
1. Introduction
Southern Ocean mesoscale eddies, rotating currents characterized by spatial scales of 10–100 km and lifetimes 
of weeks to months, are key foraging regions for top marine predators such as pinnipeds (Bailleul et al., 2010; 
Campagna et al., 2006; Cotté et al., 2015; Della Penna et al., 2015; d’Ovidio et al., 2013; Dragon et al., 2010) 
and seabirds (Cotté et al., 2007). These animals forage primarily on micronekton, including small fish, cepha-
lopods, crustaceans, and mesozooplankton. Top predators' diving behavior suggests that many of them feed on 
prey that is located in the mesopelagic zone, between 200 and 1,000 m (Bost et al., 1997; Klages & Bester, 1998; 
McMahon et al., 2019).

Despite their importance for Southern Ocean ecosystems (Murphy et al., 2016; Subramaniam et al., 2020), little 
is known about how mesopelagic micronekton are affected by mesoscale eddies. Micronekton are challenging 
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to observe: they are too small to be tagged with the animal tracking devices used to study top predators and are 
invisible to our current satellite sensors, which are generally limited to observing the near-surface of the ocean. 
Current methods to observe mesopelagic micronekton include midwater trawling (Wiebe et al., 1985), optical 
devices (Kloser et al., 2016), and acoustic techniques (Kloser et al., 2009; Ryan et al., 2009). Furthermore, the 
distribution of micronekton varies at many temporal and spatial scales. These include the scales spanning diel 
vertical migration (DVM) behaviors (DVM; Cuvier, 1817; Hays, 2003) to seasonal and interannual variability 
(Escobar-Flores et al., 2018; Urmy & Horne, 2016). Disentangling this variability in the remote Southern Ocean 
is further complicated by the logistical challenges of collecting ship-based data in the often harsh conditions of 
this region.

In recent years, observations of acoustic backscatter have been growing, resulting in the creation of data sets of 
multifrequency observations from research vessels and ships of opportunity (Kunnath et al., 2021). This suite of 
observations facilitates an analysis of basin scale patterns in the vertical distribution of mesopelagic organisms 
(Klevjer et al., 2016) and complements net trawl data in the definition of biogeographical provinces, or biore-
gions, for mesopelagic organisms (Olivar et al., 2017; Proud et al., 2017; Sutton et al., 2017). Bioregions define 
the large-scale habitat and areas of ecological interest for marine animals that prey on mesopelagic micronekton 
(Hindell et  al.,  2020). Yet, such bioregions do not capture the fine-scale variability that highly mobile pred-
ators encounter during foraging trips. This variability is largely influenced by mesoscale (10–100  km) and 
submesoscale (<10 km) features such as fronts, filaments, and eddies (Bost et  al.,  2009; Braun et  al.,  2019; 
Chapman et  al.,  2020; Gaube et  al.,  2018; Tew-Kai et  al.,  2009) and is central in understanding the role of 
patchiness in modulating biogeochemical fluxes (Ellwood et al., 2020; Frenger et al., 2018; Moreau et al., 2017; 
Orselli et al., 2019; Patel et al., 2020; Rohr et al., 2020a, 2020b). An improved understanding of how meso and 
submesoscales distribute micronekton and mesozooplankton is pivotal for building a comprehensive view of 
marine ecosystems, from phytoplankton to top predators, including their role in exporting carbon into the deep 
ocean (Belcher et al., 2019; Davison et al., 2013).

In the North Atlantic, a handful of studies observed how eddies impact the distribution of micronekton using both 
midwater trawls and acoustic backscatter (Boyd et al., 1986; Craddock et al., 1992; Della Penna & Gaube, 2020; 
Devine et al., 2021; Godø et al., 2012; Fennell & Rose, 2015). In this region, eddies differed in micronekton abun-
dances, community composition, and patterns in acoustic backscatter from their surrounding waters. A growing 
number of studies are addressing the distribution of acoustic backscatter in the Southern Ocean, either to relate 
observed patterns to hydrographic features (Baudena et al., 2021; Béhagle et al., 2017; Escobar-Flores et al., 2018) 
or to define the boundaries of mesopelagic biogeographies (Proud et al., 2015). However, no published study has 
explicitly addressed how Southern Ocean mesoscale eddies affect the distribution of acoustic backscatter asso-
ciated with micronekton.

Here, we combine hydrographic and acoustic measurements to analyze how a Southern Ocean cyclonic eddy 
modulated acoustic backscatter vertically integrated over the upper 1,200 m, along with its impact on the distri-
bution of deep scattering layers (DSL). First, we highlight the contrasting vertical distributions of acoustic backs-
catter inside the eddy core with the surrounding waters from the case study of a transect. We relate some of these 
differences to gradients in the light properties of the water column. Second, we show how integrated acoustic 
backscatter in the eddy core relates to ambient Sub-Antarctic Zone (SAZ) waters and the waters in the Polar 
Frontal Zone (PFZ) where the eddy formed. Finally, we discuss how the provenance of the eddy influences the 
acoustic properties associated with resident micronekton. Specifically, while the eddy core displays acoustic 
properties that are more similar to its origin, the waters at the eddy periphery display more similarities to the SAZ, 
suggesting that at the eddy margin mesopelagic communities are mixed with those from the SAZ.

2. Materials and Methods
2.1. Multiplatform Sampling of the Eddy and Its Region

We tracked a cyclonic feature in the Southern Ocean using satellite data: altimetry-derived absolute dynamic 
topography (ADT) and sea level anomaly (SLA), sea surface temperature (SST), and near-surface chlorophyll 
(Patel et al., 2019). In particular, we used SLA maps to track the eddy (Figure 1a). Altimetry data were down-
loaded from the Copernicus CMEMS web portal as daily maps gridded to a nominal spatial resolution of ¼°. We 
first identified the mesoscale feature as a meander in the Sub-Antarctic Front (SAF), which separates the SAZ 
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and the PFZ, on 3 February 2016. On 3 March 2016, the meander detached as a cyclonic eddy and started moving 
northward onto the SAZ (Patel et al., 2019). The eddy had a diameter of ∼190 km and was sampled between 
30 March and 5 April 2016, during the voyage IN2016_V02 of the Australian RV Investigator. We sampled the 
eddy with a star-shaped pattern of 1,500-m deep conductivity, temperature, and depth (CTD) stations (Figure 1a). 
After 6 days in the eddy, the RV Investigator headed to the PFZ, where the eddy had originated 27 days before 
the beginning of our sampling (Moreau et al., 2017; Patel et al., 2019). In the PFZ, we conducted two 1,500-m 
deep CTD stations before the RV Investigator headed to Hobart, Tasmania, allowing for further sampling of the 
SAZ in the vicinity of the eddy. The eddy was reabsorbed by an SAF meander ∼20 days after we sampled it (Patel 
et al., 2019).

A total of 18 CTD stations to 1,500 m, complemented with continuous thermosalinograph and inline fluorometer 
sampling, allowed characterization of the physical and biogeochemical properties of the eddy, its surrounding 
SAZ waters, and the PFZ. The ensemble of these observations revealed a marked doming of isopycnals as well 
as anomalies in temperature, oxygen distribution, salinity, chlorophyll-a, and nitrates inside the eddy (Moreau 
et al., 2017; Patel et al., 2019, 2020). Compared to the ambient waters of the SAZ, the eddy was colder (7.55 
versus 9.68°C), fresher (34.03 versus 34.54 g/kg), more oxygenated (293.96 versus 276.68 μmol L −1), richer 
in nitrates (21.42 versus 14.17 μmol L −1) and poorer in near-surface chlorophyll-a (0.39 versus 0.71 μg L −1; 
Figure 2).

The onboard 75 kHz acoustic Doppler current profiler (ADCP) was used to identify the location of the eddy 
center following Patel et al. (2019) and to discriminate between the eddy core and periphery (in red and ocher, 
respectively, in Figure 1b). Here, we consider the eddy core as the region within 25 km from the eddy center (red 
in Figure 1b), where geostrophic velocities near the surface were smaller than 30 cm/s (Patel et al., 2019). We 
assume all observations within an annulus with radii of 25 and 75 km as belonging to the eddy periphery (ocher 
in Figure 1b). Contours of ADT were used to separate the measurements from the PFZ (black in Figure 1b) and 
the SAZ (blue in Figure 1b) following Sokolov and Rintoul (2009), and this classification was confirmed by the 
distribution of near-surface tracers such as near-surface fluorescence and salinity (Moreau et al., 2017). Here, we 
use the definition of PFZ used by Trull et al. (2001) which encompasses the entire region between the SAF and 
the Polar Front.

Figure 1. Map of sea level anomaly (SLA, referring to 1 April 2016) for the region of interest (a) and demarcation of 
different subregions (b). Black contours indicate isolines of absolute dynamic topography (ADT) and identify the eddy and 
two branches of the Sub-Antarctic Front (SAF) separating the Polar Frontal Zone (PFZ) from the Sub-Antarctic Zone (SAZ). 
White lines in (a) identify the ship track and black circles the locations of the conductivity, temperature, and depth (CTD) 
casts. Note that at the scale of this map a few CTD stations are overlapped. The transect shown in Figure 3 corresponds to 
the part of the ship track marked in red in (a). Colors in (b) indicate the eddy core (red), the eddy periphery (ocher), the 
PFZ (black), and the SAZ (blue). Stars correspond to the locations of the echograms displayed in Figure S5 in Supporting 
Information S1.
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2.2. EK60 Measurements and Processing

A split-beam scientific echosounder (Simrad EK60, Kongsberg Maritime) was used to measure acoustic volume 
backscatter (Sv; dB re 1 m −1) during the entire duration of the trip at the frequency of 18 kHz. Other frequencies 
were maintained in listening mode, not transmitting, to limit interference with the ADCP, which was essential 
to map the eddy. Pulse length and period were 2 ms and 0.2 Hz, respectively. The echosounder was calibrated 
using the standard sphere method before and after the voyage (Demer et al., 2015).We assume no change in the 
Sv calibration with surface temperature as sound velocity-induced variations cancel out (Bodholt, 2002). Since 
our study is focused on comparing patterns in the distribution of Sv, any bulk echosounder performance change 
would not impair our analysis of gradients. We collected >308 hr of acoustic data across the SAZ, PFZ, and 
the eddy (Table S1 in Supporting Information S1). Day and night observations were defined by comparing the 
time-stamp associated with each ping with the sunrise and sunset computed from date, longitude, and latitude. 
Observations collected within 30 min of sunrise and sunset were excluded in the analysis and only retained to plot 
the echograms (Bianchi & Mislan, 2016).

The star-shaped sampling of the eddy and the irregular vessel speed maintained during the survey to accom-
modate CTD casts and biogeochemical sampling required a time-based acoustic analysis modified from the 
standard spatial processing of the IMOS (Integrated Marine Observing System) database which is instead opti-
mized for long straight transects (Kunnath et al., 2021). Raw data of backscattered power were processed using 
ESP3, an open-source, MATLAB-based package for visualizing and processing acoustics data (Wellington, 
New Zealand, https://sourceforge.net/projects/esp3/; Ladroit et al., 2020). We used observations of temperature 
and salinity from the CTD casts to calculate the average sound speed and absorption coefficient for the eddy 
core (c = 1,474 m/s, α = 2.99 dB km −1), the eddy periphery (c = 1,484 m/s, α = 2.78 dB km −1), the SAZ 
(c = 1,487 m/s, α = 2.71 dB km −1), and the PFZ (c = 1,472 m/s, α = 3.01 dB km −1). These coefficients were 
used to process the acoustic data collected with the echosounder. Spikes caused by bursts of noise from various 
sources were automatically detected and removed using the ESP3's spike detection algorithm tuned to remove 
every spike having prominence larger than 10 dB re 1 m −1 compared to the average profile. Noise was removed 
using the ESP3 denoise function, based on De Robertis and Higginbottom (2007), with a noise level threshold 
of −110 dB re 1 m −1, a signal-to-noise ratio of 1, and a filtering window of 20 m and 20 pings. No corrections 
were made for nonlinear power responses as outlined by De Robertis et al. (2019) as our results are treated as 
relative within depth zone indicators. Observations from depths below 1,200 m and shallower than 15 m were 
excluded from this analysis since the corresponding signal tends to be dominated by noise and backscatter inter-
ference. Nautical area scattering coefficients (NASC; m 2 nmi −2) were calculated using the equations detailed in 
MacLennan et al. (2002) integrating over intervals of 5 m and 10 pings, with no threshold on the filtered Sv values 
for integration. NASC are commonly used in fisheries acoustics to represent the linear increase of fish numbers 
(biomass) under the assumption that the observed fish has uniform size/weight and acoustic reflectivity. In this 
study, because we have no accurate information on the size and species composition of the local mesopelagic 

Figure 2. Sections of physical and biogeochemical properties of the sampled eddy. Conductivity, temperature, and depth (CTD) measurements (Figure 1a) revealed 
that the eddy core was colder (a), fresher (b), richer in nitrate (c), and more oxygenated (d) than the surrounding waters. (e) Observations of chlorophyll-a in the 
epipelagic indicate that the eddy core had lower near-surface chlorophyll-a compared to ambient waters and that it was concentrated in the top 100 m. Please note that 
the y-axis in (e) is different from the other panels. White lines indicate isopycnals.

https://sourceforge.net/projects/esp3/
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micronekton, we use NASC as a proxy of changes in the ecological characteristics of micronekton, in particular 
of the combined effect of changes in biomass, size, and community composition.

The multibeam EM12 swath mapper, which was constantly operating and synchronized, created a band of inter-
ference noise between 400 and 700 m (see e.g., in Figure 3). To test the impact of this interference band on our 
analysis, we compared NASC in the eddy, its periphery and its origin waters, when including and excluding the 
400–700-m depth signal (Figure S1 in Supporting Information S1). Based on this comparison, the inclusion of 
the interference band did not compromise our analysis, based on comparing observations collected during differ-
ent times of the same survey.

2.3. ADCP Measurements of Acoustic Backscatter

To mitigate the impact of organisms resonating at a specific frequency, we complemented our acoustic data set 
with a 75 kHz ADCP. ADCP data were collected for the entire voyage using a 75-kHz narrowband Teledyne 
RDI Ocean Surveyor. These observations provided estimates of the vertical distribution of horizontal currents 
down to 750 m that were used to identify the center, the core, and the periphery of the eddy (see Figure 11 in 
Patel et al., 2019). The ADCP also provided the amplitude of the acoustically backscattered signal from organ-
isms in the water column. While this ADCP was not calibrated to estimate biomass from the backscattering 
signal, and information about the specific settings of the instrument is not available, it is still possible to extract 
patterns of uncalibrated backscatter (Gostiaux & van Haren, 2010). We processed the data using the Common 
Oceanographic Data Access System software processing package (CODAS; Firing,  1995) and then followed 
the approach described by Picco et al. (2017) to convert the amplitude of backscatter signal into the backscatter 
coefficient Sv and then into NASC* (uncalibrated NASC) for each 16-m depth bin. We used estimates of sound 
speed and acoustic absorption for each subregion as detailed in Section 2.1 and average values for factory settings 
such as the transmit power and system noise constant (transmit power k1 = 6.1 W, system noise constant k2 = 2.2, 
frequency-dependent constant ks = 1.09 × 10 5). The absolute values of acoustic backscatter obtained with this 

Figure 3. Transition between the eddy core and eddy periphery in acoustic backscatter (a, b) and near-surface fluorescence 
(c). (a) The echogram shows the transition (white dashed line) between the eddy core and eddy periphery corresponding 
to the transect indicated in Figure 1a. Gray vertical dashed lines indicate the times of the diel vertical migration (DVM), 
toward the mesopelagic at ∼20:00 UTC/06:00 local time and up from the mesopelagic at 08:00 UTC/18:00 local time. White 
space indicates data that were not retained during quality control. Black contours represent isolumes. Differently labeled 
isolines represent the photosynthetically available radiation (PAR) at a given depth (μE m −2 s −1). (b) Average NASC for the 
observations from the daytime section of the echogram in (a) in the core (red) and at the periphery (ocher) of the eddy. Filled 
circles along the profiles indicate the position of the detected deep scattering layers (DSL) and dashed lines the corresponding 
average daytime PAR from (a). Shading indicates the 25th and 75th percentiles over the daytime observations for the time 
period in (a). As the distance from the eddy center increases (c, black line), the boundary of the eddy core is crossed around 
25 km from its center and a sharp gradient in surface fluorescence appears (red dots in c).
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method are sensitive to these values. However, our analyses looking at the patterns within a voyage are not. 
Patterns in acoustic intensity obtained from ADCP data have been successfully used to evaluate the timing and 
velocities of the DVM (Bianchi et al., 2013), validate optical proxies for vertical migration patterns (Behrenfeld 
et al., 2019), and estimate changes in the abundances of micronekton (Receveur et al., 2020).

2.4. Composites of Acoustic Backscatter Across Subregions

To compare the average distribution of acoustic backscatter in different subregions, we calculated the median 
daytime profile, 75th and 25th percentiles for each acoustic frequency and for each subregion (SAZ, PFZ, eddy 
periphery, and eddy core, Figure 1b). We focused on the daytime distribution of acoustic backscatter because 
vertically migrating organisms tend to occupy the top 200 m of the water column during the night. Therefore, 
differences in the distribution of DSL are more easily attributable to processes other than DVM during the day.

2.5. Identification of DSL

To analyze the distribution of DSL, we averaged daytime acoustic profiles over given time intervals. The profiles 
were then smoothed using a moving average with a 15 m span to then identify local maxima defined as a point 
along a profile more prominent than its two neighboring depths. Only local maxima with a magnitude exceeding 
2 m 2 nmi −2 that of the neighboring depths were retained as DSL. This threshold was determined as a compromise 
between being able to discriminate DSL which were obvious to a visual inspection and avoiding false positives 
due to the noise associated with backscatter profiles. This method is not suited for the analysis of large acoustic 
data sets, that require more flexible approaches, such as those described by Cade and Benoit-Bird (2014) and 
Proud et al. (2015). However, for this study, focused on averaged profiles and echograms referring to a few hours 
or days, this algorithm provided results that corresponded to the visual inspection of echograms.

2.6. Estimates of Underwater Light Levels and Near-Surface Fluorescence

We combined measurements of near-surface photosynthetically available radiation (PAR; μE m −2 s −1) with esti-
mates of light attenuation to assess light levels in the water column. Two PAR sensors (LI-COR LI-190 Quantum 
Sensors) continuously measured PAR from each side of the R/V Investigator. We used the average value of these 
two measurements to estimate near-surface PAR. Measurements from the starboard and port side never differed 
>25 μE m −2 s −1.

We used CTD profiles of PAR to estimate light attenuation coefficients. Daytime CTD casts with PAR meas-
urements were obtained as follows: four in the eddy core, four at the periphery, three in the SAZ, and two in the 
PFZ. Since the light levels that characterize the mesopelagic are below the detection limit of the PAR sensor (Log 
Quantum Cosine Irradiance Sensor, QCP2300, Biospherical), we estimated a representative coefficient of diffuse 
light attenuation (kd(PAR); m −1) for each CTD cast and averaged for each subregion. Daytime observations of 
PAR between 50 and 150 m were used to fit a linear relationship between log(PAR) and depth, and averaged 
(Figure S2 in Supporting Information S1). The choice of the depth interval 50–150 m was guided by the need to 
mitigate the impact of varying near-surface plankton (Figure 2e) and the depths where PAR is above the instru-
ment's detection limit (∼200 m). We conducted a sensitivity test to evaluate how the choice of the depth interval 
impacted the region-averaged kd(PAR) estimates. The test showed that, while the values of the attenuation coef-
ficients obtained using different reference depth ranges changed, the relative change between region-averaged 
kd(PAR) was robust (Figure S3 in Supporting Information S1) The region-averaged kd(PAR) data were used to 
estimate the average profiles of irradiance for each subregion and compared with a Student's t test.

In the transition between subregions, we used uncalibrated measurements of fluorescence of near-surface water to 
assess surface biological gradients and their impact on light penetration. Near-surface water was sampled through 
the shipboard flow-through system using a WETStar fluorometer (WS3S-443P, Wetlabs, SeaBird Inc.). As 
detailed in Moreau et al. (2017), these fluorescence measurements included daily variability caused by nonpho-
tochemical quenching. However, the variability caused by NPQ on shorter time scales, such as those discussed in 
this study, is an order of magnitude smaller than the gradients we analyzed.
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2.7. Historical Acoustics Observations of the Southern Ocean

To provide context for our acoustic observations, we integrated into our study a collection of IMOS acoustic 
observations collected by research vessels and ships of opportunity (https://portal.aodn.org.au/). This data set 
contains processed acoustic backscatter (Sv) that has been filtered for different types of noise following the guide-
lines described in Kunnath et al. (2021). From this relatively large data set, we selected only the observations 
collected at 18, 38, and 70 kHz during the summer-fall months (January-May). We then separated the observa-
tions obtained in the SAZ from those collected south of the SAF, in the PFZ. The SAF was defined using the 
0.2 m ADT isoline following Sokolov and Rintoul (2009).

3. Results
The vertical distribution of acoustic backscatter was different between the eddy core and the surrounding SAZ 
waters (Figure 3 and Figure S5 in Supporting Information S1). The example in Figure 3 shows observations 
of acoustic backscatter sampled from the eddy core to its periphery, and toward ambient SAZ waters. When 
the vessel moved from the eddy core into the periphery, at about 25 km from the eddy's center (black line in 
Figure  3c), the distribution of acoustic backscatter changed dramatically (∼3:00 a.m. UTC/13:00 local time, 
white dashed line in Figure 3a and black dashed line in Figure 3c). The depths of several DSL present both inside 
the eddy core and at the periphery were different in these two subregions (Figures 3a and 3b). The deepest scatter-
ing layer in the core shoaled from ∼1,000 m to 900 m as the vessel left the eddy core, while the lower limit of  the 
nonmigrating DSL shoaled from ∼500 to ∼420 m and from ∼620 m to <550 m. Furthermore, some scattering 
layers, such as those at 200–300 m, were observed immediately outside of the eddy core, but not inside.

The general shift of most DSL toward shallower depths matched the uplift of isolumes (black contours in Figure 3a 
and dashed lines in Figure 3b). This shift cannot be attributed to the DVM of acoustic targets as it occurred in the 
middle of the day, >3 hr after and prior to sunrise and sunset, respectively. Changes in light levels were affected 
by minor changes in surface PAR and changes in light attenuation coefficients which in turn were colocated with 
changes in near-surface fluorescence (higher outside the eddy, Figure 3c). The clearest waters were in the eddy 
core and the PFZ. The highest attenuation coefficients were in the SAZ. Average light attenuation coefficients 
in the eddy core were significantly lower than those from surrounding SAZ waters (0.0402 versus 0.0513 m −1; 
p < 0.05), yet not significantly different from the origin PFZ waters (0.0333 m −1; p-value = 0.27) and the eddy 
periphery (0.0446 m −1; p-value = 0.07; Figure S4 in Supporting Information S1).

On average, DSL in the eddy core were less reflective compared to the SAZ (Figure 4a, Figure S5 in Supporting 
Information S1). The median integrated daytime NASC at 18 kHz inside the core of the eddy was ∼50% of the 
NASC in the surrounding waters of the SAZ (847 m 2 nmi −2 versus 1875 m 2 nmi −2; Figure 4c and Figure S1 in 
Supporting Information S1). Daytime integrated values of NASC in the PFZ (757 m 2 nmi −2) were also as low 
as inside the eddy core and noticeably smaller than the SAZ (Figure 4c). This coherence between the eddy core 
and the PFZ where it formed was most evident in the upper mesopelagic where the average integrated NASC 
was 122 m 2 nmi −2 in the eddy core, 204 m 2 nmi −2 in the PFZ, and 817 m 2 nmi −2 in the SAZ (Figure S1 and 
Table S2 in Supporting Information S1). By contrast in the epipelagic and lower mesopelagic (600–1,200 m), 
eddy core average integrated NASC was closer to the average values measured in the SAZ (Figure S1 and Table 
S2 in Supporting Information S1). Differences between integrated NASC values between the eddy core and the 
SAZ and the eddy core and the PFZ were statistically significant with p-values <10 −10 and p = 0.03, respectively. 
Acoustic backscatter at 75 kHz from the uncalibrated ADCP (NASC*) revealed a similar pattern, with stronger 
acoustic backscatter in the SAZ compared to the eddy core and the PFZ (Figures 4b and 4d) although displaying 
different peaks.

Historical 18, 38, and 70 kHz data of acoustic backscatter from the SAZ and PFZ showed similar relative differ-
ences to those observed during our sampling. Integrated NASC values in the SAZ were more than three times 
higher than in the PFZ (Figure 5). Median profiles of NASC calculated for these three frequencies showed that, 
for all frequencies, backscattering in the SAZ was more intense compared to the PFZ across all depths (Figure S6 
in Supporting Information S1).

NASC differences in the mesopelagic between the eddy core and those in the PFZ were less than half of the 
differences between the eddy core and the SAZ (Figure 6). For example, at 400 m, the difference between the 
eddy core and the SAZ was −10  m 2  nmi −2 whereas the difference between the eddy core and the PFZ was 

https://portal.aodn.org.au/
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−2 m 2 nmi −2. NASC from the eddy periphery was, on average, intermediate between the SAZ and the eddy core
(Figure 6a). Conversely, NASC values measured at the eddy periphery were on average of larger magnitude than
the PFZ (positive anomalies in Figure 6b) at all depths below 100 m and above 650 m. These patterns were most
evident in the upper mesopelagic. In the epipelagic high values of average daytime NASC detected in the PFZ,
constrained in the top 100 m (Figure 6; Table S2 in Supporting Information S1), created the strongest anomalies
for both the eddy core and the eddy periphery (ΔNASC ∼ −15 m 2 nmi −2). Below 650 m anomalies for both
the average eddy core and periphery observations were of small magnitude compared to those measured in the
upper mesopelagic, yet they showed generally larger differences between the eddy core/periphery and the PFZ
compared to the SAZ.

Figure 4. Vertical distribution of median daytime acoustic backscatter (a, b) and integrated daytime NASC/NASC* (c, d) at 
18 kHz (a, c) and 75 kHz (b, d). Solid lines in (a) and (b) indicate the median daytime NASC/NASC* of all measurements 
collected in the Sub-Antarctic Zone (SAZ; blue), the eddy core (red), and the Polar Frontal Zone (PFZ; black). Shading 
indicates the 25th and 75th percentiles divided by the square root of the number of daytime profiles available (see Table S1 in 
Supporting Information S1). Values in (c) and (d) were integrated over the top 1,200 m (c) and 600 m (d). Note that the y-axis 
in (a) and (b) are different because of the different attenuation of sound at 18 and 75 kHz. The black box in (a) indicates the 
y-axis in (b).
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4. Discussion and Conclusions
We examined the daytime distribution of acoustic backscatter inside a Southern Ocean cyclonic eddy and 
compared it against ambient (SAZ) and origin (PFZ) waters. Our major findings were as follows:

1.  The vertical distribution of acoustic backscatter at 18 and 75 kHz inside the eddy core was different from the
ambient waters of the SAZ, even a month after eddy formation (Figures 3 and 4). Because we have focused on 
daytime measurements, none of these patterns can be attributed to the DVM of acoustic targets.

2.  Sharp changes in acoustic backscatter co-occurred with changes in light levels and light penetration, which in
turn matched near-surface fluorescence variability (Figure 3).

3.  The average water-column integrated NASC at 18 kHz inside the eddy core (847 m 2 nmi −2) was similar to that 
of the PFZ (757 m 2 nmi −2) but 50% lower than the average NASC in the SAZ (∼2,000 m 2 nmi −2, Figure 4c;
Table S2 in Supporting Information S1).

4.  Records of acoustic backscatter at 18, 38, and 70 kHz from the IMOS historical data set indicate that the
PFZ-SAZ differences observed during our cruise are a consistent pattern in this sector of the Southern Ocean
(Figure 5).

Inside the eddy, light penetrated deeper into the water column because of low 
chlorophyll-a in the upper 100 m and optically clearer waters (Figure 3c). 
We estimated very low light attenuation coefficients typical of the Southern 
Ocean during fall and winter (Nelson & Smith, 1991; Son & Wang, 2015). 
Although we only had two CTD casts in the PFZ, light attenuation coeffi-
cients there were not statistically different (p-value = 0.27) from the eddy 
core, suggesting that the eddy maintained the optical properties of its origin. 
On the other hand, light attenuation coefficients in the eddy core were 
significantly lower than in the SAZ (p-value <0.05). As observed in other 
basins (Della Penna & Gaube, 2020), the horizontal gradients in the verti-
cal distribution of acoustic backscatter were sharp and matched the gradi-
ents in near-surface fluorescence at the transition between the core and the 
periphery. As suggested in previous studies (Aksnes et  al.,  2017; Røstad 
et al., 2016), light was a key driver of the variability in the acoustic backscat-
ter vertical distribution.

Light penetration depends not only on attenuation by water, chlorophyll, and 
particles, but also on surface irradiance. We collected acoustic observations 
over 10 days, during which the atmospheric conditions were not constant. 
Omand et  al. (2021) discovered that, even in relatively constant cloudy 
conditions, the DSL depth can oscillate by up to 60 m due to high frequency 
(<1 hr) changes in the distribution of isolumes caused by relatively small 

Figure 5. Patterns of integrated acoustic backscatter over the upper 600 m at 18 kHz (a), 38 kHz (b), and 70 kHz (c) measured between January and May in the 
Sub-Antarctic Zone (SAZ) and Polar Frontal Zone (PFZ). The black solid line indicates the average locations of the Sub-Antarctic Front (SAF), separating the SAZ 
(north) and the PFZ (south), at the times of the observations. Dashed lines indicate the position of the front ±one standard deviation.

Figure 6. Differences between the median (calculated over all the daytime 
observations) 18 kHz acoustic backscatter in selected areas of the eddy (core 
in the red line, periphery in ocher), the Sub-Antarctic Zone (SAZ, a), and the 
Polar Frontal Zone (PFZ, b) as a function of depth.
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differences in cloud cover. This trend is also evident in our results where the isolumes oscillated during the day 
in response to changes in cloud cover and solar angle (Figure 3 and Figure S7 in Supporting Information S1). 
Southern Ocean cyclones, on average, cause a decline in overlying cloud fraction and atmospheric water content, 
which we expect would be reflected in increased ocean surface PAR (Frenger et al., 2013). This could explain 
the deeper DSL in the eddy, but surface PAR in this eddy core was lower compared to surrounding SAZ waters 
(Figure S8 in Supporting Information S1). Therefore, changes in depth of the DSL were not linked to changes in 
cloud cover and surface irradiance caused by the presence of the eddy.

The eddy core retained the vertical distribution of acoustic properties from its origin waters and also the signa-
ture of integrated backscatter in the mesopelagic. This suggests that micronekton were transported from the PFZ 
>200 km north in the SAZ, likely resulting from eddy trapping (Early et al., 2011). The eddy in this study was
rotating on average at ∼40 km/day and moved laterally between 1.5 and 6.6 km/day (1.7 km/day at the time of
sampling, and maxima of 6.6 km/day when detaching from the meander; Patel et al., 2019). The resulting speed
ratio of rotation to translation (>1 indicates nonlinearity; Chelton et al., 2011) was >5 for the entire lifetime of
the eddy, suggesting that this eddy was highly nonlinear and likely contained a core of trapped water. This parcel
of water, trapped in the eddy, was observed to extend beyond 1,300 m (Figure S9 in Supporting Information S1).
This suggests that vertically migrating layers spent their time in the eddy and did not leave during the day. Our
results, however, suggest that differences in mesopelagic NASC between the eddy core and the PFZ were smaller
compared to those between core and SAZ down to ∼650–700 m. This suggests that the eddy trapped mesopelagic 
communities only at depths with a strong nonlinearity.

Eddy trapping has significant consequences for the transport of salt and heat across the Antarctic Circumpo-
lar Current (Patel et  al.,  2019), impacts the distribution of primary producers (Dawson et  al.,  2018; Frenger 
et al., 2018) and weather (Frenger et al., 2013), and regulates the exchanges of carbon crucial for climate (Dufour 
et al., 2015; Moreau et al., 2017). Our results show that eddy trapping also impacts mesopelagic micronekton. It 
is difficult to evaluate whether micronekton themselves were trapped and transported or if it was their zooplank-
tonic prey that was transported and the micronekton responded to a change in prey. What is clear is that the eddy 
presented a unique environment compared to the SAZ waters, similar to what past studies have found in other 
regions (Boyd et al., 1986; Craddock et al., 1992). Yet, without complementary observations of zooplankton and 
micronekton community composition in the epipelagic and mesopelagic, it is not possible to provide a definitive 
answer to whether the fish were transported or not. However, to initiate movement and, e.g., leave the eddy core, 
it is likely that micronekton would be responding to a stimulus, such as a gradient in temperature, pressure, or 
light (Franks, 1992). From the inner core of a mesoscale eddy, the closest horizontal gradients in such properties 
are tens of kilometers away requiring a mesopelagic fish to be able to perceive a gradient on scales that are 4 
orders of magnitudes larger than their body size (i.e., few centimeters). In addition to this, horizontal gradients 
associated to mesoscale features are generally orders of magnitude weaker than the vertical ones that vertically 
migrating mesopelagic fish interact with during the DVM. Furthermore, studies focused on trawl and predator 
avoidance suggest that most mesopelagic micronekton are generally lethargic when not vertically migrating or 
actively escaping from a threat (Barham, 1966; Craddock et al., 1992; Kaartvedt et al., 2009, 2012). These lines 
of evidence suggest that micronekton could have been trapped within the eddy core with their prey.

Our results also indicate that, while the eddy core preserved many of the acoustic properties of the PFZ, the 
eddy periphery was more similar to the SAZ (Figure 6). We can interpret this pattern as an indicator of lateral 
exchanges and mixing of water parcels, and the organisms they contained, between the SAZ and the periphery of 
the eddy as suggested also in previous studies in the North Atlantic (Boyd et al., 1986). This result is supported by 
the analysis of water mass properties based on CTD data collected during the same voyage (Moreau et al., 2017) 
and by the overall distribution of biogeochemical tracers (Patel et al., 2020) including oxygen (Figure S10 in 
Supporting Information S1). These findings are consistent with the theoretical results about eddy trapping by 
Early et al. (2011), who highlighted that while eddy core waters can be isolated for a significant part of an eddy 
lifetime, the peripheries of eddies regularly exchange water masses with the surroundings.

Attribution of species and biomass to the mesopelagic acoustic data is normally done with a combination of 
sampling devices including nets, and optical and acoustic probes (Davison et al., 2015; Fernandes et al., 2002; 
Kloser et al., 2016). This research would have been significantly enhanced with a direct sampling of the scattering 
layers and is part of ongoing infrastructure and research efforts. Inferring acoustic community composition in the 
mesopelagic zone improves also when extra frequencies are used (Béhagle et al., 2017; Trenkel & Berger, 2013). 
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The strong difference between the SAZ and PFZ observed during this study, both in terms of integrated NASC, 
and vertical distribution of backscattering at two frequencies, was corroborated by the historical data from the 
IMOS database at three frequencies, that consistently showed less acoustic backscatter in the PFZ compared to the 
SAZ (Figure 5). This was also demonstrated in other studies that reported a general decrease in acoustic backscat-
ter with increased latitude (Chawarski et al., 2022; Dornan et al., 2019; Escobar-Flores et al., 2018, 2020). These 
changes in acoustic backscatter were not always correlated to changes in fish biomass. Dornan et  al.  (2019), 
who analyzed changes in acoustic backscatter between 52°S and 60°S, showed that changes in animal size and 
community composition were responsible for the poleward decrease in backscatter. During IN2016_V02, we did 
not carry out any midwater trawling, and, therefore, we cannot discriminate whether the patterns we identified 
in backscatter are a result of changes in fish abundance, size, or community composition. What is clear is that 
the cyclonic eddy trapped, preserved, and transported organisms having acoustic properties of PFZ waters across 
warmer, more productive SAZ waters for weeks.

Differences in the horizontal and vertical distribution of mesopelagic micronekton can have important conse-
quences for upper trophic levels. The organisms inhabiting the DSL we detected typically include myctophids, 
squids, and swarming euphausiids (Escobar-Flores et  al.,  2020). These animals constitute the prey of a vari-
ety of marine megafauna, including seabirds, penguins, and marine mammals (Cherel et al., 2010; McMahon 
et al., 2019; Watanuki & Thiebot, 2018). For these diving predators, the horizontal patchiness of their prey field is 
an important driver of their foraging strategies. Differences in micronekton composition or abundance can under-
pin their interactions with the prey fields which are in turn set by the dynamics associated with mesoscale eddies. 
Furthermore, the differences in the vertical distribution of DSL are likely to have an impact on the accessibility 
of the prey to diving predators. This difference might be particularly dramatic for air-breathing animals such as 
seabirds and marine mammals whose foraging time underwater is limited by the need to breathe at the surface 
(Guinet et al., 2014; Jaud et al., 2012; O’Toole et al., 2017), but also to fish whose thermal niche can limit the 
vertical extent of their diving behavior (Arostegui et al., 2022; Braun et al., 2019; Gaube et al., 2018). In general, 
for air-breathing predators or fish whose thermal niche is constrained, the metabolic cost associated with getting 
the same amount of energy if the prey is located deeper in the water column (and therefore potentially in colder 
water) will be higher. These costs have the potential to result in cyclonic eddies, like the one we sampled, being 
a less profitable region for foraging.

Eddy prevalence, as quantified by eddy kinetic energy, is increasing in the Southern Ocean (Martínez-Moreno 
et al., 2021). This has potentially strong implications for the meridional fluxes of heat, salt, carbon, and nutrients 
(Moreau et al., 2017; Patel et al., 2019, 2020), especially for eddy hot-spots in the Southern Ocean which pref-
erentially generate either cyclones (as our study area) or anticyclones (Frenger et al., 2015). This work extends 
these previous findings suggesting a potential impact on micronekton and the Southern Ocean predators that rely 
on them.

Data Availability Statement
All data from the underway system, the CTD, and the echosounder from the IN2016_V02 voyage are avail-
able at https://www.marine.csiro.au/data/trawler/survey_details.cfm?survey=IN2016_V02. These data sets are 
made available under a Creative Commons Attribution 4.0 International Licence. We acknowledge the use of the 
CSIRO Marine National Facility, https://ror.org/01mae9353 in undertaking this research. The historical IMOS 
observations can be extracted from the webportal: https://portal.aodn.org.au/search. A complete lists of the URLs 
for all the IMOS data used in this study can be found in the Supporting Information (ST3, ST4, ST5). Data 
were sourced from Australia's Integrated Marine Observing System (IMOS)—IMOS is enabled by the National 
Collaborative Research Infrastructure Strategy (NCRIS). We would like to thank four anonymous reviewers for 
their constructive comments.
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