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A B S T R A C T

Areas of structural damage mechanically weaken Antarctic ice shelves. This potentially preconditions ice
shelves for disintegration and enhanced grounding line retreat. The development of damage and its feedback on
marine ice sheet dynamics has been identified as key to future ice shelf stability and sea level contributions
from Antarctica. However, it is one of the least understood processes that impact ice shelf instability since
quantifying damage efficiently and accurately is a challenging task. Challenges relate to the complex surface
of Antarctica, variations in viewing-illumination geometry, snow or cloud cover and variable signal-to-noise
levels in satellite imagery. Therefore, automated damage assessment approaches require careful pre- and post-
processing, lacking the option to be applied to wider spatiotemporal domains. Simultaneously, studies that use
manual mapping are usually limited due to the effort required for extensive mapping, which either results in
a limited spatial domain or the use of low resolution data.

This study proposes the NormalisEd Radon transform Damage detection (NeRD) method to detect damage
features and their orientations from multi-source satellite imagery. NeRD performs robust, high resolution,
large-scale damage assessments. NeRD is applied to the ice shelves in the Amundsen Sea Embayment (ASE)
and validated with both manually labelled and existing fracture maps. Validation shows that NeRD detects
damage with high recall and provides an accurate physical representation of multi-scale damage features
and their orientation. Sensitivity analyses indicate NeRD is robust to different resolution parameter settings.
NeRD consistently detects damage for different data sources ranging from optical Landsat 7/8 and Sentinel-2
optical to Synthetic Aperture Radar Sentinel-1 data. Therefore, NeRD paves the way for synergistic multi-
source damage detection that overcomes remaining limitations from individual sources. Results show varying
damage patterns on the ice shelves in the ASE area in austral summer 2020–2021, with most damage located
on the Pine Island, Crosson and Thwaites ice shelves. We show a damage increase on the Pine Island ice shelf
between 2013–2019, and display advection and rotation of crevasses. The detected damage orientation can
provide insight in the type of crevasse opening mode and the development of damage over time. The damage
maps produced with NeRD can help evaluate ice sheet models or machine learning approaches, improving our
understanding of damage evolution.
1. Introduction

Antarctic ice shelves modulate grounded ice flow through but-
tressing. Their weakening or disintegration is crucial for the timing
and magnitude of grounded ice loss and onset of instabilities (Sun
et al., 2017; Benn and Åström, 2018; Vieli et al., 2007; Albrecht and
Levermann, 2012), and thereby for the sea level contributions from
Antarctica (Fox-Kemper et al., 2021). The development of damage areas
in the shear zones of an ice shelf are first signs of structural weakening.
Damage areas typically consist of highly crevassed areas, rifts and open
fractures containing dense ice mélange (Lhermitte et al., 2020; Borstad
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et al., 2012). The development of damage in the shear zones of an
ice shelf can result in further speedup, shearing and weakening, hence
promoting additional damage development. This feedback potentially
preconditions ice shelves for disintegration and enhanced grounding
line retreat (Lhermitte et al., 2020). For example, damage has been
considered key for the ice shelf collapse of Larsen B and the retreat
of Pine Island Glacier and Thwaites Glacier (Glasser and Scambos,
2008; Borstad et al., 2012). Although this damage feedback has been
identified as key to future ice shelf stability, it is one of the least
understood processes in marine ice sheet dynamics.
vailable online 23 November 2022
034-4257/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.rse.2022.113359
Received 11 January 2022; Received in revised form 4 November 2022; Accepted 7
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

November 2022

https://www.elsevier.com/locate/rse
http://www.elsevier.com/locate/rse
mailto:M.Izeboud@tudelft.nl
mailto:S.Lhermitte@tudelft.nl
https://doi.org/10.1016/j.rse.2022.113359
https://doi.org/10.1016/j.rse.2022.113359
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2022.113359&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Remote Sensing of Environment 284 (2023) 113359M. Izeboud and S. Lhermitte

f
(
l
w
C
o
r
d

a
c
d
t
e
a
(
d
d
e
b
c
t
e
d
v
o
a
s
a

t
a

Remote sensing data provides the possibility to detect fractures and
damage areas across Antarctic ice shelves and the ice sheet. Where
laser altimetry is used to map vertical properties, quantifying the con-
tinuous distribution of fractures in the horizontal dimension remains
unsolved (Wang et al., 2021; Herzfeld et al., 2021; Li et al., 2021).
Assessing horizontal properties of fractures and damage from satellite
imagery can be a complicated task due to three major challenges.
Firstly, there are morphological similarities between full-thickness rifts,
surface expressions of basal fractures, and flow lines (Luckman et al.,
2012; McGrath et al., 2012a) that are difficult to distinguish (Colgan
et al., 2016; Ely and Clark, 2016). As a result, for practical purposes,
fractures are often mapped manually. Secondly, the spatial resolution
of available data and the research focus of the individual studies
determines the size and scale of the features that are resolved. Damage
comes in all shapes and sizes: from small surface crevasses in densely
crevassed fields to full-thickness rifts near the ice front of multiple
kilometres long, to the complex and irregularly shaped ice mélange in
damaged shear zones. Thirdly, similar damage may appear different in
different images due to changing illumination or viewing conditions,
the complex surface of the Antarctic, snow or cloud cover, or variable
signal-to-noise levels (speckle) in SAR imagery (Colgan et al., 2016).
These challenges imply that most studies in practice either perform an
extensive manual mapping of fine resolution features, such as Scambos
et al. (2009), Kaluzienski et al. (2019) or focus on large-scale linear
rifts in data with coarser spatial resolution (e.g., MODIS) that cannot
capture small scale features (Glasser and Scambos, 2008; Lai et al.,
2020).

Previous studies such as Bhardwaj et al. (2016) and Colgan et al.
(2011) have developed approaches to perform fine-resolution crevasse
or crevasse field detection on optical data, but these approaches are not
easily applied on a large spatiotemporal scale. Bhardwaj et al. (2016)
used band ratios from pan-sharpened Landsat 8 optical and thermal
bands to create a fine resolution (15 m) but small spatial crevasse
map, covering 4 km2. Colgan et al. (2011) manually digitised crevasse
ields after convolving a high-quality panchromatic aerial photograph
2 m resolution) with a Roberts cross-edge detector. Both studies were
imited to two dates on a single glacier. Alternatively, a first Antarctic-
ide fracture map has been developed by Lai et al. (2020) using a deep
onvolutional Neural Network (CNN). This CNN, however, was trained
n manually labelled large-scale rifts and applied on a relatively coarse
esolution MODIS mosaic (125 m), resulting in the loss of fine spatial
etail of the damage features.

The Radon transform was proposed as an alternative, more robust
pproach to detect crevasses (Gong et al., 2018). The Radon transform
an detect both linear fractures and more complex patterns of heavily
amaged areas, where other edge detection methods fail or require ex-
ensive processing (Bhardwaj et al., 2016; Colgan et al., 2011; Roberts
t al., 2013; Gong et al., 2018). The Radon transform was previously
pplied to both SAR and optical satellite data for flow line detection
Roberts et al., 2013) and crevasse detection (Gong et al., 2018). This
ual application moreover highlights the potential to combine different
ata sources in a new detection approach, overcoming limitations from
ach individual source. Furthermore, the Radon transform can detect
oth feature orientation and feature signal strength, allowing insight in
revasse rotation and advection over time. One drawback of the Radon
ransform as damage detector developed by Gong et al. (2018), how-
ver, is the lack of consistency to quantify damage. The current method
epends on the intensity of the (grey-scale) image pixels which often
aries in space and time and even depends on the cut-out windows
f the Radon transform. Different illumination conditions, look-angles,
nd sensors affect the image intensity, resulting in different crevasse
ignal values. These issues limit the application of the Radon transform
s a method for generalised, automated damage assessments.

In this study we propose a novel method that builds upon the Radon
ransform method of Gong et al. (2018) to allow a generalised damage
2

ssessment. To this end, we have developed the NormalisEd Radon
transform Damage detection (NeRD) method (Section 2) which can
be applied directly to multiple satellite data sources across spatial or
temporal domains, without requiring additional pre- or post-processing.
This includes optical and SAR data from Sentinel-1, Sentinel-2 and
Landsat 7/8. We apply NeRD to ice shelves in the Amundsen Sea
Embayment (Section 3), and test the method for different parameter
settings related to spatial resolution and data source (Section 4). The
results are validated by comparing with a manually labelled damage
map of multi-scale damage features, and with the existing CNN fracture
map of Lai et al. (2020). In Section 5 we display the damage detection
product, showing constructed damage maps for the ASE area including
damage signal and damage orientation, the performance and evaluation
of the NeRD method, and finally its application on a time series of the
Pine Island Ice Shelf satellite data.

2. NormalisEd Radon transform Damage detection (NeRD)

The NormalisEd Radon transform Damage (NeRD) detection method
builds upon the method of Gong et al. (2018) and Altena (2018), which
were initially based upon the work of Roberts et al. (2013). NeRD
is intended to be a robust and generalised, one-size-fits-all method
that can be applied across image sources and results in a consistent,
quantitative damage detection product.

Roberts et al. (2013) used the Radon transform to detect flow
lines and their orientations on the Amery ice shelf using RADARSAT
data, whereas Gong et al. (2018) used the Radon transform to detect
crevasses and their orientations on the Austfonna ice cap (Svalbard)
from Landsat 8 data. Both used a similar approach, consisting of: (i)
pre-process the image with a Laplacian filter to enhance edge contrast
and remove noise, (ii) extract cut-out windows from the image, (iii)
apply the Radon transform to the cut-out windows, (iv) extract domi-
nant feature signal strength and dominant feature orientation for every
window, and finally, (v) post-processing. However, there are two issues
in this approach that hinder a quantitative and consistent interpretation
of the feature signals.

The first issue stems from Radon transform algorithm itself, and how
it extracts the feature signal. The Radon transform is a line-detection
algorithm that projects the image (or cut-out window) intensity along a
radial line oriented at a specific angle (Oppenheim and Willsky, 1996).
See for a schematic example Fig. 1, where the line integral is displayed
for two example projection angles. The standard deviation or variance
of this line-integral indicates the level of contrast within the window
at each angle and the maximum standard deviation across all angles is
used to extract a feature signal and orientation (Roberts et al., 2013;
Altena, 2018).

The drawback of the classical Radon transform is that the feature
signal retrieved from the Radon transform line-integral is dependent
on the pixels in the cut-out window. This manifests in three problems.
First, the feature signal value depends on the number of pixels in each
cut-out window. This results in higher signal values for larger windows.
Second, the signal value is dependent on the average pixel intensity
values, yielding higher signal values for brighter images. Third, the
Radon transform returns false signals for uniform data. Because of these
problems, the results of the classical Radon transform are inconsistent
between different images or cut-out windows as the signal value of the
Radon transform is relative to each processing window instead of a
global value across the image. This limits a generalised implementation
of damage detection.

In the NeRD method we propose to solve these three problems
by normalisation of the Radon transform. Normalisation makes the
Radon signal value independent of the number of pixels in the window,
and unbiased to shifts in pixel intensity values. The false signals are
then removed as a result, solving all three problems. See for example
Fig. 1a: the Radon transform without normalisation shows a varying
line integral over the two projection axis for a uniform window. This

means that the variance is non-null and yields a false signal. The



Remote Sensing of Environment 284 (2023) 113359M. Izeboud and S. Lhermitte
Fig. 1. Concept of the (Normalised) Radon transform for two idealised image cut-out windows, (a) a uniform window (white value 1) without any variation in pixel values, (b) a
window with a simplified representation of a crevasse (grey value 0.5 and white value 1). The figure shows the line-integral calculated for different projection axis 𝜌 at angle 𝜃,
with (orange) and without (blue) normalisation. 𝑅(𝜌, 𝜃) is shown here for 𝜃 = 45◦ and 𝜃 = 90◦. 𝑁 denotes the number of pixels in the line integral for every projection, P denotes
the number of steps within the domain of the projection axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
normalised Radon transform, however, is a flat line, which (correctly)
returns no signal. With NeRD, the damage signal value depends only on
the contrast of a linear feature in the window, rather than on the size of
the feature or window. Therefore, NeRD yields a consistent value that
can be interpreted across all windows and between different images.
Although the signal value is independent of the number of pixels in the
window, it should be noted that the window size still determines which
features can be detected. If the window is too large/small to reveal
the features to be detected, it will not work and NERD is consequently
not completely independent of the window size. A proof-of-concept of
implementing the normalisation step is provided in Section 2.3. Here
further detail and examples are provided to illustrate how the three
problems are solved.

The second issue of the Radon transform as applied by Roberts et al.
(2013) and Gong et al. (2018) is introduced in the pre-processing of the
image using an edge-enhancement Laplacian filter. This filter re-scales
the grey-scale input image into binary black and white values and,
consequently, maximises all edge-like surface features and removes
noise. This potentially includes maximising surface roughness features
such as snow dunes or sastrugi that should not be detected as damage.
Additionally, the use of the Laplacian filter reduces all existing contrast
gradations into binary 0/1 values. Consequently, the Radon transform
is no longer able to distinguish between features that display different
contrast strengths and provide a quantitative measure of strength of the
damage signal. This quantitative measure can however be potentially
useful to discriminate between damage features as we expect that
strong and prominent contrasts correspond to large damage features,
such as a rifts, while low contrast features presumably correspond to
smaller scale damage features, such as surface crevasses. Similarly, an
opening crevasse will show changes in contrast over time. As a solution
to this issue we remove the use of a Laplacian filter as a pre-processing
step and replace it with a post-processing step that removes noise from
the output by setting a minimum signal threshold. This allows NeRD to
detect continuous, quantitative damage signals without contaminating
the product with noise.

In summary, the presented NeRD method consists of the follow-
ing steps: (i) create cut-out windows from the image, (ii) apply the
Normalised Radon transform to these windows, (iii) extract dominant
feature signal strength and orientation for every window, (iv) quantify
the damage signal value by removing noise from the signal and (v) post-
processing. In the NeRD post-processing step we remove image borders
and rock outcrops from the detection product.
3

2.1. The normalised Radon transform

The Radon transform is the line-integral of the image (or cut-out
window) intensity along a projection axis (𝜌) oriented at a specific angle
(𝜃) (Oppenheim and Willsky, 1996). An example is shown in Fig. 1 for
rotation 𝜃 = 90◦ and 𝜃 = 45◦. By repeating the line-integration for axes
oriented at all angles 𝜃 = 0◦ to 𝜃 = 180◦, a 2-D feature space 𝑅(𝜌, 𝜃)
is constructed. In NeRD, a normalisation step similar to Öznergiz et al.
(2014) is added to the Radon transform by normalising the line-integral
over each projected axis 𝜌 to the number of pixels 𝑁(𝜌, 𝜃) within the
integral. The Normalised Radon transform is computed as:

𝑅𝑛𝑜𝑟𝑚(𝜌, 𝜃) =
1

𝑁(𝜌, 𝜃)
∑

𝑥

∑

𝑦
𝐼(𝑥, 𝑦)𝛿(𝜌 − (𝑥 cos 𝜃 + 𝑦 sin 𝜃)) (1)

where 𝐼(𝑥, 𝑦) denotes the value of the image intensity at (𝑥, 𝑦) coordi-
nates, and 𝛿 is the delta Dirac function (Oppenheim and Willsky, 1996;
Öznergiz et al., 2014). The range of the transform coordinates is a half
circle (0 ≤ 𝜃 < 𝜋). The result of the transform is a 2-D feature space
at different azimuthal orientations (𝜃) as can be seen in Fig. 2 panels
a2–e2.

The variability of 𝑅𝑛𝑜𝑟𝑚(𝜌, 𝜃) indicates the level of contrast for every
projection axis. This maximises on the cross-section of narrow linear
features, i.e. when the feature is perpendicular to the projection axis.
This shows in the line-integral as a sharp narrow peak, as is illustrated
in Fig. 1b. The signal response (𝜎) is therefore calculated as the stan-
dard deviation of 𝑅𝑛𝑜𝑟𝑚 for all projection angles, which is then filtered
with a running median filter of size two (𝛥 = 1◦) to remove noise (Gong
et al., 2018):

𝑠(𝜃) =

√

√

√

√
1

𝑃 − 1

𝑃
∑

𝑖=1

(

𝑅𝑛𝑜𝑟𝑚(𝜌, 𝜃) − 𝑅𝑛𝑜𝑟𝑚

)2
, (2)

𝜎(𝜃) = 𝑚𝑒𝑑𝑖𝑎𝑛 {𝑠(𝜃 − 𝛥),… , 𝑠(𝜃 + 𝛥)} . (3)

Here 𝑃 denotes the number of steps within the domain of the projection
axis 𝜌. For 𝜃 = [0, 90, 180], P is equal to the width of the window. For
𝜃 = 45◦, P is equal to the diagonal of the window.

The signal response (𝜎) is shown in Fig. 2 panels a3–e3. The
projection angle with the maximum signal response 𝜎(𝜃) is extracted
as the dominant crevasse signal value of the window:

𝜎𝑐𝑟𝑒𝑣 = 𝑚𝑎𝑥 (𝜎(𝜃)) . (4)

2.2. Damage signal and orientation

After extracting the crevasse signal (𝜎𝑐𝑟𝑒𝑣) for every window, 𝜎𝑐𝑟𝑒𝑣
is translated into a damage signal (�̂�). A signal 𝜎(𝜃) > 0 will be found
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Fig. 2. Idealised scenario’s to illustrate the differences between the Radon transform with and without normalisation. Panel a–e represent different scenario’s to which the Radon
transform is applied: a1–e1 show an idealised window with a hypothetical crevasse, a2–e2 show the corresponding 2-D feature space 𝑅(𝜌, 𝜃) without and with normalisation
(respectively top and bottom), and a3–e3 the signal response 𝜎(𝜃) with and without normalisation — from which 𝜎𝑐𝑟𝑒𝑣 is extracted (black dot).
by NeRD for any window with non-uniform pixel values. This includes
noisy windows that contain no damage feature and that should be
removed from the damage detection product. We therefore apply a
crevasse signal threshold 𝜏𝑐𝑟𝑒𝑣 to remove the noise background signal.
The damage signal �̂� is then defined as:

�̂� =

{

𝜎𝑐𝑟𝑒𝑣 − 𝜏𝑐𝑟𝑒𝑣, if 𝜎𝑐𝑟𝑒𝑣 ≥ 𝜏𝑐𝑟𝑒𝑣,
0, otherwise.

(5)

The threshold 𝜏𝑐𝑟𝑒𝑣 represents the ‘noisy signal value’. 𝜏𝑐𝑟𝑒𝑣 is calculated
separately, and varies slightly according to the data source and window
size that 𝜎𝑐𝑟𝑒𝑣 is calculated on (further detail in Section 4.2.1). Because
𝑅𝑛𝑜𝑟𝑚 values are between 0 and 1 the standard deviation and thus
𝜎𝑐𝑟𝑒𝑣 has a maximum value of 0.5 (Shalom and Mandeville, 1982).
Consequently, �̂� ∈ [0, 0.5 − 𝜏𝑐𝑟𝑒𝑣], where value 0 represents intact ice.
The maximum value for �̂� is reached at maximum black/white contrast
values. This can occur for full-depth rifts with ice/ocean contrasts but
might also occur for surface crevasses with dark shadows. �̂� therefore
does not directly present mechanical degradation of the ice such as
the often used (depth integrated) isotropic scalar damage in continuous
damage mechanics (CDM) modelling (Borstad et al., 2012, 2013, 2016;
Sun et al., 2017).

The projection angle 𝜃 for which the maximum crevasse signal oc-
curs is rotated 90◦ to represent the accompanying damage orientation
𝛼�̂�:

𝛼�̂� = 𝜃 − 90◦. (6)

The interpretation of 𝛼�̂� is more intuitive to interpret after a 90◦

rotation, as it then references the orientation of longitudinal direction
of the feature with respect to the image horizontal. For example in
Fig. 1b, 𝜎 maximises at 𝜃 = 90◦. At this angle, the line-integral results
in the most pronounced sharp peak and thus has the largest signal
response 𝜎(𝜃). The resulting damage orientation will be 𝛼�̂� = 0 which
intuitively corresponds to the horizontal line of the window. More
examples and explanations are provided in Section 2.3.

2.3. Proof of concept

In this section we illustrate that normalisation of the Radon trans-
form solves the three issues mentioned earlier: (i) it removes false
signals, (ii) the signal value is independent of the number of pixels
in the window, and (iii) the signal value is unbiased to average pixel
4

intensity values. Consequently, NeRD solely depends on the contrast of
the linear feature.

To illustrate the differences, we performed the Radon transform
with and without normalisation on a set of idealised windows that
portray simplified crevasses. The results are displayed in Fig. 2, where
every panel shows an idealised window in row 1, its 2-D feature space
𝑅(𝜌, 𝜃) with and without normalisation in row 2, and its signal response
𝜎(𝑅) with and without normalisation in row 3 — from which 𝜎𝑐𝑟𝑒𝑣 is
extracted.

Panel Fig. 2-a1 displays a uniform window with grey-scale values
of 1. This example best illustrates the effect the number of pixels (𝑁)
have on the Radon transform. Without normalisation, 𝑅(𝜌, 𝜃) changes
for different projection angles (panel a2), yielding 𝜎(𝜃) ≠ 0 (panel a3).
False local maxima signals appear at 0◦, 45◦, 90◦, 135◦ and 180◦ (panel
a3), and the maximum signal corresponds to 𝜃 = 0◦, 90◦ or 180◦. The
false signals are the result of the changing length of the projection axis
for different rotation values as the projection axis varies between the
window width (𝜃 = 0◦, 90◦ or 180◦) and window diagonal (𝜃 = 45◦

or 135◦). Consequently, for shorter projection axis, 𝜌 is padded with
zeros to fill the 2-D space of 𝑅(𝜌, 𝜃) to maximum length 𝑃 . This padding
creates an artificial jump in 𝑅(𝜌, 𝜃) values that results in false signals
(see also Fig. 1a). Now, with normalisation, padding with zeros and
the artificial jump is unnecessary as P is allowed to vary with each
projection angle. Therefore, a uniform window will result in 𝑅𝑛𝑜𝑟𝑚 = 1
and an extracted signal 𝜎𝑐𝑟𝑒𝑣 = 0.

Panels Fig. 2b–c illustrate that the Normalised Radon transform is
independent of the average pixel intensity values. These examples show
the same feature, with the same contrast value of 0.5: a background
pixel intensity 0/0.5 and line intensity of 0.5/1, for panels b1 and
c1 respectively. In these examples, the values of 𝑅𝑛𝑜𝑟𝑚 and 𝜎𝑐𝑟𝑒𝑣 are
identical despite the shift in the average intensity values: 𝜎𝑐𝑟𝑒𝑣 = 0.12.
Without normalisation this is not the case: the signal response changes
from 𝜎𝑐𝑟𝑒𝑣 ≈ 0.9 to 𝜎𝑐𝑟𝑒𝑣 ≈ 2.55 (panels b3–c3).

Finally, Fig. 2d–e shows that the Radon Transform without normal-
isation gives more weight to long linear features, while the Normalised
Radon transform puts more weight on linear features with high contrast
values. This effect is illustrated in panels d1/e1 which show a long,
high/low-contrast linear feature at 𝜃 = 90◦ and a short, low/high-
contrast feature at angle 𝜃 = 45◦, respectively. In window d1 the
extracted crevasse orientation is 𝜃 = 90◦ (𝛼�̂� = 0◦) with and without
normalisation, corresponding to the long, high-contrast feature. There
is a difference in the value for 𝜎𝑐𝑟𝑒𝑣 (panel d3), though. For window
e1, however, the extracted crevasse orientation differ with or without
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normalisation. Without normalisation, the dominant signal remains at
𝜃 = 90◦, here corresponding to the long, low-contrast feature, whereas
the Normalised Radon transform yields 𝜃 = 45◦, corresponding to
he short, high-contrast feature. This indicates that Normalised Radon
ransform gives more weight to feature contrast than length.

. Study area and data

.1. Study area

We applied the proposed NeRD method to the ice shelves in the
mundsen Sea Embayment in Antarctica. We considered all ice shelves
etween 100◦–125◦ West, which contains the Abbot, Cosgrove, Pine
sland, Thwaites, Crosson, Dotson and Getz ice shelves.

The Amundsen Sea Embayment in West Antarctica is currently the
argest contributor to sea-level rise (Pattyn and Morlighem, 2020). Most
ass loss in the past decades is from Pine Island and Thwaites Glacier

Arndt et al., 2018; Meredith et al., 2019). Crosson and Dotson are
wo of the most rapidly changing outlets in West Antarctica (Lilien
t al., 2018), but Thwaites Glacier is undergoing the largest changes
f any ice–ocean system in Antarctica (Miles et al., 2021). The ice
low acceleration and ice shelf thinning is associated to grounding-line
etreat (Pattyn and Morlighem, 2020; Arndt et al., 2018). Damage on
hese ice shelves has been considered key to their retreat (Glasser and
cambos, 2008; Borstad et al., 2012; Lilien et al., 2018; Lhermitte et al.,
020). Also Getz ice shelf was shown to be accelerating (Chuter et al.,
017).

Given the presence of multiple fast changing, fast flowing and heav-
ly damaged ice shelves in the Amundsen Sea Embayment, assessing the
mount of damage in this area is of primary interest to improve our
nderstanding of the link between damage, mechanical weakening and
ce shelf instability.

.2. Satellite imagery

To evaluate the NeRD method, we applied it to a variety of satellite
ata sources ranging from Sentinel-2 Level-1C, Landsat 7 and Landsat 8
ollection 1 Tier 2 Top of Atmosphere Reflectance images and Syntetic
perture Radar (SAR) Sentinel-1 Ground Range Detected images. All

mages were pre-processed in Google Earth Engine (Gorelick et al.,
017) and were exported at the same 30 m resolution as images from
he Landsat series in WGS 84 Antarctic polar Stereographic projection
EPSG:3031). Sentinel-1 (10 m) and Sentinel-2 (10 m and 20 m) images
ere re-sampled using the nearest neighbour method. The MEaSUREs
ntarctic ice shelf boundaries dataset of Rignot et al. (2016) was used

o select satellite imagery over the ice shelves in the study area, and
ater to plot the grounding line on the spatial figures.

The satellite imagery was pre-processed in two ways to obtain a sin-
le, frame-filling image for every austral summer (December, January,
ebruary; DJF). Firstly, the optical satellite images were obtained by
onstructing a median composite image. This consisted of the following
teps: subsetting the image collection to DJF data only, filtering for
loud cover (<20%) and compositing into median annual DJF compos-
tes of the Red (R), Green (G), Blue (B) reflectance bands. Calculating
he DJF median of the image collection introduces a resolution loss
f surface features due to a blurring effect as a result of glacier dis-
lacement. Especially fast flowing ice shelves, such as Pine Island,
hwaites and Crosson, show significant ice displacement throughout
ne austral summer with velocities up to 5 km/year (Gardner et al.,
019; Mouginot et al., 2017a). Shortening the image composite interval
ould reduce this blurring effect, but severely limits the available

mages, often leaving large gaps in the data. To show the capability
f NeRD as an automated approach, applied to automatically retrieved
ata of sufficient quality, it was opted in this study to work with optical
JF median composites rather than monthly composites or individual

cenes.
5

Secondly, SAR images were obtained by constructing a spatial mosaic
image, stitching individual scene together until the export frame was
filled. SAR data does not require filtering for cloud cover, and thus a
qualitative image for a chosen period can be generated automatically
without compositing. The SAR images were not filtered to remove
speckle noise, as a noise removal step is already included in the NeRD
method. The Sentinel-1 collection was filtered to only include HH
polarisation images of Interferometric Wide Swath instrument mode
and descending orbit in the defined DJF period.

Supplementary Figure 1 displays the retrieved Sentinel-2 median
composite images for DJF 2020–2021 for Pine Island, Thwaites,
Crosson and Getz ice shelves. Supplementary Table 1 provides an
overview of image median composites and spatial mosaics used in this
study for each satellite source.

4. Methods

NeRD is intended to be a generalised, one-size-fits-all method: a
method that can be applied to images from different spatial or temporal
domains and yield results that can be compared. Therefore, we first
performed sensitivity tests to show the robustness of NeRD (Section 4.1)
to its inputs before applying NeRD to the Amundsen Sea Embayment
study area (Section 4.2) and validating the results (Section 4.3). In a
final step we have applied NeRD to a timeseries of imagery over the
Pine Island Glacier to analyse its temporal consistency.

4.1. Sensitivity analysis

The sensitivity of NeRD to its parameter settings and input was
tested in two experiments. The first ‘resolution sensitivity’ experiment
focuses on the choice of processing window size in combination with
the image pixel resolution. The second ‘sensor sensitivity’ experiment
considers the sensitivity of the result to different data inputs. For this
we consider both the choice of spectral bands in optical data, as well
as the difference between optical and SAR data.

4.1.1. Resolution sensitivity
First, the sensitivity of the NeRD method to the choice of window

size was tested. The choice of window size is a compromise between
desired high output resolution, and accurate feature detection. On the
one hand feature detection in small window sizes yield high output
resolution. On the other hand, feature detection in small windows is
more susceptible to noise because the linearity of a feature typically
is less pronounced in small windows where linear features have lower
length to width ratios. Since the high length to width ratios of linear
features determines the signal value in 𝑅𝑛𝑜𝑟𝑚, it will result in lower
damage signals. Consider for example an open rift of 100 m wide and
10 km long. A small window of 10 × 10 m can ‘fall into’ the rift and
miss its detection. Detection is possible if the small window covers
the edge of the rift, and the edge is discernible as a linear feature
from surrounding surface irregularities (noise) within the window. A
larger window improves the confidence of feature detection over noise
(Roberts et al., 2013) as a larger window size (e.g. 1 km × 1 km)
spans the rifts opening and clearly shows the orientation of the rift.
A drawback of this larger window size is that other features which
are present in the window might be overridden by the large rift. The
output of larger window sizes therefore potentially misses valuable
spatial variations. As such, a balanced choice of window size relative to
feature size is essential. Therefore, to test the effects of window size on
the detected NeRD damage we performed a sensitivity experiment by
varying the window sizes between 10 × 10 and 25 × 25 pixels, implying
window sizes of 300 × 300 and 750 × 750 m, respectively. An example
for these two window sizes is shown in Fig. 3a and b.

Second, the sensitivity of the NeRD method to the image pixel
resolution was tested. The resolution of the image mainly determines
the minimum feature size that can be resolved, but also affects the
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Fig. 3. Example of NeRD applied to different windows of a Sentinel-2 RGB median composite of DJF 2019–2020, zoomed in to the western shear zone of Pine Island Ice Shelf.
The image has been converted to a greyscale image with values between 0–1. The top row shows the selection of (a) a 10 × 10 (green) and (b) 25 × 25 (magenta) pixel windows
from the image with 30 m pixel resolution, and (c) a 10 × 10 (orange) pixel window from a down-sampled image to 90 m pixel resolution. The bottom row shows the standard
deviation 𝜎(𝜃) of the normalised radon transform line integral at different projection angles 𝜃. The resulting crevasse signal 𝜎𝑐𝑟𝑒𝑣 at angle 𝜃 are denoted with a red dot and grey
dashed line. The crevasse signal threshold 𝜏𝑐𝑟𝑒𝑣 is shown as the red dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
contrast of features. Since wide linear features (e.g. rifts) can be located
in a multitude of pixels in high spatial resolution imagery, the contrast
of the rift edge/trough is effectively spread over more pixels. This
lowers the length to width ratio of the feature within a given window,
and consequently reduces the ability of NeRD to detect it. To assess
this effect of resolution on feature contrast, we apply NeRD on 10 × 10
windows of high-resolution images (30 m pixel resolution), and down-
sampled versions of the same images (90 m pixel resolution). We
down-sampled the images from 30 m to 90 m pixel resolution using
a nearest neighbour approach that ensures that the contrast between
every pixel group is enhanced. See an example for these two resolutions
in Fig. 3a and c.

For both the window size and pixel resolution tests, NeRD was
applied to Sentinel-2 median image composites of DJF 2020–2021 in
the Amundsen Sea Embayment study area. The number of detected
damage pixels were counted, including all pixels where �̂� > 0, to allow
a pixel-wise comparison between the individual experiments. To this
end, the results of the low resolution tests (750 m window size or
90 m pixel resolution) were re-sampled back to the same grid as the
high-resolution tests (300 m window size or 30 m pixel resolution).

4.1.2. Sensor sensitivity
In the sensor sensitivity experiments we tested the effects of (i)

different spectral bands in optical data and (ii) different data sources
(optical versus SAR) on the obtained the damage product. For this pur-
pose, the NeRD method was applied to the red (R; B4), green (G; B3),
blue (B; B2), and short-wave Infrared (SWIR; B11) bands of a Sentinel-
2 median image composite (DJF 2019–2020) individually. Next, the
robustness of the NeRD method to data acquired from different sensors
was tested by applying it to both optical Sentinel-2 and Landsat 8
data and Sentinel-1 SAR data, which all were sampled to the same
30 m grid resolution to allow direct comparison. For this sensitivity
experiment all images were processed on 10 × 10 pixel windows (30 m
pixel resolution).

4.2. Application of NeRD

We have applied NeRD to the Amundsen Sea Embayment study
area on Sentinel-2 median image composites of DJF 2020–2021. The
images were processed on 10 × 10 pixel windows (300 m), based on the
outcome of the sensitivity tests. The damage signal �̂� was quantified
6

Table 1
Crevasse signal threshold 𝜏𝑐𝑟𝑒𝑣, defined as the averaged crevasse signal value, 𝜎𝑐𝑟𝑒𝑣, for
undamaged areas. Values are aggregated for all windows in selected undamaged areas.
Values are calculated depending on window size and data source.

Crevasse signal threshold, 𝜏𝑐𝑟𝑒𝑣
Window size Number Sentinel Landsat

of windows S1 S2 L7 L8

150 m 5 × 5 px 8732 0.058 0.046 0.027 0.049
300 m 10 × 10 px 2251 0.050 0.040 0.032 0.051
700 m 25 × 25 px 376 0.044 0.039 0.037 0.065
3300 m 110 × 110 px 27 0.042 0.034 0.027 0.031

following Eq. (5), for which a representative value of 𝜏𝑐𝑟𝑒𝑣 = 0.040 was
determined (see next Section 4.2.1).

After validation of the results in the study area we applied NeRD
with the same 10 × 10 px window size to a timeseries of median image
composites on the Pine Island Glacier, consisting of two Landsat 8
median composites (DJF 2013–2014 and 2015–2016) and two Sentinel-
2 median composites (DJF 2017–2018 and 2019–2020). This was done
to analyse the temporal consistency of NeRD in more detail.

4.2.1. Noise removal
The threshold (𝜏𝑐𝑟𝑒𝑣) is a representative signal value of typical

undamaged, noisy windows that is used to remove noise from the
crevasse signal (Eq. (5)). This noise value depends on the variability of
pixel intensity values within the processing window. What this means
is that it can vary with different window sizes, as this will impact
the signal-to-noise ratio of a feature. Moreover, 𝜏𝑐𝑟𝑒𝑣 will vary with
the use of a different data source since the amount of noise in the
image differs between optical and SAR sources. 𝜏𝑐𝑟𝑒𝑣 was therefore
calculated for all window sizes used in this study, which range from
5 × 5 to 110 × 110 pixels, in combination with each Sentinel-1/2
and Landsat 7/8 data source. Although not every window size is used
in combination with every data source, 𝜏𝑐𝑟𝑒𝑣 is calculated for every
combination to demonstrate its variability between data sources.

We selected three areas on the Pine Island (58 km2), Dotson (27
km2) and Getz (36 km2) glaciers that do not show any apparent signs of
damage in the Sentinel-2 median composites and then exported images
within the same area for every data source. Using these ‘undamaged’
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areas, the crevasse signal threshold 𝜏𝑐𝑟𝑒𝑣 was calculated as the mean
crevasse signal value of all undamaged windows:

𝜏𝑐𝑟𝑒𝑣 = 𝜎𝑐𝑟𝑒𝑣,𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 . (7)

The resulting 𝜏𝑐𝑟𝑒𝑣 values are shown in Table 1 and range from
𝜎 ≈ 0.03 to 0.06. Changes of 𝜏𝑐𝑟𝑒𝑣 between different window sizes are
small. 𝜏𝑐𝑟𝑒𝑣 changes more significantly from data source to data source:
for 10 × 10 pixels, 𝜏𝑐𝑟𝑒𝑣 ranges from low thresholds 0.032 (Landsat 7)
and 0.040 (Sentinel-2) to high thresholds 0.050 (Sentinel-1) and 0.051
(Landsat 8).

4.3. Validation

Validation of NeRD method consisted of two comparisons: (i) a
comparison of detected damage pixels to manually labelled ground-
truth damage map and (ii) a comparison with the CNN fracture map
of Lai et al. (2020).

Firstly, a manually labelled damage map was constructed using
QGIS (QGIS Development Team, 2009) on the Sentinel-2 median image
composites of DJF 2020–2021 in the Amundsen Sea Embayment area
(30 m resolution). QGIS enables an interactive and dynamic view of the
image, allowing us to map multiple types of damage features, including:
(i) individual linear features, (ii) polygons with densely crevassed fields
and (iii) polygons with heavily damaged, disintegrated areas with open
rifts and ice mélange. Polygons covering surface crevasse fields or heav-
ily damaged areas are visibly distinctive by the feature size included in
the area. The identified linear features can indicate rifts, snow covered
rifts, or basal crevasses (McGrath et al., 2012b). The resulting labels are
shown in Supplementary Figure 2. We predominantly identify surface
crevasse fields on the ice tongue of Pine Island glacier, heavy damage
in the shear zones of Pine Island, Crosson and Thwaites glaciers, and
large linear features predominantly on Crosson and Getz glaciers. The
labelled damage vectors were rasterised onto the 300 m grid of the
produced damage maps, to determine True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN) detected pixels.
With these, the accuracy, precision, recall and f1-score metrics were
calculated to assess the performance of NeRD (Stehman, 1997; Taha
and Hanbury, 2015):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑃 +𝑁

,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

,

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 𝐹𝑃
𝑁

.

ecause of a strong imbalance between the number of damaged to
ndamaged pixels the macro-averaged f1-score was calculated. This is
he unweighted mean of the metrics calculated for each label, and gives
relatively high penalty to errors in the minority (damaged pixels) class

Taha and Hanbury, 2015).
Second, NeRD was compared in a two-resolution approach to the

NN fracture map of Lai et al. (2020). The CNN architecture consists
f multiple convolution and max-pooling layers that encode and decode
he data. The input/output resolution is 125 m, corresponding to the
OA2009 dataset to which the CNN is applied. The receptive field

f the CNN, however, spans 3500 m for each pixel (calculated based
n Araujo et al. (2019)). We therefore compare results from NeRD to
oth these scale levels. To this end, we applied NeRD on a Landsat
DJF 2008–2009 median image composite which covers the same

ustral summer as MOA2009 (Haran et al., 2021), at two resolutions:
nce using 5 × 5 pixel windows and 110 × 110 pixel windows (30 m
ixel resolution). This corresponds to 150 m and 3300 m window sizes
espectively, thus comparing detected damage at similar resolutions
s the CNN input/output and receptive field resolution. Additionally,
eRD was applied directly to the 125 m resolution MOA2009 image
7

2

itself, with a 10 × 10 pixel window size (1250 m). The combination
of these approaches allows to compare (a) the ability of NeRD and the
CNN to resolve damage features and (b) the likeness of the results when
applied to the same data.

5. Results

5.1. Sensitivity analysis

5.1.1. Resolution sensitivity
The map and bar-chart in Figs. 4 and 5 show the sensitivity of NeRD

to window size and pixel resolution, highlighting that the changes in
detected damage pixels in both resolution sensitivity tests are small as
both high and low resolution tests detect similar features. Although
the detected damage area is somewhat larger in the low resolution
tests, Fig. 4 shows that this increase in damage area occurs adjacent to
the high-resolution detected damage areas. These pixels therefore do
not necessarily represent newly detected damage features, but mostly
represent a widened detection of the same features. We therefore make
a distinction in the bar-chart in Fig. 5, where damaged pixels are
grouped into four classes: (i) pixels that are detected in both pixel- or
both window resolution tests (blue bars), (ii) pixels that are detected
only by low pixel- or low window resolution test, but are directly
adjacent to high resolution detected damage pixels (green bars), (iii)
the remaining pixels that are detected only by low resolution test (pink
bars), and (iv) pixels that are detected only in the high resolution test
(orange bars). As group (i) and (ii) represent the same features, they
can be combined for interpretative purposes.

On Pine Island, Thwaites and Crosson ice shelves, approximately
50% of the total damaged pixels are detected by both pixel- or both
window resolution tests (blue bars). Adding to that the adjacent de-
tected damage pixels of group ii (green bars), the figure shows that a
total of 73%–83% of the detected damage features are represented in
both resolution tests on these three ice shelves. On Pine Island, 13.4%
(18.9%) damage pixels are detected by only the high pixel (window)
resolution tests (orange bars), versus 8.1% (7.7%) pixels by only the
low pixel (window) resolution tests (pink bars). In this case a lower
pixel (window) resolution decreases the detection of damage features:
a net effect of −5.3% (−11.2%). For the other ice shelves, however,
the lower resolution tests yields roughly the same or more detected
damage features. The latter is especially the case on Getz ice shelf,
where 26.2% (19.0%) of the damage pixels are detected only by the low
pixel (window) resolution tests, with respect to 10.5% (7.5%) pixels
that are only detected by the high resolution tests - a net increase
of 15.7% (11.5%). Fig. 4d and h show that this increase in detected
damage pixels improves the detection of large rifts. The effect is larger
for the low pixel resolution tests (90 m pixel resolution) than for the
low resolution window size test (25 × 25 pixels), indicating that down-
ampling the high resolution image with contrast enhancement benefits
he detection of these wide linear features.

Overall, the sensitivity tests highlight that NeRD is robust to choice
f window size and pixel resolution: the changes in detected damage
ixels are small and changes in detected damage patterns minimal. A
eduction of pixel/window resolution can increase as well as decrease
he detected damage features, but is only beneficial for areas with
redominantly (large) linear damage features. With this in mind, and
he intention to get a high resolution damage map of multiple types of
amage, we therefore continue with the application of NeRD on 30 m
ixel resolution images, applied to 10 × 10 pixel window sizes.

.1.2. Sensor sensitivity
This experiment considers both sensitivity of NeRD to the choice of

pectral bands in optical data, as well as the differences when applied
o optical or SAR data.

We show the sensitivity of NeRD to the R, G, B and Short-Wave Infra
ed (SWIR) spectral band of Sentinel-2 (spatial mosaic of DJF 2019–

020) in Fig. 6. The figure displays detected damage for each spectral
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Fig. 4. Figure showing the pixels where damage is detected (classified if �̂� > 0) for two the resolution sensitivity experiments on the selected ice shelves in the study area: Pine
Island (panel a & e), Thwaites (panel b & f), Crosson (panel c & g) and Getz (panel d & h). Panels a–d show detected damage for different pixel resolutions: the native resolution
of 30 m per pixel versus a down-sampled resolution of 90 m per pixel. Panels e–h show detected damage for different window sizes: size 10 × 10 pixels (300 m) and 25 × 25
pixels (750 m). The background shows the Sentinel-2 RGB median image composites (DJF 2020–2021) on which the experiments were applied. Grounding lines (dark grey line,
Rignot et al. (2016)) and an ocean mask (light blue area, adjusted from Mouginot et al. (2017b)) are added to the plot. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 5. Bar-chart of detected damage pixels grouped per ice shelf, normalised for the total number of pixels detected by both pixel resolution tests (uniform bars) or both window
resolution tests (hashed bars) on that ice shelf. The pixels are grouped by: pixels that are detected in both pixel- or both window resolution test (blue bars), pixels that are detected
only by the low resolution test but are directly adjacent to high resolution detected damage pixels (green bars), the remaining pixels that are detected only by low resolution test
(pink bars), and pixels that are detected only in the high resolution test (orange bars). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
band individually (Panel a, b, c, e) with the original band data in the
top row. Panel (d) shows an RGB plot of the individual bands (top) and
cumulative detected damage on the individual R, G, B bands (bottom),
such that the colour scheme indicates in which band(s) damage has
been detected. The majority of the pixels in panel (d) are coloured
white, meaning damage is detected in all bands. This test confirms that
differences between R, G and B bands are small, and that the most
complete detection will be achieved when using all three bands. This
test also shows that the SWIR band is very sensitive to any remaining
cloud properties or variability of this band between individual scenes
that are used to construct the DJF image. Because of this, we have
excluded SWIR as a potentially useful band.
8

Fig. 7 and Table 2 show the results of the second sensitivity test.
For this, NeRD is applied to three different data sources: Sentinel-2,
Landsat 8 and Sentinel-1 respectively. Table 2 shows that NeRD detects
almost twice as much damage pixels in the Sentinel-1 image than in the
Sentinel-2 and Landsat 8 images. Despite this quantitative difference,
the map in Fig. 7 clearly shows that the areas with high damage signal
values are detected on all data sources. This includes almost the entirety
of the western shear zone, the ice front and the damage in the Western
tributary. This result indicates the robustness of the method to identify
the consistent heavy damage patterns across the different data types.

Most of the pixels that are detected in Sentinel-1 but not in Landsat
8 or Sentinel-2 are pixels with low damage signal values (�̂� < 0.10);
see Fig. 7d. Moreover, these pixels are located mainly on the ice shelf
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Fig. 6. Figure showing the detected damage using the NeRd method applied to the separate optical bands (a) Red, (b) Green, (c) Blue and (e) Short-Wave Infra-Red of a Sentinel-2
image of the summer 2019–2020 (d, top). Panel (d, bottom) shows an RGB plot of the Red, Green and Blue band together, such that colour scheme indicates in which band(s)
damage has been detected. A red colour indicates damage detected only in the red band, and similar for green and blue colours; a purple colour is damage detected in both red
and blue bands. White indicates that damage is detected in all three bands. Grounding lines (dark grey line, Rignot et al. (2016)) and an ocean mask (light blue area, adjusted
from Mouginot et al. (2017b)) are added to the plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Damage detected on images of the Pine Island Glacier in December 2019 for (a) Sentinel-2, (b) Sentinel-1 and (c) Landsat 8 image, using window sizes of 10 × 10 pixels
(300 m). (d) shows the binned pixel count of detected damage pixels for the range of damage signal values for each source. Sentinel-2 and Landsat 8 images are median composites
and Sentinel-1 is a spatial mosaic of DJF 2019–2020. Grounding lines (dark grey line, Rignot et al. (2016)) and an ocean mask (light blue area, adjusted from Mouginot et al.
(2017b)) are added to the plot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Detected damage (�̂�), as result of the NeRD method, applied to ice shelves in the Amundsen Sea Embayment on Sentinel-2 median image composites for DJF 2020–2021,
using red (B4), green (B3) and blue (B2) spectral bands. Panel (a) shows the full study area, panel (b–e) show zoom boxes for selected ice shelves. Grounding lines (dark grey
line, Rignot et al. (2016)) and an ocean mask (light blue area, adjusted from Mouginot et al. (2017b)) are added to the plot. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
Table 2
Detected damaged pixels counted for the different sensors, Sentinel-2 (S2), Sentinel-1
(S1) and Landsat 8 (L8). The table compares (not) overlapping detected damage pixels
between the sensors. Each row compares the percentage of that sensor that overlaps
with the other in the columns. The cell that displays the overlap of a sensor with
itself (i.e. overlap of Sentinel-2 with Sentinel-2) is printed in italic, which indicates the
amount of pixels that is only detected by that sensor and no other.

Total �̂� px Detected px in combination with sensors..

All-sensors
(%)

.. with S1
(%)

... with
L8 (%)

.. with S2
(%)

Sentinel-2 9442 33.5 25.8 12.7 28.0
Landsat 8 5939 53.2 9.8 16.7 20.3
Sentinel-1 16 975 18.6 63.6 3.4 14.3

tongue, where mostly small scale surface crevasses are found. The
difference in detection between SAR and optical data on these small
scale features can be attributed to the pre-processing of the data sets.
The use of median composites for optical data results in a blurring
effect, caused by ice displacement. This blurring also explains why the
large open rift near the ice front is only partially detected in the optical
images.

Overall the results of the sensor sensitivity indicate the robustness
of the method to consistently identify damage patterns across the two
data types. Although the amount of detected damage varies, differ-
ences arise mostly for low damage values. This result emphasises the
complementarity of SAR and optical data for damage detection.

5.2. Damage detection at the amundsen sea embayment

Fig. 8 shows the damage detected as result of the NeRD method
across the ice shelves in the Amundsen Sea Embayment. Most damage
pixels and the strongest damage signals (�̂�) are detected on the Pine
Island, Crosson and Thwaites ice shelves. The results show moreover
10
that high damage signals (�̂� > 0.1) are mostly found in the shear zones
of these ice shelves, while lower damage values are detected on the
ice tongues. Inspection of the source imagery (Supplementary Figure
1) shows that these areas with high damage signal values consist of
heavily damaged ice, containing fully fractured rifts and ice mélange,
while the damage area on the ice tongue are mostly surface crevasses
(Supplementary Figure 2). NeRD also detects large linear rifts near the
ice front of the Getz ice shelf, although these rifts show lower damage
signal values: �̂� ≈ 0.02 to 0.03. This lower value of �̂� can be explained
by lower image contrasts of rifts as a result of snow cover. This lower
contrast also explains why the rifts in the upstream area of Getz are not
detected by NeRD as the contrast in their cross-section is even lower
there.

NeRD also detects the ice front for many of the ice shelves in the
Amundsen Sea Embayment. The sharp gradient of the bright calving
front and the darker sea in the optical images results in a strong damage
signal. Although the calving front is not considered damage in the
scope of this study, calving front detection could be considered a useful
by-product of the NeRD method.

Interpretation of the NeRD damage on the grounded ice is more
complicated than on the floating ice shelf. For example, nunataks
upstream of Crosson ice shelf create shadows and contrast edges over
the surrounding ice that are falsely detected as damage, as well as the
coastline. Further post-processing can remove this by masking all the
grounded ice or adding an ice height constraint to the data. We have
refrained from doing so now, to fully illustrate NeRD capacities.

5.2.1. Damage orientation
The orientation of the damage features (𝛼�̂�) are displayed as a

quiverplot in Fig. 9, scaled in size to their respective damage signal
value. For Pine Island, Thwaites, Crosson and Getz ice shelves a small
part of the ice shelf is selected to comprehensibly visualise the detected
damage orientations.
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Fig. 9. Detected damage orientation (𝛼�̂�) for selected areas on (a) Pine Island, (b)
Crosson, (c) Thwaites and (d) Getz ice shelves, as result of NeRD applied on Sentinel-2
median image composites for DJF 2020–2021, shown in grey-scale as background. The
quivers are rotated with 𝛼�̂� degree angles and scaled relatively to the damage signal
value �̂�. For visual clarity the number of plotted quivers is reduced to one median
value for every 3 × 3 pixel group.

Firstly, Fig. 9 shows a good alignment of detected damage orienta-
tions to the visible edges of damage features. This is clear on Crosson
and Getz ice shelf, where large rifts are tracked well, including a
consistent alignment to the calving front (detected as damage feature)
on Getz ice shelf and the consistent detected orientation of the two
edges of open rifts on Crosson. In the shear zone of Pine Island, Crosson
and Thwaites ice shelves the damage orientations are more chaotic,
especially in the presence of ice rubble. Thwaites shows a relatively
aligned damage field due to the block-wise structure of ice bergs in
combination with the sun incidence angle that enhances the shadows
of ice edges in one direction.

5.3. Validation

5.3.1. Validation to manual labels
The validation of detected NeRD damage with manually labelled

damage is shown in Fig. 10, displaying true negatives (TN), false
negatives (FN), false positives (FP) and true positives (TP). The cor-
responding confusion matrices are included in Supplementary Figure
3.

Firstly we note that the validation shows frequent detection of false
positive damage pixels on grounded ice, which is especially prevalent
upstream of Pine Island and Crosson ice shelves. This is the result
of the earlier mentioned difficulties with terrain shadows. These false
positive pixels over grounded ice restrict the obtained macro averaged
precision in the Amundsen Sea Embayment study area to 0.69. For
further validation metric calculations, all grounded ice was removed
using the grounding line from Rignot et al. (2016). The grounded ice
pixels are still visualised in Fig. 10 to give a full representation of the
validation. Removing the damage detection on grounded ice increases
the macro averaged precision in the study area to 0.81.

The validation results show a good overall performance of the NeRD
method, with an accuracy of 0.95 across all ice shelves in the study area
and a macro averaged f1-score of 0.80. The macro averaged f1-score on
Pine Island, Crosson, Thwaites and Getz ice shelves are 0.79, 0.79, 0.77
and 0.69, respectively. For Pine Island, Crosson and Thwaites the macro
averaged precision and recall are of similar value, all between 0.77 and
0.80. The relatively low f1-score for Getz ice shelf is the result of low
recall (0.64) rather than precision (0.81).
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Fig. 10. Performance of detected damage using the NeRD method, validated against
manually labelled damage features. Pixels are classified as True Positive (TP, pink),
False Positive (FP, orange), False Negative (FN, green) and True Negative (TN, blue).
Grounding lines (light grey line, Rignot et al. (2016)) and an ocean mask (light blue
area, adjusted from Mouginot et al. (2017b)) are added to the plot. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

These good performances are reflected in Fig. 10, which shows a
good representation of true positive detected damage pixels across the
ice shelf tongues and in the shear zones. The limited number of false
positive pixels (excluding grounded ice) explains the high precision,
whereas the relatively sparse number of false negative pixels explains
the high recall for most ice shelves. Only on Getz ice shelf the ratio of
false negative pixels is relatively high, as a result of NeRD’s difficulty to
detect some of the wide upstream rifts. Moreover, the majority of false
positive pixels on the ice shelves are located directly adjacent to true
positive pixels. In many cases, this suggests a wider damage detection
than that is labelled, rather than the detection of non-existing damage
features.

In summary, the validation shows an overall good performance of
the NeRD method to detect damage. The fact that the precision is
consistent for the damage detected at all ice shelves in the Amundsen
Sea Embayment indicates a robust damage detection method.

5.3.2. Comparison to fracture map
The comparison between the NeRD detected damage map and the

fracture map of Lai et al. (2020) in Fig. 11 shows different damage pat-
terns for both methods on all four ice shelves. NeRD has been applied
to Landsat 7 images on 150 m (5 × 5 pixels) and 3300 m (110 × 110
pixels) windows. For both, NeRD detects the same major damage areas,
with some new areas showing up in the 3300 m results and some small
scale features disappearing (e.g. on Thwaites ice tongue). The nuances
due to resolution have been discussed in Section 5.1.1, whereas this
Section will focus on the difference between the damage detected by
NeRD and Lai et al. (2020). Seeing the similarities between the 150 m
and 3300 m damage maps, we continue the comparison to the fracture
map with a focus on the 150 m resolution damage map.

Generally, the CNN fracture map of Lai et al. (2020) displays more
linear features. This includes larger, more gradual, rifts and folds
(Fig. 11). This CNN method works well on the Getz ice shelf, where
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Fig. 11. Detected damage (classified if �̂� > 0) on the Landsat 7 median image
composite (background) for summer 2008–2009 on the selected ice shelves in the study
area: (a) Pine Island, (b) Thwaites, (c) Crosson and (d) Getz ice shelves. Blue values
indicate the detected damage as result from the NeRD method, applied to 110 × 110
pixel windows (3300 m, light blue, bottom layer) and 5 × 5 pixel windows (150 m, dark
blue, top layer). Red values (middle layer) represent the detected fractures by Lai et al.
(2020) using a machine learning approach, applied to the MODIS Mosaic of Antarctica
2008–2009 (MOA2009) on 125 m pixel resolution but based on a 3500 m receptive
field. Grounding lines (dark grey line, Rignot et al. (2016)) and an ocean mask (light
blue area, Mouginot et al. (2017b)) are added to the plot. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

the CNN method detects most of the large rifts that are missed by
the NeRD method. However, a down-side of the CNN’s focus on large
linear shapes is that the fracture map also includes flow lines that are
morphological similar to these rifts (Ely and Clark, 2016). The benefit
of NeRD is that, despite missing some of the large rifts, it correctly omits
detection of flow lines.

We see a strong difference in performance between the CNN and
NeRD method on the Pine Island and Crosson ice shelves. The CNN
fracture map detects crevasse field areas on the ice tongues as a single
fracture. These areas stand out with respect to the rest of the ice shelf
tongue due to snow cover patterns. More importantly, the CNN method
completely overlooks the erratically organised damage in the shear
zones on both these ice shelves.

Also on Thwaites ice shelf NeRD detects high damage areas in the
shear zone between the Eastern ice shelf and main tongue which are
missed in the CNN fracture map. The CNN method, moreover, detects
more linear patterns on the main ice tongue. This can be explained by
the resolution of the used dataset: on the MOA2009 image with 125 m
pixel resolution, the ice fractures are indeed linearly oriented. On the
higher resolution Landsat 7 image (30 m) the ice tongue displays a
more block-like organisation of the ice.

To conclude: on the one hand, the NeRD method might overlook
some wide and gradual rifts, as is characteristic on the Getz ice shelf
and correctly detected by the CNN. On the other hand, the CNN fracture
map of Lai et al. (2020) consistently overlooks heavy damage patterns
that have an irregular shape, and also wrongly detect flow lines as
fractures.
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5.4. Damage evolution

We analyse the evolution of damage over time by applying NeRD
to satellite imagery of multiple years. Fig. 12 shows an example time
series of detected damage on Landsat 8 and Sentinel-2 median image
composites of the Pine Island ice shelf during the austral summers of
2013–2014, 2015–2016, 2017–2018 and 2019–2020.

This time series show that the damage in the shear zones increased
from 2013 to 2019. The ice tongue shows a more intra-annual vari-
ability: damage increases from 2013 to 2018 but then decreases in
2019 back to a similar pattern as 2015. This larger variability for
the smaller surface crevasses on the ice tongue can be explained by
two aspects. First, varying snow cover conditions can hide or reveal
crevasses in the optical images of Landsat or Sentinel. On top of that,
the number of images that are used for the median composite varies per
season, depending on the number of images that pass the cloud filter,
enhancing (many images) or reducing (few images) the blurring effect
of the median image composite. This shows that a seasonal or annual
variability related to surface crevasses can be imposed on the damage
map.

The zoom-boxes in Fig. 12 show initiation and evolution of damage
in the western shear-zone of the Pine Island ice shelf. Large rifts first
appeared in DJF 2013–2014 (panel a) and have opened and grown by
DJF 2015–2016 (panel b). NeRD successfully tracks the rotation and
opening of the rifts, aligning the detected damage orientation to the
rift’s edge. By DJF 2019–2020 (panel d), the individual rifts are no
longer distinguishable and the area has become heavily damaged with
little intact ice remaining. Hence, a more chaotic pattern of damage
orientations is detected. All the while, the orientations of the crevasses
on the ice tongue are quite consistently oriented throughout the years,
and show a relatively aligned field of orientation. These crevasses are
likely related to the vertical flexing of the ice shelf in response to
the formation of basal melt channels, rather than changes in the local
strain field (Vaughan et al., 2012), which can explain their consistent
alignment.

The consistent tracking from developing rifts to disintegrated areas,
both in terms of damage signal and orientation, indicates the qualitative
performance of the method to detect damage.

6. Discussion

The different NeRD experiments have shown that the proposed
NeRD method detects damage signal values primarily based on feature
contrast rather than feature intensity. This removes false signals and
dependencies on processing window size, both of which are prevalent
in the classical Radon Transform. NeRD enables an automated applica-
tion on different images and for different regions. This is in contrast to
other damage detection methods, such as a CNN method that needs re-
training for every data set, or manual mapping that is labour intensive
and depends on expert judgement.

Sensitivity tests show that the detected damage product can change
between −11 to +15% as a result of reducing the window or pixel
resolution. The increase or decrease of detected damage pixels depends
mainly on the type of damage features represented in the area. For
heavily damaged ice shelves like Pine Island, Thwaites and Crosson,
high resolution yields more detected damage. NeRD is most sensitive
to a reduction of resolution in areas with wide features, as is seen on
Getz ice shelf. In these areas, detection would improve by a reduced
pixel/window resolution. As Cosgrove and Dotson ice shelves show
similar sensitivity to window/pixel resolution as Getz ice shelf, we
expect other lightly damaged ice shelves across the Antarctic to behave
similarly. That aside, the sensitivity tests show a very robust and
consistent detection of damage patterns.

With the NeRD method we are able to generate damage maps
that can be analysed across space and time, because the quantified
damage value is consistent for different spatial or temporal domains.
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Fig. 12. A timeseries of detected damage signal (top row) and damage orientation (bottom row) for damage detected on Landsat 8 and Sentinel-2 median image composites of the
Pine Island Glacier during the summers (DJF) of (a) 2013–2014, (b) 2015–2016, (c) 2017–2018 and (d) 2019–2020. The zoom-boxes show the damage orientation in the western
shear-zone close to the ice front, with the length of the quiver scaled to the strength of the damage signal. Grounding lines (dark grey line, Rignot et al. (2016)) and an ocean
mask (light blue area, adjusted from Mouginot et al. (2017b)) are added to the plot. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
This improves upon the previous crevasse map from Gong et al. (2018).
Moreover, results consistently quantify damage patterns for all three
tested data sources, paving the way for synergistic multi-source dam-
age detection that overcomes remaining limitations from individual
sources. The differences between damage detected from either optical
or SAR data occur mainly for surface crevasses. Differences are caused
primarily by the image pre-processing approach and by the image
quality which is affected by clouds, shadows or illumination conditions,
rather than by the NeRD method itself. The blurring effect that occurs in
optical data due to compositing is a source for underestimated damage
detection. Alternative to median composites one could construct spatial
mosaics for optical data as well, which yields similar details of damage
detection as shown on SAR data. Optical spatial mosaics, however,
are much more susceptible to the mentioned image quality aspects
than median composites (included in Supplementary Figure 5). This
then would require more careful pre-processing, which did not fit
the objective to develop an automated approach that can be applied
out-of-the box to any data source.

With NeRD we are able to detect multiple types and scales of
damage features. This is an improvement with respect to existing
fracture maps. The fracture map of Lai et al. (2020) detects large-scale
linear-like fractures on coarse data resolution, and the crevasse map of
Bhardwaj et al. (2016) detects crevasses in a densely crevassed field on
high-resolution data. The NeRD method is able to detect both densely
crevassed fields and large scale rifts, and also includes the heavily
damaged areas in the shear-zones. NeRD is a first-of-its kind method
that detects continuous rather than binary damage features. It is this
characteristic that allows NeRD to include the multiple types of damage
features without losing comprehensible interpretation. Moreover, as
high values of the detected damage parameter �̂� seem to correlate
to large (deep) damage features and low values to small (shallow)
features, �̂� could potentially be linked to the scalar damage factor used
in CDM modelling (Borstad et al., 2012, 2013, 2016; Sun et al., 2017)
or to vertical crevasse information obtained from laser altimetry studies
(Li et al., 2021; Wang et al., 2021). NeRD, however, is less suited to
detect wide features with gradual slopes, especially compared to the
CNN fracture map of Lai et al. (2020). This detection can be improved
by down-sampling the image to enhance edge contrasts, but this is at
the cost of spatial resolution of the final product. Furthermore, NeRD
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does not perform well in areas with changing terrain features, such
as rock outcrops or hill shade. On ice shelves this is mostly a trivial
issue, but future studies should take care to mask these features from
the image.

The detection of damage orientation in addition to the damage
signal adds to the potential uses of NeRD in future research. The
robust tracking of rotating rifts can help improve our understanding of
damage evolution. Furthermore, the detected damage orientation can
be compared to the orientation of principal strain, using velocity data
that is a close temporal match to the satellite imagery used for damage
detection, which can provide insight in crevasse opening mode and can
potentially be of help to initialise anisotropic creep damage models
(Murakami et al., 1988; Pralong A., 2006; Huth et al., 2021).

Lastly, an interesting by-product of NeRD is that it detects the ice
front quite definitely. This has potential to help improve modelling of
calving fronts (Enderlin and Bartholomaus, 2020).

In summary, the NeRD method is robust and applicable for large
scale assessments. The method is mainly limited by the quality of the
input data. Therefore it is suggested that future studies focus on a
robust pre-processing approach that consistently retrieves high quality
data, which would combine well to the generalised application of the
NeRD method. With such robust pre-processing the NeRD method can
be applied to large spatiotemporal domains to allow Antarctic wide
assessments, but also an application to year-round SAR data to analyse
damage changes on a high temporal resolution.

7. Conclusion

In this manuscript we have shown that the proposed NeRD method
allows to robustly detects damage across spatial and temporal domains.
The method can be applied directly to different image sources, requir-
ing no additional pre- or post-processing. This generalised application
to multi-source imagery is a great advantage over previous fracture
detection algorithms. With these characteristics the method is suitable
for large scale damage assessments.

The ability of NeRD to detect continuous damage signal values
allows detection of multiple damage feature scales. Furthermore, it en-
ables the monitoring of damage development over time. We identified
spatially varying damage patterns on the ice shelves in the Amundsen
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Sea Embayment, with most damage occurring on Pine Island, Thwaites
and Crosson ice shelves. These ice shelves display heavy damage in
their shear zones, indicating structural weakening of the ice. The
consistent detection of damage orientation by NeRD provides insight in
crevasse evolution. We analysed damage growth on the Pine Island ice
shelf, showing the initiation, advection and rotation of large crevasses
that eventually develop into a disintegrated area.

With the NeRD method large scale damage assessments can be
made. This in turn can help evaluate ice sheet models to their mod-
elled damage pattern or possibly even calving front representation, or
it can help initialise damage models. Large scale damage maps can
also be used to train or evaluate machine learning approaches, or
be combined with vertical properties of fractures from laser altimetry
studies. Finally, temporal damage maps can potentially be used as an
early-warning indication for ice shelves that are transitioning from an
intact to a damaged state. In all cases, NeRD can be used as a tool to
produce important insights regarding crevasse formation and ice shelf
vulnerability.

CRediT authorship contribution statement

Maaike Izeboud: Developed and applied the method, Including
reprocessing and postprocessing the data, Writing – original draft. Stef
Lhermitte: Development of the method and processing of the data,
Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The code of the developed NeRD method is available on github,
https://github.com/mizeboud/NormalisedRadonTransform. The satel-
lite imagery data used in this study is open-source available. All Sen-
tinel and Landsat images have been acquired and pre-processed in the
Google Earth Engine, for which the code is available here: https://co
de.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd. The
MODIS MOA2009 mosaic is available at the National Snow & Ice Data
Center (NSIDC): https://nsidc.org/data/nsidc-0593/. The grounding
line and ocean mask used in the figures were obtained through the
Quantarctica3 dataset for QGIS (Matsuoka et al., 2018). The scientific
colour maps batlow and roma (Crameri, 2018) were used in this study
to prevent visual distortion of the data and exclusion of readers with
colour vision deficiencies.

Funding

This publication is part of the project ‘Remote sensing of dam-
age feedbacks and ice shelf instability in Antarctica’, with project
number ALWGO.2018.043 of the research programme ‘User Support
Programme Space Research 2018’ which is financed by the Dutch
Research Council (NWO).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
14

at https://doi.org/10.1016/j.rse.2022.113359.
References

Albrecht, T., Levermann, A., 2012. Fracture field for large-scale ice dynamics. J. Glaciol.
58, 165–176. http://dx.doi.org/10.3189/2012JoG11J191.

Altena, B., 2018. Observing Change in Glacier Flow by Using Optical Satellites (doctoral
dissertation). University of Oslo, URL: https://www.duo.uio.no/bitstream/10852/
61747/1/Phd_Altena-2018.pdf.

Araujo, A., Norris, W., Sim, J., 2019. Computing receptive fields of convolutional neural
networks. Distill 4, http://dx.doi.org/10.23915/distill.00021.

Arndt, J.E., Larter, R.D., Friedl, P., Gohl, K., Höppner, K., 2018. Bathymetric controls
on calving processes at pine island glacier. Cryosphere 12, 2039–2050. http://
dx.doi.org/10.5194/tc-12-2039-2018, URL: https://tc.copernicus.org/articles/12/
2039/2018/.

Benn, D.I., Åström, J.A., 2018. Calving glaciers and ice shelves. Adv. Phys. 3,
1513819. http://dx.doi.org/10.1080/23746149.2018.1513819, URL: https://www.
tandfonline.com/action/journalInformation?journalCode=tapx20.

Bhardwaj, A., Sam, L., Singh, S., Kumar, R., 2016. Automated detection and temporal
monitoring of crevasses using remote sensing and their implications for glacier
dynamics. Ann. Glaciol. 57, 81–91. http://dx.doi.org/10.3189/2016AoG71A496,
URL: https://landsat.usgs.gov/Landsat8_.

Borstad, C.P., Khazendar, A., Larour, E., Morlighem, M., Rignot, E., Schodlok, M.P.,
Seroussi, H., 2012. A damage mechanics assessment of the larsen b ice shelf
prior to collapse: Toward a physically-based calving law. Geophys. Res. Lett. 39,
http://dx.doi.org/10.1029/2012GL053317.

Borstad, C., Khazendar, A., Larour, E., Rignot, E., Scheuchl, B., Morlighem, M., 2016.
A constitutive framework for predicting weakening and reduced buttressing of ice
shelves based on observations of the progressive deterioration of the remnant larsen
B Ice Shelf. J 43, http://dx.doi.org/10.1002/2015GL067365.

Borstad, C.P., Rignot, E., Mouginot, J., Schodlok, M.P., 2013. Creep deformation and
buttressing capacity of damaged ice shelves: theory and application to larsen C ice
shelf. Cryosphere 7, 1931–1947. http://dx.doi.org/10.5194/tc-7-1931-2013, URL:
https://www.the-cryosphere.net/7/1931/2013/.

Chuter, S.J., Martín-Español, A., Wouters, B., Bamber, J.L., 2017. Mass balance
reassessment of glaciers draining into the Abbot and Getz Ice Shelves of West
Antarctica. Geophys. Res. Lett. http://dx.doi.org/10.1002/2017GL073087.

Colgan, W., Rajaram, H., Abdalati, W., McCutchan, C., Mottram, R., Moussavi, M.S.,
Grigsby, S., 2016. Glacier crevasses: Observations, models, and mass balance im-
plications. Rev. Geophys. 54, 119–161. http://dx.doi.org/10.1002/2015RG000504,
URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015RG000504.

Colgan, W., Steffen, K., McLamb, W.S., Abdalati, W., Rajaram, H., Motyka, R.,
Phillips, T., Anderson, R., 2011. An increase in crevasse extent, West Green-
land: Hydrologic implications. Geophys. Res. Lett. 38, http://dx.doi.org/10.1029/
2011GL048491.

Crameri, F., 2018. Scientific colour maps. http://dx.doi.org/10.5281/zenodo.1243862.
Ely, J.C., Clark, C.D., 2016. Flow-stripes and foliations of the antarctic ice sheet. J.

Maps 12, 249–259. http://dx.doi.org/10.1080/17445647.2015.1010617.
Enderlin, E.M., Bartholomaus, T.C., 2020. Sharp contrasts in observed and modeled

crevasse patterns at Greenland’s marine terminating glaciers. Cryosphere 14, 4121–
4133. http://dx.doi.org/10.5194/tc-14-4121-2020, URL: https://tc.copernicus.org/
articles/14/4121/2020/.

Fox-Kemper, B., Hewitt, H.T., Xiao, C., Aalgeirsdóttir, G., Drijfhout, S.S., Edwards, T.L.,
Golledge, N.R., Hemer, M., Kopp, R.E., Krinner, G., Mix, A., Notz, D., Nowiciki, S.,
Nurhati, I.S., Ruiz, J., Sallée, J.-B., Slangen, A.B.A., Yu, Y., 2021. Ocean, cryosphere
and sea level change. In: Climate Change 2021: The Physical Science Basis. Contri-
bution of Working Group I To the Sixth Assessment Report of the Intergovernmental
Panel on Climate ChangeScience Basis. Contribution of Working Group I To the
Sixth Assessment Report of the Intergover, pp. 1–257.

Gardner, A.S., Fahnestock, M.A., Scambos, T.A., 2019. MEaSUREs ITS_LIVE landsat
image-pair Glacier and ice sheet surface velocities: Version 1. http://dx.doi.org/
10.5067/IMR9D3PEI28U, Accessed Dec–2020.

Glasser, N., Scambos, T., 2008. A structural glaciological analysis of the 2002
larsen b ice-shelf collapse. J. Glaciol. 54, 3–16. http://dx.doi.org/10.3189/
002214308784409017, URL: https://www.cambridge.org/core/product/identifier/
S0022143000209805/type/journal_article.

Gong, Y., Zwinger, T., Åström, J., Altena, B., Schellenberger, T., Gladstone, R.,
Moore, J.C., 2018. Simulating the roles of crevasse routing of surface water and
basal friction on the surge evolution of basin 3, Austfonna ice cap. Cryosphere 12,
1563–1577. http://dx.doi.org/10.5194/tc-12-1563-2018.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017.
Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens.
Environ. http://dx.doi.org/10.1016/j.rse.2017.06.031.

Haran, T., Bohlander, J., Scambos, T., Painter, T., Fahnestock, M., 2021. MODIS Mosaic
of Antarctica 2008–2009 (MOA2009) Image Map, Version 2. NSIDC: National Snow
and Ice Data Center, Boulder, Colorado USA, p. hp1. http://dx.doi.org/10.7265/
N5KP8037, URL: https://nsidc.org/data/NSIDC-0593/versions/2. Date accessed:
2021-10-30.

Herzfeld, U.C., Trantow, T., Lawson, M., Hans, J., Medley, G., 2021. Surface heights
and crevasse morphologies of surging and fast-moving glaciers from icesat-2 laser
altimeter data - application of the density-dimension algorithm (DDA-ice) and
evaluation using airborne altimeter and planet SkySat data. Sci. Remote Sens. 3,
100013. http://dx.doi.org/10.1016/J.SRS.2020.100013.

https://github.com/mizeboud/NormalisedRadonTransform
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd
https://nsidc.org/data/nsidc-0593/
https://doi.org/10.1016/j.rse.2022.113359
http://dx.doi.org/10.3189/2012JoG11J191
https://www.duo.uio.no/bitstream/10852/61747/1/Phd_Altena-2018.pdf
https://www.duo.uio.no/bitstream/10852/61747/1/Phd_Altena-2018.pdf
https://www.duo.uio.no/bitstream/10852/61747/1/Phd_Altena-2018.pdf
http://dx.doi.org/10.23915/distill.00021
http://dx.doi.org/10.5194/tc-12-2039-2018
http://dx.doi.org/10.5194/tc-12-2039-2018
http://dx.doi.org/10.5194/tc-12-2039-2018
https://tc.copernicus.org/articles/12/2039/2018/
https://tc.copernicus.org/articles/12/2039/2018/
https://tc.copernicus.org/articles/12/2039/2018/
http://dx.doi.org/10.1080/23746149.2018.1513819
https://www.tandfonline.com/action/journalInformation?journalCode=tapx20
https://www.tandfonline.com/action/journalInformation?journalCode=tapx20
https://www.tandfonline.com/action/journalInformation?journalCode=tapx20
http://dx.doi.org/10.3189/2016AoG71A496
https://landsat.usgs.gov/Landsat8_
http://dx.doi.org/10.1029/2012GL053317
http://dx.doi.org/10.1002/2015GL067365
http://dx.doi.org/10.5194/tc-7-1931-2013
https://www.the-cryosphere.net/7/1931/2013/
http://dx.doi.org/10.1002/2017GL073087
http://dx.doi.org/10.1002/2015RG000504
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015RG000504
http://dx.doi.org/10.1029/2011GL048491
http://dx.doi.org/10.1029/2011GL048491
http://dx.doi.org/10.1029/2011GL048491
http://dx.doi.org/10.5281/zenodo.1243862
http://dx.doi.org/10.1080/17445647.2015.1010617
http://dx.doi.org/10.5194/tc-14-4121-2020
https://tc.copernicus.org/articles/14/4121/2020/
https://tc.copernicus.org/articles/14/4121/2020/
https://tc.copernicus.org/articles/14/4121/2020/
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb16
http://dx.doi.org/10.5067/IMR9D3PEI28U
http://dx.doi.org/10.5067/IMR9D3PEI28U
http://dx.doi.org/10.5067/IMR9D3PEI28U
http://dx.doi.org/10.3189/002214308784409017
http://dx.doi.org/10.3189/002214308784409017
http://dx.doi.org/10.3189/002214308784409017
https://www.cambridge.org/core/product/identifier/S0022143000209805/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022143000209805/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022143000209805/type/journal_article
http://dx.doi.org/10.5194/tc-12-1563-2018
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.7265/N5KP8037
http://dx.doi.org/10.7265/N5KP8037
http://dx.doi.org/10.7265/N5KP8037
https://nsidc.org/data/NSIDC-0593/versions/2
http://dx.doi.org/10.1016/J.SRS.2020.100013


Remote Sensing of Environment 284 (2023) 113359M. Izeboud and S. Lhermitte
Huth, A., Duddu, R., Smith, B., 2021. A generalized interpolation material point method
for shallow ice shelves. 2: Anisotropic nonlocal damage mechanics and rift propaga-
tion. J. Adv. Modelling Earth Syst. 13, http://dx.doi.org/10.1029/2020MS002292,
URL: https://onlinelibrary.wiley.com/doi/full/10.1029/2020MS002292.

Kaluzienski, L., Koons, P., Enderlin, E., Hamilton, G., Courville, Z., Arcone, S., 2019.
Crevasse initiation and history within the McMurdo shear zone, Antarctica. J.
Glaciol. 65, 989–999. http://dx.doi.org/10.1017/jog.2019.65.

Lai, C.Y., Kingslake, J., Wearing, M.G., Chen, P.H.C., Gentine, P., Li, H., Spergel, J.J.,
van Wessem, J.M., 2020. Vulnerability of Antarctica’s ice shelves to meltwater-
driven fracture. Nature 584, 574–578. http://dx.doi.org/10.1038/s41586-020-
2627-8.

Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J., Berthier, E.,
Nagler, T., 2020. Damage accelerates ice shelf instability and mass loss in
Amundsen Sea embayment. Proc. Natl. Acad. Sci. 201912890. http://dx.doi.org/
10.1073/pnas.1912890117.

Li, G., Guo, J., Pei, L., Zhang, S., Tang, X., Yao, J., 2021. Extraction and analysis of the
three-dimensional features of crevasses in the amery ice shelf based on ICESat-2
ATL06 data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 14, 5796–5806.
http://dx.doi.org/10.1109/JSTARS.2021.3085302.

Lilien, D.A., Joughin, I., Smith, B., Shean, D.E., 2018. Changes in flow of
crosson and dotson ice shelves, West Antarctica, in response to elevated melt.
Cryosphere 12, 1415–1431. http://dx.doi.org/10.5194/tc-12-1415-2018, URL:
https://tc.copernicus.org/articles/12/1415/2018/.

Luckman, A., Jansen, D., Kulessa, B., King, E.C., Sammonds, P., Benn, D.I., 2012.
Basal crevasses in Larsen C ice shelf and implications for their global abundance.
Cryosphere 6, 113–123. http://dx.doi.org/10.5194/tc-6-113-2012.

Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H., Headland, R.,
Herried, B., Katsumata, K., Brocq, A.L., Licht, K., Morgan, F., Neff, P., Ritz, C.,
Scheinert, M., Tamura, T., de Putte, A.V., van den Broeke, M., von Deschwan-
den, A., Deschamps-Berger, C., Liefferinge, B.V., Tronstad, S., Melvæ, Y., 2018.
Quantarctica [Dataset]. Norwegian Polar Institute, URL: https://doi.org/10.21334/
npolar.2018.8516e961.

McGrath, D., Steffen, K., Rajaram, H., Scambos, T., Abdalati, W., Rignot, E., 2012a.
Basal crevasses on the Larsen C ice shelf, Antarctica: Implications for meltwater
ponding and hydrofracture. Geophys. Res. Lett. 39, n/a–n/a. http://dx.doi.org/10.
1029/2012GL052413, URL: http://doi.wiley.com/10.1029/2012GL052413.

McGrath, D., Steffen, K., Scambos, T., Rajaram, H., Casassa, G., Lagos, J.L.R., 2012b.
Basal crevasses and associated surface crevassing on the larsen c ice shelf,
antarctica, and their role in ice-shelf instability. Ann. Glaciol. 53, 10–18. http:
//dx.doi.org/10.3189/2012AoG60A005.

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A.,
Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M., Ottersen, G.,
Pritchard, H.D., Schuur, E., 2019. Polar regions. In: IPCC Special Report on the
Ocean and Cryosphere in A Changing Climate. pp. 203–320, URL: https://www.
ipcc.ch/srocc/.

Miles, B.W.J., Stokes, C.R., Jenkins, A., Jordan, J.R., Jamieson, S.S.R., Gudmunds-
son, G.H., 2021. Intermittent structural weakening and acceleration of the thwaites
glacier tongue between 2000 and 2018. J. Glaciol. 66, 485–495. http://dx.doi.org/
10.1017/jog.2020.20.

Mouginot, J., Rignot, E., Scheuchl, B., Millan, R., 2017a. Comprehensive annual
ice sheet velocity mapping using landsat-8, sentinel-1, and radarsat-2 data. Re-
mote Sens. 9. http://dx.doi.org/10.3390/rs9040364, URL: http://www.mdpi.com/
journal/remotesensing.
15
Mouginot, J., Scheuchl, B., Rignot, E., 2017b. Measures Antarctic Boundaries for
Ipy 2007-2009 from Satellite Radar, Version 2. NASA National Snow and Ice
Data Center Distributed Active Archive Center, URL: https://nsidc.org/data/nsidc-
0709/versions/2.

Murakami, S., Kawai, M., Rong, H., 1988. Finite element analysis of creep crack growth
by a local approach. Int. J. Mech. Sci. 30, 491–502. http://dx.doi.org/10.1016/
0020-7403(88)90003-3.

Oppenheim, A.V., Willsky, A.S., 1996. Signal & Systems, second ed. Prentice Hall
Signal Processing Series, URL: https://www.academia.edu/37486178/Signals_and_
Systems_2nd_Edition_by_Oppenheim_.

Öznergiz, E., Kiyak, Y.E., Kamasak, M.E., Yildirim, I., 2014. Automated nanofiber
diameter measurement in SEM images using a robust image analysis method. J.
Nanomater. 2014, http://dx.doi.org/10.1155/2014/738490.

Pattyn, F., Morlighem, M., 2020. The uncertain future of the antarctic ice sheet.
Science 367, 1331–1335. http://dx.doi.org/10.1126/science.aaz5487, URL: http:
//science.sciencemag.org/.

Pralong A., F.M., 2006. Anisotropic damage mechanics for viscoelastic ice. Continuum
Mech. Thermodyn. 17, 387–408. http://dx.doi.org/10.1007/s00161-005-0002-5.

QGIS Development Team, 2009. QGIS geographic information system [software]. URL:
http://qgis.org.

Rignot, E., Mouginot, J., Scheuchl, B., 2016. MEaSUREs Antarctic Grounding Line from
Differential Satellite Radar Interferometry, Version 2. NASA National Snow and Ice
Data Center Distributed Active Archive Center.

Roberts, J.L., Warner, R.C., Treverrow, A., 2013. Instruments and methods inferring
ice-flow directions from single ice-sheet surface images using the radon transform.
J. Glaciol. 59, 129–136. http://dx.doi.org/10.3189/2013JoG12J042, URL: https:
//www.cambridge.org/core.

Scambos, T., Fricker, H.A., Liu, C.-C.C., Bohlander, J., Fastook, J., Sargent, A.,
Massom, R., Wu, A.-M.M., 2009. Ice shelf disintegration by plate bending and
hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice
shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60. http://dx.doi.org/10.1016/j.
epsl.2008.12.027, URL: www.nspo.org.

Shalom, S.R., Mandeville, G., 1982. Calculating minimum and maximum possible
variances from n-tile grouped data. Qual. Quant. 16, 19–27, URL: https://link.
springer.com/content/pdf/10.1007/BF00143817.pdf.

Stehman, S.V., 1997. Selecting and interpreting measures of thematic classification
accuracy. Remote Sens. Environ. 62, 77–89. http://dx.doi.org/10.1016/S0034-
4257(97)00083-7.

Sun, S., Cornford, S.L., Moore, J.C., Gladstone, R., Zhao, L., 2017. Ice shelf fracture pa-
rameterization in an ice sheet model. Cryosphere 11, 2543–2554. http://dx.doi.org/
10.5194/tc-11-2543-2017, URL: https://www.the-cryosphere.net/11/2543/2017/.

Taha, A.A., Hanbury, A., 2015. SOFTWARE open access metrics for evaluating 3D
medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15,
29. http://dx.doi.org/10.1186/s12880-015-0068-x, URL: www.visceral.eu.

Vaughan, D.G., Corr, H.F.J., Bindschadler, R.A., Dutrieux, P., Gudmundsson, G.H.,
Jenkins, A., Newman, T., Vornberger, P., Wingham, D.J., 2012. Subglacial melt
channels and fracture in the floating part of pine island glacier, antarctica. J.
Geophys. Res.: Earth Surf. 117, n/a–n/a. http://dx.doi.org/10.1029/2012JF002360,
URL: http://doi.wiley.com/10.1029/2012JF002360.

Vieli, A., Payne, A.J., Shepherd, A., Du, Z., 2007. Causes of pre-collapse changes of the
larsen B ice shelf: Numerical modelling and assimilation of satellite observations.
Earth Planet. Sci. Lett. 259, 297–306. http://dx.doi.org/10.1016/j.epsl.2007.04.
050.

Wang, S., Alexander, P., Wu, Q., Tedesco, M., Shu, S., 2021. Characterization of ice
shelf fracture features using ICESat-2 – A case study over the Amery Ice Shelf.
Remote Sens. Environ. 255, 112266. http://dx.doi.org/10.1016/j.rse.2020.112266.

http://dx.doi.org/10.1029/2020MS002292
https://onlinelibrary.wiley.com/doi/full/10.1029/2020MS002292
http://dx.doi.org/10.1017/jog.2019.65
http://dx.doi.org/10.1038/s41586-020-2627-8
http://dx.doi.org/10.1038/s41586-020-2627-8
http://dx.doi.org/10.1038/s41586-020-2627-8
http://dx.doi.org/10.1073/pnas.1912890117
http://dx.doi.org/10.1073/pnas.1912890117
http://dx.doi.org/10.1073/pnas.1912890117
http://dx.doi.org/10.1109/JSTARS.2021.3085302
http://dx.doi.org/10.5194/tc-12-1415-2018
https://tc.copernicus.org/articles/12/1415/2018/
http://dx.doi.org/10.5194/tc-6-113-2012
https://doi.org/10.21334/npolar.2018.8516e961
https://doi.org/10.21334/npolar.2018.8516e961
https://doi.org/10.21334/npolar.2018.8516e961
http://dx.doi.org/10.1029/2012GL052413
http://dx.doi.org/10.1029/2012GL052413
http://dx.doi.org/10.1029/2012GL052413
http://doi.wiley.com/10.1029/2012GL052413
http://dx.doi.org/10.3189/2012AoG60A005
http://dx.doi.org/10.3189/2012AoG60A005
http://dx.doi.org/10.3189/2012AoG60A005
https://www.ipcc.ch/srocc/
https://www.ipcc.ch/srocc/
https://www.ipcc.ch/srocc/
http://dx.doi.org/10.1017/jog.2020.20
http://dx.doi.org/10.1017/jog.2020.20
http://dx.doi.org/10.1017/jog.2020.20
http://dx.doi.org/10.3390/rs9040364
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/journal/remotesensing
https://nsidc.org/data/nsidc-0709/versions/2
https://nsidc.org/data/nsidc-0709/versions/2
https://nsidc.org/data/nsidc-0709/versions/2
http://dx.doi.org/10.1016/0020-7403(88)90003-3
http://dx.doi.org/10.1016/0020-7403(88)90003-3
http://dx.doi.org/10.1016/0020-7403(88)90003-3
https://www.academia.edu/37486178/Signals_and_Systems_2nd_Edition_by_Oppenheim_
https://www.academia.edu/37486178/Signals_and_Systems_2nd_Edition_by_Oppenheim_
https://www.academia.edu/37486178/Signals_and_Systems_2nd_Edition_by_Oppenheim_
http://dx.doi.org/10.1155/2014/738490
http://dx.doi.org/10.1126/science.aaz5487
http://science.sciencemag.org/
http://science.sciencemag.org/
http://science.sciencemag.org/
http://dx.doi.org/10.1007/s00161-005-0002-5
http://qgis.org
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb43
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb43
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb43
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb43
http://refhub.elsevier.com/S0034-4257(22)00465-5/sb43
http://dx.doi.org/10.3189/2013JoG12J042
https://www.cambridge.org/core
https://www.cambridge.org/core
https://www.cambridge.org/core
http://dx.doi.org/10.1016/j.epsl.2008.12.027
http://dx.doi.org/10.1016/j.epsl.2008.12.027
http://dx.doi.org/10.1016/j.epsl.2008.12.027
http://www.nspo.org
https://link.springer.com/content/pdf/10.1007/BF00143817.pdf
https://link.springer.com/content/pdf/10.1007/BF00143817.pdf
https://link.springer.com/content/pdf/10.1007/BF00143817.pdf
http://dx.doi.org/10.1016/S0034-4257(97)00083-7
http://dx.doi.org/10.1016/S0034-4257(97)00083-7
http://dx.doi.org/10.1016/S0034-4257(97)00083-7
http://dx.doi.org/10.5194/tc-11-2543-2017
http://dx.doi.org/10.5194/tc-11-2543-2017
http://dx.doi.org/10.5194/tc-11-2543-2017
https://www.the-cryosphere.net/11/2543/2017/
http://dx.doi.org/10.1186/s12880-015-0068-x
http://www.visceral.eu
http://dx.doi.org/10.1029/2012JF002360
http://doi.wiley.com/10.1029/2012JF002360
http://dx.doi.org/10.1016/j.epsl.2007.04.050
http://dx.doi.org/10.1016/j.epsl.2007.04.050
http://dx.doi.org/10.1016/j.epsl.2007.04.050
http://dx.doi.org/10.1016/j.rse.2020.112266

	Damage detection on antarctic ice shelves using the normalised radon transform
	Introduction
	NormalisEd Radon transform Damage detection (NeRD)
	The Normalised Radon Transform
	Damage Signal and Orientation
	Proof of Concept

	Study Area and Data
	Study Area
	Satellite Imagery

	Methods
	Sensitivity Analysis
	Resolution Sensitivity
	Sensor Sensitivity

	Application of NeRD
	Noise Removal

	Validation

	Results
	Sensitivity Analysis
	Resolution Sensitivity 
	Sensor Sensitivity

	Damage Detection at the Amundsen Sea Embayment
	Damage Orientation

	Validation 
	Validation to Manual Labels
	Comparison to Fracture Map

	Damage Evolution

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	
	Appendix A. Supplementary data
	References


