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The role that seaweeds play as primary producers and ecosystems engineers in

marine coastal ecosystems is widely acknowledged. Seaweeds, however, are

also important drivers in the development of the blue bioeconomy due to their

vast diversity of unique chemicals with a broad range of industrial and

biotechnological applications. In tropical regions, seaweed production has

been focused on a few species only, because of their hydrocolloids used in

the food industry. There is a strong need to identify new applications of red

seaweed species in other sectors such as aquaculture. Therefore, to diversify

the culture of red seaweeds, more tropical species need to be investigated for

their chemical composition and potential application in aquaculture, and then,

to develop a method for a sustainable cultivation of new seaweed candidates

and enhance their economic potential. Based on this context, we analyze the

potential value of the red edible seaweed Acanthophora spp., an under-valued

seaweed species which is naturally abundant in tropical countries, and

Kappaphycus spp., a commercially valuable seaweed commonly used for

polysaccharide extraction. The vast chemical diversity of seaweeds

(polysaccharides, phytohormones, amino acids, and pigments) has led to

research on a wide range of applications in aquaculture, including pathogen

control, immunostimulant, antioxidant, bioremediation, feed, UV protectants,

increase in seafood shelf life, animal colorant, and growth regulator for

microalga culture. This review hopes to stimulate the interest among

seaweed researchers to investigate other local seaweed species and seek
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greater added value of their biomass and chemical compounds and their

applications in the aquaculture sector. Additionally, this information will help

stakeholders to benefit from these two red seaweeds by contributing to the

diversification of the blue bioeconomy in tropical countries.
KEYWORDS

Acanthophora, Kappaphycus, aquaculture, tropical seaweed, bioproduct,
metabolites, blue economy, chemistry
GRAPHICAL ABSTRACT
1 Introduction

Seaweeds are photosynthetic and multicellular organisms

commonly found in shallow coastal marine ecosystems. Seaweeds

biosynthesize a wide range of natural products originating from

different metabolic pathways (Cardozo et al., 2007) with a wide

range of applications in food processing, pharmaceutical,

nutraceutical and cosmetic industries as well in the agriculture

and aquaculture sector. In recent years, the aquaculture sector has

become more diverse and experienced an intensive growth around

the world, especially in tropical regions (FAO, 2020). Seaweed

cultivation has increased through the years around the world

particularly in Asia (Naylor et al., 2021). Kappaphycus spp. and

Eucheuma spp. have become the most cultivated species for

carrageenan extraction, while other seaweeds, like Undaria

pinnatifida, Porphyra/Pyropia spp., and Caulerpa spp., are being

cultivated for human consumption. Recent studies have covered

advances of seaweed nursery techniques and the importance to

identify adequate environmental conditions for economically
02
successful production in aquaculture systems (Hwang et al., 2022;

Jiksing et al., 2022).

Seaweeds are also increasingly cultivated for bioremediation

purposes in the aquaculture sector to help reducing the

environmental impact, i.e. Integrated Multi-Trophic Aquaculture

(IMTA) (Stévant et al., 2017). The implementation of land-based

shrimp farms negatively impacts the environment causing

eutrophication and polluting mangrove forest. The poor quality

of water of shrimp farms can negatively affect growth of shrimp and

increase the probabilities of shrimp disease outbreaks, which

generate severe economic losses.

The incorporation of seaweeds into aquaculture systems has the

potential to help the improvement of the marine ecosystem through

their capacity to absorb nutrients from the water while synthesizing

secondary metabolites with high-added value (Tanaka et al., 2020).

IMTA cultivation of the kelp Saccharina latissima with the blue

mussel Mytilus edulis improved the biomass of the kelp by 38%,

reduced ephiphytes to 6% and increased the concentration of

pigments such as chlorophyll a, fucoxanthin and phaeophytin,
frontiersin.org
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compared to monoculture (Hargrave et al., 2022). The seaweed

Chaetomorpha linum cultivated in a IMTA system was found to be

a prolific source of omega-3 and omega-6 fatty acids as a by-

product of the bioremediation system (Stabili et al., 2019). Other

seaweeds such as Codium and Ulva cultivated in land-based IMTA

systems have shown to be alternative sources of commercially

important polar lipids such as glycolipids, phospholipids, and

betaine lipids (da Costa et al., 2015; Moreira et al., 2020), while

IMTA cultures of Gracilaria vermiculophylla represent a promising

source of photoprotective compounds known as mycosporine-like

amino acids (MAAs) (Barceló-Villalobos et al., 2017). The chemical

composition of seaweeds is highly variable when collected in the

wild. Cultivation under control conditions through land-based

IMTA systems presents an alternative to provide a continuous

supply of compounds of commercial and nutritional interest.

One of the economically most significant and widespread

cultivated seaweeds in tropical Asian countries is the red

seaweed Kappaphycus alvarezii. Other countries, such as

Mexico (Muñoz et al., 2004) and Brazil (Bulboa and De Paula,

2005), successfully cultivate introduced strains of K. alvarezii

and K. striatus. This seaweed has also been introduced to other

tropical regions around the world for mariculture including East

Africa (Rönnbäck et al., 2002; Msuya, 2020) and the tropical

Eastern Pacific (Hayashi et al., 2017).

Kappaphycus species are of interest for their high

carrageenan content. Furthermore, among the three taxonomic

groups of macroalgae; green (Chlorophyta), red (Rhodophyta)

and brown (Ochrophyta and Phaeophyceae), red seaweeds are

characterized by being the most important source of bioactive

metabolites with higher protein content and for being the group

with higher species diversity in the tropical eastern pacific (TEP)

(Cortés et al., 2017). Additionally, the presence of abundant

biomass of other red seaweed species in the coast of tropical

countries should also be considered for their investigation and

potential applications of their biomass and chemical

constituents along with the ecology and social economic

impact. For example, the red seaweed Acanthophora spp., is

found abundantly in the wild, but its potential applications in

different sectors is still to be evaluated.

Acanthophora is commonly found in tropical, marine

ecosystems. Acanthophora spicifera has been considered as the

most widespread and invasive species reported in the Eastern

Pacific Ocean (Ávila et al., 2012). Its morphological plasticity,

high capacity to adapt to different environmental conditions and

its capacity to reproduce vıá sexual or vegetative reproduction,

makes it a threat to native marine biodiversity. A. spicifera can

grow on different types of substrate such as rocky, sandy, shells,

concrete and buoys exposed to diverse physical and

environmental parameters such as water movement, light,

salinity, and water temperature that have strong influence in

its propagation (Russell, 1992). Harvesting the biomass of A.

spicifera from the natural environment might be a way to reach

two goals: (1) conservation of the natural marine environment
Frontiers in Marine Science 03
with respect to control of invasive seaweed species and (2)

developing a local bioeconomy by valorizing the harvested

biomass. Although there is a scarce information about the

ecological impact of Acanthophora spp. on native species in

tropical region, a study carried out in Hawaii demonstrated that

Acanthophora spicifera did not have a negative effect on

epifaunal distribution (Fukunaga et al., 2014).

Even though, the ecological impact of invasive seaweed

species should be carefully considered in all marine

ecosystems, chemical characterization and valorizing its

potential industrial applications could be worth it. For

example, the presence of high feedstock of invasive seaweed

species in the Iberian Peninsula (Pacheco et al., 2020) and the

coast of Spain (Pereira et al., 2021) were reported and evaluated

for their potential applications in different industries, suggesting

their use as an alternative to decrease their population while

achieving environmental and economic benefits. However, other

seaweed such as Undaria pinnatifida, which is considered an

invasive species in several countries such as France, Ireland and

New Zealand (Kraan, 2017), but cultivation permits have been

granted by local authorities to cultivate the species due to its

economic potential in the food industry.

In this study, we analyze the potential use of the biomass and

the chemical constituents, such as polysaccharides, pigments,

amino acids, and peptides, and phytohormones of two tropical

red seaweed species Kappaphycus and Acanthophora and their

high value-added applications in the aquaculture sector.
2 General characteristics

2.1 Kappaphycus spp.

The commonly cultured Kappaphycus strains have been

extensively introduced to various tropical countries as a source

of carrageenan for the food industry (Ask and Azanza, 2002;

Zuccarello et al., 2006). The genus Kappaphycus is comprised of

five taxonomically accepted species: K. alvarezii, K. inermis, K.

malesianus, K. procrusteanus and K. striatus (Dumilag et al.,

2022). K. alvarezii includes three strains (red, green, and brown)

and has been widely studied for their growth rate and

carrageenan yield (Muñoz et al., 2004). There is a long list of

cultivars of different Kappaphycus spp. For example, in the

Phillipines over 60 different cultivars have been investigated

(Dumilag et al., 2022). Recent studies have focused on the

germination of tetraspores and carpospores from wild,

harvested K. alvarezii (Hinaloc and Roleda, 2021).

Temperature is the most important factor that determines the

growth rate in K. alvarezii and K. striatus (Muñoz et al., 2004;

Bulboa and De Paula, 2005). Both species have shown higher

growth rates during warm seasons but limited growth below 18°C

for longer periods. Although K. striatus has shown a good growth

rate and carrageenan yield, the presence of viable tetraspores during
frontiersin.org

https://doi.org/10.3389/fmars.2022.957290
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Guillén et al. 10.3389/fmars.2022.957290
in vitro and in the sea experiments under different light and

temperature conditions, suggest considering only K. alvarezii for

commercial cultivation purposes to prevent propagation and

possible environmental damage (Bulboa and De Paula, 2005).

However, the negative impact caused by K. alvarezii on the coral

Acropora sp., and bleaching of the fire coralMillepora alcicorniswas

reported in India (Chandrasekaran et al., 2008) and Venezuela

(Barrios et al., 2007) respectively. Therefore, cultivation near

biodiverse ecosystems should be highly reconsidered. Analysis of

farming techniques based on biotechnological tools, ecological

interactions and the challenges involved in K. alvarezii culture

has been reviewed (Bindu and Levine, 2011). To increase the

economic viability, sequential extractions of the same biomass of

K. alvarezii to obtain carrageenan, chlorophyll, b-carotene, essential
amino acids and phytohormones have been suggested for a green

biorefinery development (Rudke et al., 2020). Several investigations

have been focused on improving biomass cultivation methods of

Kappaphycus as a monoculture such as micropropagation (Rama

et al., 2018; Ali et al., 2020), culture on biofloc effluents (Pires et al.,

2021), tissue culture (Budiyanto and Abadi, 2019), or as part of an

IMTA using different systems like floating bamboo raft (Mantri

et al., 2022), tubular net (Reis et al., 2015; Periyasamy and Subba

Rao, 2017), floating cages and longlines (Mustafa, 2017), and

stratified double net rounded cage (Putro et al., 2015).

The proximal composition of Kappaphycus species have

been reported in different studies (Table 1).
2.2 Acanthophora spp.

The genus Acanthophora is currently composed of 7

accepted species according to Algaebase (Guiry and Guiry,

2022): A. spicifera, A. muscoides, A. aokii, A. dendroides, A.

nayadiformis, A. pacifica and A. ramulosa. Although, most

species are restricted to tropical regions, some species such as

A. spicifera and A. muscoides extend into temperate regions

(Jong et al., 1999).
Frontiers in Marine Science 04
The presence of A. spicifera in mangrove ecosystems and

results of experimental studies, indicate the species can grow

under a large salinity range (25 to 40 g/100 g water) (Cordeiro-

Marino et al., 1992; Pereira et al., 2017). Up till now, no studies

on this seaweed biomass production in mangrove ecosystems

have been recorded to evaluate its sustainable production.

Morphological changes, such as increased cell wall thickness

and chloroplast disruption, reduced cell viability and growth

rate, were also observed in A. spicifera after exposure to UV-B

radiation which increases the formation of reactive oxygen

species (ROS) within the cell (Pereira et al., 2017). Stress

response was more obvious when plants were cultivated under

higher salinity conditions. When A. spicifera was exposed to UV

radiation in combination with higher nutrient availability, a

reduction on these negative effects was observed. The fact that

increased nutrient concentration can offset the negative effects of

UV radiation could be explained by the capacity of the seaweed

to incorporate nutrients that transform through different

metabolic pathways into specific UV-absorbing compounds

such as mycosporine-like amino acids (Häder et al., 2015).

The proximal composition of Acanthophora species have been

reported (Table 2).
3 Seaweed biomass with
applications in aquaculture

3.1 Kappaphycus spp.

Aquaculture applications of Kappaphycus spp. are

numerous. They include biomass cultivation, bioremediation,

and animal feed production.

The economic and environmental benefits of culturing

Kappaphycus species with commercially important aquatic

animals in diverse IMTA systems has been investigated in

several studies (Qian et al., 1996; Lombardi et al., 2006;

Rodriguez and Montaño, 2007; Hayashi et al., 2008; Putro
TABLE 1 Proximal composition of Kappaphycus spp.

Parameter(g/100 g dw)* K. alvarezii K. striatus K. malesianus K. inermis

Lipids 0.03-1.50 a,b,c,d,e,f,g,h,i,j 0.06-0.08 c,f ** **

Protein content 1.03-18.16 a,b,c,d,e,f,g,h,i,j 0.73-1.25 c,f,g ** **

Carbohydrate content 8.67-71.83 b,c,d,g,h,i,j,l 5.15-8.35 c,f,g ** **

Sulfated polysaccharide content 6-67.30 a,e,m,n,o,p,q 30-56.40 n,p,r 37 p 29 n

Ash content 5.01-45.37 a,b,c,d,e,f,g,h,k 4.80-35.88 c,f,g ** **

Fiber 0.87-34.09 a,b,c,f,g,j,k,l 1.18-15.81 c,g ** **
fr
*Ranges of all values found in literature
a(Hurtado, 1995); b (Hong et al., 2007); c (Balasubramaniam et al., 2013); d (Suresh Kumar et al., 2015); e (Yong et al., 2014); f (Ariano et al., 2021); g (Adharini et al., 2019); h (Alcantara and
Lazaro-Llanos, 2020); i (Abirami and Kowsalya, 2011); j (Kumar et al., 2014); k (Xiren and Aminah, 2017); l (Fayaz et al., 2005); m (Castelar et al., 2016); n (Santos, 1989); ° (Estevez et al.,
2000); p (Bui et al., 2019); q (Ohno et al., 1994); r (Hung and Trinh, 2021).
** No scientific information available.
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et al., 2015; Kambey et al., 2020; da Silva et al., 2022). In those

studies, the productivity of the cultivated species in open water

and land-based systems was increased supporting IMTA

technology as a viable method for seaweed production. These

systems provide a sustainable method for the development of the

aquaculture industry with ecological benefits, especially in

developing countries. For example, an improved growth rate

of K. alvarezii and the pearl oyster Pinctada martensi was

observed in a co-culture system established in a subtidal zone

in the coast of Hainan Island in China. Both organisms showed

higher growth rates when seawater temperature was over 23°C,

due to the efficient nutrient uptake by K. alvarezii removing

nitrogen waste, particularly ammonium, and improved seawater

quality (Qian et al., 1996). Although, K. alvarezii, K. striatum

and Kappaphycus sp., all significantly reduced the ammonium

concentration in fish farm effluent, K. striatum showed the best

performance compared to the two other species (Rodriguez and

Montaño, 2007). Also, the growth of K. striatum improved the

growth rate of the sea cucumber Holothuria scabra in a co-

culture system established in a tropical lagoon in Tanzania

(Beltran-Gutierrez et al., 2016). The implementation of

integrated aquaculture systems in lagoons, represents an

alternative for the economic development in this area,

particularly in countries where space for marine aquaculture is

a limitation. Additionally, alternative methods to improve

seaweed biomass production by increasing its resistance to

diseases without affecting its polysaccharide quality have been

reported. For example, a short immersion (12 hours) of K.

alvarezii in a high nitrogen medium enhanced the growth,

nitrogen uptake, and carrageenan quality and reduced the

incidence of the “ice-ice” disease during its cultivation in the

sea for 45 days (Luhan et al., 2015). Furthermore, the use of a

bioflocs system with effluents released from farming of white

Pacific shrimp (L. vannamei) improved the growth and

biosynthesis of secondary metabolites with antioxidant activity,

such as phenolics, carotenoids and flavonoids, during in vitro

cultivation of K. alvarezii (Pedra et al., 2017).

From a bioremediation point of view, K. alvarezii was

capable of removing 23–34% of ammonium and 5–30% of

phosphate after 42 days of cultivation using seaweed biomass
Frontiers in Marine Science 05
inside a fish cage system (Kambey et al., 2020). The dried

biomass of K. alvarezii also showed high biosorption capacity

for the removal of phosphate and heavy metals (Pb2+, Cu2+, Fe2+

and Zn2+) from contaminated waters (Rathod et al., 2014;

Rahman and Sathasivam, 2015) and under laboratory

conditions (Lee et al., 2011). The K. alvarezii brown strain

showed higher biosorption of cadmium, cobalt, and chromium

with values of 3.064, 3.365 and 2.799 mg/100 g fresh weight

respectively, compared to the red and pale yellow strains during

the experiments undertaken in the laboratory (Kumar

et al., 2007).

Additionally, K. alvarezii biomass and its extracts have been

included in animal feed and to improve the physiological and

immunological response in economic important aquaculture

species. The nutritional composition and low heavy metal

content in K. alvarezii and K. striatus suggest their use for

animal feed (Ariano et al., 2021). Supplementing with 15 g of

seaweed/kg feed, resulted in a 10% increase in the survival rate of

the white Pacific shrimp L. vannamei in a Vibrio harveyi

challenge test (Suantika et al., 2018) (Table 3). K. alvarezii-

enriched artemia used to feed the white shrimp L. vannamei

increased the resistance against V. harveyi during the post-larvae

phase and improved shrimp growth in a high-salinity

environment (Suantika et al., 2017). The amino acid and fatty

acid content increased through the fermentation of K. alvarezii

with 10% of activated Saccharomyces cerevisiae provided a better

alternative as a feed supplement for the white shrimp compared

to the non-fermented one (Hardjani et al., 2017). Other studies

demonstrated that higher lipid content improved the growth and

survival rate and enhanced the larval immune system and stress

tolerance in shrimps (Zhang et al., 2013; Xie et al., 2018). The use

of raw and fermented K. alvarezii in the diet of up to 10 and 30%,

respectively, for the feed of freshwater prawn Macrobrachium

rosenbergi increased growth rate, protein and lipid digestibility

and feed utilization efficiency (Felix and Brindo, 2014). The use

of up to 5% of K. alvarezii as a binder in shrimp food to improve

the survival rate of Penaeus monodon and to reduce organic

waste generated by commonly used binder ingredients, such as

wheat flour, has been suggested over 25 years ago (Peñaflorida

and Golez, 1996). Also, higher growth rate and weight gain of the
TABLE 2 Proximal composition of Acanthophora species.

Parameter* (g/100 g dw) A. spicifera A. nayadiformis A. muscoides

Lipids 0.30-5.43 a,b,c,d,e,f,g,h,i 0.29-2.19 j **

Protein content 5.29-20.59 a,b,c,d,e,h,i, 1.71-3.15 j 21.83k

Carbohydrate content 26.20-88.26 a,b ** **

Sulfated polysaccharide content 9.1-39.3 l,m,n ** **

Ash content 14.80-47.04 a,c,d,e,h ** **
* Ranges of all values found in literature
a (Herrera et al., 2019); b (Abomohra et al., 2018); c (Kailas and Nair, 2015); d (Dixit et al., 2018); e (Lawanyawut et al., 2002); f (Bhaskar et al., 2004); g (Marolia et al., 1982); h (Ganesan et al.,
2020); i (Seenivasan et al., 2012); j (Polat and Ozogul, 2008); k (Rao, 1970); l (Schnoller et al., 2020); m (Anand et al., 2018); n (Ganesan et al., 2018);
** No scientific information available.
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seabass Later calcarifer was observed when supplemented with

6% of cooked K. alvarezii in its diet (Shapawi et al., 2015).

Interesting applications of Kappaphycus spp. extract (sap) in

aquaculture have been reported with potential benefits for the

industry. The use of the sap as a feed supplement for the

commercial shrimp Penaeus monodon improved the survival

from 73.7% (control) to 89.7% (treatment) (Anil et al., 2011). In

addition, K. alvarezii ethyl acetate extract displayed inhibitory

activity against Vibrio harveyi, one of the most important

pathogens in the shrimp industry (Sivakumar et al., 2014).

Although, some compounds, such as fatty acids and

hydrocarbons, were identified through GC-MS analysis,

further studies to isolate and characterize the bioactive

compounds present in this extract and other types of extracts

are required. Furthermore, the K. alvarezii methanolic extract

showed an anti-genotoxic activity in the marine fish Therapon

jarbua (Nagarani et al., 2012). The DNA damage in the fish was

induced by exposure to mercury chloride, but after addition of

the extract of this seaweed of up to 5 mg/L of tank water, DNA

damage was notably reduced.
3.2 Acanthophora spp.

Aquaculture applications of Acanthophora spp. are

numerous. They include biomass cultivation and animal feed

production and the extension of shelf life of food.

Cultivation of Acanthophora was accomplished using 5 cm

vegetative fragments, tied to polypropylene straws and fixed to

nylon fishing lines at 1m depth in the nearshore area of Gulf of

Mannar, India. An 2.6-fold increase of the initial weight

(4.85 kg) was noted after 25 days from cultivation with a

harvest weight of 12.85 kg (Kaliaperumal et al., 1987).

However, no studies using Acanthophora in IMTA systems

have been reported in the literature.
Frontiers in Marine Science 06
Acanthophora species are a rich source of carbohydrates,

lipids, proteins, minerals, fatty acids, essential amino acids, and

bioactive compounds (Table 2) that could be used for aquatic

animals as a functional feed to enhance their growth, increase

survival rate, protection against diverse pathogens or as a

mechanism of chemical defense (Lawanyawut et al., 2002).

Another reason is to reduce the use of animal-based protein in

animal feed and the feed production costs (if collected seaweeds

are being used). In natural ecosystems, this seaweed is an

important natural food source for aquatic animals such as the

green turtle Chelonia mydas L. (Russell and Balazs, 1994) and

the blue striped angelfish Chaetodontoplus septentrionalis (Leu

et al., 2010).

The shrimp industry is one of the most important economic

sectors in tropical and subtropical countries. However,

increasing shrimp farming has resulted in negative

environmental impacts caused by pollution of mangrove forest

and the nutrient enrichment of seawater. The use of

Acanthophora species as bioindicators in shrimp farms and

natural habitats in the vicinity of shrimp farms is an

interesting alternative to reduce the ecological and

environmental impact generated by the presence of the

excessive nutrient concentration in the sea. This is because this

excessive nutrient concentration in the sea leads to an increased

presence of Acanthophora sp. In fact, the growth, N content in

tissue and d15N values in A. spicifera were used as a bioindicator

in commercial shrimp farms (Lin and Fong, 2008). The growth

and tissue N content was found to be higher in the sample

collected closer to shrimp farming than those obtained at further

distances. Additionally, analyzing isotopic ratios is a very

sensitive technique that could be applied to detect effluent

effects at very distant places and determine the main nutrient

source in a specific location of a marine ecosystem. The increase

in the growth and higher absorption of phosphorus by A.

muscoides in a high salinity environment was evidenced by
TABLE 3 Overview of aquaculture growth and pathogen challenge tests.

Parameter K. alvareziia K. alvareziib A. spiciferac

Preparation type Artemia nauplii enriched with
seaweed paste
(0.5 g/L artemia enrichment
suspension)

Mixture of seaweed powder and Artemia
nauplii (15 g/kg feed)

Mixture of seaweed extract and lab-
prepared feed

Animal used L. vannamei (post-larvae) L. vannamei (nursery phase) C. punctatus

Growth rate after challenge: control (%
body weight/day)

9.65 ± 0.20 6.49 ± 1.84

Growth Rate* after challenge: seaweed (%
bwt/day)

10.51 ± 0.19 6.56 ± 2.28

Pathogen Vibrio harveyi Vibrio harveyi Aeromonas hydrophila

Survival rate after challenge: control(%) 77.7 ± 3.1 63.8 ± 1.6 0

Survival rate after challenge: seaweed(%) 90.2 ± 7.0 73.3 ± 1.6 60
a (Suantika et al., 2017); b (Suantika et al., 2018); c (Muthukrishnan and Raja, 2021).
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(Tanaka et al., 2020). Concentration of UV-absorbing

metabolites with maximal UV absorption at 331 nm was

highest when grown at normal salinity. The considerable

capacity of the seaweed to absorb and store nutrients and use

them for growth and to produce a wide diversity of chemicals

could be used as additional material for the elaboration of high-

added value bioproducts.

Some studies have reported on the bioactivity of

Acanthophora crude extracts in aquaculture. For example, the

aqueous extract of A. spicifera displayed immunostimulant

activity against the fish pathogen Aeromona hydrophila

providing a survival rate of 60% of the striped murrel Channa

punctatus compared to 0% survival rate of the control group

(Muthukrishnan and Raja, 2021).

Feeding studies of A. muscoides in the juvenile top shell

Trochus niloticus showed a daily growth rate of 0.022 mm in

diameter and 6 mg in wet weight, while the control group

slightly decreased its weight daily (Lee and Amos, 1997).

Another reported application is the extension of the shelf life

of frozen stored shrimp after being treated with a 5% ethanolic

extract of A. muscoides (Arulkumar et al., 2020). A reduction of

the formation of toxic biogenic amines in shrimp demonstrated

the biopreservative potential of this red seaweed. The presence of

diverse metabolites with antioxidant activity in Acanthophora

(Zakaria et al., 2011; Dixit et al., 2018), contributes to preventing

food lipid peroxidation and therefore its potential use as natural

source of antioxidants.
4 Bioactive metabolites with
applications in aquaculture

4.1 Polysaccharides

Hydrocolloids are high-molecular weight polysaccharides

with unique physicochemical properties including gelling,

thickening, and emulsifying at determined thermal conditions

(Gupta and Raghava, 2008). Red seaweeds are the only source of

carrageenans, and agars, two of the most economically

important polysaccharides (phycolloids) characterized by their

diverse rheological properties with different industrial

applications. The structural diversity of carrageenan and agar

have been reviewed (Usov, 2011; Ciancia et al., 2020).

A comprehensive review by (Mohan et al., 2019) describes

the wide range of potential applications of marine-derived

po ly sacchar ide s in aquacu l tu re such as f e ed ing ,

immunostimulant, antioxidant, antiviral, antifungal,

antiparasitic and antibacterial activity. The different physico-

chemical properties, biodegradabil ity, non-toxicity,

biocompatibility, and diverse biological activities make

seaweed polysaccharides a promising source for the discovery
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of novel applications in the aquaculture sector. Therefore, it is

important to characterize the chemical composition of other

native and non-indigenous seaweeds, especially characterize

their chemical composition and phycolloid content to enhance

their potential use in aquaculture.

In addition, the chemical or enzymatic hydrolysis of seaweed

polysaccharides will lead to the production of bioactive

oligosaccharides with multiple pharmacological and

cosmeceutical applications (Cheong et al., 2018). The

biological activity displayed by oligosaccharides is dependent

on the degree of depolymerization of the polysaccharide of

origin. In aquaculture, oligosaccharides have also shown

beneficial results for their capacity to improve the

productivity, their antibacterial activity, and as efficient

prebiotics (Sardari and Nordberg, 2018). The application of

0.5 and 1% of mannan oligosaccharides (commonly found in

yeast) in the diet of the Thinlip grey mullet (Liza ramada)

showed an enhanced specific growth rate of 2.57 and 2.54%/day,

respectively, compared to the control (2.34%/day). Also, an

increase of the digestive enzyme activity, such as lipase,

amylase and protease, blood immunity and antioxidant

activity, were observed (Magouz et al., 2021).

4.1.1 Kappaphycus spp.
The sulfated polysaccharide k-carrageenan is the major

cell wall component in K. alvarezii (Santos, 1989; Hurtado,

1995) and its presence has also been reported in K. inerme, K.

striatus (Santos, 1989; Mendoza et al., 2002) and K. cottonii

(Santos, 1989). However, very small amounts of i-
carrageenan and agaroids were also found in K. alvarezii

when extracted at room temperature (Estevez et al., 2000).

Furthermore, other polysaccharides, such as b-(1,4)-ɒ-
glucomannan and b-(1,4/1,3)-ɒ-glucan 6-sulfate, have also

been found in the latter (Lechat et al., 2000). K. alvarezii is

one of the most widely cultivated seaweeds in the world for

the extraction of k-carrageenan which has an important

economic value in the food industry, but it has also shown

promising applications in the pharmaceutical industry for its

wide range of biological activities or as a biomaterial for drug

delivery systems (Cunha and Grenha, 2016; Hentati et al.,

2020). Although very few studies have focused on the

potential application of K. alvarezii polysaccharides in

aquacu l ture , the use o f d i ff e ren t mar ine -der ived

polysaccharides as binders for feeding (Paolucci et al.,

2015), as growth promoters, immunomodulators, to induce

disease resistance and gut health maintenance or as

immunostimulants have been reported (Mohan et al., 2019).

In fact, k-carrageenan induces immunostimulatory activity,

enhances growth and resistance to diseases in the Asia seabass

Lates calcarifer (Sakthivel et al., 2015) and postlarvae of tiger

shrimp P. monodon (Jumah et al., 2020).
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4.1.2 Acanthophora spp.
Studies have also been carried out to determine the

hydrocolloid composition of Acanthophora species, with A.

spicifera being the most studied species. Some of these studies

demonstrated that the sulfated galactan l-carrageenan is the

major polysaccharide present in A. spicifera (Parekh et al., 1989;

Gomaa and Elshoubaky, 2016; Anand et al., 2018). However,

other authors reported the presence of agar as major component

in the polysaccharide extracts of A. spicifera (Gonçalves et al.,

2002; Duarte et al., 2004; Schnoller et al., 2020; Júnior et al.,

2021) and A. muscoides (Rodrigues et al., 2016a).

Various factors, including geographical location, the

different environmental conditions or potentially the presence

of cryptic seaweeds, can potentially explain the variation in the

major polysaccharide constituent of A. spicifera. Interestingly,

the phycolloids reported from Brazil and Mexico corresponded

to the agaran type, while the carrageenan types are reported from

the Indian Ocean (India and Saudi Arabia). Further studies are

required on the genetic diversity and structural analysis of

phycolloids of Acanthophora specimens from various locations

to investigate the underlying variation in cell wall characteristics.

An unidentified sulfated polysaccharide from A. muscoides

was used, due to its antioxidant properties, to evaluate its

performance in semen cryopreservation of the commercial fish

Colossoma macropomum (tambaqui) (Pereira et al., 2020).

Although, no significant difference in the improvement of

semen quality was found when A. muscoides polysaccharide

was added as a supplement in the cryopreservation medium, the

author concluded that further studies were required to exploit its

potential as a supplement for semen cryopreservation of the

most commercially important fishes. Since the antioxidant

activity displayed by seaweed polysaccharides varies depending

on the season and geographical location of the collected sample,

more studies should be carried out to determine the best spatial

and temporal conditions when maximum antioxidant activity is

displayed. Also, it is important for future studies on the

antioxidant and total phenolic content assays from seaweeds

to have a standardized methodology for these analysis.

Currently, there are different methodologies used by several

researchers that makes it very complicated to compare the

data with the reported literature.
4.1.3 Potential based on results of other species

No studies have been reported on the application of

oligosaccharides from Acanthophora and Kappaphycus in

aquaculture. However, methodological studies to optimize

isolation of oligosaccharides from K. alvarezii (Bouanati et al.,

2020), K. striatus (Yu et al., 2017), A. spicifera (Duarte et al.,

2004) and A. muscoides (Rodrigues et al., 2016b) are available.

Therefore, it is important to investigate and evaluate the

potential application of polysaccharides and oligosaccharides

isolated from Acanthophora and Kappaphycus in aquaculture,
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obtained from other seaweeds.

The different physico-chemical properties displayed by

polysaccharides shows potential use in the development of

matrices for vaccine micro-encapsulation (Borgogna et al.,

2011), functional bio-composites (Paolucci et al., 2015),

prebiotics (Vidhya Hindu et al., 2019), and anti-biofilm agent

(Zammuto et al., 2022) for aquaculture purposes. In fact,

Artemia nauplii encapsulated with the unidentified crude

polysaccharide of the red seaweed Amphiroa fragilissima for

the feeding of the shrimp Litopenaeus vannamei enhanced its

growth, biochemical composition, digestive enzyme activities

and antioxidant properties which led to the improvement of

larval quality (Muttharasi et al., 2021). Furthermore, the

application of agar-based pellets in the feeding of the sea

urchin Paracentrotus lividus showed higher water stability in

water recirculating system and was easily consumed by the

animal without affecting its gonad growth (Fabbrocini

et al., 2012).

Also, the immunostimulant, antibacterial and antiviral

activity reported for seaweed polysaccharides, enhances their

use as a natural and environmentally friendly alternative to treat

and control several diseases affecting fish, shrimp cultivation and

other organisms produced through aquaculture (Marudhupandi

and Inbakandan, 2015; Rizzo et al., 2017; Raguraman et al.,

2020). An increased immunological response, upregulation of

immune-related genes and resistance to pathogens was reported

through in vitro and in vivo studies after the shrimp L. vannamei

was exposed to l-carrageenan via immersion and orally (Chen

et al., 2014). It is suggested that carrageenan triggers shrimp

innate immunity and improves immune parameters such as

haemolymph sampling, haemocyte counts, phenoloxidase (PO),

respiratory burst (RBs), superoxide dismutase (SOD) and

lysozyme activity.

For years, the brine shrimp Artemia and the microalgae

Chlorella have been traditionally used as a food source in the

shrimp industry. Many investigations intended to improve the

nutritional characteristics that could enhance shrimp’s survival

at the different stages of their life cycle. For example, micro-

encapsulated, micro-bound and micro-coated diets have been

prepared with different nutrients depending on the nutritional

requirements of the shrimp or larvae and evaluated for their

capacity to increase the productivity and health (Kanazawa,

1989). In the formulation of this micro-bound diet for

shrimps, k-carrageenan has been used as a binder and showed

an improvement on the survival rate and growth of shrimp’s

larvae and post-larval stages when it was combined with Artemia

salina (Bautista et al., 1989). Other studies showed a boost in the

immunological response of shrimps and fishes when

supplemented with k-carrageenan in their diet. An improved

immunological activity and pathogen resistance of L. vannamei

against the infectious myonecrosis virus (IMNV) (Febriani and

Nuryati, 2013) and of P. monodon against Vibrio harveyi
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(Traifalgar et al., 2013) were reported after feeding at 1.5% and

0.2% of k-carrageenan, respectively. An improved growth,

survival rate and immunological response of the Nile tilapia

Oreochromis niloticus was observed by increasing the expression

of immune-related genes including transferrin, IL-1b and

appetite-related gene GH after administration of 0.5% of k-
carrageenan (Villamil et al., 2019). Similar results were reported

with cobia Rachycentron canadum after feeding with 20 g/kg of

k-carrageenan (Harikrishnan et al., 2021). On the other hand,

(Mariot et al., 2021) did not find significant difference in shrimp

immunological response upon addition of up to 1.5% of k-
carrageenan to their diet. However, a small variation was noticed

in the gut bacterial composition in a dose-dependent manner to

carrageenan. Two unidentified bacteria of the families

Rhodobacteraceae and Caldilineaceae with two bacteria of the

family Rubritaleaceae were found in higher abundance when

the concentration of k-carrageenan was increased along with the

shrimp resistance to White Spot Syndrome Virus (WSSV)

disease. Recent studies have shown improvement in the

metabolism of the white shrimp L. vannamei using

the seaweeds Ulva lactuca and Eisenia sp., which increases the

digestive enzymatic activity and variation in the gut microbiota

while reducing the presence of pathogenic bacteria (Schleder

et al., 2020; Omont et al., 2021). The prebiotic potential of

marine polysaccharides and oligosaccharides has been recently

reviewed (Gurpilhares et al., 2019; Zheng et al., 2020). The

elicitor activity displayed by oligosaccharides provides a natural

alternative to reduce disease outbreaks and improve the

cultivation of seaweeds in aquaculture. The application of

synthetic oligoagar at 100 µg/mL for 2 hours during the

cultivation of the seaweed Pyropia haitanensis improved

the seaweed growth, oxygen consumption and enhanced the

upregulation of defense-related genes (Chen et al., 2016) and

triggered oxidative burst releasing hydrogen peroxide in

seaweeds such as Gracilaria spp. (Weinberger and Friedlander,

2000) and Laminaria digitata (Kupper et al., 2001), among

others. Seaweed oligosaccharides have been studied for their

use in the agriculture, medical and food industry (Zhu et al.,

2021), however, their use in aquaculture as natural elicitors and

as prebiotic remains to be exploited.
4.2 Phytohormones

Phytohormones, such as auxins, cytokinins, polyamines,

abscisic acid, betaines, and gibberellins, are well known as

plant growth regulators. These molecules are involved in

important physiological functions such as mediating growth,

signaling environmental alterations, initiating biotic or abiotic

stress response and as indicator molecules during plant growth

(Shanab and Shalaby, 2021). In seaweeds, phytohormones

control different biochemical and physiological processes

(Tarakhovskaya et al., 2007) and the mechanism of action of
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certain phytohormones such as indole acetic acid (IAA), N6-

(D2-isopentenyl) adenine (iP), and abscisic acid in red seaweeds

is suggested to be different from those reported from terrestrial

plants (Mikami et al., 2016). Although, the presence of these

molecules in red seaweeds (Yokoya et al., 2010; Wang et al.,

2014), and the diverse extraction methods used (Górka and

Wieczorek, 2017; Mori et al., 2017; Mohanty and Adhikary,

2018) have been reported in the literature, there are very limited

studies on their identification and quantification in Kappaphycus

and Acanthophora species and their application in aquaculture.
4.2.1 Kappaphycus spp.
The content of growth-hormone regulators in organic

extracts and saps of K. alvarezii has been reported (Zodape

et al., 2009; Prasad et al., 2010; Sedayu and Basmal, 2013; Layek

et al., 2015; Fadilah et al., 2016; Cokrowati et al., 2021; Trivedi

et al., 2022). In those studies, the presence of auxins such as

indole-3-acetic acid (IAA), gibberellic acid (GA3, GA7),

cytokinins (cis-zeatin, trans-zeatin, kinetin), choline, glycine

betaine and betaine aldehyde have been found at different

concentrations (Table 4). Two key factors in their

quantification are: (1) the different extraction methods and

solvents used for phytohormone extraction, and (2) the

seaweed collection time and location. Nevertheless, the

application of these hormones has been widely used to

improve the biomass growth, photosynthesis and chemical

composition of seaweeds including Kappaphycus species.

Higher auxin content (16.28 mg/kg fresh weight) was found in

the young thallus of K. alvarezii green strain from Indonesia

compared to the old thallus of the green and brown strains

(Cokrowati et al., 2021). The concentration of phytohormones

present in K. alvarezii sap was determined by comparing three

different methodologies, being spectrophotometric, HPLC, and

ESI-MS (Prasad et al., 2010). The values obtained through ESI-

MS analysis are more reliable than the other methodologies,

since the interference caused by impurities is significantly

reduced by their identification through their MS fingerprint.

For cultivation purposes, these plant growth regulators have

been used alone or in combination to improve strains of K.

alvarezii and increase the stock production through

micropropagation. In addition, it has been proven that

colchicine inhibits spindle fibers formation during cell

division. The production of new strains using colchicine alone

or in combination with phytohormones has potential to enhance

micropropagation of seaweeds (Hayashi et al., 2007). Earlier

studies demonstrated the efficacy of the use of phytohormones in

enriched media to enhance branch culturing, reduce epiphyte

contamination, improve daily growth rate and regenerate callus

of K. alvarezii for micropropagation (Dawes and Koch, 1991;

Dawes et al., 1993; Dawes et al., 1994; Hurtado and Biter, 2007).

An improved callus induction of K. alvarezii with the plant

growth regulators 1-naphthaleneacetic acid (NAA) and 6-
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benzylaminopurine (6-BA) and a reduction of the callus

induction time with the addition of spermine has been

reported (Muñoz et a l . , 2006) . Addit ional studies

demonstrated an increased growth rate, regeneration of

explants, and shoot formation in micropropagules using

spindle inhibitors such as colchicine and oryzalin alone or in

combination with indole-3-acetic acid (IAA), 6-BA, spermine

and kinetin (Hayashi et al., 2007; Neves et al., 2015) and the

Acadian marine plant extract powder (Yunque et al., 2011;

Tibubos et al., 2017).

The successful use of airlift bioreactors to produce seaweed

biomass involving prior stimulation with phytohormones was

reported by (Yong et al., 2014). In their in vitro study, an

improved regeneration and growth of K. alvarezii propagules

was observed using a dose-dependent application of 6-BA and

IAA under control parameters such as pH, salinity, light, and

culture intensity in Provasoli’s enriched seawater media.

Another alternative to promote the production of seed stock

for commercial cultivation of Kappaphycus species is using

seaweed liquid fertilizers. Application of the commercially

available extract of Ascophyllum nodosum containing plant

hormone regulators, macro- and micronutrients in a dose-

dependent manner improved the daily growth rate of K.

alvarezii strains with reaching almost the double growth rate

of the control and reduced the presence of epiphytes and the

“ice-ice” disease (Loureiro et al., 2010). It was noticed that brown

and green strains of K. alvarezii had better growth rates than the

red strain. The use of Acadian marine plant extract alone or in

c omb i n a t i o n w i t h p h y t o h o rmon e s t o p r omo t e

micropropagation of K. alvarezii microplantlets has been

recommended (Hurtado et al., 2008).

Commercially cultivated microalgae are other organisms

that showed significant improvement in their growth and
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higher yield of their bioproducts through the application of

phytohormones from seaweeds. Microalgae represent an

important and sustainable source for animal feed in

aquaculture based on their high nutritional content and as a

bioremediation tool to prevent eutrophication in a high-

ammonia-nitrogen environment (Zhao et al., 2019; Nagarajan

et al., 2021). Different concentrations of K. alvarezii sap were

used as biostimulant to enhance the growth and biochemical

composition of Chlorella variabilis (Sati et al., 2021). The lipid

and carbohydrate concentration of the latter microalga were

increased up to 50 and 100% when sap concentration was used at

0.6 and 1%, respectively. Even though, very little investigation

has been carried out with Kappaphycus sap containing

phytohormones, several studies demonstrated the potential use

of plant growth regulators to improve biomass productivity and

chemical composition of microalgae (Hunt et al., 2010; Babu

et al., 2017; Touliabah and Almutairi, 2021), especially under

stressful conditions (Sun et al., 2018; Zhao et al., 2019).

4.2.2 Acanthophora spp.
The phytohormone composition and content of

Acanthophora species have not been evaluated in detail. To the

best of our knowledge, there is currently only one scientific

report of the phytohormone content of A. spicifera, namely of

one collected in Vietnam (Table 4), and no publications on the

phytohormone content of extracts of this species have

been reported.
4.3 Pigments

Red seaweeds are known to produce a diverse group of

pigments, such as (1) the phycobiliproteins Rhodophyta
TABLE 4 Phytohormone content in A. spicifera and K. alvarezii..

Parameter * A. spicifera K. alvarezii
(µg/g fresh weight) (µg/kg fresh weight) (µg/mL of extract)

Auxin content – 5500 a,b,c –

Indole acetic acid (IAA) – – 3.87-160 b,c,d,e,g

Gibberellins content
(GA3, GA7)

157 a – –

GA3 – – 23.65-128 c,d,e

GA7 – – 110 d

Cytokinins content
(trans-zeatin, kinetin)

15.3 a – –

Cis-zeatin – – 20.10-117 c,d,e,f,g

Trans-zeatin – – 12.4 b

Kinetin – – 7.94-73 c,d,f,g

Choline – – 57.30 e

Glycine betaine – – 79.33 e
* Ranges of all values found in literature.
a (Hong et al., 2007); b (Das and Prasad, 2015); c (Prasad et al., 2010); d (Sedayu and Basmal, 2013); e (Layek et al., 2015); f (Zodape et al., 2009); g (Mondal et al., 2015).
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phycoerythrin (R-PE) (red color), Rhodophyta phycocyanin (R-PC)

(blue color) and allophycocyanin (APC), (2) carotenoids, (3)

xanthophylls and (4) chlorophyll a (Chl a) (Freitas et al., 2021).

These compounds have an important role in seaweed growth and

development by harvesting solar energy and transforming it into

chemical energy. As a high-added value, these compounds have

displayed important bioactivities in the pharmaceutical industry as

antioxidant (b-carotene) and anticancer agents used in

photodynamic therapy (Chl a), in the textile industry as natural

dyes (carotenoids, Chl a) (Ab Kadir et al., 2014) and as human-safe

food colorant (Heriyanto et al., 2015). In the aquaculture sector,

pigments like lutein, astaxanthin, chlorophylls, phycobiliproteins

and b-carotene are used to improve the color, health, and

organoleptic properties of commercially important marine

organisms (Serive and Bach, 2018). However, the cost of

production of these pigments is very high and has been limited

by production technologies (Yusoff et al., 2020). It is necessary to do

more research on the development of more effective, low cost and

sustainable pigment production to be used in aquaculture.

Although, most of the pigments used for aquaculture are

obtained from microalgae (Yusoff et al., 2020), it is important to

search for other natural sources such as seaweeds, that could

provide good quality and quantity of pigments and find their way

as functional food in the aquaculture industry.

4.3.1 Kappaphycus spp.
Studies in K. alvarezii reported the presence of R-PE (Naguit

and Tisera, 2009; Heriyanto et al., 2015; Banu et al., 2017;

Deepika, 2018; Ganesan and Shanmugam, 2020; Uju et al.,
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2020), R-PC, Chl a, chlorophyllide a, pheophytin, a-
cryptoxanthin, violaxanthin, antheraxanthin, zeaxanthin, b-
carotene, a-carotene, trans-fucoxanthin and other unidentified

pigments (Naguit and Tisera, 2009; Heriyanto et al., 2015;

Brotosudarmo et al., 2018) (Table 5). Variation of their

composition between strains, depths of cultivation and

subjection to stress conditions such as UV radiation have also

been documented (Eswaran et al., 2001; Schmidt et al., 2010).

Although, the application of pigments isolated from

Kappaphycus spp., in aquaculture has not been reported, the

application of K. alvarezii sap could be used during the

cult ivat ion of astaxanthin-r ich organisms such as

Haematococcus pluvialis or b-carotene-rich sources such as

Dunaliella salina to enhance its yield (Xie et al., 2018). The

use of carotenoids as food ingredients for aquaculture has been

reviewed (Pereira da Costa and Campos, 2020). Studies on C-PC

produced by cyanobacteria (Spirulina platensis) have shown to

improve growth and color of the guppy fish Poecilia reticulata

(Biabani Asrami et al., 2019), reduce cannibalism and enhance

survival and disease resistance against Vibrio alginolyticus in the

Asian seabass Lates calcarifer larvae (Gora et al., 2019) and

induce a non-specific immune response in the fish carp Cyprinus

carpio (Muchtar et al., 2019). R-PE isolated from the red alga

Colaconema sp. induced an immunostimulatory effect on the

shrimp Litopenaeus vannamei with increasing resistance against

Vibrio parahaemolyticus and white spot syndrome virus (Lee

et al., 2021). The strategies to improve yield and chemical

stability of PE and PC have been recently reviewed (Hsieh-Lo

et al., 2019).
TABLE 5 Pigment content in Acanthophora and Kappaphycus species.

Parameter * A. spicifera A. nayadiformis K. alvarezii

Chl a 0.056 - 0.50 a,o **
0.094 – 0.37 b,c ***

0.20 – 1.60 f ** 0.012 – 2.7 g,h,i,j,k,l,m,n ***

APC 0.031 – 0.5 a,c,d **
0.121 e ***

nd nd

R-PC 0.057 – 0.9 a,d **
0.24 – 0.34 c,e ***

1.68 – 6.04 f ** 0.203 – 0.491 l,m ***

R-PE 0.143 – 2.6 a,d **
0.42 – 0.49 c,e ***

2.20 – 10.03 f ** 1.2 – 1.7 l, m ***

Zeaxanthin nd 0.02 – 0.05 f ** 0.0013 – 0.003 i ***

a-carotene nd nd 0.002 – 0.054 i,n ***

b-carotene nd 0.02 – 0.08 f ** 0.05 – 0.514 i,n ***

a-cryptoxanthin nd nd 0.005 – 0.037 n ***

Antheraxanthin nd nd 0.007 – 0.053 n ***

Lutein nd 0.02 – 0.09 f ** nd

Total carotenoids 0.245 – 0.379 a **
0.31 b ***

nd nd
* Ranges of all values found in literature; nd= not determined
** values expressed as mg/g dry weight (dw)
*** values expressed as mg/g fresh weight (fw)
a (Pereira et al., 2017); b (Seenivasan et al., 2012); c (Arunkumar et al., 2014); d (Martins et al., 2018); e (Senthilkumar et al., 2013); f (Petrocelli and Felicini, 1995); g (Hong et al., 2007); h

(Naguit and Tisera, 2009); i (Brotosudarmo et al., 2018); j (Paransa et al., 2020); k (Rajaram et al., 2021); l (Eswaran et al., 2001); m (Periyasamy et al., 2019); n (Heriyanto et al., 2015), °
(Dawes et al., 1978).
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Extraction optimization of pigments such as R-PE (Uju et al.,

2020), b-carotene and chlorophyll (Baskararaj et al., 2019) and

carrageenan (Mahyati and Azis, 2019) from K. alvarezii has been

reported. (Freitas et al., 2021) provided an interesting review of

the chemical diversity of the different pigments produced by red

seaweeds and their biotechnological applications along with the

number of patents registered.

4.3.2 Acanthophora spp.
Information on the pigment content in Acanthophora spp. is

rather limited. A. spicifera contained 0.34 mg of R-PC, 0.121 mg

of R-APC and 1.061 mg of R-PE per gram fresh weight

(Senthilkumar et al., 2013; Pereira et al., 2019) while A.

nayadiformis contained 0.20-0.28 mg/g dry weight of Chl a,

2.20-5.54 mg/g dry weight of R-PE and 1.68-3.91 mg/g dry

weight of R-PC (Petrocelli and Felicini, 1995) (Table 5).

Concentrations of 0.79-2.39 mg/g dry weight of lutein, 5.79-

11.28 mg/g dry weight of zeaxanthin, 1.59-16.16 mg/g dry

weight of a-carotene were reported (Pereira et al., 2019), while

antheraxanthin, b-cryptoxanthin and b-carotene were identified
in A. spicifera based on their retention time and comparison with

standards (Aihara and Yamamoto, 1968). Also, the

concentration of 0.02 mg/g dry weight of b-carotene, 0.02 mg/

g dry weight of zeaxanthin, and 0.02 mg/g dry weight of lutein

were reported for A. nayadiformis (Petrocelli and Felicini, 1995).
4.4 Amino acids and peptides

Seaweed-der ived pept ides such as l ec t ins and

phycobiliproteins and the mycosporine-like amino acids

(MAAs) have been studied for their wide diversity of

applications in food, pharmaceutical and cosmeceutical sector

(Lafarga et al., 2020; Vega et al., 2021; Echave et al., 2022). One of

the most important seaweed peptides with aquaculture

applications are lectins, of which the advances in the

development of extraction methods and the wide range of

biological activities was recently reviewed (Maliki et al., 2022).

In this review, phycobiliproteins are being considered within the

pigment section.

Lectins are glycoproteins of non-immune origin

characterized for their high capacity and selectivity to

reversibly bind to carbohydrate moieties present in pathogens

through a carbohydrate recognition domain (Mishra et al.,

2019). Seaweeds are known to be a good source of a vast

diversity of novel bioactive lectins also called phycolectins. Red

seaweed lectins are classified depending on their carbohydrate

specificity in complex-type specific (complex N-glycan or

complex O-glycan or both), high-mannose type specific or

both complex and high-mannose glycan specific lectins (Singh
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and Walia, 2018). The gamete recognition during sexual

reproduction is suggested to be one of the most important

roles of lectins in marine algae.

The MAAs are low molecular weight and nitrogen-

containing compounds with strong photoprotective activity

against ultraviolet radiation (Oren and Gunde-Cimerman,

2007). These UV-absorbing compounds are found in many

marine organisms like cyanobacteria, cnidarians, fungi, but are

in greater content present in red seaweeds (Bedoux et al., 2020).

The distribution, concentration, and types of MAAs in seaweeds

and the development of an open database for these metabolites

have been reported (Sun et al., 2020). These secondary

metabolites play an important role in the photosynthesis as

light-harvesting pigments, provide protection to the organism

against desiccation or thermal stress, as antioxidants, with anti-

lipid oxidation activity, and as intracellular nitrogen reservoir.

These molecules are widely used in the cosmeceutical industry

based on their antioxidant, anti-inflammatory, and collagen,

elastin and DNA protective activities, and their distribution in

seaweeds has been reviewed (Vega et al., 2021). Although, there

is little application of MAAs in aquaculture, their presence in

seaweeds and other aquatic animals provides them protection

against solar radiation conditions and accumulation of these

important metabolites in seaweeds would provide an economic

alternative to be exploited for the cosmeceutical industry.

4.4.1 Kappaphycus spp.
Kappaphycus species are a rich source of essential amino

acids required for human and animal consumption.

The presence of lectins has been reported in K. alvarezii

(Hung et al., 2009b; Hung et al., 2009c; Sato and Hori, 2011;

Yong et al., 2014) and K. striatus (Hung et al., 2009b; Hung et al.,

2009c; Hung et al., 2019; Hung and Trinh, 2021). They have

been shown to be highly specific for high-mannose N-glycans

and have displayed potential biological activities as antiviral and

anticancer agents and possess strong divalent cation-

independent hemagglutination activity (Hung et al., 2009b;

Sato and Hori, 2011; Hirayama et al., 2016; Hung and Trinh,

2021). Other studies reported that the three color morphotypes

of K. alvarezii red, brown, and green strains, also contain similar

lectin content, however, the lectin yield of the red strain was

higher than the green and brown strains (Hung et al., 2009a). It

has been suggested that lectin biosynthesis in macroalgae is

enhanced by an increased uptake of inorganic nitrogen in

ammonium (NH4
+) form rather than nitrate (NO3

-), especially

during low seawater temperature, solar radiation, and low tide

(Hung et al., 2009b). Whereas the application of seaweed-

derived mannose-specific lectins has been focused mostly on

the pharmacological potential for humans (Barre et al., 2019),

very little research has been undertaken in the application of
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Kappaphycus-derived lectins in aquaculture. The only study

reported by (Hung et al., 2015), revealed inhibition of the

growth of the shrimp pathogens Enterobacter cloacae and

Vibrio alginolyticus by the isolated lectin KSA-2 from K.

striatus. Even though this lectin did not show growth

inhibition against V. parahaemolyticus and V. harveyi in the

same study, it has great potential to target aquaculture pathogens

with glycoproteins with high-mannose N-glycans in

their surface.

To the best of our knowledge, to date, there are no studies

determining the MAAs composition and their concentration in

Kappaphycus species.

4.4.2 Acanthophora spp.
Seaweeds are becoming an important source of high-

nutritional and low-cost material for the development of

animal feed. Analysis of the amino acid and peptides content

of A. spicifera (Wahidulla et al., 1991; Lourenço et al., 2002;

Vinoj Kumar and Kaladharan, 2007; Dixit et al., 2018), A.

muscoides (Rao, 1970) and A. nayadiformis (Lewis and

Gonzalves, 1962; Impellizzeri et al., 1975) have been reported.

Acanthophora species are not a very good source of essential

amino acids, as the estimated protein content is only in the range

of 5-25% of its dry weight. Protein is one of the most important

and expensive ingredients in feed for aquatic animals. The

quality of a protein in feed depends mainly on its amino acid

profile and digestibility. Therefore, the analysis of the amino acid

profile is necessary for the elaboration of animal diets, in

accordance with the amino acid’s requirements of the animal

of interest.

The presence of lectins in A. spicifera was first deducted by

the strong agglutinin activity of rabbit erythrocytes (Chiles and

Bird, 1989) and the enzyme treated erythrocytes from chicken,

rabbit, goat, pig, and human O type (Lima Ainouz et al., 1992;

Mangaiyarkarasi et al., 2014) and from A. muscoides (Anam

et al., 2019). However, there are no studies on the application of

Acanthophora lectins in aquaculture.

The MAAs, such as asterina-330, gadusol, mycosporine-

glycine, mycosporine-2-glycine, mycosporine-taurine,

mycosporine-methylamine-serine, mycosporine-methylamine-

threonine, palythinol, palythene, palythine, palythine-serine,

palythine-serine-sulfate, palythine-threonine, porphyra-334,

shinorine, and an unknown compound with maximum

absorption at 299 nm have only been reported for A. spicifera

(Karsten et al., 1998; Rosic et al., 2015; Muthiah et al., 2017).

Although the UV-absorbing compounds asterina-330,

mycosporine-glutamic acid and palythinol have been suggested

to be present in A. muscoides (Tanaka et al., 2020), further

studies are required to confirm their presence and concentration

in this and other species of Acanthophora.

An increased metabolic rate and faster hatching egg

hatchering were observed in the sea hare Aplysia dactylomela

after feeding with A. spicifera as a rich source of MAAs (Carefoot
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et al., 1998). Further studies suggested the role of MAAs as UV

protectant in A. dactylomela as these metabolites were

distributed in the skin (Carefoot et al., 2000) and the fish

Thalassoma duperrey after feeding with A. spicifera (Zamzow,

2004). The increase in MAAs content in the fish mucus was only

observed when exposed to UV radiation, and accumulation of

MAAs was higher in male fish than female. The UV photo-

protective effect on other marine organisms such as the sea

urchin Strongylocentrotus droebachiensis (Adams and Shick,

1996), and different species of holothuroids (Shick et al., 1992)

has been reported. The presence of UV-absorbing compounds in

the sea hare and fishes is resulting from their diet with seaweeds

rich in MAAs. The chemical and ecological role of MAAs and

their distribution among marine organisms have been reviewed

(Carreto and Carignan, 2011).

Despite the few studies on the role of MAAs from

Acanthophora species in aquaculture, these metabolites play a

very important role in the protection of animals against

radiation. The protective role of MAAs in aquatic animals has

been reported in different animals. For example, studies on the

sea hare Aplysia californica indicated the presence of MAAs and

their role as a mechanism of chemical defense or as intraspecific

alarm cues. Two undescribed MAAs such as aplysia palythine A

and aplysia palythine B and the known asterina-330 were found

in the sea hare after feeding with the red algae Gracilaria ferox

and Agardhiella subulate (Kicklighter et al., 2011).

MAAs can be transferred from different trophic levels, and

might play different roles in the marine environment, especially

increasing the survival of species under high UV radiation and

predation environments. Solar radiation causes damage to the

marine environment and its fauna by reducing productivity,

growth rate and development, and the mutation rate in eggs and

larval stages of marine animals and algae is increased (Häder

et al., 2007). Feeding commercially important species of marine

animals with seaweeds rich in MAAs in tropical zones with

higher exposure to solar radiation could enhance their survival,

growth rate and reproduction with reduced economic impact.

Additionally, when culturing seaweeds in high nitrogen

environments, the concentration of MAAs in seaweeds would

increase, as reported by a previous study on Gracilaria

tenuistipitata (Barufi et al., 2012).
5 Discussion and research gaps

Further valorization of Kappaphycus spp. and Acanthophora

spp. in the aquaculture sector will need to bridge the following

research gaps:
(1) For at least one of the studied species the proof-of-

principle of certain innovative applications of seaweed

biomass, extracts and biochemicals in the aquaculture

sector has been shown. These applications remain to be
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confirmed for the other species as well to open

commercial opportunities for the seaweed biomass and

their bioproducts.

(2) Similarly, other innovative aquaculture applications

have been demonstrated for other seaweed species and

their chemical arsenal. This suggests that some

opportunit ies are avai lable to explore these

applications for Kappaphycus spp. and Acanthophora

spp. by means of scientific research.

(3) Another remaining challenge is to standardize the

methods to analyze the chemical profile and to

quantify their concentration/content. Furthermore,

conce r t ed e ff o r t s a r e needed toward s the

standardization of the methodology to report data.

This will allow a more accurate comparison of

different studies, especially with respect to units

(reporting of the content of chemical compound per

fresh weight seaweed, dry weight seaweed, and volume

of extract).

(4) To discover new biochemical compounds and identify

new applications of these compounds, an in-depth

chemical profi l ing of Kappaphycus spp. and

Acanthophora spp. in different geographical locations

and temporal variations needs to be carried out.
The available information highlights the great potential

application of both genera of red seaweeds in aquaculture that

will allow researchers to further develop the production of

innovative seaweed-based bioproducts.

Local tropical seaweed species are yet to be fully utilized,

especially as a primary product to be used in the development of

natural bioproducts to achieve a more resilient aquaculture and

agriculture. Therefore, more attention should be given to

underutilized local tropical seaweed species.
6 Conclusions

The chemical diversity (polysaccharides, phytohormones,

pigments, amino acids and peptides) of Kappaphycus and

Acanthophora has shown promising applications for aquaculture,

including pathogen control, immunostimulant, antioxidant,

bioremediation, feed, UV protectants, increase in seafood shelf

life, animal colorant, and growth regulator for microalgae culture.

This review justifies further research of the latter species to

guarantee seaweed biomass availability, to know the temporal and

spatial variation of the chemical composition of seaweeds, to

standardize research methodologies, and to confirm the

bioactivity of phytochemicals, amongst others. This study

contributes to boosting the applications of these and other red

seaweeds in the aquaculture sector and, by this, helping stakeholders
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to benefit from these seaweeds by diversifying the blue bioeconomy

in tropical countries. The authors would like to thank the reviewers

for their valuable comments to improve the manuscript.
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Rodrigues, J., de Queiroz, I., Quinderé, A., Benevides, N., Tovar, A., and de
Souza Mourão, P. (2016b). Mild-acid hydrolysis of a native polysulfated fraction
from Acanthophora muscoides generates sulfated oligosaccharides displaying in
vitro thrombin generation inhibition. Acta Sci. Biol. Sci. 38, 7–15. doi: 10.4025/
actascibiolsci.v38i1.28257

Rodriguez, M., and Montaño, M. (2007). Bioremediation potential of three
carrageenophytes cultivated in tanks with seawater from fish farms. J. Appl. Phycol.
19, 755–762. doi: 10.1007/s10811-007-9217-0

Rönnbäck, P., Bryceson, I., and Kautsky, N. (2002). Coastal aquaculture development
in Eastern Africa and the Western Indian ocean: Prospects and problems for food
security and local economies. Ambio 31, 537–542. doi: 10.1579/0044-7447-31.7.537

Rosic, N., Braun, C., and Kvaskoff, D. (2015). “Extraction and analysis of
mycosporine-like amino acids in marine algae,” in Natural products from marine
algae. methods in molecular biology. Eds. D. Stengel and S. Connan (New York:
Springer), 119–129. doi: 10.1007/978-1-4939-2684-8_6

Rudke, A., de Andrade, C., and Ferreira, S. (2020). Kappaphycus alvarezii
macroalgae: An unexplored and valuable biomass for green biorefinery
conversion. Trends Food Sci. Technol. 103, 214–224. doi: 10.1016/j.tifs.2020.07.018
frontiersin.org

https://doi.org/10.1080/02772248.2012.707792
https://doi.org/10.1038/s41586-021-03308-6
https://doi.org/10.1007/s10811-014-0309-3
https://doi.org/10.1007/s10811-014-0309-3
https://doi.org/10.1007/BF02185896
https://doi.org/10.1007/s10811-021-02381-8
https://doi.org/10.1007/s10811-021-02381-8
https://doi.org/10.1111/j.1574-6968.2007.00650.x
https://doi.org/10.3390/md18110560
https://doi.org/10.3390/md13052680
https://doi.org/10.1016/j.aquaculture.2017.06.005
https://doi.org/10.1016/0044-8486(96)01282-3
https://doi.org/10.1111/raq.12398
https://doi.org/10.1016/j.aquaculture.2020.735553
https://doi.org/10.1016/j.aquaculture.2020.735553
https://doi.org/10.3390/md19040178
https://doi.org/10.1111/php.13094
https://doi.org/10.1590/0102-33062017abb0059
https://doi.org/10.1590/0102-33062017abb0059
https://doi.org/10.1007/s10811-017-1099-1
https://doi.org/10.1007/s10811-018-1645-5
https://doi.org/10.1007/s10811-020-02335-6
https://doi.org/10.1080/09637480701446524
https://doi.org/10.1021/jf904500e
https://doi.org/10.1021/jf904500e
https://doi.org/10.12777/ijse.9.2.85-89
https://doi.org/10.1016/S0044-8486(96)01393-2
https://doi.org/10.1007/s10499-020-00587-0
https://doi.org/10.1007/s10499-020-00587-0
https://doi.org/10.1155/2015/126298
https://doi.org/10.1111/are.15188
https://doi.org/10.1088/1755-1315/175/1/012219
https://doi.org/10.1016/j.jclepro.2014.03.064
https://doi.org/10.1007/s10811-014-0330-6
https://doi.org/10.1007/s10811-014-0330-6
https://doi.org/10.22207/JPAM.11.4.07
https://doi.org/10.4025/actascitechnol.v38i3.26146
https://doi.org/10.4025/actascitechnol.v38i3.26146
https://doi.org/10.4025/actascibiolsci.v38i1.28257
https://doi.org/10.4025/actascibiolsci.v38i1.28257
https://doi.org/10.1007/s10811-007-9217-0
https://doi.org/10.1579/0044-7447-31.7.537
https://doi.org/10.1007/978-1-4939-2684-8_6
https://doi.org/10.1016/j.tifs.2020.07.018
https://doi.org/10.3389/fmars.2022.957290
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Guillén et al. 10.3389/fmars.2022.957290
Russell, D. (1992). The ecological invasion of Hawaiian reefs by two marine red
algae, Acanthophora spicifera (Vahl) Boerg. and Hypnea musciformis (Wulfen) J.
Ag., and their association with two native species, Laurencia nidifica J. Ag. and
Hypnea cervicornis. J. Ag. ICES J. Mar Sci. Symp. 194, 110–125.

Russell, D., and Balazs, G. (1994). Colonization by the alien marine alga Hypnea
musciformis (Wulfen) j. Ag.(Rhodophyta: Gigartinales) in the Hawaiian islands
and its utilization by the green turtle, Chelonia mydas l. Aquat. Bot. 47, 53–60.
doi: 10.1016/0304-3770(94)90048-5

Sakthivel, M., Deivasigamani, B., Rajasekar, T., Kumaran, S., and Alagappan, K.
(2015). Immunostimulatory effects of polysaccharide compound from seaweed
Kappaphycus alvarezii on Asian seabass (Lates calcarifer) and it’s resistance against
Vibrio parahaemolyticus. J. Mar. Biol. Oceanogr. 4, 2–10. doi: 10.4172/2324-
8661.1000144

Santos, G. (1989). Carrageenans of species of Eucheuma j. agardh and
Kappaphycus doty (Solieriaceae, rhodophyta). Aquat. Bot. 36, 55–67.
doi: 10.1016/0304-3770(89)90091-0

Sardari, R., and Nordberg, E. (2018). Marine poly-and oligosaccharides as
prebiotics. J. Agric. Food Chem. 66, 11544–11549. doi: 10.1021/acs.jafc.8b04418

Sati, H., Chokshi, K., Soundarya, R., Ghosh, A., and Mishra, S. (2021). Seaweed-
based biostimulant improves photosynthesis and effectively enhances growth and
biofuel potential of a green microalga Chlorella variabilis. Aquac. Int. 29, 963–975.
doi: 10.1007/s10499-021-00667-9

Sato, Y., and Hori, K. (2011). High-mannose n-glycan-specific lectin from the
red alga Kappaphycus striatum (Carrageenophyte). Phytochemistry 72, 855–861.
doi: 10.1016/j.phytochem.2011.03.009

Schleder, D., Blank, M., Peruch, L., Poli, M., Goncalves, P., Rosa, K., et al. (2020).
Impact of combinations of brown seaweeds on shrimp gut microbiota and response
to thermal shock and white spot disease. Aquaculture 519, 734779. doi: 10.1016/
j.aquaculture.2019.734779
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