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Abstract: Seaweeds are well known for having a wealth of nutritional benefits and providing
ecological support to associated fauna. Seasonality influences the biochemical characteristics, affecting
their ecological and economic values. In the present study, we evaluated pigments, primary and
secondary metabolites, minerals, and antioxidant properties of green seaweed Chaetomorpha antennina
growing on the intertidal rocks along the Covelong coast, India, in different seasons (from June
2019 to March 2020). Significant variations were found in the levels of antioxidants, minerals, and
metabolites in different seasons, e.g., amino acid levels were the highest in post-monsoon and the
lowest in summer. In monsoon, we found the highest concentration of fatty acids in the thalli. Lipid
peroxidation and total antioxidant activity were at their maximum levels during post-monsoon,
which indicated oxidative damage responses. No significant variations were found in the levels of
photosynthetic pigments. The outcomes indeed suggested seasonal variations in the biochemical and
nutrient profile of C. antennina. We suggest that the harvesting/collection of C. antennina for different
nutrients and metabolites should be performed in the respective seasons.

Keywords: seasonality; tropical seaweed; oxidative stress; nutritional quality; minerals

1. Introduction

Seaweeds play a vital role in the marine ecosystem, as they form the base of the coastal
and marine food web [1]. Seaweeds perform several ecological services, such as providing
habitat, feeding, and breeding grounds to numerous marine flora and fauna [2,3]. They
are involved in nutrient recycling [4], the bioremediation/phytoremediation of harmful
pollutants, etc. [5,6]. Seaweeds are an economically important group of organisms; they
are used as a source in many industrial applications, such as for food, fodders, fertilizers,
biofuel, nutraceuticals, etc. [7]. Many types of seaweed pose nutraceutical properties and
protect against various neurological disorders in humans [2,8,9].

Benthic seaweeds growing in the intertidal zone experience a wide range of abiotic and
biotic stresses, including strong fluctuations in tides, photoperiod, temperature, salinity, and
nutrients; strong wave action; desiccation; ultraviolet radiations; and pollutants [1,10–12].
Seaweeds have adapted to survive these harsh conditions by regulating their cellular
mechanisms, such as undergoing osmotic adjustments and metabolic processes [10]. The
vertical zonation on the intertidal rocks is also determined by the tolerance of the species
to abiotic factors [13]. The environmental parameters determine the photo-physiological
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performance and biochemical composition of seaweeds [14]. The biotic and abiotic interac-
tions vary according to the seasons, leading to the changes in ecological conditions that
can stimulate or inhibit the uptake of minerals, and in the biosynthesis of primary and
secondary metabolites [15]. The changes in these metabolites may affect the nutritional
quality of seaweeds, thereby impacting their ecological services to the associated faunal
communities [16]. Additionally, changes in these metabolites and mineral content can affect
their commercial applications [17]. Due to seasonal fluctuations, seaweeds can change their
biochemical constituents, including the levels of sugars, amino acids, fatty acids, minerals,
etc. These changes could be a possible indicator of the physiological state of seaweeds.
Seasonal changes in biochemical compositions are also influenced by physiological changes
within vegetative thalli [18]. These stresses commonly induce oxidative stress (production
of reactive oxygen species (ROS)), which affects the integrity of biomolecules through lipid
peroxidation, the oxidation of proteins, and the damaging of nucleic acids [19]. To counter
ROS, seaweeds have diverse antioxidant enzymes, such as superoxide dismutase (SOD)
and catalase (CAT), the ascorbate-glutathione pathway, and non-enzymatic molecules
such as polyphenol, carotenoids, phenols, ascorbate, glutathione (GSH), tocopherols, and
mycosporine-like amino acids [20–24]. Previous studies on seasonality indicate the fluc-
tuations in the biochemical composition and oxidative stress of green algae [8,25–28], red
algae [25–27], and brown algae [28–31].

Light is the strongest factor that affects the photosynthetic apparatus in algae, which
alters the concentration and compositions of pigments [12]. Photosynthetic pigments
(chlorophyll and carotenoids) are involved in the growth and development of seaweeds, as
they utilize solar energy and convert it into carbohydrates through photosynthesis. The
produced energy is utilized or transferred to the next trophic level in the food web/ food
chain [8]. The variations in temperature during different seasons may alter the levels of
metabolites in seaweeds. Temperature affects the membrane fluidity in seaweeds; as a
consequence, it may alter their fatty acid composition. At increased temperatures, seaweeds
maintain their fluidity by minimizing the concentration of polyunsaturated fatty acids
(PUFAs) and saturated fatty acids (SFAs) [2]. These influences of various abiotic factors
may affect the nutritional quality of seaweed and thus the ecological and commercial
aspects of seaweeds [2]. Therefore, it is necessary to understand seaweed physiology in
various seasons.

The Chaetomorpha genus is represented by more than hundreds of species, widely
distributed in the intertidal and sub-tidal zones across the global ocean [11,32,33]. Some
Chaetomorpha species are proven to have commercial potential as a feedstock for bioethanol
production [34,35]. C. antennina is widely available along the coastlines of India [36–39].
Though the species is not listed as Generally Regarded to be Safe (GRAS) for consumption,
the recent literature reports its potential in various applications. Metabolites obtained from
them have been evaluated in light of their commercial applications, including antioxidant
and antidiabetic activities, bioaccumulation of minerals [40–43]. Since the biochemical
characteristics and metabolites may vary seasonally and no information exists in this regard,
we attempted to understand these aspects in the present study. The objective of the present
study was to establish the nutraceutical importance of green alga C. antennina in terms of its
nutritional and antioxidant properties and also to determine the apt period for harvesting
based on the nutritional requirements for commercial utilizations. In the current study,
we looked into temporal variations in the biochemical constituents, such as pigments,
metabolites (primary and secondary), oxidative status, minerals, etc., of rocky intertidal
green seaweed Chaetomorpha antennina, from Covelong, Chennai, India.

2. Materials and Methods
2.1. Sampling Site and Collection

Chaetomorpha antennina were collected on the rocky intertidal coast of Covelong
(12◦47′31” N; 80◦15′04” E–12◦46′42” N; 80◦15′15” E), located 40 km south of Chennai,
India, every month between June 2019 and March 2020. The samples were not collected
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during April and May 2020 because of the unfavorable situation due to the COVID-19
lockdown. Nevertheless, our samples represented the overall seasonal variation. The algal
thalli were taken in triplicates from three intertidal rocks situated 100 m apart. The algal
sample (~5 gm thalli) was collected by scraping the entire thalli from holdfast using a
scalpel. The samples were transported to the laboratory within 30 min of collection, were
cleaned for epibiota using soft brushes and sterilized seawater, and were stored in a deep
freezer. Standard Keys were used to identify taxa at the microscopic level [44–46]. One
algal thallus from each rock (so, 3 samples every month) was used for further analyses.
We considered three seasons: summer (June–September), monsoon (October–December),
and post-monsoon (January–March) based on the temperature and rainfall in this area.
Water quality parameter at the time of sample collection in the study site is shown in
Supplementary Table S1.

2.2. Photosynthetic Pigments

Chlorophyll a and b, and carotenoids were estimated as described by Vinuganesh
et al. [24]. Briefly, 50 mg fresh weight of samples was used for the preparation of seaweed
extract using 90% acetone. The extract was incubated at 4 ◦C overnight in the dark. The
extract was centrifuged at 5000 rpm for 5 min at 4 ◦C, and the supernatants were collected.
The supernatants were measured at 664, 647, and 470 nm using a spectrophotometer (JASCO
V670, Tokyo, Japan). The concentrations of photosynthetic pigments were measured using
the equation provided by Jeffrey, Humphrey, and Lichtenthaler [47]. The concentration was
expressed as microgram per gram of fresh weight (µg/g FW).

Chlorophyll a = 11.93 E664 − 1.93 E647 (1)

Chlorophyll b = 20.36 E647 − 5.50 E664 (2)

Carotenoids = ((1000 × A470) − (1.82 × Chla) − (85.02 × Chlb))/198 (3)

2.3. Metabolite Analysis

Carbohydrates were estimated in acetonitrile/water (2 mL, 1:1, v/v) extract and quanti-
fied using high-performance liquid chromatography (HPLC) according to Alasalvar et al. [48].
The prepared extract was incubated at 55–60 ◦C in a water bath for 15 min and filtered
using Whatman No. 541 filter paper; after it was brought to a final volume of 100 mL
using extraction solvent, it was analyzed using HPLC in a 5 µm SUPELCOSIL LC-NH2
column (250 × 4.6 mm) at a temperature of 30 ◦C and eluted with acetonitrile-HPLC-
grade water (75:25 v/v). Individual carbohydrates were quantified by comparing standard
curves obtained using known concentrations of standard sugar solutions ranging from 1 to
10 mg/100 mL of acetonitrile/water (1:1, v/v). QA/QC was ensured with the standard
addition of sugars to ensure the best recoveries. The limit of detection (LOD) was 5.2 ng;
the limit of quantification (LOQ) was 22 ng; R2 values were 0.993 and 1.00. The correlation
coefficient (R2) was in the range of 0.991–0.998.

Seaweed fatty acids (FAs) were estimated using Gas Chromatography/Mass Spec-
trometer using aqueous methanolic extract (1:1 w/v) until discoloration happened (see
Torras-Claveria et al. [49]). Codeine and non-adecanoic acids were used as standards.
Seaweed extract was quantified for available FAs with GC/MS using a Hewlett Packard
6890, MSD 5975 mass spectrometer (Hewlett Packard, Palo Alto, CA, USA), with an HP-
5 MS column (30 mm × 0.25 mm × 0.25 mm). Individual FAs were identified with
the NIST 05 database and plant-specific databases (e.g., GolmMetabolome Database,
http://gmd.mpimp-golm.mpg.de/, accessed on 10 December 2021). The recovery percent-
ages (R%) values for plant samples ranged from 91.6 to 98.2%. The correlation coefficient
(R2) was in the range of 0.997–1.0000. The limit of detection (LOD) was 2.7 ng; the limit of
quantification (LOQ) was 34 ng; R2 values were 0.995 and 1.00.

Seaweed amino acids (AAs) were estimated using I mL of 80% (v/v) aqueous ethanolic
extract. The extract was centrifuged, and the supernatant was evaporated under vacuum.

http://gmd.mpimp-golm.mpg.de/
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The pellet was dissolved in 1 mL of chloroform, and the suspension was re-extracted using
1 mL of HPLC-grade water. Then, the aqueous phase was collected after centrifugation
and was filtered using 0.2 µM Millipore microfilters. AAs were analyzed using a Waters
Acquity UPLC-tqd system (Milford, Worcester County, MA, USA) equipped with BEH
amide 2.1 × 50 columns. QA/QC was ensured with the standard addition of amino acids
to ensure the best recoveries. The method limits of quantification (MLQs) of most amino
acids, determined using the concentration obtained via the method for preconcentration
under reduced pressure in ultrapure water, were 0.1–40 µg L−1. The average recovery was
94% for most of the amino acids.

2.4. Redox State Estimation

Lipid peroxidation was measured by analyzing malondialdehyde (MDA) according to
Hodges et al. [50]. A ferric reducing/antioxidant power (FRAP) assay was employed for
measuring the total antioxidant capacity according to Benzie and Strain [51]. Ascorbate
(ASC) and glutathione (GSH) were estimated using seaweed extract prepared using 6 %
ice-cold metaphosphoric acid using a reversed-phase HPLC column (100 × 4.6 mm; Polaris
C18-A; 3 µm particle size) at 40 ◦C with an isocratic flow rate of 1 mL min-1 of elution
buffer (2 mMKCl; pH 2.5 adjusted with o-phosphoric acid). Concentrations of total ASC
(ASCt) and GSH (GSHt) (reduced + oxidized) were estimated according to Potters et al. [52].
Total polyphenols and flavonoids were measured using 80 % ethanolic extract. The Folin–
Ciocalteu method was adopted and gallic acid was used as a standard for measuring the
total phenols based on Zhang et al. [53]. The modified aluminum chloride method was
adopted, and quercetin was used as a standard for the estimation of flavonoids based on
Chang et al. [54]. Tocopherols were measured using hexane extract quantified using HPLC
analysis based on Siebert [55]. Data were analyzed with Shimadzu Class VP 6.14 software
provided with the HPLC system (Shimadzu, Tokyo, Japan).

Antioxidant enzymatic activities were estimated according to Murshed et al. [56]
using seaweed protein extracts. Protein concentration was quantified according to Lowry
et al. [57]. Enzyme activities were measured using a microplate reader at 25 ◦C using
200 µL volume of the reaction mixture. All the enzymatic reactions, such as ascorbate
peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase
(MDHAR), and glutathione reductase (GR), were estimated according to Murshed et al. [56].
Peroxidase (POX) and catalase (CAT) were estimated according to Dhindsa et al. [58] and
Aebi [59], respectively. Glutathione peroxidase (GPX) and glutathione S-transferase (GST)
activity were estimated according to Drotar et al. [60] and Habig et al. [61], respectively.

2.5. Estimation of Minerals

Seaweed samples were digested using HNO3/H2O (5:1 ratio) in an oven. Macro and
trace minerals were determined using mass spectrometry (ICP—MS Finnigan Element XR;
Scientific, Bremen, Germany) according to Agusa et al. [62]. Mixtures of standards were
prepared in 1% nitric acid.

2.6. Statistics

We analyzed the results by combining the months in the season. A one-way ANOVA
was performed on the mean values of samples for each season to determine the significant
differences using SPSS v21 (SPSS Inc., Chicago, IL, USA). All the statistical analyses con-
sidered to have significant positive variations were defined at a significance level of 5%
(p-value < 0.05). If the F-value showed significance, a comparison was made using post
hoc Tukey’s HSD tests. In case the assumptions of the ANOVA were not met, equivalent
non-parametric tests were applied. PAST was used for performing a principal component
analysis (PCA) of the full dataset. The data were normalized before the PCA by taking the
average variable for all months and then taking the difference between each month and the
average divided by the standard deviation.
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3. Results
3.1. Photosynthetic Pigments

We found significant variations in the concentrations of photosynthetic pigments
(Figure 1). The highest concentrations of chl a and chl b (392.5 ± 47.8 µg/g FW and
209.6 ± 30.4 µg/g FW, respectively) were found during summer when compared with post-
monsoon (196.4± 20.2 µg/g FW and 103.4± 10.9 µg/g FW, respectively). While carotenoid
levels were higher during monsoon (137.7 ± 8.9 µg/g FW) than during post-monsoon
(82.4 ± 9.2 µg/g FW).
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3.2. Seasonal Variability Affected Primary Metabolites

Subsequently, we set out to investigate the effects of seasonality on the level of the
primary metabolites. A significant increase in total sugars in C. antennina was observed
during post-monsoon compared with summer. However, the levels of individual monosac-
charides such as rhamnose, arabinose, and galactose were high during monsoon compared
with summer; glucose and xylose levels were the highest during post-monsoon compared
with the other two seasons (Figure 2 & Supplementary Table S2).

Then, we investigated the effect on the amino acid levels during different seasons. A
total of 20 AAs were identified in C. antennina. Proline, glutamine, and glutamate were
found in abundance throughout the year (Figure 3 & Supplementary Table S3). These amino
acid levels were significantly higher during the post-monsoon season than in summer and
monsoon. The levels of other essential amino acids, such as lysine and threonine, and
non-essential amino acids, such as glycine and asparagine, were also the highest during
the post-monsoon season.

Next, we set out to investigate the fatty acid profile of C. antennina during different
seasons. A total of 22 fatty acids were identified in C. antennina, including 12 saturated
fatty acids (SFAs), 4 monounsaturated fatty acids (MUFAs), and 6 polyunsaturated fatty
acids (PUFAs) (Table 1). The most abundant fatty acid was hexadecanoic acid (C16:0)
throughout the sampling period (Supplementary Table S4). Among the SFAs, the levels
of dodecanoic (C12:0), tetradecanoic (C14:0), heptadecanoic (C17:0), octadecanoic (C18:0),
docosanoic (C22:0), and pentacosanoic (C25:0) were high during monsoon, and tricosanoic
(C23:0), tetracosanoic (C24:0), and hexacosanoic (C26:0) levels were the highest during the
post-monsoon season. The concentrations of MUFAs such as hexadecanoic (C16:1) and
octadecenoic (18:1) were the highest during monsoon, and that of tetracosenoic (C24:1) was
the highest during post-monsoon; PUFAs including hexadecadienoic (C16:2), octadeca-
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dienoic (C18:2), octadecatrienoic (C18:3), eicosadienoic (C20:2), and docosenoic (22:2) were
at their highest levels during the monsoon period.
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Table 1. Seasonal variations in the concentrations (mg/g) of various fatty acids in C. antennina.
Saturated fatty acids, SFAs (A); mono unsaturated fatty acids, MUFAs (B); poly unsaturated fatty
acids, PUFAs (C). Values are shown as means ± S.E. (n = 3). Different letters show significance,
p < 0.05 (a = summer to monsoon; b = summer to post-monsoon; c = monsoon to Post monsoon).

Summer Monsoon Post-Monsoon

C12:0 0.289 ± 0.023 ab 0.573 ± 0.036 a 0.562 ± 0.084 b

C14:0 0.011 ± 0.001 a 0.022 ± 0.002 ac 0.014 ± 0.002 c

C15:0 0.017 ± 0.002 0.031 ± 0.002 1.565 ± 1.543

C16:0 8.481 ± 0.623 10.806 ± 0.536 11.742 ± 2.291

C16:1 0.079 ± 0.005 ab 0.128 ± 0.008 a 0.121 ± 0.017 b

C16:2 0.007 ± 0.001 a 0.012 ± 0.001 ac 0.008 ± 0.001 c

C16:3 0.007 ± 0.001 0.013 ± 0.001 0.049 ± 0.04

C17:0 0.225 ± 0.02 a 0.32 ± 0.021 a 0.253 ± 0.04

C17:1 0.048 ± 0.005 0.087 ± 0.004 0.187 ± 0.128

C18:0 0.751 ± 0.062 ab 1.306 ± 0.084 a 1.191 ± 0.061 b

C18:1 3.244 ± 0.251 a 6.378 ± 0.649 ac 4.337 ± 0.713 c

C18:2 0.185 ± 0.022 a 0.328 ± 0.019 ac 0.198 ± 0.032 c

C18:3 0.033 ± 0.002 a 0.059 ± 0.005 ac 0.039 ± 0.006 c

C20:0 0.018 ± 0.004 0.03 ± 0.004 0.017 ± 0.003

C20:2 0.02 ± 0.002 a 0.037 ± 0.004 ac 0.024 ± 0.004 c

C22:0 0.011 ± 0.001 a 0.02 ± 0.001 a 0.016 ± 0.002

C22:2 0.016 ± 0.002 ab 0.029 ± 0.002 a 0.024 ± 0.002 b

C23:0 0.007 ± 0.001 ab 0.016 ± 0.004 a 0.024 ± 0.002 b

C24:0 0.011 ± 0.001 b 0.02 ± 0.002 0.034 ± 0.01 b

C24:1 0.039 ± 0.002 ab 0.07 ± 0.007 a 0.08 ± 0.006 b

C25:0 0.03 ± 0.002 ab 0.061 ± 0.007 a 0.055 ± 0.007 b

C26:0 0.0008 ± 0.0001 b 0.0014 ± 0.0001 0.0018 ± 0.0001 b

3.3. Elemental Composition

We also determined the effect of seasonality on the mineral composition of intertidal
seaweed C. antennina. We found a total of 24 macro and trace minerals in C. antennina
samples, which are presented in Table 2 & Supplementary Table S5. The post-monsoon
period enhanced the concentration of various minerals, such as Na, Rb, Sr, Cd, Cs, Mg, Al,
Ca, Mn, Fe, Ga, K, As, and Se, in C. antennina.

3.4. Redox Status

Finally, to investigate the protection mechanisms against oxidative stress, we measured
lipid peroxidation and total antioxidant capacity. We noticed higher lipid peroxidation
during the post-monsoon season (6.35 ± 0.71) than in summer (2.29 ± 0.35) (Figure 4). This
indicated oxidative damage during post-monsoon. However, we also found a significant
increase in total antioxidants during post-monsoon (35.7 ± 2.76) compared with summer
(19.2 ± 3.17) (Figure 4), indicating active oxidative damage response. We also quantified
the level of enzymatic and non-enzymatic antioxidant molecules (Supplementary Table S6).
We observed that the levels of most of the antioxidant molecules, such as flavonoids,
tocopherols, ASC, TASC, DHA, and GSH, and enzymatic antioxidants including GR,
DHAR, APX, CAT, POX, and SOD were significantly higher during post-monsoon than in
summer and monsoon (Figure 4).
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Table 2. Seasonal variations in the concentration (µg/g) of various mineral of C. antennina. Values are
shown as means ± S.E. (n = 3). Different letters show significance, p < 0.05 (a = summer–monsoon;
b = summer–post-monsoon; c = monsoon–post-monsoon).

Summer Monsoon Post-Monsoon

Na 18453.2 ± 509.5 17262.2 ± 1170.6 c 20336.1 ± 567.3 c

Rb 4.7 ± 0.2 4.5 ± 0.4 c 5.4 ± 0.2 c

Sr 897.2 ± 24.8 ab 780.7 ± 21.2 ac 1091.3 ± 30 bc

Cd 0.283 ± 0.009 0.268 ± 0.021 c 0.319 ± 0.01 c

In 0.37 ± 0.02 0.36 ± 0.04 0.45 ± 0.02

Cs 0.53 ± 0.01 0.5 ± 0.04 c 0.59 ± 0.02 c

Ba 79.4 ± 3.6 77.4 ± 8.5 96.5 ± 3

Pb 5.2 ± 0.3 5.1 ± 0.6 6.4 ± 0.3

Bi 0.14 ± 0.01 0.13 ± 0.01 0.16 ± 0.01

Mg 2917.6 ± 88.7 b 2973.9 ± 45.6 c 3280.9 ± 92.7 bc

Al 97.7 ± 5.1 ab 136.5 ± 10.3 a 144.1 ± 4.5 b

Ca 3600.9 ± 104.6 3400.5 ± 262.4 c 4058.5 ± 110.5 c

V 1.2 ± 0.05 1.15 ± 0.11 1.41 ± 0.05

Cr 9.9 ± 0.3 8.9 ± 0.3 9.9 ± 0.3

Mn 62.1 ± 1.7 57.8 ± 3.7 c 67.7 ± 1.9 c

Fe 182.5 ± 5.8 173.1 ± 14.2 c 207.7 ± 6 c

Co 0.29 ± 0.01 0.28 ± 0.03 0.36 ± 0.01

Ni 2.6 ± 0.1 2.4 ± 0.2 2.8 ± 0.1

Cu 7.3 ± 0.2 6.6 ± 0.3 7.5 ± 0.2

Zn 72.4 ± 3 70.2 ± 7.4 87 ± 2.7

Ga 0.063 ± 0.002 0.059 ± 0.005 c 0.071 ± 0.002 c

K 288 ± 13.6 268.8 ± 23.3 c 330.2 ± 8.3 c

As 25.5 ± 0.7 24 ± 1.8 c 28.5 ± 0.8 c

Se 4.9 ± 0.2 4.7 ± 0.4 c 5.7 ± 0.2 c

3.5. Global Change in the Metabolites and Mineral Composition of C. antennina in
Different Seasons

To obtain a global metabolic view of similarities and differences among the C. an-
tennina samples during different seasons, the full dataset was subjected to a principal
component analysis (PCA). The first two principal components (PC1 and PC2) accounted
for >70% variance (Figure 5). The PCA showed a separation among post-monsoon, sum-
mer, and monsoon. FRAP, MDA, antioxidant molecules (including ASC, polyphenols, and
flavonoids), sugars (such as xylose, glucuronic acid, rhamnose, and galactose), amino acids
(such as methionine, threonine, and tyrosine), fatty acids (such as C12:0, C16:0, C18:0, C22:0,
C25:0, C26:0, C16:1, C22:1, and C24:1), and aluminum were positively correlated with the
monsoon season.



Biomolecules 2022, 12, 1475 9 of 16Biomolecules 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 4. Cont.



Biomolecules 2022, 12, 1475 10 of 16Biomolecules 2022, 12, x FOR PEER REVIEW 10 of 17 
 

 
Figure 4. Seasonal variation in lipid peroxidation (A) and total antioxidants (B), enzymatic (C) and 
non-enzymatic (D) antioxidants in C. antennina. Different letters show significance, p < 0.05 (a = 
summer–monsoon; b = summer–post-monsoon; c = monsoon–post-monsoon). 

3.5. Global Change in the Metabolites and Mineral Composition of C. antennina in Different 
Seasons 

To obtain a global metabolic view of similarities and differences among the C. an-
tennina samples during different seasons, the full dataset was subjected to a principal 
component analysis (PCA). The first two principal components (PC1 and PC2) accounted 
for >70% variance (Figure 5). The PCA showed a separation among post-monsoon, 
summer, and monsoon. FRAP, MDA, antioxidant molecules (including ASC, polyphe-
nols, and flavonoids), sugars (such as xylose, glucuronic acid, rhamnose, and galactose), 
amino acids (such as methionine, threonine, and tyrosine), fatty acids (such as C12:0, 
C16:0, C18:0, C22:0, C25:0, C26:0, C16:1, C22:1, and C24:1), and aluminum were positively 
correlated with the monsoon season. 

Figure 4. Seasonal variation in lipid peroxidation (A) and total antioxidants (B), enzymatic (C) and
non-enzymatic (D) antioxidants in C. antennina. Different letters show significance, p < 0.05
(a = summer–monsoon; b = summer–post-monsoon; c = monsoon–post-monsoon).

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, me-
tabolites, and minerals in C. antennina. Variances explained by the first two components (PC1 and 
PC2) appear in parentheses. (  represents pigments,  antioxidants,  minerals,  sugars,  
amino acids, and  fatty acids). 

4. Discussion 
Chaetomorpha antennina is abundantly present on the rocky intertidal shores of 

Covelong throughout the year, supporting numerous associated invertebrate communi-
ties [24,63]. The distribution of C. antennina along the rocky intertidal area causes them to 
be exposed during low tide and submerged during high tide. These tidal variations also 
have severe implications for light and temperature stresses on seaweeds [8]. The change 
in environmental parameters may affect the physiology, thereby impacting the bio-
chemical and nutritional properties of the species. Hence, in this study, we sampled algae 
every month and analyzed the biochemical compositions, antioxidant status, and mineral 
compositions. These data might help us to understand the effect of seasonality on the 
commercial importance of nutritional properties such as MUFAs, PUFAs, EAAs, and 
minerals for harvesting green alga C. antennina for commercial applications. 

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina 
In our study, we found that C. antennina exhibited significant seasonal variations in 

the pigments. Chlorophyll was more abundant during summer than in the other two 
seasons. During this period, the intensity of light on the thalli during low tide may also 
influence the production of pigment during summer [64]. The presence of photosynthetic 
pigments may help in the absorption of light and energy in the reaction center and may 
also involve protection against light stress [8,65,66]. The increased level of carotenoid 
during monsoon could be a stress response to protect the photosynthetic apparatus 
against environmental stress [8,67]. The variation in the concentration of different pig-
ments in response to environmental changes may help the seaweed to adapt to the sea-
sonality in the rocky intertidal habitat. 

Metabolic activities are altered by abiotic factors such as temperature, pH, and nu-
trient availability according to environmental conditions, causing changes in the bio-
chemical compositions of green seaweed C. antennina [68]. Sugars and proteins are the 

Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, metabo-
lites, and minerals in C. antennina. Variances explained by the first two components (PC1 and PC2)
appear in parentheses. (

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, me-
tabolites, and minerals in C. antennina. Variances explained by the first two components (PC1 and 
PC2) appear in parentheses. (  represents pigments,  antioxidants,  minerals,  sugars,  
amino acids, and  fatty acids). 

4. Discussion 
Chaetomorpha antennina is abundantly present on the rocky intertidal shores of 

Covelong throughout the year, supporting numerous associated invertebrate communi-
ties [24,63]. The distribution of C. antennina along the rocky intertidal area causes them to 
be exposed during low tide and submerged during high tide. These tidal variations also 
have severe implications for light and temperature stresses on seaweeds [8]. The change 
in environmental parameters may affect the physiology, thereby impacting the bio-
chemical and nutritional properties of the species. Hence, in this study, we sampled algae 
every month and analyzed the biochemical compositions, antioxidant status, and mineral 
compositions. These data might help us to understand the effect of seasonality on the 
commercial importance of nutritional properties such as MUFAs, PUFAs, EAAs, and 
minerals for harvesting green alga C. antennina for commercial applications. 

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina 
In our study, we found that C. antennina exhibited significant seasonal variations in 

the pigments. Chlorophyll was more abundant during summer than in the other two 
seasons. During this period, the intensity of light on the thalli during low tide may also 
influence the production of pigment during summer [64]. The presence of photosynthetic 
pigments may help in the absorption of light and energy in the reaction center and may 
also involve protection against light stress [8,65,66]. The increased level of carotenoid 
during monsoon could be a stress response to protect the photosynthetic apparatus 
against environmental stress [8,67]. The variation in the concentration of different pig-
ments in response to environmental changes may help the seaweed to adapt to the sea-
sonality in the rocky intertidal habitat. 

Metabolic activities are altered by abiotic factors such as temperature, pH, and nu-
trient availability according to environmental conditions, causing changes in the bio-
chemical compositions of green seaweed C. antennina [68]. Sugars and proteins are the 

represents pigments,

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, me-
tabolites, and minerals in C. antennina. Variances explained by the first two components (PC1 and 
PC2) appear in parentheses. (  represents pigments,  antioxidants,  minerals,  sugars,  
amino acids, and  fatty acids). 

4. Discussion 
Chaetomorpha antennina is abundantly present on the rocky intertidal shores of 

Covelong throughout the year, supporting numerous associated invertebrate communi-
ties [24,63]. The distribution of C. antennina along the rocky intertidal area causes them to 
be exposed during low tide and submerged during high tide. These tidal variations also 
have severe implications for light and temperature stresses on seaweeds [8]. The change 
in environmental parameters may affect the physiology, thereby impacting the bio-
chemical and nutritional properties of the species. Hence, in this study, we sampled algae 
every month and analyzed the biochemical compositions, antioxidant status, and mineral 
compositions. These data might help us to understand the effect of seasonality on the 
commercial importance of nutritional properties such as MUFAs, PUFAs, EAAs, and 
minerals for harvesting green alga C. antennina for commercial applications. 

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina 
In our study, we found that C. antennina exhibited significant seasonal variations in 

the pigments. Chlorophyll was more abundant during summer than in the other two 
seasons. During this period, the intensity of light on the thalli during low tide may also 
influence the production of pigment during summer [64]. The presence of photosynthetic 
pigments may help in the absorption of light and energy in the reaction center and may 
also involve protection against light stress [8,65,66]. The increased level of carotenoid 
during monsoon could be a stress response to protect the photosynthetic apparatus 
against environmental stress [8,67]. The variation in the concentration of different pig-
ments in response to environmental changes may help the seaweed to adapt to the sea-
sonality in the rocky intertidal habitat. 

Metabolic activities are altered by abiotic factors such as temperature, pH, and nu-
trient availability according to environmental conditions, causing changes in the bio-
chemical compositions of green seaweed C. antennina [68]. Sugars and proteins are the 

antioxidants,

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, me-
tabolites, and minerals in C. antennina. Variances explained by the first two components (PC1 and 
PC2) appear in parentheses. (  represents pigments,  antioxidants,  minerals,  sugars,  
amino acids, and  fatty acids). 

4. Discussion 
Chaetomorpha antennina is abundantly present on the rocky intertidal shores of 

Covelong throughout the year, supporting numerous associated invertebrate communi-
ties [24,63]. The distribution of C. antennina along the rocky intertidal area causes them to 
be exposed during low tide and submerged during high tide. These tidal variations also 
have severe implications for light and temperature stresses on seaweeds [8]. The change 
in environmental parameters may affect the physiology, thereby impacting the bio-
chemical and nutritional properties of the species. Hence, in this study, we sampled algae 
every month and analyzed the biochemical compositions, antioxidant status, and mineral 
compositions. These data might help us to understand the effect of seasonality on the 
commercial importance of nutritional properties such as MUFAs, PUFAs, EAAs, and 
minerals for harvesting green alga C. antennina for commercial applications. 

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina 
In our study, we found that C. antennina exhibited significant seasonal variations in 

the pigments. Chlorophyll was more abundant during summer than in the other two 
seasons. During this period, the intensity of light on the thalli during low tide may also 
influence the production of pigment during summer [64]. The presence of photosynthetic 
pigments may help in the absorption of light and energy in the reaction center and may 
also involve protection against light stress [8,65,66]. The increased level of carotenoid 
during monsoon could be a stress response to protect the photosynthetic apparatus 
against environmental stress [8,67]. The variation in the concentration of different pig-
ments in response to environmental changes may help the seaweed to adapt to the sea-
sonality in the rocky intertidal habitat. 

Metabolic activities are altered by abiotic factors such as temperature, pH, and nu-
trient availability according to environmental conditions, causing changes in the bio-
chemical compositions of green seaweed C. antennina [68]. Sugars and proteins are the 

minerals,

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, me-
tabolites, and minerals in C. antennina. Variances explained by the first two components (PC1 and 
PC2) appear in parentheses. (  represents pigments,  antioxidants,  minerals,  sugars,  
amino acids, and  fatty acids). 

4. Discussion 
Chaetomorpha antennina is abundantly present on the rocky intertidal shores of 

Covelong throughout the year, supporting numerous associated invertebrate communi-
ties [24,63]. The distribution of C. antennina along the rocky intertidal area causes them to 
be exposed during low tide and submerged during high tide. These tidal variations also 
have severe implications for light and temperature stresses on seaweeds [8]. The change 
in environmental parameters may affect the physiology, thereby impacting the bio-
chemical and nutritional properties of the species. Hence, in this study, we sampled algae 
every month and analyzed the biochemical compositions, antioxidant status, and mineral 
compositions. These data might help us to understand the effect of seasonality on the 
commercial importance of nutritional properties such as MUFAs, PUFAs, EAAs, and 
minerals for harvesting green alga C. antennina for commercial applications. 

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina 
In our study, we found that C. antennina exhibited significant seasonal variations in 

the pigments. Chlorophyll was more abundant during summer than in the other two 
seasons. During this period, the intensity of light on the thalli during low tide may also 
influence the production of pigment during summer [64]. The presence of photosynthetic 
pigments may help in the absorption of light and energy in the reaction center and may 
also involve protection against light stress [8,65,66]. The increased level of carotenoid 
during monsoon could be a stress response to protect the photosynthetic apparatus 
against environmental stress [8,67]. The variation in the concentration of different pig-
ments in response to environmental changes may help the seaweed to adapt to the sea-
sonality in the rocky intertidal habitat. 

Metabolic activities are altered by abiotic factors such as temperature, pH, and nu-
trient availability according to environmental conditions, causing changes in the bio-
chemical compositions of green seaweed C. antennina [68]. Sugars and proteins are the 

sugars,

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, me-
tabolites, and minerals in C. antennina. Variances explained by the first two components (PC1 and 
PC2) appear in parentheses. (  represents pigments,  antioxidants,  minerals,  sugars,  
amino acids, and  fatty acids). 

4. Discussion 
Chaetomorpha antennina is abundantly present on the rocky intertidal shores of 

Covelong throughout the year, supporting numerous associated invertebrate communi-
ties [24,63]. The distribution of C. antennina along the rocky intertidal area causes them to 
be exposed during low tide and submerged during high tide. These tidal variations also 
have severe implications for light and temperature stresses on seaweeds [8]. The change 
in environmental parameters may affect the physiology, thereby impacting the bio-
chemical and nutritional properties of the species. Hence, in this study, we sampled algae 
every month and analyzed the biochemical compositions, antioxidant status, and mineral 
compositions. These data might help us to understand the effect of seasonality on the 
commercial importance of nutritional properties such as MUFAs, PUFAs, EAAs, and 
minerals for harvesting green alga C. antennina for commercial applications. 

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina 
In our study, we found that C. antennina exhibited significant seasonal variations in 

the pigments. Chlorophyll was more abundant during summer than in the other two 
seasons. During this period, the intensity of light on the thalli during low tide may also 
influence the production of pigment during summer [64]. The presence of photosynthetic 
pigments may help in the absorption of light and energy in the reaction center and may 
also involve protection against light stress [8,65,66]. The increased level of carotenoid 
during monsoon could be a stress response to protect the photosynthetic apparatus 
against environmental stress [8,67]. The variation in the concentration of different pig-
ments in response to environmental changes may help the seaweed to adapt to the sea-
sonality in the rocky intertidal habitat. 

Metabolic activities are altered by abiotic factors such as temperature, pH, and nu-
trient availability according to environmental conditions, causing changes in the bio-
chemical compositions of green seaweed C. antennina [68]. Sugars and proteins are the 

amino acids,
and

Biomolecules 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 5. Principal component analysis of seasonal comparison of the levels of antioxidants, me-
tabolites, and minerals in C. antennina. Variances explained by the first two components (PC1 and 
PC2) appear in parentheses. (  represents pigments,  antioxidants,  minerals,  sugars,  
amino acids, and  fatty acids). 

4. Discussion 
Chaetomorpha antennina is abundantly present on the rocky intertidal shores of 

Covelong throughout the year, supporting numerous associated invertebrate communi-
ties [24,63]. The distribution of C. antennina along the rocky intertidal area causes them to 
be exposed during low tide and submerged during high tide. These tidal variations also 
have severe implications for light and temperature stresses on seaweeds [8]. The change 
in environmental parameters may affect the physiology, thereby impacting the bio-
chemical and nutritional properties of the species. Hence, in this study, we sampled algae 
every month and analyzed the biochemical compositions, antioxidant status, and mineral 
compositions. These data might help us to understand the effect of seasonality on the 
commercial importance of nutritional properties such as MUFAs, PUFAs, EAAs, and 
minerals for harvesting green alga C. antennina for commercial applications. 

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina 
In our study, we found that C. antennina exhibited significant seasonal variations in 

the pigments. Chlorophyll was more abundant during summer than in the other two 
seasons. During this period, the intensity of light on the thalli during low tide may also 
influence the production of pigment during summer [64]. The presence of photosynthetic 
pigments may help in the absorption of light and energy in the reaction center and may 
also involve protection against light stress [8,65,66]. The increased level of carotenoid 
during monsoon could be a stress response to protect the photosynthetic apparatus 
against environmental stress [8,67]. The variation in the concentration of different pig-
ments in response to environmental changes may help the seaweed to adapt to the sea-
sonality in the rocky intertidal habitat. 

Metabolic activities are altered by abiotic factors such as temperature, pH, and nu-
trient availability according to environmental conditions, causing changes in the bio-
chemical compositions of green seaweed C. antennina [68]. Sugars and proteins are the 

fatty acids).



Biomolecules 2022, 12, 1475 11 of 16

4. Discussion

Chaetomorpha antennina is abundantly present on the rocky intertidal shores of Cove-
long throughout the year, supporting numerous associated invertebrate communities [24,63].
The distribution of C. antennina along the rocky intertidal area causes them to be exposed
during low tide and submerged during high tide. These tidal variations also have severe im-
plications for light and temperature stresses on seaweeds [8]. The change in environmental
parameters may affect the physiology, thereby impacting the biochemical and nutritional
properties of the species. Hence, in this study, we sampled algae every month and analyzed
the biochemical compositions, antioxidant status, and mineral compositions. These data
might help us to understand the effect of seasonality on the commercial importance of
nutritional properties such as MUFAs, PUFAs, EAAs, and minerals for harvesting green
alga C. antennina for commercial applications.

4.1. Seasonal Changes Affected Photosynthetic Pigments of C. antennina

In our study, we found that C. antennina exhibited significant seasonal variations in
the pigments. Chlorophyll was more abundant during summer than in the other two
seasons. During this period, the intensity of light on the thalli during low tide may also
influence the production of pigment during summer [64]. The presence of photosynthetic
pigments may help in the absorption of light and energy in the reaction center and may
also involve protection against light stress [8,65,66]. The increased level of carotenoid
during monsoon could be a stress response to protect the photosynthetic apparatus against
environmental stress [8,67]. The variation in the concentration of different pigments in
response to environmental changes may help the seaweed to adapt to the seasonality in the
rocky intertidal habitat.

Metabolic activities are altered by abiotic factors such as temperature, pH, and nutrient
availability according to environmental conditions, causing changes in the biochemical
compositions of green seaweed C. antennina [68]. Sugars and proteins are the most impor-
tant components for various processes and for the endurance of seaweeds under changing
environmental conditions in coastal systems. Photosynthetic pigments utilize sunlight for
the production of carbohydrates through the process of photosynthesis. Therefore, we
measured the concentration of carbohydrates to understand the biochemical response to
various seasons. Carbohydrates are among the vital sources responsible for providing
energy for respiration and other metabolic processes in seaweeds [69]. Significant variations
in various monosaccharides were observed in different seasons. The highest concentrations
of individual sugars, including glucose, xylose, and total sugars, were observed during the
post-monsoon season. Galactose, rhamnose, and arabinose levels were higher during the
monsoon period. Thus, from this result, we could suggest based on seasonality that green
alga C. antennina can be seen as a source of dietary fibers, safeguarding the potentially
reduced digestibility that might compromise these potential benefits [70].

4.2. Seasonal Changes Altered the Primary Metabolism of C. antennina

Generally, fatty acids are susceptible to changes in the environmental conditions and
also play an important role in algal physiology [71]. Seaweeds contain limited concentra-
tions of fatty acids in their tissue compared with all other metabolites, but their needs are
significant in terms of nutritional properties [12]. Monsoon and post-monsoon have been
shown to cause higher concentrations of fatty acids, indicating nutritionally rich contents
during these seasons, and could be the apt periods for harvesting seaweeds for fatty acids.
Our result is in line with previous findings on another green alga, U. lactuca [69], and
economically important brown algae [12]. Seasonal variations in the levels of the fatty
acids may be due to higher temperatures during summer, as Sánchez-Machado et al. [72]
also showed, indicating that at higher temperatures, lipid concentrations may decrease or
stay stable until favorable conditions are reached. The increase in PUFAs during monsoon
may happen because the cell membrane tends to increase in tightness due to lower tem-
peratures [70]. Temperatures are also known to affect the fatty acid concentrations in the
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cell membrane. PUFAs also act as electron carriers in the photosynthetic mechanisms of
seaweeds for the production of energy [73]. PUFAs are important components of many
invertebrates’ dietary needs [74]. Increased concentrations of PUFAs during monsoon also
increase the nutritional quality of C. antennina. In addition, the concentrations of SFAs were
found to be increased in post-monsoon. SFAs can be best harvested during this period and
are known to have important applications for human health because of the importance of
C14:0 and C16:0 for the synthesis of cholesterol [70].

Amino acids serve as substitutes for carbohydrates for the energy requirement under
abiotic stress conditions [73]. Most AAs in our study were at somewhat higher levels in post-
monsoon than in summer and monsoon. AAs can also vary depending on seasonality [69].
A similar kind of observation was also found for Chlorophyta Ulva lactuca from Egypt, with
this species having higher concentrations during the spring season [69]. Proline is one of
the luxuriant AAs present in C. antennina throughout the year. Some of the amino acids,
including proline, act as protective osmolytes under saline conditions [1,75]. Therefore,
C. antennina possesses higher nutritional qualities in terms of FAs and AAs during monsoon
and post-monsoon season, and we find this season to be an apt period for harvesting the
alga in terms of economic aspects.

4.3. Seasonal Changes Altered the Antioxidant Properties of C. antennina

Intertidal rocky green seaweed is subjected to some harsh environmental conditions
such as desiccation conditions, heat stress, high light exposure, and carbon and nutrient
limitations. These extreme conditions can induce the formation of ROS and contribute to
photoinhibition processes [76]. These ROS could disrupt or inactivate the enzymes involved
in the metabolic process through oxidative damage to DNA, RNA, and proteins [76].
Significant variations in antioxidant activity may be due to the environmental parameters
of different seasons. Farasat et al. [77] also showed that the time of collection also mattered
in the antioxidant activity of C. aerea. The levels of antioxidant molecules and enzymes
were higher during the post-monsoon period than in monsoon and summer. The increased
antioxidant status of C. antennina could help the algae to resist the abiotic stress factors
due to environmental changes [6]. An increase in phenolic and flavonoid contents was
also observed in post-monsoon. This may have been due to the fact that polyphenols may
contribute to the major portion of total antioxidant content. A similar kind of increase in
the contents of polyphenols and flavonoids was observed in a previous study from Iran on
C. linum and C. aerea [77]. Flavonoids are generally found in epidermal cells and have the
ability to absorb UV light. In an aquatic environment, quercetin can be induced by UV-B
and functions as a UV screen [78,79]. At low temperatures, antioxidant enzymes increase
to cope with antioxidant stress [73]. According to Wu et al. [80], a higher antioxidant
activity of seaweeds was due to the higher content of antioxidant molecules such as
ascorbate, glutathione, phenols, and flavonoids. CAT and POX are antioxidant enzymes
enacting a defense mechanism that prevents algal tissue from lipid peroxidation, protein
denaturation, nucleic acid damage, and pigment loss [8]. The accumulated ROS may be
removed by CAT and POX. These enzymes are present in higher concentrations during the
post-monsoon season to cope with physiological stress in algae [8,81]. Antioxidant activity
is an important factor that indicates that the physiological stress in seaweeds is influenced
by seasonal variations. Thus, understanding the yearly pattern of the trend followed by the
nutritional and antioxidant properties of seaweeds may help to understand the importance
of seaweeds, and further research would be helpful to obtain a better understanding of
how other associated communities benefit from algae and to observe the pattern in the
food web.

4.4. Variations in Minerals and Trace Elements

An increase in the contents of various essential minerals during post-monsoon in C.
antennina, including iron (Fe), calcium (Ca), sodium (Na), magnesium (mg), manganese
(Mn), selenium (Se), etc., could be a possible source of dietary need. The concentrations of
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minerals also determine the quality of seaweed [82,83]. Fe is involved in many metabolic
activities, such as the transportation of electrons and oxygen; Mn is involved in amino
acid, fatty acid, and carbohydrate metabolism and also acts as a cofactor of many enzymes,
including SOD, arginase, and pyruvate carboxylase [84]. The richness of these minerals
also makes seaweed commercially important due to its enhanced nutritional properties.

5. Conclusions

The present study revealed prominent seasonal variations in the physiological and
biochemical composition of C. antennina. Seaweeds are becoming more important as re-
sources due to their ecological and commercial importance. Productivity and the levels of
photosynthetic pigments were the highest during summer, while antioxidants, biochemical
components (including amino acids), and the contents of minerals in C. antennina were
mostly enhanced during post-monsoon. However, sugars and fatty acids were at their high-
est levels during the monsoon period. These variations may have been due to physiological
adaptation to environmental conditions. To conclude, based on seasonality, post-monsoon
may be the right choice for harvesting nutritionally rich seaweeds. However, in the future,
further studies would also need to be conducted to gain more insights into the impact of
various seasons on the ecological pattern associated with green algae.
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