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ABSTRACT

As more and more people live near the sea, future flood risk must be properly assessed for sustainable urban planning and coastal protec-

tion. However, this is rarely the case in developing countries where there is a lack of both in-situ data collection and forecasting tools. Here,

we consider the case of the Kapuas River Delta (KRD), a data-scarce delta on the west coast of Borneo Island, Indonesia. We assessed future

flood risk under three climate change scenarios (RCP2.6, RCP4.5, and RCP8.5). We combined the multiple linear regression and the GIS-based

bathtub inundation models to assess the future flood risk. The former model was implemented to model the river’s water-level dynamics in

the KRD, particularly in Pontianak, under the influence of rainfall changes, surface wind changes, and sea-level rise. The later model created

flood maps with inundated areas under a 100-year flood scenario, representing Pontianak’s current and future flood extent. We found that

about 6.4%–11.9% more buildings and about 6.8%–12.7% more roads will be impacted by a 100-year flood in 2100. Our assessment guides

the local water manager in preparing adequate flood mitigation strategies.
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HIGHLIGHTS

• The proposed scheme successfully tackled the issues of data scarcity and low computational resources.

• The approach is appropriate for local water managers in developing countries.

• The proposed method combined the simple machine learning and GIS-based bathtub inundation models.

• The scheme is successfully implemented in the Kapuas River Delta.

• The assessment is beneficial for flood mitigation strategies.
1. INTRODUCTION

Climate change has been accelerating at an alarming rate in the last century and is likely to continue in the future (IPCC
2012). Certain regions will experience more intense and frequent rainfalls (Marengo et al. 2020), which will increase the

flooding risk. In contrast, other regions will experience decreasing rainfall and increasing evaporation, which will accelerate
soil’s progressive drying, leading to drought (Mukherjee et al. 2018). In coastal areas, climate change impacts the frequency
and intensity of coastal flooding. The coastal flooding hazard arises through changes in mean sea level and the storminess of

the atmosphere that creates storm surges in the first place (Lilai et al. 2016; Vousdoukas et al. 2016). Extreme events, such as
the 100-year flood under the current climate, with future sea-level projections, will occur much more frequently.

Urban areas in deltas are particularly vulnerable to climate change (Ridha et al. 2022). These urban areas will face multiple

ocean and land threats simultaneously. With the areas’ rapid population growth (Bhatta 2010), disaster could impact more
people and cause more damage. This risk highlights the importance of preparedness in disaster mitigation (Dinh et al.
2012; Chan et al. 2021). Communities in disaster-prone cities should properly assess the hazards and adapt to the changing
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climate, by for instance mapping their flood hazards and building flood defense systems. Adaptation strategies should be

informed by proper risk projections so they can effectively mitigate the impacts (Hallegatte 2009).
The Kapuas River Delta (KRD) is a low-lying marshy delta on the west coast of Borneo Island, Indonesia. Silt deposits

cover the delta from the coastline up to about 60 km inland (MacKinnon et al. 1996), creating estuarine floodplains for

the Kapuas river downstream. Several urban areas lie in this delta and are prone to floods, which could be exacerbated by
a combination of storm surges, intense rainfalls, and high discharges. These hazards are further intensified by sea-level
rise caused by climate change (Moftakhari et al. 2017).

The water levels within the low-lying KRD are influenced by tide and wind surges from Karimata Strait, as well as the river

discharges from the Kapuas and the Landak rivers (Sampurno et al. 2022). The flood risk here, and in other deltas, is likely to
increase in future climate (Kundzewicz et al. 2014). The rising sea levels and excessive rainfall in the coming years will cause
a severe impact because the KRD is low-lying and densely populated. Flood will be more intensive and frequent in a delta

such as this (Lange 2020). A forecasting system is needed to assist local water management in assessing potential flood
hazards, mitigating the risks, and planning adequate measures (Ngo et al. 2018).

Flood forecasting can leverage water-level modeling based on a machine learning (ML) technique (Ruslan et al. 2014;
Gallien 2016; Habert et al. 2016; Noymanee & Theeramunkong 2019; Nguyen & Chen 2020). ML is based on evidence
of relationships manifested in records of input and output data without analyzing the internal structure of the physical pro-
cess. Using only historical data, an ML model can represent a complex input and output relationship, such as the relationship

between water level and its predictor variables (Bishop 2006). The knowledge can subsequently be used to predict future
water levels.

This study aims to assess the flood risk of an urban area within the KRD in future climates. We used an ML algorithm, i.e.,
multiple linear regression (MLR), to predict the water level in the city of Pontianak, the most populated urban area in the

KRD. However, since data was scarce, we selected three months of data containing many extreme events (26 flood
events) in 2020 as a reference case. The predictors we set comprised sea surface elevation in the river mouth, river discharge,
wind velocity, and rainfall. The predicted water levels were used as a proxy to estimate the flood hazards in the city. Next,

using a GIS-based bathtub model, we created flooding hazard maps under a 100-year flood scenario for the city with
three climate change plots. Lastly, we conducted a risk analysis of these hazards to the nearby infrastructures (buildings
and roads). The assessment output is essential for the local water resource managers in Pontianak to mitigate the impacts

and create future adaptation strategies.

2. METHODS

2.1. Study area

In this study, we focus our assessment on Pontianak (Figure 1), the capital of the Kalimantan Barat Province, Indonesia, and

the largest city in the KRD. Located in a low-lying area, the city has many canals that serve as drainage systems to the Kapuas
Kecil River. Meteorologically, Pontianak experiences a bimodal rainfall distribution with two maximum peaks in March and
October (Aldrian & Susanto 2003). Located along a tidal river stream, Pontianak is prone to compound inundations, which
can occur due to storm surges from the sea, high river discharges from the land, excessive rainfall over the area, or a com-

bination of these events. The flooding hazards may be worsened in the future due to sea-level rise or extreme weather events
caused by climate change.

2.2. Data used

To forecast the flood, we used the observed water levels in Pontianak (Figure 2) as a proxy. The Pontianak Maritime Meteor-
ological Station (PMMS) measures the river’s water levels to support the Dwikora Port’s operations and monitor the city’s
flood hazards. The data selected in this study were measured hourly for three months, from 1 October 2020 to 31 December
2020, at the PMMS’s observation point (�0.020431° S, 109.33852° E). The data captured some flood events when high tides

coincided with high river discharges or excessive rainfalls (Ganguli et al. 2020). Based on the field observation, PMMS con-
siders that 2.5 m water level is the benchmark where the river begins to overflow the riverbanks.

Since the study area is located in a tidal river, where water levels are influenced by ocean tides, rivers discharges, and

weather conditions, we used seven predictors: the sea surface elevation (SSE); the weather variables measured in Pontianak,
i.e., precipitation, average wind speed, maximum instantaneous wind speed, and average wind direction; discharges from
Kapuas River retrieved at about 50 km upstream from the observation point; and discharges from Landak River retrieved
om http://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf
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Figure 1 | The region of interest, with a green perimeter marking the city of Pontianak. The red triangles show where the model predictors
(sea surface elevation and river discharges) are set, while the red box (in the inset) shows where the region of interest is set in this study. The
flow from the Kapuas River’s upstream bifurcates in Rasau Jaya, the furthest inland boundary of the KRD area. The main branch (the Kapuas
Besar) bifurcates again (the Kubu branch), and the second-largest branch (the Kapuas Kecil) joins the end stream of the Landak River in
Pontianak before it debouching into the sea.
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at about 18 km upstream from the observation point (Table 1). Before training the model, we split the dataset between 80%

for training and 20% for testing purposes.
2.3. Multiple linear regression and GIS-based bathtub model

Since we assume the relationship between the dependent and independent variables used as water level predictors is linear,
here we use a well-known ML technique, multiple linear regression (MLR), to model water levels and predict future inunda-

tions. MLR aims to model a linear relationship between a set of independent variables and a dependent variable. This method
is built upon a least-square algorithm to find the best-fitting model that connects a set of observed data and its predictors. MLR
has been successfully applied in hydrology to predict a runoff signature (Zhang et al. 2018) and forecast streamflow (Block

et al. 2009). In the current study, we used the MLR algorithm provided in the RWeka R library (Hornik et al. 2008). The MLR
model is defined as:

Hi ¼ b0 þ b1x1,i þ b2x2,i þ b3x3,i þ b4x4,i þ b5x5,i þ b6x6,i þ b7x7,i þ e (1)

where i is the observation index, Hi is the water level at i-th time, x j( j¼1,...,7) are the predictor variables (see Table 1), β0 is the

water level intercept, b j( j¼1,...,7) are the slope coefficients, and ɛ is the residual.
Furthermore, we used a GIS-based bathtub model to create a flood extent map associated with the predicted water levels in

the study area. Using the bathtub model, we assume that all areas within a model domain will be inundated if their elevation is
://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf



Table 1 | Independent variables used as water level predictors

Code
Variable
acronym Description Source

x1 SSE Sea surface elevation retrieved at the river mouth (m) PUSRIKEL KKP (https://pusriskel.litbang.kkp.
go.id/)

x2 Qkapuas Hourly discharge of the Kapuas River (m3/s) Global Flood Monitoring System (Wu et al.
2014)

x3 Qlandak Hourly discharge of the Landak River (m3/s) Global Flood Monitoring System

x4 RR Hourly precipitation in Pontianak (mm) PMMS

x5 WSavg Hourly average wind speed in Pontianak (m/s) PMMS

x6 WSmax Hourly maximum instantaneous wind speed in Pontianak (m/s) PMMS

x7 WD Hourly average wind direction in Pontianak (degree, in the
range: 0–360)

PMMS

Figure 2 | Hourly riverine water levels in Pontianak, with the orange dash line representing the threshold of flooding, and the red dots
representing the peaks of flood events.
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less than the river’s projected water level (Yunus et al. 2016). However, since we only focus on floods connected to the river,

we consider the hydrology connectivity between the river streams and the land area (Van de Sande et al. 2012). Any area
within the city will be inundated if a channel connects it to the Kapuas River stream, i.e., city canals. Therefore, using an
algorithm created by Wang & Liu (2007), we identify and fill surface depressions in our DEM map that are not connected

to the river.
2.4. Predictor selection

We applied the Mutual Information (MI) analysis to evaluate the dependency level of the dependent variables on each pre-
dictor because it can assess the correlation between the dependent and the independent variables (Ross 2014). The MI’s value
will be greater than zero if there is a correlation between the evaluated variables. The stronger the correlation, the greater the
om http://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf
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MI’s coefficient value is (Kinney & Atwal 2014). The value is determined by the following equation (Choi et al. 2020):

MI(X,Y) ¼
X
x[X

X
y[Y

p(x, y)log
p(x, y)

p(x)� p(y)

� �
(2)

where X represents the independent variable, Y represents the dependent variable, p(x) is the probability of the independent
variable (X ), p(y) is the probability of the dependent variable (Y ), and p(x, y) is the joint probability distribution of both

variables.
Since we employed the MLR algorithm, we also checked the linear regression assumptions between the dependent vari-

ables and the predictors to diagnose the model adequacy. Then, we selected the variables that significantly impacted the

model and omitted the non-essential ones. To do so, we produced a scatter plot between variables, created histograms of
each variable, and calculated the Pearson’s correlation coefficients for all pairs of predictor and dependent variables. We
also checked the correlation among predictors to detect and avoid multicollinearity. We used the psych library in R to
check the linear assumption (Psych: Procedures for Psychological Psychometric and Personality Research 2021). To enhance

the prediction skill of the model, we also run a sensitivity analysis before predicting the future flood scenarios impacted by
climate change. By doing so, we could evaluate the effect of each parameter on the model’s output (Chu 1999). Therefore, we
could tune in the model parameters involved in the model-building to improve the prediction results by adjusting only the

sensitive parameters (Cacuci 2003). To conduct the sensitivity analysis, we used the konfound R library (Xu et al. 2019).

2.5. Metrics for evaluation

Two goodness-of-fit coefficients determine the models’ performance: the Root Mean Square Errors (RMSE) and the Nash–
Sutcliffe Efficiency (NSE). RMSE is commonly used for regression tasks to measure the accuracy of a predicted variable

against an observed variable over an entire dataset (Jackson et al. 2019). However, the coefficient was only computed for
the maximum values in the dataset to measure how well the model captured the inundation hazards. Meanwhile, NSE
was used to assess the ‘skill’ of the ML models compared to the skill of the observed data’s mean to predict an unknown

dependent variable (Choi et al. 2020).

2.6. Future scenarios

To evaluate the impacts of climate change, we used the projection of sea-level rises, precipitation changes, and surface wind
changes in three climate scenarios for Southeast Asia’s regional level (Iturbide et al. 2021). The scenarios are the low

(RCP2.6), the medium (RCP4.5), and the high emission scenarios (RCP8.5). Based on these projections, we created projection
datasets (SSE, Precipitation, Wind average, and Wind maximum) for each year into the future (from 2021 to 2100). We then
re-ran the ML model to predict future water levels and extract each year’s annual maximum water level. Then, we computed

the flood frequency for every ten years of data using the Gumbel (1958) distribution curve. Here, we took only the flood fre-
quencies between 2020 and 2030 (as the current state) and between 2090 and 2100 (as the future state). Based on the flood
frequency curves, we estimated the 100-year flood level as the annual maximum flood hazard levels in 2020 (current) and
2100 (future hazard state).

2.7. Flood risk analysis

We used a simple bathtub inundation model to assess the inundation risk throughout the city under the 100-year flood level
condition (Murdukhayeva et al. 2013). We firstly retrieved the DEM of the city of Pontianak from DEMNAS (https://tana-

hair.indonesia.go.id/demnas/) with 0.27-arcsecond (8.3 m) resolution and corrected it using elevation benchmark points
from SRGI (https://srgi.big.go.id/). We then applied another correction to the channels in the DEM by incorporating the
channel connectivity map (Figure 3).

Next, based on the elevations in the corrected DEM, we defined wet areas as any points on the map with an elevation lower

than the 100-year flood level. Wet areas mean either inundated areas (with an elevation greater than zero) or standing water
areas (with an elevation less than zero). We repeated this procedure for all future scenarios.

Next, we conducted a flood risk assessment for further analysis. Here, we identified the infrastructures (buildings and

roads) over the study area, retrieved from OpenStreetMap (OpenStreetMap 2020), that may be affected by inundation
hazards under the 100-year flood condition in 2100. We analyzed the flood impact on infrastructures using a QGIS
plugin: InaSAFE (InaSAFE 2022).
://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf
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Figure 3 | Channel connectivity within the city of Pontianak (OpenStreetMap, https://planet.osm.org, 2020).
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3. RESULTS

3.1. Features selection and model performance

Figure 4 shows the MI coefficient of each independent variable relative to the observed water levels. Overall, all independent

variables show a positive MI coefficient, which means they influence the water levels. In particular, two independent vari-
ables show a strong relationship, i.e., tidal elevation and precipitation. The rest of the variables show only a moderate
relationship.

However, based on the correlation among predictors, two variables (WSmax and WSavg) have significant multicollinearity

(Figure 5). The correlation between these two predictors is 0.91. Therefore, we had to omit one of them; otherwise, it would
decrease the model’s performance. We implemented a sensitivity analysis to determine which variable could be omitted
(Table 2). The sensitivity analysis shows that the maximum wind speed (WSmax) contribution to the model was insignificant,

so we canceled it and retained the other variables.
We then trained the MLR algorithm using the training dataset to build the model. Next, we assessed its performance on the

testing dataset. The model performed well and was stable in the training and testing phases, indicated by the NSE¼ 0.86 and

NSE¼ 0.88 for the training and testing phases, respectively (Figure 6). In addition, both the training and testing phases show a
consistent accuracy (RMSE¼ 0.12 m). These performance indicators suggest that the model is reliable in predicting water
levels (prediction and observation pair points tend to cluster along the 45° line). However, extreme water levels are slightly
under-estimated as the regression line has a slope ,45°.

3.2. Future flood risk analysis

After successfully building the model, we simulated future water levels in the study area under the three climate change scen-
arios. We then calculated the flood frequency curve of these predicted water levels at the PMMS’s observation point within
om http://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf
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Figure 4 | Mutual information of proposed predictors (Table 2) to the observed water level.

Figure 5 | Linearity assumption evaluation consisting of scatter plots, histograms, and the Pearson correlation coefficient between all
proposed variables.
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the city (�0.020431° S, 109.33852° E). Figure 7 shows how climate change impacts the 100-year flood level in the study area.
Based on the current flood frequency curve, the 100-year flood level is 2.64 m. Under a low emission scenario (RCP2.6), the
100-year flood level will increase by about 0.28 m to reach a 2.92 m water level in 2100. Next, under a medium emission
://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf



Table 2 | Sensitivity analysis outputs for the predictors

Coefficients Estimate slope Std. Error t-value p_test Significance

SSE 7.50E-01 7.73E-03 97.084 2.0E-16 Significant

RR 8.24E-05 9.42E-06 8.752 2.0E-16 Significant

WSavg 2.66E-02 9.49E-03 2.806 5.0E-03 Significant

WSmax �9.71E-03 6.08E-03 �1.597 1.1E-01 Not significant

WD 3.30E-04 4.30E-05 7.670 2.8E-14 Significant

Qlandak �6.78E-05 2.76E-05 �2.455 1.4E-02 Significant

Qkapuas �4.09E-05 6.82E-06 �6.000 2.4E-09 Significant

Figure 6 | Model performance during training and testing phases, with a comparison of the regression line orientation and the 45°-line
representing the relative quality of the model’s prediction.
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scenario (RCP4.5), the 100-year flood level in 2100 will increase by about 0.39 m and reach 3.03 m. Lastly, under a high emis-

sion scenario (RCP8.5), in 2100, it will increase by 0.7 m–3.34 m.
Using the GIS-based bathtub inundation model, we estimated that the extent of the hazardous area under the 100-year

flood level condition is 78.16 km2 (Figure 8(a)). If the 100-year flood level increases to 2.92 m in 2100 (under RCP2.6), the
flooded area will increase to 85.65 km2 (Figure 8(b)). The flooded area becomes wider in 2100–87.85 km2 (estimated

under RCP4.5, Figure 8(c)) or 93.54 km2 (estimated under RCP8.5, Figure 8(d)). Next, we investigated how the increase of
om http://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf
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Figure 7 | Flood frequency analysis in Pontianak for 2090–2100 under the three future climate scenarios. Gray shading areas show a 95%
confidence interval for each future scenario.
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flooded areas impacted by climate change increases the infrastructure’s exposure (Table 3). We estimated the number of infra-

structures affected by each increase in the flood-hazard level. However, the estimation was only made for the infrastructures
located within the city of Pontianak. Our results show that the number of affected buildings in 2100 will increase by about 6,
8, and 12% under the RCP2.6, RCP4.5, and RCP8.5 scenarios. Similarly, the fraction of impacted road length will rise from
about 72% (in the current state) to about 78, 80, and 84% in 2100 under the RCP2.6, RCP4.5, and RCP8.5 scenarios,

respectively.
4. DISCUSSION

Since the area of interest is low-lying land with a generally low slope (� 8%) (Arianti et al. 2020) and in almost a natural state

(with no dams, dykes, or levees), a 2.64-m flood level (1% annual exceedance probability) already causes an inundation in a
significantly large part of the study area (Table 3). The overflow water runs freely into the city through the drainage canals.
Therefore, an increase of 100-year flood level of 28 cm, in a low emission scenario (RCP2.6), already affects infrastructures

severely (6.4% increase in impacted buildings and 6.8% increase in impacted road lengths). In the medium emission scenario
(RCP4.5), while the 100-year flood level will increase by about 39 cm in 2100, the inundation will cause 8.1% more impacted
buildings and 8.4% more affected road lengths. Lastly, in the highest emission scenario (RCP8.5), when the 100-year flood

level increases by 70 cm from the current state, there will be 11.9% more impacted buildings and 12.7% more affected roads.
Here, we qualitatively categorized the flood risk for each sub-area (district) as high and low regarding the spatial distri-

bution of flood hazards and exposed infrastructures, i.e., buildings and roads (Environment Agency UK 2013). Figure 7
shows that the high-risk area is located in the eastern and western parts of the city. Most of these areas will be inundated

under the 100-year flood level condition. Therefore, we can say that the flood hazard in these areas is high. The exposure
is also high because there are many infrastructures in these areas, which means they are highly populated or function as,
for example, a business center. The high hazards and dense infrastructures made this area a high-risk flood zone.

Meanwhile, the northern part of the city has a lower infrastructure density. The flood hazard in this area is also low due to
its higher altitude. A significant portion of this area will not be inundated under all 100-year flood scenarios. Therefore, the
flood risk of this zone is categorized as low (Environment Agency UK 2013). Another non-inundated area is the southern part
://iwaponline.com/jh/article-pdf/25/1/113/1167022/jh0250113.pdf



Figure 8 | Flood risk maps in Pontianak under the 100-year flood level condition, comparing the current state (a), under RCP2.6 (b), RCP4.5
(c), and RCP8.5 (d). Note that roads and buildings are only shown in (a), where the blue area (inundated areas) below the red (buildings) is
covered (cannot be seen).

Table 3 | Flood risk analysis in the city of Pontianak and the impacted infrastructures

Scenario Flood 100yr (m) Flood Extent Area (km²)

Impacted Buildings Impacted Roads

NWet NDry % Length_wet (km) Length_dry (km) %

2020_Current 2.64 78.16 1.16� 105 3.52� 104 76.7 1,323 526 71.6

2100_RCP26 2.92 85.65 1.26� 105 2.56� 104 83.1 1,448 400 78.4

2100_RCP45 3.03 87.85 1.28� 105 2.30� 104 84.8 1,480 369 80.0

2100_RCP85 3.34 93.54 1.34� 105 1.72� 104 88.6 1,558 290 84.3
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of the joining point of the Landak River and the Kapuas Kecil River, as well as some parts of the city’s southwestern area.

Even though these areas have dense infrastructures, we still classified the flood risk of these zones as low.
Nevertheless, this study has some limitations. Firstly, we do not account for potential collapse of the Antarctic ice sheet in

future scenarios (van de Wal et al. 2019). Secondly, the flood analysis is limited to the extent of the city of Pontianak. Hazards

and exposure areas outside the city are not included in the assessment. Next, the hazards are classified only in two states:
inundated and not inundated, without considering the depth of the flood (Islam & Sado 2000). In addition, the impact assess-
ment on the infrastructure (buildings and roads) only depends on the DEM map (FEMA 2003). The analysis result may differ
due to local conditions, such as higher local terrain maps and infrastructure types. Lastly, it is also essential to notice that the

MLR model is trained by only three months of data in 2020. The water levels could be higher if we considered other flood
events in other years.

Despite the limitations, the local water management or government can use this study’s results to mitigate future flood

events in the study area. The model’s evaluation of climate change impacts can guide the adaptation strategies, such as
whether or not it is urgent to adjust the height of flood defense structures along the riverbanks within the city. Next, they
can track the hazardous area throughout the city and watch what happens as the water comes from all possible causes. More-

over, other deltas with similar characteristics and limitations can adopt the approach to assess their future flood risk.

5. CONCLUSION

This study successfully assesses future flood risk in the KRD, particularly in Pontianak, using integrated ML and GIS-based
bathtub inundation models. We simulated the water level dynamics and quantified the flood frequency curve of the current

and future states as modulated by climate change. We created flood maps with potentially inundated areas in 100-year flood
(1% annual exceedance probability) under the current and future scenarios. We found that the 100-year flood level in the
study area will increase from the current 2.64 m to 2.92 m, 3.03 m, and 3.34 m in 2100 under each future climate scenario

(RCP2.6, RCP4.5, and RCP8.5), respectively. These increases correlate to the increment of flood hazard areas over the
region of interest. We found that in 2100 more buildings will be exposed (increased by about 6.4%–11.9%), and more
roads will be impacted (increased by approximately 6.8%–12.7%) depending on the climate scenario. This assessment benefits
the local water managers in preparing adequate mitigation strategies and the city’s disaster management plan.
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