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Abstract
Nature-based coastal protection is increasingly recognised as a potentially sustainable and cost-effective solution to reduce coastal flood risk.
It uses coastal ecosystems such as mangrove forests to create resilient designs for coastal flood protection. However, to use mangroves effectively
as a nature-based measure for flood risk reduction, we must understand the biophysical processes that govern risk reduction capacity through
mangrove ecosystem size and structure. In this perspective, we evaluate the current state of knowledge on local physical drivers and ecological
processes that determine mangrove functioning as part of a nature-based flood defence. We show that the forest properties that comprise coastal
flood protection are well-known, but models cannot yet pinpoint how spatial heterogeneity of the forest structure affects the capacity for wave or
surge attenuation. Overall, there is relatively good understanding of the ecological processes that drive forest structure and size, but there is a
lack of knowledge on how daily bed-level dynamics link to long-term biogeomorphic forest dynamics, and on the role of combined stressors
influencing forest retreat. Integrating simulation models of forest structure under changing physical (e.g. due to sea-level change) and ecological
drivers with hydrodynamic attenuation models will allow for better projections of long-term natural coastal protection.
© 2022 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Coastal flood risk is increasing globally, as sea-level rise is
further accelerating, and coastal storms are predicted to in-
crease in both frequency and intensity in this century (IPCC,
2022). Growing populations and increasing urban develop-
ment along the coast raise the demand for flood protection
measures (Kulp and Strauss, 2019). Coastal areas are generally
protected by traditional structures such as breakwaters, levees,
and seawalls, but increasing flood risk poses unprecedented
challenges. Accelerating sea-level rise requires expensive
strengthening and heightening of these structures (Hinkel
et al., 2014), while unlikely but potential structural failure
may have devastating consequences (Zhu et al., 2020). Nature-
based coastal protections e where coastal ecosystems such as
mangroves are used to create more resilient flood defence
designs e are increasingly recognised as a solution to reducing
these challenges (Borsje et al., 2011; Temmerman et al.,
2013). Mangroves can attenuate waves, which can reduce
the risk of overtopping and direct wave impact on levees and
seawalls, allowing for lower structures and consequently lower
construction costs (van Zelst et al., 2021). However, imple-
menting nature-based coastal protections remains complex
(Bouma et al., 2014). Globally, mangroves have prevailed over
millions of years and numerous catastrophic climate events
(Alongi, 2015). However, nature-based flood defence requires
that mangrove presence is known not at global but at local
scale. Coastal protection structures are typically designed with
a lifespan of 50e100 years, requiring in-depth knowledge of
long-term functioning (CIRIA et al., 2013). Estimating this for
coastal mangrove ecosystems is currently challenging as they
are not uniform but fluctuate in space (e.g. species distribu-
tions within the forest and presence of creeks) and time (e.g.
forest expansion and retreat; Koch et al., 2009) across various
timescales (e.g. daily bed-level dynamics versus long-term
changes in elevation). These spatiotemporal fluctuations in
forest structure and size are caused by natural and anthropo-
genic drivers (e.g. Alongi, 2008; Sherman et al., 2000), and
recent work has highlighted the importance of untangling the
physical drivers and ecological processes that affect mangrove
resilience and structure (Gijsman et al., 2021).

In this perspective, we evaluate the current state of knowledge
on the processes that determine the long-term resilience and
functioning ofmangroves as part of a nature-based flood defence.
Wewrite the perspective from an eco-engineering design point of
view and use knowledge from relevant domains (Fig. 1). Hence,
we assume that there are local socio-political motivation and
means to implement a nature-based flood defence. We first
identify which aspects of mangrove forest structure are most
important for a nature-based flood defence, and at what spatial
scale. Then, we evaluate how local physical drivers affect these
aspects of forest structure. We examine the physical drivers that
govern forest expansion through seedling establishment. Next,
we assess how physical drivers, which are affected by global
change, govern forest retreat. Finally, we look at how establish-
ment, growth, and mortality of trees lead to changes in forest
vegetation density and height.
2. Forest properties for optimal coastal protection
capacity

Mangrove forests can reduce energy of wind and swell
waves (McIvor et al., 2015; S�anchez-Nú~nez et al., 2019) and
attenuate storm surges (McIvor et al., 2012; Men�endez et al.,
2020; Fig. 2). Although mangroves do not block water, they
may reduce the extent of flooding in the absence of levees or
seawalls by reducing the direct wave impact and surge water
levels (Horstman et al., 2014; Maza et al., 2021; Van
Coppenolle et al., 2018). Furthermore, mangroves can stabi-
lise shorelines and enhance sediment deposition (for details,
see Section 1 of Appendix A). In this section, we mainly focus
on wave and surge attenuation.
2.1. Forest width, density, and height are important for
wave attenuation
The mangrove forest properties that are relevant for wave
attenuation are relatively well understood and include forest
width, vegetation density, and vegetation height (Fig. 3).
Together with the incoming hydraulic conditions (such as wave
height, wave period, and combined current-wave flow), these
properties determine the effectiveness of wave attenuation
(Horstman et al., 2018; Hu et al., 2014; Maza et al., 2019; Paul
et al., 2012). A wider (cross-shore) forest provides more wave
attenuation, where the greatest rate of wave height attenuation
is found in the first few metres of the forest and decreases along
the forest (Dalrymple et al., 1984; Lee et al., 2021; Quang Bao,
2011). A denser and taller forest also provides more wave
attenuation. Specifically, the vegetation density and height
together make up the frontal surface area of ‘structures’ that are
met by waves, which determine the amount of energy trans-
ferred from waves to trees (Fig. 3; Horstman et al., 2014;
Mazda et al., 1997, 2006). Here, we define density as the entire
vegetation density made up by tree structures (i.e. branches,
trunks, and aboveground roots), which increases as trees
mature, stem diameters thicken, and trees grow taller and
develop more side branches and leaves (as opposed to stem
density, which decreases as the forest matures and self-thinning
takes place; Azman et al., 2021; Jimenez et al., 1985). More-
over, vegetation height should be considered relative to the
water level. In any coastal ecosystems, emerged canopies that
match or exceed the water level dissipate more wave energy
than submerged short canopies (Maza et al., 2015; Ysebaert
et al., 2011). Additionally, root layers, trunk layers, and can-
opies differ in geometry, resulting in different wave energy
attenuation rates depending on the water level (Horstman et al.,
2014; Maza et al., 2021; Mazda et al., 1997).
2.2. Modelling wave attenuation
Over the decades, numerical models have improved to
capture the interaction between vegetation and flow to predict
wave attenuation. The first analytical model expressed the
vegetation-induced drag force using the Morison equation
(Morison et al., 1950) and represented forests as arrays of



Fig. 1. Processes (boxes) and interactions (arrows) discussed in this perspective for assessing the coastal protection capacity of coastal man-
groves, showing the relevant knowledge domain (box colour) and the section in which each arrow is discussed. Other ecosystem services are
grey as they are mentioned but not explicitly discussed in this perspective (see Appendix A).
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vertical cylinders (Dalrymple et al., 1984). It has paved the
way for modelling advanced physics, such as wave breaking,
wave randomness, and waveecurrent interaction (Hu et al.,
2014, 2022; Losada et al., 2016). Further advancements have
obtained generic drag coefficient equations for various flow
and wave conditions and different vegetation types, without



Fig. 2. Simplified overview of coastal protection functions by mangroves and engineering structures and potential consequences of sea-level rise
(SLR) (not to scale): (a) mangrove forest and dike, (b) traditional engineering structure, and (c) only mangrove forest. In case of sea-level rise
(lightest blue), mangroves may require space for landward migration (transparent forest), and engineering structures may need to be heightened
(light grey).
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requiring experimental or field data to correctly estimate drag
coefficients (Chen et al., 2018; Hu et al., 2021b; Liu et al.,
2015; van Veelen et al., 2021; Yao et al., 2018). Addition-
ally, experimental studies have accounted for the complex
structure of mangrove forests by considering more complex
forest configurations with horizontal roots or extremely dense
vegetation, and even scaled mangrove mimics (e.g. Maza
et al., 2017). This has led to the development of a predictive
approach using empirical relations between wave height
attenuation and forest submerged solid volume fraction (Maza
et al., 2019). As the tree architecture of most mangrove species
is known (Tomlinson, 2016), this approach can reliably ac-
count for the complex structure of mangrove forests e given
that field validation is possible. However, there is still high
uncertainty in the effect of flexible vegetation on wave
attenuation. Currently, model approaches assume that vege-
tation is rigid under flow action (e.g. Maza et al., 2021), but at
high velocities, stems, branches, and leaves can break or bend
to realign in the water stream (van Wesenbeeck et al., 2022;
Vollsinger et al., 2005). Realignment leads to reduction of
frontal surface area, which differs between mangrove species
that vary in flexibility and strength of branches and leaves (van



Fig. 3. Simplified overview of relevant mangrove properties for wave attenuation with top-down view (a), three-dimensional (3D)-frontal view
(b), and cross-shore side view (c).
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Hespen et al., 2021). Despite this, realigned vegetation still
contributes to wave attenuation, yet to what extent is complex
to quantify (Kalloe et al., 2022).
2.3. Estimating mangrove surge attenuation requires
capturing surrounding landscape
Mangrove forests can reduce surge water levels during
tropical storms. This ability depends on the forest structure,
storm properties (intensity, duration, forward speed, and
track), and the surrounding landscape (McIvor et al., 2012).
The relevant forest properties are similar to those for wave
attenuation, and wider, denser, and taller forests are more
effective (Montgomery et al., 2018; Sheng et al., 2012; Zhang
et al., 2012). However, resolving the contribution of man-
groves to surge attenuation is complicated and requires
detailed spatially explicit modelling, as surge effects are
strongly dependent on the interaction with the surrounding
topography, landscape, and storm properties (Liu et al., 2013,
2015). For example, creeks inside the forest may actually work
as a conveyer and increase storm surges (reviewed in McIvor
et al., 2015). In the past decade, surge attenuation modelling
with mangroves has started to emerge, with models that
include the effect of vegetation by an enhanced bottom friction
(Dasgupta et al., 2019; Liu et al., 2013; Xu et al., 2010).
Further model developments, together with a collection of
observations of surge attenuation during extreme events, could
help to resolve the current uncertainty around the role of
mangrove forest properties in surge attenuation.

3. Forest expansion requires space and successful seedling
establishment
3.1. Propagule availability and seedling establishment
Forest expansion of cross-shore width is driven by suc-
cessful seedling establishment (Fig. 4). Maximum cross-
shore width is limited. At the landward side, factors such
as presence of dikes or alternative land use can be limiting
(van Bijsterveldt et al., 2022; Section 2 of Appendix A). At
the seaward side, space is mainly limited by physical drivers
that control seedling establishment. Here, the area must be
reached by propagules that disperse from existing mangrove
stands. Propagule availability depends on (1) the number of



Fig. 4. Simplified overview of seaward forest expansion and retreat (cross-shore width) as a function of tree development (life stage). Estab-
lishment does not affect the effective forest width, as seedlings cannot yet provide coastal protection but are the essential basis for forest expansion
(Section 3). Forest retreat takes place when trees at the forest edge die (Section 4). Life stage progression (establishment, growth, and mortality) is
species-specific and depends on environmental and physical drivers. Arrows suggest possible directions in which forest changes can take place.
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reproducing trees in a forest and (2) tree fecundity (i.e. the
number of propagules produced per tree; Clarke, 1995).
Fecundity increases with tree age, temperature, and species
that produce smaller propagules, and varies greatly among
individual trees (Alleman and Hester, 2011; Clarke, 1992;
Duke, 1990). Fecundity also tends to be higher in years after
tropical storms, unless there was large canopy damage
(Alleman and Hester, 2011; Proffitt et al., 2006). While
reproductive trees ensure propagule production, propagules
need to disperse beyond the forest edge to expand forest size.
Mangrove propagules disperse via water, a process mediated
by propagule traits, tidal currents, wind, and waves (see Van
der Stocken et al., 2019 for a review). Landscape features
such as vegetation may impact dispersal through the effects
of vegetation-induced drag force on hydrodynamics (Maza
et al., 2017) or by interacting with the propagules directly.
For example, saltmarsh vegetation can enable stranding and
facilitate mangrove recruitment beyond the established tree
line, particularly during spring or storm tides (Peterson and
Bell, 2015). When a propagule has reached the seaward
forest fringe, successful establishment will require a ‘window
of opportunity’, where disturbance from hydrodynamic
forces is absent (Balke et al., 2011). During this window of
opportunity, a seedling can grow roots to anchor and over-
come buoyancy during high tide, and avoid dislodgement
from wave drag and sediment erosion. Seedlings must also
grow long enough shoots to avoid suffocation from sediment
burial (Balke et al., 2013). The ability to grow roots and
shoots fast enough varies across species and environmental
settings, as germination and growth rates depend on species-
specific tolerances to environmental drivers, such as salinity,
temperature, waterlogging, sediment type, and light avail-
ability (Krauss et al., 2008; Sloey et al., 2022; van Hespen
et al., 2022).
3.2. Modelling forest expansion
Mechanistic models can use the window of opportunity
framework to predict seedling establishment and estimate
seaward forest expansion. Such a model has been developed
for mangroves (Balke et al., 2015), and compares tidal data
and sediment erosion depth to seedling root length to predict
population survival rates of establishing mangrove seedlings.
This approach has been further developed for saltmarshes,
allowing for spatial and temporal variability (Hu et al., 2015)
and different intertidal environments (Hu et al., 2021a).
Further developing these saltmarsh models for mangroves
requires experimental data on (1) mangrove species and
environment-specific seedling root growth rates and uprooting
tolerance and (2) daily bed-level dynamics. The former can be
obtained from studies on establishment under sediment dy-
namics (Balke et al., 2011, 2013; van Hespen et al., 2022) and
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other seedling establishment studies (reviewed in Krauss et al.,
2008). Up until recently, daily bed-level data have been more
challenging to obtain due to the labour-intensiveness of
measuring at daily temporal resolutions. However, new tools
are emerging. Surface elevation dynamic (SED) sensors pro-
vide a cheap and reliable way to collect long-term measure-
ments of daily bed-level dynamics at many locations
simultaneously (Hu et al., 2020; Willemsen et al., 2018). This
makes it possible to gain understanding of the role of daily
bed-level dynamics in long-term mangrove development and
seedling establishment at the forest fringe.

4. Forest retreat under global change

Mangrove forest retreat at the seaward fringe takes place
when local physical drivers hamper seedling establishment
and cause tree mortality (Fig. 4), leading to loss of effective
biomass for coastal flood protection (Fig. A.1). If too many
trees are lost during forest retreat, forest width can even reach
beyond a point of no return (tipping point; Scheffer et al.,
2001). In the coming century, massive mangrove tree mor-
tality events are expected to be exacerbated by global change,
where general shifts in mean temperature or rainfall patterns
may even affect the survival of mangroves at the geographic
edge of their tolerances (Ward et al., 2016). Overall, extreme
weather events such as storms, heatwaves, droughts, and
oscillating sea levels are expected to lead to massive mortality
(Sippo et al., 2018), with sea-level rise expected to have the
biggest impact globally (Friess et al., 2022).
4.1. Keeping up with relative sea-level rise
The mechanisms that drive forest retreat under relative
sea-level rise are quite well understood. Relative sea-level
rise is the outcome of large-scale sea-level changes and
vertical land movement, such as regional land subsidence
from geological movements and anthropogenic activities like
groundwater extraction (Woodroffe et al., 2016). Relative
sea-level rise can result in an altered tidal regime, which can
lead to stress and drowning of mangrove trees and impede
seedling establishment if inundation becomes too frequent or
too long (He et al., 2007; Sippo et al., 2018). Moreover, the
risk of drowning is higher for mangroves in microtidal set-
tings, where any relative sea-level rise represents a much
bigger proportion of the tidal range than in a macrotidal
setting (Lovelock et al., 2015).

As mangrove vegetation can promote sediment accretion
(Section 1 of Appendix A), minerogenic mangroves can keep
pace with (relative) sea-level rise if the forest surface elevation
is able to rise faster than the sea level (Schuerch et al., 2018;
Woodroffe et al., 2016). The ability of mangrove forests to
keep pace may vary with factors such as tidal range and
vegetation density. For example, mangrove forests with a small
tidal range may accrete less sediment, as sediment deposition
remains limited in such tidal systems (Xie et al., 2022).
Furthermore, the increased water depths in front of the
mangrove forest may deepen the foreshore, and larger waves
may hamper seedling establishment (van Bijsterveldt et al.,
2020). If a mangrove forest is not able to overcome relative
sea-level rise, alternative measures are needed to maintain
enough forest biomass for nature-based flood defence, such as
restoration techniques to improve conditions for seedling
establishment at the seaward fringe or developing suitable
space at the landward forest fringe (Section 2 of Appendix A).
4.2. Extreme weather events and mangrove forest
resilience
The general mechanisms of extreme weather impact on
mangrove forests are quite well known. Extreme weather
events such as El Ni~no Southern Oscillations (ENSO) can lead
to heatwaves, drought, and temporary drops in sea level (Sippo
et al., 2018). Heatwaves may lead to desiccation as evapora-
tion increases with high temperatures, leading to water loss
(Rennenberg et al., 2006). Droughts, as a result of low rainfall
and groundwater inputs combined with high temperature, can
lead to development of hypersaline soils and cause hydraulic
failure and desiccation in mangrove trees (Ward et al., 2016).
Temporary drops in sea level may result in forest diebacks
comprising canopy loss due to desiccation and reduced
recruitment (Lovelock et al., 2017). Furthermore, coastal
storms can impose stress from reduced oxygen supply to roots,
caused by prolonged flooding or burial of roots by large
volumes of sediment (Jimenez et al., 1985). They can also
generate strong wind gusts, high waves, and enhanced tidal
currents that lead to mechanical damage (Fig. A.1; Krauss and
Osland, 2020; Tanaka, 2008).

Although there is relatively good understanding of the
mechanisms that drive forest mortality, there are few tools to
estimate the long-term resilience of a specific forest under
repeated or combined extreme weather events (but see
Asbridge et al., 2015). However, such tools are necessary, as
tree mortality and hence forest retreat can vary widely,
depending on environmental settings (e.g. Krauss and Osland,
2020). Previous storm history or pre-existing conditions such
as long-term shoreline erosion trends can affect the impact of
future storms (Bhargava and Friess, 2022; Taillie et al., 2020),
while combined stressors can lead to widespread mangrove
dieback, and subsequent storms can limit the re-establishment
of mangrove seedlings (Asbridge et al., 2019; Duke et al.,
2020). Furthermore, the risk of mechanical damage and
mortality will vary across species, depending on their stress
tolerance and mechanical properties such as strength and
flexibility (Aung et al., 2013; van Hespen et al., 2021). The
direct impact of coastal storms could be estimated by using
storm damage models developed for terrestrial forests, which
predict wind damage during storms using average canopy
height, frontal surface area, and local wind speed (Gardiner
et al., 2008). Furthermore, field experiments, such as testing
the impact of storm waves with wave-generating field flumes
(de Smit et al., 2020), could be used to test mangrove resil-
ience to repeated storms, and could even be combined with
drought or heatwave experiments to test resilience of
mangrove trees to multiple stressors.
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4.3. Modelling forest retreat under global change
The risks of extreme weather events and sea-level rise will
vary regionally (Ward et al., 2016). Hence, understanding forest
retreat requires translating the consequences of global change to
local scale. This can be done by downscaling global climate
models, an application that is currently still limited but certainly
possible. Global climate models (such as the Coupled Model
Intercomparison Project Phase 6 (CMIP6); Eyring et al., 2016)
project future atmospheric and ocean conditions (e.g. wind,
temperature, salinity, and sea surface height) at large spatial
scales (25e100 km) using various emission scenarios to account
for the uncertainty in future human choices (e.g. Representative
Concentration Pathway or Shared Socioeconomic Pathways
scenarios). As they have coarse resolutions and lack representa-
tion of ocean dynamics in shallow coastal areas (Jevrejeva et al.,
2019), they are downscaled to produce regional climate pro-
jections that use global predictions as boundary conditions (e.g.
Gutowski Jr. et al., 2016). Those regional climate projections can
then force (i.e. provide boundary conditions) high-resolution
models for specific coastlines, and project, for example, how
global sea-level rise will affect local water levels (e.g. De
Dominicis et al., 2020). Such high-resolution models may then
be combined with the local forest structure and species-specific
stress tolerances to obtain predictions of forest retreat at local
Fig. 5. Simplified overview of vegetation density and height as a function o
effective vegetation density and height immediately, as seedlings cannot yet pr
density and height increase,while they can decreasewhen trees die. Life stage
depends on environmental settings such as physical drivers. Arrows suggest
scales (for example, forest-specific responses to sea-level rise or
storms; Gardiner et al., 2008; Xie et al., 2022, 2020).

5. Forest structure depends on species composition and
biophysical interactions
5.1. Effect of shifts in species composition on wave
attenuation capacity
Vegetation density and height are determined by estab-
lishment, growth, damage, and mortality of mangrove trees
(Fig. 5). Therefore, variation in density and height stems
from species-specific environmental tolerances that drive
these processes. For example, the height that a tree can reach,
and how long it takes to reach this, depend on the environ-
ment it grows in and the species it belongs to. Globally,
mangrove canopy height is related to precipitation, temper-
ature, and potentially cyclone frequency (Simard et al.,
2019). Locally, salinity, nutrients, hydrology, and light
availability can impact growth (Krauss et al., 2007; Lovelock
et al., 2006; Peters et al., 2014). Between mangrove species,
there are differences in the maximum heights that species can
reach, ranging between 3 m and 40 m (Quadros and Zimmer,
2017). In addition to tree height, tree architecture can also
vary widely between environmental settings and mangrove
species (Clough et al., 1997; Hall�e et al., 1978), such as the
f tree development (life stage). Initial establishment does not affect the
ovide coastal protection.When seedlingsmature, the effective vegetation
progression (establishment, growth, andmortality) is species-specific and
possible directions in which forest changes can take place.
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shapes of specialised aerial root systems (Tomlinson, 2016).
Architectural differences may affect not only wave and surge
attenuation but also sediment transport and resulting bed-
level dynamics, as some aerial root systems may reduce the
water flow more strongly, causing more sediment deposition
or preventing more resuspension (Xie et al., 2020).

Over time, the species composition of a forest may change,
potentially altering its capacity for coastal protection (Koch et al.,
2009). For example, wood volume increases with mangrove
species diversity (Njana, 2020). Species composition will largely
be determined by (1) which species is currently present, and (2)
which of those are able to establish and survive in the future.
Global change that imposes major shifts in physical drivers (such
as temperature or salinity) can affect local species compositions,
as some species are no longer able to survive (Ward et al., 2016).
For example, shifts in tidal inundation due to sea-level change can
cause shifts in species composition, where species with wider
tolerances are more likely to tolerate sea-level rise (Ellison et al.,
2022; Watson, 1928). Similarly, increases in soil salinity can
cause more stresses for species with lower salinity tolerance
(Rahman, 2020). Furthermore, recovery from storm damage
varies between species, possibly resulting in changes in species
composition, particularly if storms increase in frequency or in-
tensity (Krauss and Osland, 2020).
5.2. Modelling forest development with individual-based
models
Despite being important drivers of wave and surge attenu-
ation, vegetation height and density have not been studied in
much detail in the context of nature-based coastal protection.
However, there is potential to do so. There is a wealth of long-
term ecophysiological data on mangroves (e.g. Putz and Chan,
1986; Sillanp€a€a et al., 2017; Uddin et al., 2022). These data
can be combined with models that can simulate mangrove
forest dynamics to obtain increasingly realistic projections of
forest structure. These simulations models (also known as
individual-based models (IBMs)) allow for simulating tree
recruitment, establishment, growth, allometry, productivity,
and mortality, and can account for light and nutrient avail-
ability, soil pore water salinity, and competition between in-
dividuals, among others (Berger et al., 2008). Many IBMs
assume that these abiotic factors are constant in time, but a
push is expected toward models that can consider dynamic
environmental conditions (Peters et al., 2020), which will
allow for a more realistic prediction of forest structure under
changing environmental conditions.

6. Conclusions and outlook

Mangroves can effectively attenuate waves and hence
effectively contribute to nature-based flood defence (Fig. 2). In
combination with engineering structures, wave attenuation by
mangroves allows for lower structures and consequently lower
construction costs (van Zelst et al., 2021). This perspective
evaluates the current state of science on the processes that
determine long-term resilience and functioning of mangroves
as part of a nature-based flood defence (Fig. 1). We uncovered
the forest properties that are most important for coastal pro-
tection. That is, mangrove forests can effectively attenuate
(storm) waves, provided that the forest is wide and dense
enough and that the vegetation height matches the water level
(Horstman et al., 2014; Men�endez et al., 2020; Quang Bao,
2011). Furthermore, we showed how biophysical and
ecological processes alter these properties. However, it is
currently still unclear how sensitive the (modelled) wave
attenuation capacity is to changes in forest structure. The ca-
pacity of mangroves to contribute to surge attenuation is still
poorly understood and requires better understanding of the
role of morphology and vegetation patterns inside estuaries or
deltas, combined with field observations of storm surges
across a variety of forest structures.

The mechanisms that drive forest expansion are increasingly
well understood, with a wide knowledge base on the tolerance
of mangrove seedlings in a range of environmental settings.
However, further mechanistic model development specifically
for mangroves is needed to predict forest expansion in
increasingly detailed environmental scenarios, such as changing
tidal regimes and variable bed-level dynamics. New monitoring
tools (SED sensors) could link daily and long-term bed-level
dynamics and biogeomorphic forest dynamics and improve
understanding of seedling establishment at the forest fringe.
Forest retreat is relatively well understood thanks to empirical
studies on extreme weather events, and mangrove retreat can
even be modelled for a range of sea-level rise scenarios.
However, mechanistic modelling of other stressors, particularly
repeated and combined stressors, remains limited. Ultimately,
the current state of science allows for the development of
modelling tools that can estimate how the cross-shore width and
structure of a specific forest will develop over time, while
allowing for uncertainty in global change pathways due to
unpredictability of future human choices. For example,
individual-based models (Berger et al., 2008; Peters et al., 2020)
could be combined with mechanistic simulation models that
capture how physical drivers determine forest expansion (Balke
et al., 2015; Hu et al., 2015, 2021a) and retreat (Asbridge et al.,
2015; Xie et al., 2020, 2022), to estimate changes in forest
structure and size. Such mangrove forest simulation models
require input on relevant physical drivers under global change,
which can be achieved by downscaling global climate models to
provide local estimates, for example, of sea-level change or
shifts in salinity. The predicted forest structure and size could
then be combined with models, such as the one presented in
Maza et al. (2021), to predict changes in the hydrodynamic
attenuation capacity of a forest over time.

This paper provides a perspective on the current state of
science for predicting future coastal protection capacity of
mangrove forests. Nevertheless, implementing nature-based
flood defence requires more than in-depth understanding of
physical drivers and ecological processes alone. Mangrove
forests sit in a socio-political and socio-economic environ-
ment, comprising of local pressures such as land use or plastic
pollution (Bryan-Brown et al., 2020; van Bijsterveldt et al.,
2021), as well as the triple planetary crisis (climate change,
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biodiversity loss, and air pollution; UNEP, 2020). Mangrove
forests offer multifunctionality by providing ecosystem ser-
vices beyond flood protection, such as global climate regula-
tion or trapping pollutants (Temmink et al., 2022; Waryszak
et al., 2021), and have been perceived by fishers to increase
fishery yields after their establishment (Debrot et al., 2022).
Hence, it is worthwhile to consider when nature-based solu-
tions should be designed to deliver specific ecosystem services
like flood protection or be designed to optimize delivery of
multiple services at the same time at potentially lower capacity
(Section 4 of Appendix A). Finally, important constraints to
the deployment of nature-based solutions in tropical coasts are
practical in nature, such as a lack of guidelines or on the
ground experience. Adaptive management can be used to
obtain practical knowledge about mangrove functioning in
coastal flood protection and develop field experience in
restoring and protecting mangrove forests (Gijsman et al.,
2021; Walters, 1986). Further research should focus on
advancing interdisciplinary understanding through develop-
ment of open-source models and accessible science that can be
translated to applicable guidelines.
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