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Abstract: Natural marine soundscapes are being threatened by increasing anthropic noise, particu-
larly in shallow coastal waters. To preserve and monitor these soundscapes, understanding them
is essential. Here, we propose a new method for semi-supervised categorization of shallow marine
soundscapes, with further interpretation of these categories according to concurrent environmental
conditions. The proposed methodology uses a nonlinear mapping of short-term spectrograms to a
two-dimensional space, followed by a density-based clustering algorithm to identify similar sound
environments. A random forest classifier, based on additional environmental data, is used to predict
their occurrence. Finally, explainable machine learning tools provide insight into the ecological expla-
nation of the clusters. This methodology was tested in the Belgian part of the North Sea, and resulted
in clearly identifiable categories of soundscapes that could be explained by spatial and temporal
environmental parameters, such as distance to the shore, bathymetry, tide or season. Classifying
soundscapes facilitates their identification, which can be useful for policy making or conservation
programs. Soundscape categorization, as proposed in this work, could be used to monitor acoustic
trends and patterns in space and time that might provide useful indicators of biodiversity and
ecosystem functionality change.

Keywords: eco-acoustics; interpretable machine learning; marine soundscape; Random Forest;
shallow water; SHAP; UMAP; XAI

1. Introduction

Passive acoustic monitoring (PAM) is a tool widely used to monitor underwater envi-
ronments: it is a flexible, non-invasive and cost-effective solution to acquiring information
from remote areas or from shallow, coastal areas. Within PAM, soundscape analysis offers
the possibility of surveying entire underwater habitats and their acoustic environments
simultaneously, which is critical to understanding their fundamental interaction and long-
term dynamics [1,2]. A soundscape is commonly known as the complex chorus of sounds
from a certain habitat [3–5]. The sounds contributing to a soundscape are typically sub-
divided into three categories: biophony (biotic events); geophony (abiotic events); and
anthrophony (human activities). In the marine environment, biological sound sources
include sounds actively produced by marine animals in order to communicate, navigate,
mate and forage: these signals can then be used to detect animal presence, behavior and
interactions [6]. In addition to these actively produced sounds, some animals also produce
sound as a byproduct of their behavior. Abiotic sounds are mainly produced by physical
events, such as rain, wind, sediment transport or current. A soundscape can also comprise
sounds coming from human activities, such as shipping, pile driving or sand and oil ex-
traction, increasingly present during recent decades [7]. Furthermore, a soundscape is also
influenced by passive elements, such as the vegetation and landform of a particular location.
Therefore, the sound signature of a soundscape depends on the shape and structure of the
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animals and plants living there, their interaction with the current and their influence on
the sound propagation [8,9]. In addition to local elements, distant sounds also contribute
to the local soundscape. The propagation of these distant sound sources can ultimately
be shaped by depth, topography, salinity and temperature. All these elements have an
influence in how these sounds are received. Soundscape analysis can provide valuable
ecological information about the structure and functioning of the ecosystem, and can be
used for monitoring purposes.

Shallow marine environments present complex interactions between all their sound
components, which mostly stem from complex propagation patterns generated by the
reflections at the water surface and the sea bottom [10]. Shallow soundscapes tend to
contain many sound sources, resulting in complex acoustic patterns and often in relatively
high sound levels [11]. Furthermore, in shallow water areas with strong tides, the tide has a
significant influence on the sound propagation channel, hence affecting the received sound
levels. As a consequence, the relationship between the acoustic activity produced and the
sound received at a certain listening location can be intricate and difficult to disentangle.

Shallow environments, such as the Belgian Part of the North Sea (BPNS), are quite
particular when studied acoustically [12]. Lower frequencies do not propagate very far,
because the wavelength is greater than the water column, and other frequencies are ampli-
fied; therefore, the shallow water depth forces the soundscapes to vary over small spatial
scales—some meters [13]—due to variation in the occurrence and proximity of human use
patterns, as well as sound propagation conditions and biological activity. Consequently,
the faunas occupying the different habitats mapped in the BPNS are expected to contribute
to the soundscape, and so are the faunas living in the multiple shipwrecks present in the
BPNS. The different types of substrate influence the sound propagation, and thereby the
soundscape signature as well. In addition to the spatial soundscape variation, seasonal,
latitudinal and celestial factors will have an effect on the presence of particular sounds.
Certain sounds present cyclical patterns, or repeat at regular intervals, while others occur
at random times. This time-dependent occurrence can be either short transient signals that
occur over seconds or minutes, or a continuous presence in the soundscape over hours
or days, resulting in chronic contributions to the soundscape. Understanding, measuring
and integrating site features and environmental parameters is, therefore, necessary, when
interpreting and characterizing soundscapes in shallow waters: this will help to further
understand the sound composition. Including these parameters can thus be useful when
comparing soundscapes between sites [11].

Studying marine soundscapes holistically, instead of focusing on specific sound events,
can provide us with information at habitat or community level. In a human-centered way,
ISO 12913-1 [14] includes perception and understanding of the definition of soundscape;
therefore, a soundscape is defined by how it is perceived and understood. This definition
can be extended to the underwater world, by including the perception and meaning of a
variety of species or, in other words, considering ecological relevance. Understanding the
acoustic environment in an artificial intelligence context is also referred to as acoustic scene
recognition, which refers to one of the important functions of the acoustic scene: supporting
context and situation awareness. Acoustic scene identification does not need to be based
on specific event recognition, but can be based on an overall sound impression [15]. In
waters where visibility is low, asserting situation and context may be relevant for many
species. The holistic soundscape contains many different sounds, and some species may
use auditory stream segregation to disentangle these sounds depending on their relevance.
However, in a multi-species and ecological approach, a more holistic technique may be
more appropriate than methods that separate and classify individual sound sources [12].
Here, we mainly focused on continuous sound or sounds that were repeated frequently in
a (complex) sequence (e.g., a fish chorus or breaking waves), including the combination of
all sounds that occurred under certain conditions at specific places.

Characterizing marine soundscapes remains a challenging task, as there are no stan-
dards by which to do so, as mentioned in the International Quiet Ocean Experiment (IQOE)
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report published by the Marine Bioacoustical Standardization Working Group [16]. His-
torically, it has been done by detecting certain known acoustic events of relevance, such
as animal vocalizations, ships passing by or wind intensity [17]: the soundscape is then
defined using the proportion and temporal distribution of these specific events [18,19].
This approach is usually done manually or using supervised methods, which require pre-
vious investment in laborious data annotation. Another common approach is to measure
the variation in pressure within a specified frequency band and time interval—sound
pressure levels—; however, only using sound pressure levels can limit the scope of in-
terpretations [11]. Other studies propose the use of eco-acoustic indices to characterize
soundscapes [20,21]: these indices summarize the acoustic information from a particular
soundscape in a single value. They have been used to characterize acoustic attributes from
the soundscape, and to test their relation to the structure of the ecological community,
habitat quality and ecological functioning in ecosystems. They have been successfully
used in terrestrial environments [22]. However, even though these approaches have been
successfully implemented in some marine eco-acoustics studies [23–25], the performances
of these indices have not been consistent across studies [26]. Moreover, Bradfer-Lawrence
et al. (2019) [27] have observed that acoustic indices as a habitat indicator do not stabilize
until 120 h of recordings from a single location. By not using hand-crafted eco-acoustic
indices, we thus avoided focusing on a small number of specific acoustic features that had
not been proven to be robust in marine environments.

In this study, we propose an unsupervised method of assigning a label to different un-
derwater acoustic scenes, with the aim of categorizing them. Previous studies have shown
how different environments have distinct acoustic signatures that cluster together [28].
Other studies have successfully used unsupervised clustering algorithms to discriminate
between terrestrial ecological habitats [29], and to test if the combination of several acoustic
indices could capture the difference in the spectral and temporal patterns between under-
shelf and pelagic marine soundscapes [30]. Sethi et al. (2020) [28] proposed unsupervised
clustering as a method of detecting acoustic anomalies in natural terrestrial soundscapes.
Michaud et al. (2023) [31] and Ulloa et al. (2018) [32] used unsupervised clustering on ter-
restrial soundscapes, to group pre-selected regions-of-interest from terrestrial soundscapes.
Clustering has also been used as a tool to speed up labeling efforts [33], and has been pro-
posed as a method of monitoring changes in the acoustic scene in terrestrial habitats [34]:
however, in these cases, the obtained categories had to be manually analyzed, to have an
ecological meaning.

Knowledge about the marine acoustic scene is still limited, and there are no defined
marine soundscape categories because, so far, humans have not needed to name them.
To further understand these categories, we propose to explain them according to the
spatiotemporal context in which they occur. This is the first study to describe soundscape
categories in an automatic way, and also the first to consider the time component in
soundscape categorization. The proposed solution is particularly useful in areas where the
underwater acoustic scenes (soundscapes) have not yet been described. This is often the case
in areas where the water is often too turbid to employ camera or video sampling techniques,
and where the sound signatures of most of its sound sources (especially biological ones)
are not known. To understand when and where these categories occur, we linked them to
environmental data, using a supervised machine learning model. Interrelationships were
checked, using explainable artificial intelligence (XAI) tools [35]. These tools allowed for
assessing which of the environmental features were important in predicting each class, and
had already been successfully implemented in some ecology fields [36]. The classes that
could not be explained from the environmental parameters were not considered soundscape
classes, but just a certain sound class. Afterwards, by interpreting the XAI outcome, we
could infer when and where these categories were found. The tools for the machine learning
models’ interpretation led to an understanding of which environmental parameters were
representative in different soundscapes, and what differentiates soundscapes from one
another, ecologically.
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The relevant environmental conditions of each cluster could then be used to describe
and understand each category, without the need for a large annotation effort: this helped
explain acoustic dissimilarity between habitats, and also provided a baseline for the sound-
scapes in their current state. In conclusion, we propose an automatic solution to extract
relevant ecological information from underwater soundscapes, by assessing which envi-
ronmental factors are contributing to the soundscape, and quantifying their significance.
This should allow for monitoring of relevant ecological processes and major changes in the
underwater ecosystems. Furthermore, we propose a semi-supervised method by which to
remove artifacts from a dataset before processing. The analysis was performed on a dataset
recorded in the BPNS, a highly anthropogenic shallow water area with high turbidity.

2. Materials and Methods
2.1. The Study Site: The Belgian Part of the North Sea

The BPNS is one of the most exploited marine areas in the world. In an area covering
only 0.5% of the entire North Sea, activities like shipping, green energy, fishery and sand
extraction converge. Every year there are more than 300,000 shipping movements, ranging
from commercial ships to pleasure boats. Belgium is the country with the largest percentage
of offshore renewable space in the world [37]. The BPNS only reaches up to 45 nautical
miles offshore, and it is very shallow, with an average depth of 20 m, and a maximum
of 45 m. Nevertheless, there are unique shallow sandbanks exhibiting high biodiversity,
like the “hotspots” formed by gravel beds and sand mason worm banks [38]. There are
approximately 140 species of fish, and more than 60 species of seabirds find their place
in its coastal waters. Marine mammals, such as porpoises (Phocoena phocoena) and seals
(Phoca vitulina), are becoming increasingly common. Moreover, there are more than 300
shipwrecks. Wrecks have great ecological, cultural and economic value; they serve as
important shelters and nurseries for many different marine species, and are very popular
with wreck divers and anglers [39].

Scientific research is important for monitoring the state of the environment, and that
is one of the reasons why the BPNS is one of the most studied sea areas in the world.
Derous et al. (2007) [40] created a marine biological valuation map, in order to support
policymakers in objectively allocating the various user functions at the BPNS, which
classifies the different benthic communities into several groups. Even though the BPNS
is a well-studied area, very little research about passive acoustics has been done. Its high
turbidity levels [41], particularly shallow bathymetry and strong tidal currents [42] make it
a complex area to study acoustically.

2.2. Data
2.2.1. Acoustic Data Acquisition

Between April 2020 and October 2020, and in June 2021, we recorded underwater
sound at 40 strategic sites of the BPNS (see Figure 1a). All the recordings were acquired
from three different small boats, adrift with a hydrophone attached to a rope with weights
(see Table A5). Drifting was chosen as an ecologically meaningful approach to acousti-
cally recording the different coastal benthic habitats [43]. In the collected dataset, spatial
resolution was chosen over temporal resolution, considering the available ship time and
equipment, meaning that recording more sites was prioritized above acquiring long record-
ings at one site. Furthermore, recording while drifting was expected to diminish the
possible flow noise due to the current. Locations were chosen to cover the five benthic
habitat types defined in Derous et al. (2007) [40] and some shipwreck areas, to capture
their soundscapes.

In this study, a deployment was defined as a measurement interval corresponding to
the time when a hydrophone was in the water, without changing any recording parameters
or rope length. Each of the deployments consisted of 30 to 60 min of continuous recording,
following the current by drifting, with the engines and the plotter turned off, to reduce
the noise created by the boat itself. The typical drifting speed was 1 ms−1. During each
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deployment, a GPS Garmin with a time resolution of 1s stored the location during the entire
deployment, and was synchronized with the instrument clock. The length of the rope was
chosen according to the depth, so that the hydrophone would be, on average, between
the 1/2 and 1/3 of the water column from the surface (see Figure 1b). The rope length
was kept constant during each entire deployment, and it was considered the instrument
depth. The instruments used were a SoundTrap ST300HF (Ocean Instruments, Auckland,
New Zealand) (sensitivity: 172.8 dB re 1 V/µPa—from now on, SoundTrap) and a Bruel
and Kjaer Nexus 2690, with a hydrophone type 8104 (Bruel and Kjaer, Virum, Denmark)
(sensitivity: 205 dB re 1 V/µPa—from now on, B and K) together with a DR-680 TASCAM
recorder. The amplification in the Nexus was set to 10 mV, 3.16 mV or 1 mV, depending on
the loudness of the recording location. The SoundTrap was set to sample at 560 ksps, and
the B and K at 192 ksps.

Of the 40 independent tracks recorded, 14 were recorded simultaneously, with two
different devices, to confirm their interchangeability: this made for a total of 54 deployments
(Figure 1). The metadata were stored in the online repository of the European Tracking
Network, under the Underwater Acoustics component (ETN, https://www.lifewatch.be/
etn/ (accessed on 19 January 2023)).

(a) (b)

Figure 1. (a) Data collected, colored according to instrument used. The background represents the
bathymetry from the EMODnet bathymetry. The solid black line represents the borders of the Belgian
Exclusive Economic Zone; (b) Deployment scheme for two instruments simultaneously. The left
instrument setup (blue rope) is the B and K. The black squared box represents the Nexus amplifier
and the DR-680 TASCAM recorder attached to the B and K system. The right instrument (red rope) is
the SoundTrap.

2.2.2. Acoustic Processing

Acoustic changes in the soundscape were expected to be found in a small spatial
(meters) and temporal (seconds) resolution: for this reason, the data were processed in time
windows of 1 s (hereafter, si), with no overlap. Then, these 1-second bins, si, were arranged
in groups of 5, with an overlap of 60%, (hereafter, Sj) (Equation (1)). The time window and

https://www.lifewatch.be/etn/
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J. Mar. Sci. Eng. 2023, 11, 550 6 of 32

the overlap were chosen so that the spatial resolution would be of 2 samples every 5 m,
considering an average drifting speed of 1 ms−1.

S =



S0
S1
...
Sj
...
Sn

 =


s0 s1 s2 s3 s4
s2 s3 s4 s5 s6
... ... ...
si ... si+4

 (1)

All the acoustic processing was done using pypam [44], an open-source python tool
for processing acoustic files in chunks. Each recorded file was converted to sound pressure,
using the calibration factor for the equipment used. For the SoundTrap, the calibration
was done according to the value given by the manufacturer. The B and K equipment was
calibrated by generating a calibration tone at the beginning of each file, and was afterwards
removed from the file. The rest of the recording was processed according to the obtained
calibration value. The sound pressure values obtained by the two instruments recording
simultaneously were compared, to make sure the calibrations were accurate. Per time
window, a Butterworth band pass filter of order 4 was applied between 10 and 20,000 Hz,
and the signal was down-sampled to twice the high limit of the filtered band. The frequency
band was chosen to cover all the biophony and geophony of interest for this study that we
could record, given the sampling frequency limitations of the equipment. After filtering,
the root mean squared value of the sound pressure of each one-third octave band (base 2)
was computed per each 1-second bin si. Then, every 5 s were joined, to create an acoustic
sample, Sj, which resulted in 5 × 29 one-third octave bands per time window Sj (1). Each
sample Sj was flattened to an array of 145 × 1, for further analysis. One-third octave bands
were chosen because of their availability and commonness, and because they are considered
to be appropriate for most considerations of environmental impact [45]. Furthermore, they
had previously been used to describe soundscapes [46–48].

2.2.3. Environmental Data

Each acoustic sample, Sj, was matched to the closest point in time stored in the GPS
tracker. If Sj did not have a GPS point closer than 5 s in time, it was eliminated from the
dataset. All available environmental data in the BPNS were reviewed, and the selected
environmental parameters are shown in Table 1. The list of all the considered parameters is
referred to as F = [F0, ..., Fn] in Figure 2.

The selected environmental data were paired to each sample, Sj, using the python
package bpnsdata [49]. We will refer to the environmental data paired to sample Sj as Ej.
Some data were not available in the public environmental datasets during some of the
recording periods, so any Sj with a corresponding incomplete Ej was also removed from
the dataset.

The cyclic variables, season and moon phase, were split into their cosine and their sine
values, with the intention of representing the cyclic continuation of the values. Categorical
variables were encoded using the one-hot-encoder function of sklearnDF [50]. Distance
to closest shipwreck was converted into logarithmic scale, as its effect was expected to be
relevant only at a very close distance, because of the short propagation of the calls of the
expected benthic fauna [51]. The decay of sound pressure with distance was expected to be
around 1/rn, and we therefore used the logarithm to linearize. Bathymetry was converted
to a positive value. See Table 1 for more details.
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Table 1. Summary of the all the available environmental variables.

Parameter Explanation Encoding Resolution Source Dependency

Season Week number.

Cyclic encoding: week_n_cos:
winter (1) vs summer (−1),

week_n_sin: spring (1) vs autumn
(−1).

weekly NA Time

Bathymetry [m] Mean bathymetry. Converted to positive. 1/16 × 1/16 arc minutes EMODnet Bathymetry [52] Space

Moon phase [rad]

Angle giving the difference
between the geocentric apparent
ecliptic longitudes of the Moon
and Sun, where 0 is New Moon

and π is Full Moon.

Cyclic encoding: growing_moon:
growing (1) vs decreasing (−1)

new_moon: new moon (1) vs full
moon (−1).

Continuous Skyfield [53] Space, Time

Day moment Day, Night, Twilight (civil,
astronomical and nautical). Categorical encoding Continuous Skyfield [53] Space, Time

Shipping Density
[1 km−2 month−1]

Mean number of routes per
square km per month. None 1 km2, 1 month EMODnet Human Activities [54] Space, Time

Substrate Type of substrate on the sea
bottom. Categorical encoding 0.00104d EMODnet Seabed Habitats [55] Space

Seabed habitat

Output of the 2021 EUSeaMap
broad-scale predictive model,

produced by EMODnet Seabed
Habitats.

Categorical encoding 0.00104dd EMODnet Seabed Habitats [55] Space

Benthic habitat Habitat suitability for benthic
communities. Categorical encoding 3 × 3 km grid cell Derous et al. (2007) [40] Space

Salinity [PSU] Modeled surface salinity. None lon: 0.041666, lat: 0.08333 m time:
1 h ERDDAP [56] Space, Time

Surface Temperature [K] Modeled surface temperature. None lon: 0.041666, lat: 0.08333 m time:
1 h ERDDAP [56] Space, Time

Surface current speed [ms−1]
Obtained from computing the
norm between eastward and
northward sea water velocity.

None lon: 0.041666, lat: 0.08333 m time:
1 h ERDDAP [56] Space, Time

Height above sea level [m] Surface elevation above mean sea
level. None lon: 0.041666, lat: 0.08333 m time:

1 h ERDDAP [56] Space, Time

Proximity to shipwreck [m (log)] Distance to the closest known
shipwreck in the BPNS. log10(distance) Depending on entry Wrakken data bank [57] Space

Distance to coast [m] Distance to the closest point of
the Belgian coast. None Continuous Marine Regions [58] Space
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Figure 2. Diagram of the trained Random Forest and the environmental characteristics assessment: k
is the number of categories; i is the iteration number; F are all the available variables; n is the number
of available variables; pi is the performance of iteration i; RM is the redundancy matrix nxn, with the
“perspective” feature as rows; the dashed line illustrates the basis of the influence.

2.3. Acoustic Categorization
2.3.1. Dimension Reduction and Acoustic Dissimilarity

A dimension reduction algorithm was applied to the acoustic data. For the outcome
to show changes in clusters in a visual way, 2-D was chosen as an appropriate number of
dimensions. Uniform Manifold Approximation and Projection (UMAP) was considered
appropriate for dealing with the non-linearity of the data [59]. UMAP is a dimension
reduction technique that can be used for visualization, similar to t-SNE [60], but also as
a general non-linear dimension reduction tool. It models the manifold with a fuzzy topo-
logical structure. The embedding is found by searching for a low dimensional projection
of the data, which has the closest possible equivalent fuzzy topological structure. UMAP
was preferred over t-SNE, because it better preserves the global structure of the data [61].
Different configurations of the UMAP parameters were tested, to try to achieve an optimal
distribution of the data, where acoustic sample points were distributed in separated clusters.
Using UMAP, the data were represented by more similar points closer to each other, and by
more different points further apart: the idea was to exaggerate local similarities, while also
keeping a structure for global dissimilarities.

Similar sounds were thus expected to create clusters, and clusters further apart to
represent more different sounds than clusters closer together, in the 2D space [28]. The
2D dimension could then be used to compute distances between clusters, as a measure of
acoustic dissimilarity between two groups of sounds. However, not all of these clusters
represented a soundscape, because specific sounds which had occurred in the dataset
multiple times, but were not related to their recording location or time, also formed
clusters; therefore, some of the obtained clusters might not represent a soundscape, but
only a certain foreground sound. We tackled this distinction using XAI, and we considered
soundscape-clusters to be the ones closely linked to the environmental parameters. Clusters
not correlated to the environmental parameters were not considered to be soundscape
classes in this study.

2.3.2. Data Cleaning: Artifacts Removal

During underwater acoustic deployments, a lot of artifacts can affect the recordings:
these do not contain any ecologically relevant information, nor do they mask existing
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information, and thus they need to be removed. They can be caused by small particles
hitting the hydrophone, or by sounds generated by the deployment structure or the in-
strument itself. In this study, a semi-supervised approach was applied, to remove the
artifacts. All the recordings made with the B and K equipment were manually checked
for artifacts segments, and were annotated in a non-detailed fashion. Visual inspections of
10-minute spectrograms were conducted in Audacity [62], and artifacts that were clearly
visible were annotated. Each annotation comprised the start and end of the artifact event,
and the designated label: clipping; electronic noise; rope noise; calibration signal; and boat noise.
All the samples Sj which contained more than 1 s of artifact data were labeled with the
corresponding tag.

These labels were then plotted in the UMAP space, to check visually if there was
any visible clustering. Then, all the data embedded in the 2D space were clustered using
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), using the scikit-
learn package [63]. This algorithm finds core samples of high density, and expands clusters
from them: it is appropriate for data which contain clusters of similar density. Samples
that were not close enough to any cluster were considered “noise”, and therefore could not
be classified as one particular class. After clustering, the percentage of artifact samples in
each of the resulting clusters was assessed. If the ratio of artifact samples in that cluster
exceeded 2 times the ratio of total samples labeled as artifacts in the dataset (Equation (2)),
it was considered to be an artifact-cluster, and was therefore removed from the dataset.
Consequently, all the samples that were clustered in an artifact-cluster, but which had not
been manually labeled as artifacts, were also considered artifacts (Figure 3). The DBSCAN
“noise” class was also considered a cluster, and treated accordingly.

Niarti f acts/Ni > 2 ∗ Narti f acts/Ntotal (2)

where Ni represents the samples classified as cluster i, and underscore artifacts means
samples classified as any of the artifact labels.

2.3.3. Acoustic Categories

The UMAP dimension reduction was applied for a second time, to the clean dataset:
this was done because the artifact clusters were expected to be acoustically very dissimilar
to the environmental clusters; therefore, re-computing the UMAP without them would help
obtain clearer distinctions between environmental clusters. The data obtained in the new,
embedded 2D space were clustered again, using DBSCAN. Samples classified as noise were
removed from the analysis, as they were considered outliers, and could not be classified
as one particular acoustic category. The obtained classes after the noise reduction were
considered as the different acoustic categories present in the dataset. A diagram of the
workflow for artifact removal and final clustering can be seen in Figure 3.

2.4. Characterization of Acoustic Classes

To understand which environmental parameters were correlated to the categorized
acoustic environments (clusters), and could be used to describe them, a Random Forest
(RF) Classifier was built, with the environmental variables as the independent variables,
and the obtained acoustic clusters as the dependent variable. The input variables were
encoded, as described in Section 2.2.3. The RF was subsequently analyzed, using the XAI
inspector system from the FACET gamma package, which is based on SHAP (SHapley
Additive exPlanations) [64]. SHAP is a method of explaining individual predictions of
instance X, by computing the contribution of each feature to the prediction. The SHAP
explanation method can be used to understand how each feature affects the model decisions,
by generalizing local relationships between input features and model output. The python
SHAP library contains an algorithm called TreeExplainer, made specifically to interpret tree-
based Machine Learning models [65]. For this analysis, the TreeExplainer approach was
used, considering a marginal distribution (interventional feature perturbation). However,
the output of the SHAP analysis can give misleading conclusions if redundant variables
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are present in the dataset, because the importance of variables that share information will
be split between them, as their contribution to the model is also split: the real impact
of that redundant pair—and the ecological phenomena they represent—will therefore
not be assessed. To overcome this problem, the model was evaluated for redundancy
between variables [66]. In facet-gamma, redundancy quantifies the degree to which the
predictive contribution of variable u uses information that is also available through variable
v. Redundancy is a naturally asymmetric property of the global information that feature
pairs have for predicting an outcome, and it ranges from 0% (full uniqueness) to 100%
(full redundancy).

The RF was trained multiple times in an iterative way, where one of the possible
redundant variables was removed at each iteration, as displayed in Figure 2. At the start of
each iteration, the Boruta algorithm [67] was used, to check if any of the variables were not
relevant. Then, to find out the best hyper-parameters for the algorithm, a grid search with
cross-validation with 5 folds was run on all the data, with accuracy as the scoring metric.
The parameters of the grid can be seen in Table A4. The results given for all the models are
considering the cross-validation approach.

Figure 3. Flowchart to obtain the acoustic categories.

To decide if a variable should be removed from the analysis because it was too
redundant, the obtained best RF was evaluated for each class, using the FACET [68]
package. First, the redundancy matrix was computed per class [68]. Then, we counted in
how many classes a variable pair was more than 50% redundant. The pair exceeding the
threshold in the highest number of classes was selected for removal, and the “perspective”
variable was removed from the dataset in the following iteration. The whole training
process was repeated without this variable, and the accuracy of the model was compared
to the model from the first iteration. If the performance did not decrease by more than
1%, the variable was excluded from all further iterations. If the performance decreased
more than 1%, then the variable was considered too important to be removed, was kept,
and was not checked anymore in the following iterations. Iteratively, this process was
repeated, until there were no pairs that had a redundancy higher than 50% in more than
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1/3 of the classes. The last best RF model obtained was used for further analysis, with all
the redundant features already eliminated.

Once all the redundant variables were removed, the last RF model was interpreted,
using SHAP to further depict the relative importance of the remaining environmental
features, to characterize the acoustic clusters. Using the computed SHAP values, a summary
of the most important global features was plotted and analyzed. The SHAP python package
incorporates the option to produce beeswarm plots, which allow for checking for feature
importance per category, and understanding which values of each feature increase or
decrease the probability of belonging to a certain class; therefore, the SHAP values were
plotted per category individually: this allowed for assessing why a certain spatiotemporal
location was classified as a certain type of acoustic category.

SHAP offers an interactive plot, whereby we can see the probability contribution
of each feature per class in time. In these plots, we can visualize the shapely values of
each feature value as a force (arrow) that pushes to increase (positive value) or decrease
(negative value) the probability of belonging to that specific class.

To test if the deployment settings had a significant influence on the recorded sound-
scapes, a categorical variable representing each deployment (deployment_id) was added,
and the whole process was repeated. The selected variables were compared, and the influ-
ence of the deployment_id was compared to the other variables. The performance (total of
data explained) of the RF trained with the deployment_id variable was compared to the
model obtained, using only environmental variables. If the performance of the model did
not improve by adding the deployment_id variable, it was assumed that it was redundant,
with the data being already present in the dataset.

Furthermore, to understand whether there were specific clusters that were not un-
derstood by the model, because they represented a certain sound not directly linked to
the available environmental parameters, the data incorrectly classified by the obtained
RF model was plotted in the 2D space, to visually check if the samples wrongly classi-
fied grouped together. The percentage of each cluster correctly explained by the model
was computed.

3. Results
3.1. Data

In total, 54 tracks were recorded during 10 different days, yielding a total of 40 h 47 min
of acoustic data (see Figure 1). After merging the acoustic data with the environmental
data, due to some missing data the dataset was reduced to 42,117 samples (Sj).

3.2. Acoustic Categorization
3.2.1. Data Cleaning

A total of 107 artifacts were manually labeled. The labeled data were plotted in a 2D
UMAP representation, clearly grouped according to the label (Figure 4), which highlighted
that points closer to each other in the UMAP space were similar acoustically (Table A2 for
details). The DBSCAN algorithm generated 37 clusters (Table A3 for details): from these
clusters, 9 were considered artifacts, and were removed from the dataset. The sum of all
the samples of these clusters represented 15.30% of the dataset.
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a b c

Figure 4. (a) distribution of the labeled artifacts on the 2D UMAP dimension; (b) obtained 37 clusters
after applying DBSCAN; (c) data considered to be artifact.

3.2.2. Acoustic Categories

UMAP was applied to the dataset without artifacts for a second time. The clean data
plotted in this second UMAP space also presented clear clusters (Figure 5 and Table A2
for details).

(a) (b)

Figure 5. (a) dimension reduction, using UMAP on the clean dataset; (b) obtained clusters using
UMAP projection: −1 represents the noise class.

A DBSCAN algorithm was run on the new UMAP space, and 17 clusters were obtained
(Table A3). Of the samples, 6.01% were classified as noise, and therefore they were removed
from the dataset, for further analysis (Figure 5). The mean and standard deviations of each
cluster’s one-third octave bands evolution can be seen in Table A5.

3.3. Characterization of Acoustic Classes

During the Boruta analysis, seabed_habitat_A5.23 or A5.24 was selected for removal.
All the results of the iterative training of the RF and the redundant variables removal are
summarized in Table 2. In the final model temperature, new_moon, substrate_Sandy mud
to muddy sand and week_n_cos were removed.
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Table 2. Summary of the selected model at each iteration, and their performance with the consequent
redundant pairs and the features removed.

i Best Model CV Mean Accuracy Mean Std. Removed Features Boruta Redundant Features
Removed Maximum Redundant Pair

0 91.10 0.73 seabed_habitat_A5.23 or
A5.24

temperature
week_n_sin

1 90.66 0.43 temperature new_moon
week_n_cos

2 91.03 0.71 temperature
new_moon

substrate_Sandy mud to
muddy sand

seabed_habitat_A5.35

3 91.08 0.59 seabed_habitat_A5.23 or
A5.24

temperature
new_moon

substrate_Sandy mud to
muddy sand

week_n_cos
week_n_sin

4 91.77 0.60

temperature
new_moon

substrate_Sandy mud to
muddy sand
week_nu_cos

day_moment_Day
day_moment_Twilight

5 90.35 0.63 seabed_habitat_A5.23 or
A5.24

temperature
new_moon

substrate_Sandy mud to
muddy sand
week_n_cos

day_moment_Day selected
and discarded

6 91.77 0.60

temperature
new_moon

substrate_Sandy mud to
muddy sand
week_n_cos

coast_dist
salinity

7 90.02 0.56

temperature
new_moon

substrate_Sandy mud to
muddy sand
week_n_cos

coast_dist selected and
discarded

8 91.77 0.60

temperature
new_moon

substrate_Sandy mud to
muddy sand

week_n_cos

The accuracy from the last best RF trained was 91.77%: this percentage represented the
proportion of the data that could be explained by the model. In the visual analysis of the
data incorrectly classified, it was seen that the data incorrectly classified clearly clustered or
were at the border of a cluster (Figure 6): this supported the hypothesis that these clusters
represented similar sounds not correlated to the considered environmental parameters.
After computing the percentage of each cluster correctly predicted by the model, cluster 14
was discarded as a soundscape, because 0% of its samples were correctly explained by the
environmental variables.
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Figure 6. Samples correctly and incorrectly classified using the RF obtained in the last iteration.

Using the last RF, the SHAP values were computed for the total dataset. The pa-
rameters most distinctive between classes globally were day_moment, instrument_depth,
coast_dist, salinity and growing_moon (Figure 7). With the obtained plots of SHAP values
per class, it could be understood which values were affecting each class. For example,
from Figure 8, it can be interpreted that high values of instrument_depth increased the
probability of a sample belonging to class 0. With coast_dist it was the other way around,
and lower values decreased the probability of a sample belonging to class 0. For class 1,
low values of shipping increased the probability of belonging to class 1, and high values
of instrument_depth likewise. The SHAP plots per category can be see in Figure A1, and
the results are manually summarized in Table 3. To improve visualization, variables corre-
sponding to an encoded value of a categorical variable were grouped, and plotted in gray
in the SHAP plots: this was done because categorical variables do not have higher and
lower values. In all the interpretations, medium values of week_n_cos were considered
summer, because there was no sampling done in winter.

Figure 7. Global summary of the influence of the environmental parameters on the acoustic catego-
rization in the entire dataset.
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(a)

(b)

Figure 8. Summary of the SHAP values for all the environmental parameters for (a) class 0 (b) class
1. The summary of SHAP values for other classes can be seen on Figure A1. Variables in gray are
categorical variables.

The total performance of the model, when adding the deployment_id variable, did
not improve. It was concluded that deployment_id could safely be removed, and not
considered a necessary factor to explain the differences between acoustic categories.
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Table 3. Manual interpretation of the influence of the environmental variables in cluster differ-
entiation. Because there was no sampling done in winter, medium values of week_n_cos were
considered summer.

Cluster [%] Samples [%]
Explained Environmental Description

0 15.41 96.48 high instrument depth, day, close to the coast, low salinity, spring

1 12.4 90.38 night, low shipping, high instrument depth, autumn, mid-offshore, low–mid-tide

2 11.34 92.12 twilight, high current, deep waters, high salinity, mid-offshore, low instrument
depth, summer

3 19.58 89.27 twilight, mid-offshore, low instrument depth, mid–high salinity, low–mid-current, shallow
waters, summer

4 5.1 76.38 high instrument depth, day, mid-offshore, spring, deep waters, high salinity

5 1.53 99.63 high instrument depth, high tide, mid-offshore, day, seabed habitat A5.15, spring,
deep waters

6 2.86 82.50 day, medium bathymetry, high current, medium salinity, mid-offshore, far from shipwreck,
mid–high shipping

7 1.21 98.38 low shipping, high instrument depth, day, decreasing moon, high current, mid-offshore

8 2.58 99.78 close to the coast, very low instrument depth, day, summer, low salinity, shallow waters

9 12.17 99.15 growing moon, spring, low salinity, close to the coast, low instrument depth, shallow
waters, day

10 2.83 81.07 day, low–mid-current, mid-salinity, not benthic habitat 3 (Macoma balthica community), high
tide, seabed habitat A5.14, medium depth

11 3.26 79.93 close to the coast, summer, low instrument depth, day, low salinity, high tide, new or full
moon, seabed habitat A5.35

12 2.56 99.67 seabed habitat A5.35, day, close to the coast, full or new mooon, low tide, far from shipwreck

13 4.39 79.80 day, high current, mid-offshore, medium depth, medium salinity, far from shipwreck, low
instrument depth, benthic habitat 3 (Macoma balthica community)

14 0.33 0.00
(not a soundscape) high current, day, mid-offshore, medium depth, medium salinity, far

from shipwreck, low instrument depth, high tide, benthic habitat 3 (Macoma balthica
community)

15 0.8 100.00 twilight, low–mid-tide, high salinity, deep waters, low shipping, low–mid-current, low
instrument depth, far from the coast

16 1.65 92.66 day, low instrument depth, high salinity, mid-offshore, seabed habitat A5.27, low shipping,
benthic habitat 3 (Macoma balthica community)

We manually analyzed the output categories in space and time. We observed a
variation in the soundscapes recorded across the 40 sites, and also a shift within some
individual deployments. The changes were driven by both spatial and temporal features: as
an example, we examined a location recorded during different days and moments (Figure 9).
The deployment plotted in (a)–(b) fell mostly under class 0, which was characterized as
spring. The deployment in (c)–(d) fell under class 1, which was characterized as autumn.

Some deployments changed soundscape categories during the deployment, as in
Figure 10, in which the deployment started with class 3, then switched to class 13, and then
to class 6. Referring to Table 3 and Figure A1, the biggest differences between class 3 and
classes 13 and 6 were the current and distance to a shipwreck. This description correlates
with the fact that the current was lower when class 3 appeared, and higher during classes 13
and 6. It also correlates with the fact that there was a shipwreck close to class 3, while there
were no shipwrecks in the vicinity of class 6 and 13. Furthermore, the change of cluster
from class 13 to class 6 may have been due to the change in the sea bottom substrate, where
it changed from coarse sediment to sand. These descriptions match the spatial changes
(Figure 10a), where class 13 was found usually on coarse sediment bottoms, and class 6
was not defined by the substrate. In the spectrogram, we can also see a clear change in the
sound, and some of the last parts were classified as noise, because of the loud shipping
noise present. In this particular example, the first time that class 6 appeared for a short
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time at 11:40, it was not correctly predicted by the model. The same happened with the
small jump to class 14, which was not considered a soundscape, and therefore was just a
foreground event not considered by the model. Other examples of deployments can be
found in Figure A2.

(a) (b)

(c) (d)

Figure 9. Deployment in spring plotted spatially (a) and temporally (b). Deployment in autumn,
plotted temporally (c) and spatially (d).

(a) (b)

Figure 10. Zoom of one deployment recorded the 9 June of 2021: (a) plotted on top of a map of the
substrate type; (b) plotted in time.
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In Figure 11, we can see the interactive "force" plots for the dominant classes from the
same deployment as Figure 10, where it is shown how the model predicts these classes
over time.

(a)

(b)

(c)

Figure 11. SHAP plots showing samples’ probability of belonging to classes 3 (a), 13 (b) and 6 (c). The
x axis is the time in samples; the y axis is the probability of a sample to be classified as a specific class.
Blue probabilities are negative influences, and red probabilities are positive influences of a variable.

4. Discussion

In this study, we showed that by using an unsupervised approach we were able to
categorize different marine shallow water soundscapes. In addition, we demonstrated that
by using an automatic (supervised) approach, based on Explainable machine learning tools,
we were able to characterize these categories ecologically. Our method was able to group
soundscapes in different categories, which could be used to understand the spatiotemporal
acoustic variations of a dataset. The obtained categories were afterwards proved to be
connected to environmental parameters through an RF classifier. To understand the predic-
tions made by the trained RF, SHAP values were used: this allowed for the assessment of
the main environmental parameters shaping the acoustic categories in general, but also per
category, which provided a practical ecological profile for each soundscape category.

Our results show that the acoustic data analyzed by UMAP and DBSCAN clustered
mostly in clear, independent groups. This indicates that there were major and quantifiable
differences in BPNS’ underwater soundscapes, and that one-third octave bands encoded
enough information to capture these dissimilarities. This was an advantage, due to the
current availability of built-in implementations in some recorders, and the different avail-
able tools to compute them. We chose the frequency band of study to capture the sound
sources of interest, but increasing the frequency range could lead to new clusters. The cho-
sen frequency band captured enough information to obtain distinct clusters, even though
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increasing the frequency range might have increased the number of clusters. Furthermore,
similar artifact sounds clustered together. This was in line with findings from Sethi et al.
(2020), where artifacts could be detected by using an unsupervised clustering technique.
Accordingly, the semi-supervised process used in this study could be applied to detecting
artifacts in acoustic datasets. This would be especially useful for long-term deployments,
where exhaustive manual analysis is too time consuming, and it would be a rapid solution
for detecting instrument malfunction events.

The RF classifier was able to correctly classify more than 90% of the BPNS’ acoustic
data into the 17 relevant soundscape categories: this high accuracy suggests that the en-
vironmental parameters included in the analysis were good indicators of the observed
acoustic patterns. The SHAP values showed that in our case study, time of the day, in-
strument depth, distance to the coast, salinity and moon phase were the most important
environmental parameters shaping and differentiating the soundscape categories. These
results should be carefully interpreted. The importance of the environmental parameters
was not necessarily correlated to their influence on the total sound: rather, it described
their relevance to discriminating between categories. For example, if all the categories
from the study area had had a considerable and equally distributed sound contribution
from shipping, the feature would not have had a great effect in differentiating them: as a
consequence, it would have had a low importance score in the model. However, if we had
expanded the dataset with acoustic data from other areas in the world with less shipping in-
fluence, shipping would have become a very dominant feature in explaining the categories’
differences. In addition, the redundant variables that were removed should not be ignored,
but should be considered together with the redundant pair. For example, temperature was
removed, because of its redundancy with the season (week_n_sin). Consequently, in all the
clusters where season has an influence, we would not be able to distinguish if the real effect
was the temperature or the season: we would know, however, that these two correlated
parameters had an influence on the soundscape. If distinguishing between two redundant
features would be relevant, more data should be collected to that effect, in a way that the
two variables are not correlated.

Instrument depth showed a strong influence on discriminating between soundscape
categories. This result could have been expected: as the recording depth was not kept
at the same level and in such shallow environments, acoustic changes in the soundscape
occurred at very small spatial scales, and vertically in the water column [45]. It is therefore
important to always consider and report the hydrophone depth when comparing different
soundscapes, to avoid any misleading conclusions. Furthermore, to exclude the position
effect, and in order to better assess the biotic-driven soundscapes in shallow environments,
recordings should be taken at a fixed depth.

The obtained categories showed the expected acoustic variation: this reflected the
dynamic environment in the BPNS, and the need to study these soundscapes in more
detail, in order to better understand this specific marine acoustic environment. Spatial or
temporal change in environmental variables could be noticed in the acoustic scenes, and
the obtained categories reflected these changes. In general, a greater proportion of spatial
environmental parameters were determined to be important by the RF model: this was
most likely explained by the fact that we did not record over long periods of time (e.g., over
all four seasons or years) and, therefore, many biotic acoustic patterns that are known to be
temporally driven [69] were not completely captured in our dataset.

Future work should hold the same analysis on a more extensive dataset with sta-
tionary recording stations, such as the dataset from the LifeWatch Broadband Acoustic
Network [70]. This would allow for testing the potential to capture circadian, monthly or
seasonal cycles. To be able to generalize our conclusions and test the robustness of the
method, it should be applied to new long- and short-term data from different underwater
acoustic contexts. If these datasets came from ecosystems that were well-studied acous-
tically, the results would be contrasted. We would thereby be able to assess whether the
obtained categories were representative and informative enough, and if they matched the
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currently existing knowledge or if they complemented it. Furthermore, the incorrectly
classified data could also be analyzed manually, to detect specific events, and to have more
insight into the missing explanatory parameters.

The method proposed here could be particularly useful in environments where the
visual correlation between ecological factors and the underwater soundscape cannot be
established: this includes low visibility and other challenging conditions, such as those
occurring in remote areas with high latitudes, where the winter season prevents traditional
ways of surveying, or in highly exploited areas. In these cases, a rapid and automated
tool, capable of characterizing the soundscape, and of monitoring its potential changes in
relation to relevant environmental drivers, would be very valuable.

Ecologically characterizing the soundscape categories is only possible if data from
all the environmental parameters are available. If not, the method could still be applied
to categorize the different recorded soundscapes into acoustically relevant categories that
could help guide conservation decisions on, e.g., areas with diver soundscape patterns. It
would also be possible to use the categories to optimize the sampling effort, and to only
sample for potential drivers where the soundscape categories are, e.g., most distinct. If no
environmental data from a specific site were available, it would be possible to train the
model on a similar dataset, but with available environmental data. The acoustic data could
then be explored, according to the obtained classification, to assess whether there were
similarities between the soundscape categories obtained in both datasets, thus establishing a
potential relationship with analogous drivers. In addition, the acoustic categories obtained
in such an unsupervised way could be manually analyzed and labeled, and subsequently
used as a baseline for future monitoring, to assess the acoustic change in time or the spatial
acoustic (dis)similarities in a certain environment.

5. Conclusions

Our work constitutes a significant contribution to the development of a methodology
for monitoring and characterizing underwater soundscapes in a fast and automatic way,
thereby complementing previous works on underwater soundscape analysis [71–73].

Classifying soundscapes into categories assigns a label to each acoustic environment:
this is an easy way to refer to and identify them, which can be useful for policy or conser-
vation programs. One application of using categories is to analyze long-term data. The
categories are able to point out trends, status and seasonal patterns. Working with fully
unsupervised acoustic categories creates the potential to assess the dynamic character of the
soundscape. The fact that no labeling effort is needed is a step towards solving the problem
of coping with the analysis of the increasing amount of acoustic data that the technological
advances allow to be collected and stored. In the global context of rapid environmental
change and increasing anthropic pressure, it is of critical importance to assess the acoustic
research gap, and to study bias towards more accessible ecosystems [2]. The method we
propose here constitutes an innovative and practical tool for categorizing and characteriz-
ing marine soundscapes, particularly in poorly known acoustic contexts. It could be used
for conservation purposes, disturbance detection and ecosystem integrity assessment.
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Appendix A

Table A1. Summary of all the field work days and the equipment used.

Date Boat Shipwrecks SoundTrap B and K

27 April 2020 RIB Zeekat

Coast, Loreley,
Nautica Ena,
Noordster,

Paragon, Renilde

576 kSs−1 NA

29 April 2020 RIB Zeekat
Heinkel 111, HMS

Colsay, Lola,
Westerbroek

576 kSs−1 192 kSs−1

5 May 2020
RIB working boat
from RV Simon

Stevin.

Buitenratel,
Killmore,

Westhinder
NA 192 kSs−1

13 July 2020
RIB working boat
from RV Simon

Stevin.

Faulbaums,
Grafton NA 192 kSs−1

6 May 2020
RIB working boat
from RV Simon

Stevin.
Belwind, CPower NA 192 kSs−1

7 May 2020
RIB working boat
from RV Simon

Stevin.
Garden City NA 192 kSs−1

8 May 2020
RIB working boat
from RV Simon

Stevin.

G88, Loreley,
Nautica Ena,

Paragon
NA 192 kSs−1

1 to 3 June 2020 Sailing boat
Capoeira.

Birkenfels,
Buitenratel,
Gardencity,

Grafton, Nautica
Ena, VG,

Westhinder, WK8

NA 192 kSs−1
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Table A1. Cont.

Date Boat Shipwrecks SoundTrap B and K

12 to 13 October
2020

Sailing boat
Capoeira.

Birkenfels,
Buitenratel,
Faulbaums,
Garden city,

Grafton, Nautica
Ena, VG,

Westhinder, WK8

NA 192 kSs−1

9 to 10 June 2021 Sailing boat
Capoeira.

Birkenfels,
Buitenratel,
Faulbaums,
Garden City,

Grafton, Nautica
Ena, Noordster,

VG2, Westhinder,
WK8

576 kSs−1 192 kSs−1

Table A2. Parameters used for UMAP dimension reduction.

Dataset Selected Minimum Distance Selected Number Neighbors

Full 0.0 10
Clean 0.0 50

Table A3. Parameters used for DBSCAN.

Dataset Selected Minimum Samples Selected Epsilon

Full 100 0.5
Clean 720 0.9

Table A4. Parameters used for the grid search during hyper-parameter tuning for the training of
the RF.

Parameter Values

criterion gini, entropy
min_samples_split 100, 300, 500

max_depth 6, 8, 12
min_samples_leaf 100, 200, 300
max_leaf_nodes 10, 15, 20

Table A5. Mean and standard deviations of the values of the one-third octave bands, in time per
each category.

Cluster Acoustic Summary

0
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(o) (p)

(q)

Figure A1. Summary of the SHAP values for all the features for class: (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) 5
(g) 6 (h) 7 (i) 8 (j) 9 (k) 10 (l) 11 (m) 12 (n) 13 (o) 14 (p) 15 (q) 16.
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(a) (b)

(c) (d)

(e) (f)

Figure A2. Examples of deployments evolution in time, recorded on the (a) 9 June 2021 (b) 8 May
2020 (c) 4 May 2020 (d) 7 May 2020 (e) 9 June 2021 (f) 29 April 2020.
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