 Energy indices calculated from primary production via VGPM (mg C m-

2). Highest variation in VGPM (a) is seen at high latitudes. Highest 
cumulative (b) and minimum (c) values are found near coastlines, and 
Equatorial upwelling zones. Combining these indices into a RGB 
representation show where each of the different indices dominate the 
signal (d). Panel d highlights where oligotrophic centers of ocean gyres 
are visible (low cum and min, high var). White dotted lines indicate -50 
to 50 degrees latitude, the extent of the dataset that was used in 
regression analysis.  
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Results summary tables 

Table 3 Results summary of the shallow region tests, organized by fish group 
(model II regressions, RMA). Green checkmarks indicate significant 
RMA regressions in agreement with the energy biodiversity hypotheses: 
negative slopes for variation, and positive slopes for cumulative and 
minimum. Red x’s indicate regressions that significantly disagreed with 
the hypotheses, and non-significant tests are marked as NS. 

 
  

    Var Cum Min     Var Cum Min 

All-fish 

PAR ✓ ✓ ✓ 

Pelagic 

PAR ✓ ✓ ✓ 
SST ✓ ✓ ✓ SST ✓ ✓ ✓ 
Chl ✓ ✕ ✕ Chl ✓ ✕ ✕ 
VGPM ✓ ✕ ✓ VGPM ✓ ✕ ✓ 
Benthic POC ✓ ✕ ✕ Benthic POC ✓ ✕ ✕ 

    Var Cum Min     Var Cum Min 

Demersal 

PAR ✓ ✓ ✓ 

Reef 

PAR ✓ ✓ ✓ 
SST ✕ ✓ ✓ SST ✓ ✓ ✓ 
Chl ✕ ✓ ✓ Chl ✓ ✕ ✕ 
VGPM NS ✓ ✓ VGPM ✓ ✕ ✕ 
Benthic POC ✕ ✓ ✓ Benthic POC ✓ ✕ ✕ 
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Table 4 Results summary of the offshore region tests, organized by fish group 
(model II regressions, RMA) Green checkmarks indicate significant 
RMA regressions in agreement with the energy biodiversity hypotheses: 
negative slopes for variation, and positive slopes for cumulative and 
minimum. Red x’s indicate regressions that significantly disagreed with 
the hypotheses, and non-significant tests are marked as NS. 

  

    Var Cum Min     Var Cum Min 

All-fish 

PAR ✓ ✓ ✓ 

Pelagic 

PAR ✓ ✓ ✓ 
SST ✓ ✓ ✓ SST ✓ ✓ ✓ 
Chl NS ✕ ✕ Chl NS ✕ ✕ 
VGPM ✓ NS ✓ VGPM ✓ NS ✓ 
Benthic POC NS NS ✕ Benthic POC NS ✕ ✕ 

    Var Cum Min      

Demersal 

PAR NS NS NS      
SST NS NS NS      
Chl ✕ ✓ ✓      
VGPM ✕ ✓ ✓      
Benthic POC ✕ ✓ ✓      
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All results: shallow region 

Table 5 Correlation results (“r”) from the Model2 regression tests for the shallow 
region. Green shading indicates that the sign of the correlation agrees 
with the energy biodiversity hypotheses: negative slopes for variation, 
and positive slopes for cumulative and minimum. Red shading indicates 
correlations with slopes that disagree with the hypotheses. 

Fish Energy var_r cum_r min_r 

All-fish 

PAR -0.747 0.671 0.698 
SST -0.582 0.812 0.806 
Chl -0.276 -0.408 -0.378 

VGPM -0.567 -0.395 0.105 
POC -0.365 -0.402 -0.381 

Pelagic group 

PAR -0.638 0.597 0.580 
SST -0.375 0.708 0.669 
Chl -0.049 -0.110 -0.109 

VGPM -0.372 -0.067 0.396 
POC -0.079 -0.127 -0.127 

Demersal group 

PAR -0.057 0.127 0.030 
SST 0.099 0.139 0.109 
Chl 0.269 0.249 0.210 

VGPM 0.017 0.354 0.517 
POC 0.466 0.407 0.383 

Reef 

PAR -0.808 0.699 0.761 
SST -0.644 0.885 0.862 
Chl -0.346 -0.456 -0.413 

VGPM -0.588 -0.498 -0.044 
POC -0.472 -0.500 -0.474 
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Figure 11 2D density plots of energy groups vs all-fish richness (Shallow region). 
By row, the energy groups are: PAR, SST, Chlorophyll, VGPM, and 
Benthic POC. All data were limited -50 to 50 degrees latitude. Ranged 
Major Axis regression lines shown in gray 
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Figure 12 2D density plots of energy groups vs pelagic group fish richness 
(Shallow region). By row, the energy groups are: PAR, SST, 
Chlorophyll, VGPM, and Benthic POC. All data were limited -50 to 50 
degrees latitude. Ranged Major Axis regression lines shown in gray 
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Figure 13 2D density plots of energy groups vs demersal group fish richness 
(Shallow region). By row, the energy groups are: PAR, SST, 
Chlorophyll, VGPM, and Benthic POC. All data were limited -50 to 50 
degrees latitude. Ranged Major Axis regression lines shown in gray 
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Figure 14 2D density plots of energy groups vs reef fish richness (Shallow region). 
By row, the energy groups are: PAR, SST, Chlorophyll, VGPM, and 
Benthic POC. All data were limited -50 to 50 degrees latitude. Ranged 
Major Axis regression lines shown in gray 

 
 

  



 62 

All results: offshore region 

Table 6 Correlation results (“r”) from the Model2 regression tests for the offshore 
region. Green shading indicates that the sign of the correlation agrees 
with the energy biodiversity hypotheses: negative slopes for variation, 
and positive slopes for cumulative and minimum. Red shading indicates 
correlations with slopes that disagree with the hypotheses. 

Fish Energy var_r cum_r min_r 

All-fish 

PAR -0.432 0.435 0.402 
SST -0.171 0.485 0.475 
Chl 0.015 -0.118 -0.122 

VGPM -0.210 0.094 0.316 
POC 0.034 -0.096 -0.140 

Pelagic group 

PAR -0.637 0.681 0.616 
SST -0.275 0.715 0.709 
Chl -0.043 -0.296 -0.284 

VGPM -0.395 0.049 0.470 
POC -0.022 -0.256 -0.304 

Demersal group 

PAR 0.106 -0.125 -0.125 
SST 0.152 -0.094 -0.110 
Chl 0.214 0.296 0.241 

VGPM 0.214 0.322 0.150 
POC 0.251 0.307 0.257 
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Figure 15 2D density plots of energy groups vs all-fish richness (Offshore region). 
By row, the energy groups are: PAR, SST, Chlorophyll, VGPM, and 
Benthic POC. All data were limited -50 to 50 degrees latitude. Ranged 
Major Axis regression lines shown in gray 
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Figure 16 2D density plots of energy groups vs pelagic group fish richness 
(Offshore region). By row, the energy groups are: PAR, SST, 
Chlorophyll, VGPM, and Benthic POC. All data were limited -50 to 50 
degrees latitude. Ranged Major Axis regression lines shown in gray 
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Figure 17 2D density plots of energy groups vs demersal group fish richness 
(Offshore region). By row, the energy groups are: PAR, SST, 
Chlorophyll, VGPM, and Benthic POC. All data were limited -50 to 50 
degrees latitude. Ranged Major Axis regression lines shown in gray 

 

 


