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Towards operational
phytoplankton recognition
with automated high-
throughput imaging, near-real-
time data processing, and
convolutional neural networks

Kaisa Kraft1*, Otso Velhonoja1, Tuomas Eerola2,
Sanna Suikkanen1, Timo Tamminen1, Lumi Haraguchi1,
Pasi Ylöstalo1, Sami Kielosto1, Milla Johansson3, Lasse Lensu2,
Heikki Kälviäinen2, Heikki Haario2 and Jukka Seppälä1

1Finnish Environment Institute, Marine Research Centre, Helsinki, Finland, 2Computer Vision and
Pattern Recognition Laboratory, School of Engineering Science, Lappeenranta-Lahti University of
Technology LUT, Lappeenranta, Finland, 3Finnish Meteorological Institute, Helsinki, Finland
Plankton communities form the basis of aquatic ecosystems and elucidating

their role in increasingly important environmental issues is a persistent research

question. Recent technological advances in automated microscopic imaging,

together with cloud platforms for high-performance computing, have created

possibilities for collecting and processing detailed high-frequency data on

planktonic communities, opening new horizons for testing core hypotheses in

aquatic ecosystems. Analyzing continuous streams of big data calls for

development and deployment of novel computer vision and machine

learning systems. The implementation of these analysis systems is not always

straightforward with regards to operationality, and issues regarding data flows,

computing and data treatment need to be considered. We created a data

pipeline for automated near-real-time classification of phytoplankton during

remote deployment of imaging flow cytometer (Imaging FlowCytobot, IFCB).

Convolutional neural network (CNN) is used to classify continuous imaging

data with probability thresholds used to filter out images not belonging to our

existing classes. The automated data flow and classification system were used

to monitor dominating species of filamentous cyanobacteria on the coast of

Finland during summer 2021. We demonstrate that good phytoplankton

recognition can be achieved with transfer learning utilizing a relatively

shallow, publicly available, pre-trained CNN model and fine-tuning it with

community-specific phytoplankton images (overall F1-score of 0.95 for test set

of our labeled image data complemented with a 50% unclassifiable image

portion). This enables both fast training and low computing resource

requirements for model deployment making it easy to modify and applicable

in wide range of situations. The system performed well when used to classify a

natural phytoplankton community over different seasons (overall F1-score 0.82
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for our evaluation data set). Furthermore, we address the key challenges of

image classification for varying planktonic communities and analyze the

practical implications of confused classes. We published our labeled image

data set of Baltic Sea phytoplankton community for the training of image

recognition models (~63000 images in 50 classes) to accelerate

implementation of imaging systems for other brackish and freshwater

communities. Our evaluation data set, 59 fully annotated samples of natural

communities throughout an annual cycle, is also available for model testing

purposes (~150000 images).
KEYWORDS

IFCB, near-real-time classification, phytoplankton imaging, automated data
processing, imaging flow cytometry (IFC), convolutional neural network, CNN,
operational observations
1 Introduction
The role of oceans and coastal seas in the global climate is

well recognized, with phytoplankton playing a key role in

organic carbon fluxes (Moigne 2019). At the same time,

changes in the marine environment related to climate change

affect the abundance and diversity of phytoplankton (Hutchins

and Fu, 2017; Righetti et al., 2019), which is also likely to affect

ecosystem functioning. Phytoplankton communities consist of

hundreds of species of microorganisms with generation times in

the order of hours (Reynolds, 2006). As phytoplankton

community dynamics reflect changes in environmental

forcing, growth traits of competing species and multiple food

web interactions, a high-frequency characterization of those

communities is required to improve both ecological studies

and monitoring.

To follow and understand these changes at appropriate

spatial and temporal scales, and to provide data for ecosystem

modeling in predicting future responses, sustained observations

of phytoplankton diversity are required. Traditional methods of

phytoplankton community research using light microscopy

results in a bottleneck, due to the constraints of acquiring

community composition information on these small

organisms, which require laborious sample preparation and

microscopic identification. Recent frameworks for Essential

Ocean Variables and Essential Biodiversity Variables underline

the need to develop and improve automated observing

technologies for phytoplankton, combined with open solutions

for data handling (Miloslavich et al., 2018; Muller-Karger

et al., 2018).

Recent technological advances have led to the emergence of

automated and semi-automated imaging instruments for

plankton studies, with steadily improving image resolution and
02
output rates. One of the most promising methods for observing

nano to mesoscale aquatic organisms is imaging flow cytometry.

The Imaging FlowCytobot (IFCB) (Olson and Sosik, 2007) is

among the most frequently used imaging flow cytometers for

phytoplankton (covering a size range of approximately 10 to 150

µm Equivalent Spherical Diameter, or ESD) and its usefulness in

phytoplankton ecology has been demonstrated by several studies

(e.g. Laney and Sosik, 2014; Harred and Campbell, 2014; Anglès

et al., 2019; Fischer et al., 2020). It has also been popular in

Harmful Algal Bloom (HAB) studies or as an early warning

detection of rare but toxic species (Campbell et al., 2010; 2013,

Harred and Campbell, 2014; Henrichs et al., 2021; Kraft et al.,

2021). The IFCB can produce up to tens of thousands of images

per hour (Olson and Sosik, 2007), yielding real-time big data.

The use of this type of new instrument opens new horizons for

exploring planktonic systems (Lombard et al., 2019).

However, this creates a new bottleneck as it is impossible for

a human to screen millions of images. Analyzing this big data

calls for computer vision and machine learning methods capable

of producing interoperable data across platforms and systems.

As reviewed by Irisson et al. (2022) automatic plankton image

classification traditionally starts with the extraction of manually

engineered image features which are then used to train a

classifier, typically either a Support Vector Machine (SVM)

(Cortes and Vapnik, 1995) or a Random Forest (RF)

(Breiman, 2001). The main problem with this approach is in

finding image features which are both general and provide good

delineation between the classes. Recent progress in both

computer vision techniques and computing resources has

made it possible to learn relevant image features directly from

the images themselves, through deep learning (LeCun et al.,

2015). Recent papers using deep learning techniques for

plankton identification, especially Convolutional Neural

Networks (CNNs), have shown them to be an attractive choice
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for automation of the process (e.g. Luo et al., 2018; Dunker et al.,

2018; Lumini and Nanni, 2019; Kerr et al., 2020; Lumini et al.,

2020; Guo et al., 2021; Henrichs et al., 2021).

Transfer learning i.e., pre-training the model with a large

data set of generic images and fine-tuning it to the target data set,

is a common method used with CNNs. Thus, multiple platforms

distribute pre-trained generic CNN models. Consequently,

choices for CNN architectures and training procedures are

numerous (Lumini and Nanni, 2019). However, applying

CNN techniques to plankton image recognition is not

straightforward due to the differing distribution of the training

and target data and the multitude of CNN architectures to

choose from. In addition, CNN-based methods are usually

trained using data sets with hundreds, or even thousands of

example images per class, which is often difficult to obtain in

practice, especially in new locations (Dai et al., 2017).

Furthermore, “data set shift” (i.e. the change in distribution of

data across classes between the training data set and reality) is an

important issue when deploying machine learning models

(Moreno-Torres et al., 2012). Data set shift is highly relevant

to plankton applications due to factors such as seasonal changes

in community composition. This underlines the importance of

assembling a diverse training data set, over time and space

(González et al., 2017). Additionally, the size of CNN models

becomes an important fac tor in moving towards

automated/semi-automated plankton classification for

real-time observations, determining the computational

capacity needed.

High-throughput imaging coupled with efficient deep

learning techniques will be one of the key game changers in

the ecological research of phytoplankton. As with other branches

of science using big data, the key challenges in plankton imaging

are validation of data quality, integration of different data

sources, defining common vocabularies of metadata and

sharing of data and technology solutions to create reliable,

acceptable and timely products (Muller-Karger et al., 2018;

Lombard et al., 2019). In their review, Lombard et al. (2019)

list a set of challenges and priorities for emerging phytoplankton

detection technologies. One of their main recommendations is

collaboration between experts and exchange with other

disciplines, such as modeling. Phytoplankton imaging is also

recognized as one of the main emerging technologies of coastal

observation research systems for the provision of data to various

stakeholders (Farcy et al., 2019). This study helps solve some of

these technological challenges and improve the applicability of

phytoplankton image recognition systems.

Our aim in this study is to address some of the fundamental

challenges in the implementation of automated/semi-automated

phytoplankton classification for real-time plankton image

observations, using the Baltic Sea phytoplankton community

as an example. This environment is one of Earth’s largest

brackish water habitats, with an especially challenging mix of

phytoplankton species of both freshwater and marine origins,
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including many small-sized species (Olli et al., 2019). Such a data

set, collected from a completely new type of habitat, has a

different species composition to those from previous studies

on plankton image classification. This poses a challenge to the

implementation of automated recognition systems.

We created a data pipeline that allows near-real-time

automated classification of individual plankton organisms

using a CNN, throughout a remote deployment of an IFCB.

We demonstrate its operationality by monitoring the

filamentous cyanobacteria of the Baltic Sea, which are an

important phytoplankton group due to their harmful summer

blooms. We used a relatively shallow, openly available, pre-

trained CNN model and fine-tuned it to plankton images from

brackish waters. We demonstrate that, through this simple

transfer-learning approach, one can achieve good classification

accuracy. This makes our approach applicable to a wide range of

users with low resources for model deployment. We further

address the practical implications of the classifier performance

by discussing the highest confusions among the classes.
2 Materials and methods

2.1 Sampling system

The IFCB (McLane Research Laboratories, Inc., U.S.) is an in

situ automated submersible imaging-in-flow cytometer

developed to image planktonic organisms (Olson and Sosik,

2007). The instrument can be used with either scatter or

chlorophyll a fluorescence as a trigger, the latter being used

more often for phytoplankton detection. Sheath fluid is used to

force the particles to flow through the middle of the flow cell,

improving the focus of the images and enabling excellent quality.

The instrument has an image resolution of roughly 3.5 pixels per

µm. According to the manufacturer, it captures images of

suspended particles in the range of 10 to 150 µm (ESD), but in

practice particles ranging from ~5 µm ESD to filaments ~300 µm

in length have been captured (Kraft et al., 2021). The limiting

factors are camera resolution, to get identifiable images, on the

lower end and a 150-µm mesh at the instrument inlet that

prevents it from clogging, together with the size of the field of

view. However, the size range needed for quantitative

observations is likely restricted to 10 to 80 µm (ESD)

(Lombard et al., 2019). The IFCB processes a 5-mL sample

every ~20 minutes, collecting up to ~30 000 images per hour.

The Marine Research Centre of the Finnish Environment

Institute (SYKE) has had an IFCB deployed at the Utö

Atmospheric and Marine Research Station (59°46.84’ N, 21°

22.13’ E) sporadically since 2017, now deployed continuously

since early 2020 (see the detailed description of the station in

Laakso et al., 2018 and the deployment setup in Kraft et al.,

2021). Water is pumped continuously for the station’s flow-

through measurements, from 250 m offshore, with an
frontiersin.org
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underwater pump (Grundfos SP3A-9N) through a 50-mm black

PE tube lying at the sea bottom, at a depth of 23 m. The inlet for

water sampling is located at a depth of ~5 m, representing the

near-surface layer. The time it takes for the water to reach the

cabin is approximately 5-6 minutes. Water is distributed

through several flow-through sensors (including the IFCB),

after reaching the inside of the station building (Laakso et al.,

2018). The IFCB is currently operated with a chlorophyll a

trigger to prevent the imaging of detritus and other non-

living material.
2.2 Labeled image data sets

2.2.1 Image data set for model training
and testing

To implement an automated image recognition system for

Baltic Sea phytoplankton, a labeled image data set is required for

training a classifier and testing its performance. Our labeled

image data set, referred to as SYKE-plankton_IFCB_2022,

consists of approximately 63 000 images belonging to 50

different phytoplankton taxa, defined, identified and verified

by expert taxonomists (Figure 1). Due to differences in the

features of the organisms visible in the images, which form the

basis of the identification, some classes have been determined to

the species level while others have been determined at a higher

taxonomic level. The 50 classes represent the most common

phytoplankton species/groups present in the Gulf of Finland and

the Northern Baltic Proper. The taxonomy follows the Checklist

of Baltic Sea Phytoplankton Species (Hällfors, 2004) and the

nomenclature of the World Register of Marine Species (WoRMS

Editorial Board, 2021). The data set SYKE-plankton_IFCB_2022

is publicly available at: http://doi.org/10.23728/b2share.

abf913e5a6ad47e6baa273ae0ed6617a.

The SYKE-plankton_IFCB_2022 data set was collected in

the Baltic Sea on different occasions, to cover spatio-temporal

variations in plankton communities. In 2016 and 2019 water

samples (n=52) were collected using the Alg@line ferrybox

systems of M/S Finnmaid and Silja Serenade (Ruokanen et al.,

2003; Kaitala et al., 2014) and analyzed in the laboratory with the

IFCB. In 2017 and 2018 data were collected at the Utö station

over the deployment periods, with the continuous set up of the

IFCB, followed by the sporadic selection and labeling of a set of

samples (n=62) (Figure 2).

Images of natural phytoplankton communities reflect their

wide morphological diversity, resulting in large variations in size

and aspect ratios of the images, with images ranging from tens to

hundreds of pixels vertically and tens to more than one thousand

pixels horizontally. The samples were labeled using a tool created

by Sosik et al. (https://github.com/hsosik/ifcb-analysis/wiki/

Instructions-for-manual-annotation-of-images). Some samples

were labeled so that all identifiable regions of interest (ROIs)
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were assigned to a class and some samples were labeled only

partially, to expand the labeled sets of some classes. The data set,

therefore, does not represent real-life proportions among classes,

however, the number of images per class still reflects, to some

extent, their prevalence in natural populations.

The IFCB produces a non-negligible amount of images that

are difficult or even impossible to identify with certainty. To

train a CNN model, only images that can be reliably labeled

should be used, to avoid mislabeled images which would

negatively affect the training process. However, for testing the

performance of the model, the unidentifiable part of the samples

should be considered for calculating realistic performance

metrics. The SYKE-plankton_IFCB_2022 data set was divided

using stratified sampling, into training, validation and test sets

(60%, 20% and 20% respectively). The training set, referred to

here as Training Data, was used exclusively for training the

model. The validation set had two purposes. First, it was used to

monitor the model’s accuracy during training, which is what it is

usually used for, and in this sense is referred to as a validation

set. After the model training was complete, the validation set was

complemented with an equal number of unclassifiable images

(50-50%) to make it more representative of image data from

natural phytoplankton communities (including detritus and

other unidentifiable images). The validation set complemented

by the unidentifiable images (Validation Data) was used to

determine class-specific thresholds which will be explained in

section 2.3.1 Probability filtering of unclassifiable images using

thresholds. For the same reason as with the Validation Data, the

test set was similarly complemented with equal numbers of

unclassifiable images (50-50%). The test set with unclassifiable

images (Test Data) was used to calculate the final, unbiased

estimation of the model’s performance. The difference between

dominant and rare taxa in the SYKE-plankton_IFCB_2022 data

set manifests itself as a large imbalance in the number of images

per class: it varies from 19 (Amylax triacantha) to 12 280

(Dolichospermum sp./Anabaenopsis sp.).
2.2.2 Image data set for performance
evaluation

As previously explained, correct evaluation of model

performance in classifying natural samples requires test data to

contain difficult-to-classify images. That is, their features fit several

different classes (so-called borderline images), as is the case with

multiple images in natural samples. For this purpose, 59 samples

were selected from 2021 when the IFCB was continuously deployed

in Utö; first as one per week throughout the year complemented

with samples from specific seasons to target specific classes. All

samples were manually labeled in their entirety so that each image

was assigned to one of the 50 classes or as “unclassified” (unable to

be assigned to any of the existing classes). The image labeling was

done with a custom graphical tool in a Jupyter Notebook, utilizing
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the model's predictions to speed up the process. This data set,

SYKE-plankton_IFCB_Utö_2021 (Evaluation Data), is publicly

available at http://doi.org/10.23728/b2share.7c273b6f40

9c47e98a868d6517be3ae3.
Frontiers in Marine Science 05
2.3 The CNN model

The neural network model used in this study is based on a

pre-trained ResNet-18 (He et al., 2016) and fine-tuned with the
FIGURE 1

Example images representing the classes. 1) Aphanizomenon flosaquae, 2) Dolichospermum sp./Anabaenopsis sp. coiled, 3) Nodularia
spumigena, 4) Dolichospermum sp./Anabaenopsis sp., 5) Snowella sp./Woronichinia sp., 6) Chroococcales, 7) Merismopedia sp., 8)
Oscillatoriales, 9) Aphanothece paralleliformis, 10) Chroococcus sp., 11) Eutreptiella sp., 12) Euglenophyceae, 13) Cryptomonadales, 14)
Cryptophyceae/Teleaulax sp., 15) Katablepharis remigera, 16) Pseudopedinella sp., 17) Pyramimonas sp., 18) Ceratoneis closterium, 19)
Uroglenopsis sp., 20) Cymbomonas tetramitiformis, 21) Chlorococcales, 22) Monoraphidium contortum, 23) Oocystis sp., 24) Pennales thin, 25)
Pennales thick, 26) Centrales, 27) Thalassiosira levanderi, 28) Cyclotella choctawhatcheeana, 29) Chaetoceros sp. single, 30) Melosira arctica, 31)
Skeletonema marinoi, 32) Nitzschia paleacea, 33) Licmophora sp., 34) Chaetoceros sp., 35) Pauliella taeniata, 36) Peridiniella catenata chain, 37)
Peridiniella catenata single, 38) Gymnodiniales, 39) Gymnodinium like cells, 40) Heterocapsa triquetra, 41) Heterocapsa rotundata, 42)
Prorocentrum cordatum, 43) Gonyaulax verior, 44) Amylax triacantha, 45) Dinophyceae, 46) Dinophysis acuminata, 47) Mesodinium rubrum, 48)
Ciliata, 49) Beads, 50) Heterocyte.
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SYKE-plankton_IFCB_2022 Baltic Sea phytoplankton image

data set, described above. The pre-trained model was obtained

from TorchVision, which is part of the PyTorch project (Paszke

et al., 2019). TorchVision models are pre-trained on the

ImageNet data set (Deng et al., 2009), which consists of RGB

images of 1000 classes, such as fire truck and Golden Retriever.

The head of the pre-trained ResNet-18, i.e., the last fully

connected linear layer, was replaced with three new linear

layers, while the rest of the network layers were only fine-

tuned. The new layers were initialized with the default

PyTorch initialization for linear layers, which was in more

detail a uniform distribution between -√k and √k, where k =

1/in_features.

To improve the performance of unseen images (not present

in the Training Data), avoid overfitting and reduce class

imbalance, first, random oversampling was done for the
Frontiers in Marine Science 06
smaller classes in the Training Data so that each class

contained a minimum of 100 training images. Secondly, some

simple image augmentations were used for all classes in the

Training Data (including the resampled images): horizontal and

vertical flip, translation, zoom and brightness change. However,

all augmentations were done sparingly since images generated

by the IFCB are quite homogeneous. More specifically,

translation was done only on the shorter side of the original

image and none of the original pixels were clipped, the zoom

range was 0.6 to 1.4, the rotation range was -10 to 10 degrees,

and the range of brightness change was 0.95 to 1.1. Another

approach to address class imbalance would be to provide class-

specific weights to the optimizer (see e.g. cost-sensitive learning,

Thai-Nghe et al., 2010). However, to avoid reducing the

generalizability of the model to data sets with different class

proportions, this method was not used.
FIGURE 2

Map showing the location of Utö Atmospheric and Marine Research Station, and the points along the Alg@line routes of M/S Finnmaid and M/S
Silja Serenade, from where the manually annotated samples were collected.
frontiersin.org
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Images were resized to 180×180 pixels since 180 is the mean

width of the training images. To preserve the original image

aspect ratio, the mode (i.e., most frequent) pixel value of each

image was used as padding in its resized form. Pixel values were

scaled between 0 and 1 for each image, a process known as min-

max normalization, to avoid any training overhead caused by

unnecessarily large integer values. Although the IFCB images are

grayscale, because the original ResNet was trained with RGB

images, three color channels were used.

A categorical cross-entropy loss was used with Adam as the

optimizer function (Kingma and Ba, 2014). To further improve

model training, a custom learning rate schedule was used. This

schedule consisted of three steps. At each step, the number of

trainable layers was increased, and the learning rate was

decreased. Step 1 lasted for 5 epochs, where only the last linear

layers were trained with a learning rate of 0.01. Step 2 lasted for

the next 10 epochs, where the training of the last convolutional

layer was started with a learning rate of 0.001, and the learning

rate of the linear layers was decreased to 0.005. Step 3 lasted from

epoch 16 onward, where the rest of the base layers were trained

with a 0.0001 learning rate, the last base layer was trained with

0.001, and the head layers were trained with 0.0025. The training

was stopped when the loss value on the validation set did not

decrease for 12 epochs. The average training time was one hour

on a single NVIDIA Tesla P100 GPU.

Class-specific recall, precision and F1-score were calculated

for the classification results to describe the class-specific

performance of the model. The weighted average F1-score was

calculated to describe the entire model performance since global

accuracy is a flawed metric for class-imbalanced data (Hossin

and Sulaiman, 2015). Weighted average F1-score was chosen

since we were evaluating the classification model from an

operational point of view, in which case, the common classes

and therefore more abundant ones should be given more weight.

The computation involves True positive (TP), False positive (FP)

and False negative (FN) numbers. Recall quantifies how well

classes are identified and is computed as the proportion of

successful identifications in a class. Precision quantifies how

well other classes are rejected and is computed as the proportion

of positive identifications that were correct. F1-score expresses

the balance between recall and precision.

Recall = TP= TP + FNð Þð Þ

Precision = TP= TP + FPð Þð Þ

F1 − score = 2* precision*recallð Þ= precision + recallð Þð Þð Þ
2.3.1 Probability filtering of unclassifiable
images using thresholds

As explained before, not all images captured by IFCB are

classifiable due to a lack of characteristic features for example.
Frontiers in Marine Science 07
We chose not to create classes for those. Therefore, a filtering

method was needed to remove those images when the CNN was

deployed. For each image, a classifier produces prediction scores

for all classes in the training data. Prediction scores can be

considered the probability of correctly classifying an image and

the highest prediction score represents the winning class. By

assigning a threshold, which the prediction score must exceed,

they can then be used to filter out images with low classification

probabilities. The threshold is not universal but class-specific.

Therefore a unique probability threshold was estimated for each

class, and only images with at least one class probability above

any assigned thresholds were assigned to a class. Filtering the

data is a proven method to treat low probability classifications

(Faillettaz et al., 2016; Luo et al., 2018).

The final layer in our CNN model uses a softmax activation

function, which outputs a normalized probability distribution

over the classes. Since the probability distribution coming from a

softmax can be quite extreme, i.e., one class has most of the

probability mass, the outputs from the layer before the softmax

were scaled down. Scaling was done by multiplication by the

natural logarithm of 1.3. This has the same effect as changing the

base of the exponents in the softmax function from e to 1.3,

however, it is easier to scale the outputs rather than modify the

softmax itself. The value of 1.3 was determined by manually

testing different values. In short, the conversion is: softmax

(out×ln(1.3)), where out = the outputs of the layer before

softmax. This conversion introduced more smoothness in the

class probabilities while maintaining their order (and therefore

the classification). Smoothness made it easier to set class

probability thresholds. A figure illustrating the effect of scaling

on selected ROIs can be found in the supplementary material

(Supplementary 3).

Ideally, thresholds would be assigned with a data set

representing a species distribution similar to that of a natural

community. However, the community composition changes

with the seasons and species dynamics differ from year to year.

Therefore, acquiring an ideal data set for threshold

determination, which represents natural distribution covering

all common species, is laborious. To start the implementation of

the classifier we used the Validation Data to determine

thresholds. The Validation Data was run through the classifier

and precision, recall and F1-score were calculated. The threshold

was varied and the value yielding the highest F1-score was

chosen for a given class. The chosen thresholds were tested by

running the Test Data through the classifier, and precision, recall

and F1-score were calculated. Images below the thresholds were

still considered when calculating performance metrics: correct

images of a class which reached the assigned threshold limit were

considered as TP and incorrect images FP; correct images below

the threshold limit were considered as FN and incorrect

images TN.

The code implementing the model described above can be

found at https://github.com/veot/syke-pic.
frontiersin.org
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2.4 Data transfer and services

First, the IFCB data is stored on the instrument’s hard drive.

Then the IFCB is connected to the Utö station’s inner network,

through which the data flows to the Finnish Meteorological

Institute (FMI) file server via optical fibre, where it is

temporarily stored. From there onwards it is transferred to a

cloud object storage service Allas, provided by the Finnish IT

Center for Science (CSC). Allas is based on CEPH object storage

technology, allowing to easily share data to other services within

the CSC’s computing platform - much like Amazon S3 in AWS.

The subsequent data analysis (described below) is done on a

Linux virtual machine with 6 vCPUs and 16 GB of memory (the

number of resources required for computing also image

biovolumes, described below), also provided by CSC.

Significantly fewer resources are needed when running the

CNN-classifier alone.
2.5 Near-real-time data analysis

To use the generated IFCB images and the CNN classifier for

near-real-time phytoplankton monitoring, a basic data pipeline

was established. The near-real-time data pipeline and

classification system were taken into use at the beginning of

summer 2021. The entire data transfer pipeline results in a total

delay of about two hours from the image capture to the point

when the image is classified. The classification is performed

automatically via the above-described CNN model as soon as a

new batch of IFCB data is updated to Allas, on an hourly schedule,

and the data is classified into the 50 classes. In addition to image

classification also image-specific biovolumes are computed. A

method developed by Moberg and Sosik (2012) is used for

computing the biovolumes of the objects (phytoplankton) in the

images taken with IFCB. More detailed descriptions of available

MATLAB-based tools and open access codes can be found at

https://github.com/hsosik/ifcb-analysis. For comparison of the

biovolume estimates with those obtained via traditional

phytoplankton monitoring methods of the Baltic Sea area

(HELCOM, 2017), the biovolumes are converted to biomass (µg

L-1) assuming a plasma density of 1 g cm-3 (CEN, 2015). Finally,

the biovolume/biomass information is combined with the

classifications resulting in a usable form of class-specific

biovolume/biomass per L in a sample and the hourly mean

is calculated.
2.6 Evaluation of the near-real-time
classifier system

To assess how well the model classified natural samples

using the thresholds determined using the Validation Data, a
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total of 59 samples (a total of approx. 20 hours of data) were

selected from data collected with IFCB between January to

December 2021 (the Evaluation Data). First the selection

targeted one sample per week, but due to the scarcity of some

classes additional samples were selected from expected seasons

to find images of the scarce classes. As proposed by González

et al. (2017) for proper performance validation a set of samples

should have sufficient variability. We attempted to ensure this by

selecting samples from different seasons which also covered

transition phases. Selected samples were manually inspected:

all classifications were assessed (confirmed or corrected) and all

identifiable images which fell below the thresholds were labeled.

The unidentifiable images left without an assigned class were

considered unclassified. Unclassified images are still accounted

for in the total community biomass with the assumption that

when chlorophyll a is used as a trigger the majority of imaged

particles should be living material. The TP, FP and FN were

counted and consequently precision, recall and F1-score were

calculated for each class. Class-specific metrics were calculated

based on the thresholds determined using the Validation Data,

so images below the thresholds were still taken into account:

correct images within a class to reach the assigned threshold

were considered TP and incorrect images FP; correct images

below the threshold were considered FN and incorrect

images TN.
3 Results

3.1 CNN classifier performance

The first step in implementing a near-real-time analysis of

plankton communities is to establish a suitable recognition

model. Overall classification performance of the Test Data

using CNN was high (F1-score 0.95), and the network was

able to identify many common species of the Baltic Sea

phytoplankton community. The class-specific precision, recall

and F1-score were between 0.85 and 1 in over half of the classes,

but some of the classes had much lower values (0.4-

0.6) (Table 1).

With classes having the largest training sets (> 1000 images),

all the metrics (precision, recall and F1-score) were between 0.94 -

1. With some classes such as Euglenophyceae, Dinophysis

acuminata, Peridiniella catenata chain, Ceratoneis closterium,

Nitzschia paleacea, Monoraphidium contortum and

Cymbomonas tetramitiformis all the metrics were > 0.9,

although the Training Data contained < 200 images. Classes

with the poorest performance (all metrics < 0.7) were

Aphanothece paralleliformis, Pseudopedinella sp., Pyramimonas

sp., Chlorococcales and Beads (calibration). These all contained

low numbers of training images (17 – 227, discounting data

augmentation) except for Pyramimonas sp. (734 images). The

largest differences between precision and recall were found with
frontiersin.org
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TABLE 1 The table represents the class-specific classification metrics for the Test Data and for the Evaluation Data (Pr, precision; Re, Recall;
F1, F1-score; N, number of images).

Class/taxonomic group Training Data Validation set Test Data Evaluation Data

N Threshold N Pr Re F1 N Pr Re F1

Cyanophyceae (0.94)

Dolichospermum sp./Anabaenopsis sp. 7368 0.38 2456 0.98 0.99 0.98 790 0.88 0.96 0.92

Aphanizomenon flosaquae 4193 0.24 1398 0.97 1.00 0.98 1849 0.87 0.98 0.92

Oscillatoriales 2664 0.31 888 0.99 1.00 0.99 3893 0.98 0.98 0.98

Snowella sp./Woronichinia sp. 1770 0.63 590 0.99 0.97 0.98 42 0.64 0.69 0.67

Dolichospermum sp./Anabaenopsis sp. coiled 1502 0.41 501 0.93 0.96 0.95 70 0.74 0.99 0.85

Chroococcus sp. 496 0.61 166 0.90 0.94 0.92 2 ND ND ND

Nodularia spumigena 101 0.32 34 0.80 0.94 0.86 62 0.80 0.84 0.82

Chroococcales 85 0.73 29 0.75 0.93 0.83 793 1.00 0.51 0.68

Merismopedia sp. 59 0.63 19 0.79 0.79 0.79 2 ND ND ND

Aphanothece paralleliformis 17 0.80 6 0.57 0.67 0.62 9 ND ND ND

Cryptophyceae (0.89)

Cryptophyceae/Teleaulax sp. 4098 0.53 1366 0.96 0.97 0.96 16952 0.97 0.90 0.93

Cryptomonadales 428 0.37 142 0.79 0.82 0.81 525 0.65 0.58 0.61

Euglenophyceae (0.76)

Eutreptiella sp. 1348 0.43 450 0.95 0.94 0.94 1678 0.90 0.76 0.83

Euglenophyceae 61 0.24 21 0.90 0.90 0.90 18 0.28 0.39 0.33

Dinophyceae (0.75)

Heterocapsa triquetra 1966 0.39 655 0.98 0.97 0.97 2267 0.91 0.95 0.93

Dinophyceae 860 0.40 286 0.88 0.94 0.91 1562 0.83 0.45 0.59

Peridiniella catenata single 539 0.52 180 0.89 0.97 0.93 222 0.75 0.81 0.78

Heterocapsa rotundata 368 0.56 123 0.84 0.90 0.87 2609 0.85 0.74 0.79

Prorocentrum cordatum 166 0.47 55 0.87 0.82 0.84 0 ND ND ND

Dinophysis acuminata 130 0.68 44 0.98 0.91 0.94 17 0.79 0.65 0.71

Peridiniella catenata chain 116 0.70 38 0.97 1.00 0.99 89 0.99 0.87 0.92

Gymnodinium like cells 95 0.44 31 0.76 0.52 0.62 102 0.59 0.25 0.36

Gymnodiniales 41 0.29 14 0.92 0.86 0.89 38 0.78 0.74 0.76

Gonyaulax verior 13 0.32 5 0.57 0.80 0.67 1 ND ND ND

Amylax triacantha 11 0.34 4 0.60 0.75 0.67 3 ND ND ND

Bacillariophyceae (0.86)

Skeletonema marinoi 2477 0.46 825 1.00 0.99 0.99 7402 0.99 0.94 0.97

Thalassiosira levanderi 1522 0.63 508 0.95 0.95 0.95 2008 0.87 0.68 0.77

Chaetoceros sp. chain 829 0.51 277 0.93 0.95 0.94 693 0.76 0.77 0.76

Pennales thin 469 0.29 156 0.96 0.99 0.97 334 0.61 0.84 0.71

Centrales 288 0.51 96 0.98 0.89 0.93 92 0.77 0.68 0.72

Chaetoceros sp. single 128 0.12 42 0.85 0.98 0.91 571 0.75 0.60 0.67

Pennales thick 126 0.37 42 0.93 0.88 0.90 1088 0.72 0.85 0.78

Pauliella taeniata 71 0.62 24 1.00 0.96 0.98 56 0.96 0.86 0.91

Cyclotella choctawhatcheeana 61 0.47 21 0.89 0.81 0.85 199 0.92 0.57 0.71

Licmophora sp. 44 0.43 15 1.00 0.80 0.89 78 0.88 0.77 0.81

Nitzschia paleacea 39 0.40 13 0.92 0.92 0.92 4 ND ND ND

Ceratoneis closterium 27 0.41 9 1.00 1.00 1.00 75 0.68 0.91 0.78

Melosira arctica 26 0.30 8 0.73 1.00 0.84 58 0.85 0.91 0.88

Chrysophyceae (0.51)

Uroglenopsis sp. 310 0.88 103 0.89 0.83 0.86 134 0.50 0.66 0.57

Pseudopedinella sp. 227 0.76 76 0.69 0.67 0.68 579 0.81 0.46 0.59

(Continued)
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the classes, Gymnodinium like cells (0.76, 0.52), Gonyaulax verior

(0.57, 0.8),Melosira arctica (0.73, 1),Katablepharis remigera (0.83,

0.45) and Beads (0.44, 0.64). With Gymnodinium like cells and

Katablepharis remigera precision was higher than recall, meaning

rejection of images not belonging to the class was higher than

recognition of images which did belong to the class. For the classes

Gonyaulax verior, Melosira arctica and Beads, there was no issue

in recognizing the images belonging to the class, however, there

was the problem of a high proportion of false positives. Metrics for

classes of filamentous cyanobacteria (an important group in the

Baltic Sea) were all ≥ 0.93 except for the class, Nodularia

spumigena, which had the poorest performance (0.8 – 0.94). It

is important to note that Nodularia spumigena’s training set had a

considerably smaller number of images (only 101, compared to

Aphanizomenon flosaquae: 4193, Dolichospermum sp./

Anabaenopsis sp.: 7368, Dolichospermum sp./Anabaenopsis sp.

coiled: 1502) (Table 1).

When applying the classification system (the Evaluation

Data) overall performance dropped, but remained fairly high

for natural samples (F1-score 0.82). All class-specific

classification metrics are presented in Table 1. For the classes

with > 1000 images in the Training Data, the change in F1-score

was ≤ 0.1 except for the classes, Snowella sp./Woronichinia sp.,

Eutreptiella sp. and Thalassiosira levanderi. For classes with <

200 images in the Training Data score decreased ≤ 0.1 for

Nodularia spumigena, Peridiniella catenata chain, Pauliella

taeniata, Licmophora sp., Melosira arctica and Monoraphidium

contortum. The F1-score of Melosira arctica increased along
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with a larger number of images, on which the evaluation was

based (8 in the Test Data and 58 in the Evaluation Data). The

results for classes with < 10 images in their Evaluation Data will

not be presented as these rare occurrences would not help in

analyzing the model performance. However, classes with < 10

images in their Test Data were presented, as some classes had

much higher number of images in the Evaluation Data (Melosira

arctica and Ceratoneis Closterium). Other classes with > 10

images in the Evaluation Data, the poorest performance

(metrics < 0.7) was found for classes Snowella sp./

Woronichinia sp., Cryptomonadales, Gymnodinium like cells,

Uroglenopsis sp. and Heterocyte. The recall and F1-score (0.29 –

0.59) were low for the classes Pseudopedinella sp., Pyramimonas

sp. and Chlorococcales but precision was relatively high

indicating a poor function in class recognition and that class-

specific thresholds should be adjusted. Class recognition

performance of filamentous cyanobacteria (Aphanizomenon

flosaquae , Dol i chospermum sp . /Anabaenops i s sp . ,

Dolichospermum sp./Anabaenopsis sp. coiled, Nodularia

spumigena) was relatively high. This was also true for natural

samples (F1-scores 0.82 – 0.92) (Table 1).

The majority of classification problems, of course, occurred

between classes which resembled one another and were typically

from closely related taxa. The highest confusion amongst CNN

model results, when probability filtering thresholds were not

used, were within different classes of dinoflagellates and between

species-level classes and higher taxonomic-level classes

belonging to the same order (Table 2). Gymnodinium like cells
TABLE 1 Continued

Class/taxonomic group Training Data Validation set Test Data Evaluation Data

N Threshold N Pr Re F1 N Pr Re F1

Chlorophyta (0.34)

Pyramimonas sp. 734 0.95 245 0.57 0.41 0.48 8422 0.88 0.32 0.47

Oocystis sp. 505 0.50 169 0.88 0.93 0.90 161 0.91 0.89 0.90

Monoraphidium contortum 196 0.69 66 0.98 0.98 0.98 439 0.99 0.96 0.97

Cymbomonas tetramitiformis 119 0.44 40 0.90 0.90 0.90 4 ND ND ND

Chlorococcales 57 0.48 19 0.43 0.47 0.45 45 0.81 0.29 0.43

Other

Katablepharis remigera 32 0.36 11 0.83 0.45 0.59 4 ND ND ND

Ciliophora (0.76)

Mesodinium rubrum 679 0.44 227 0.96 0.95 0.96 560 0.91 0.86 0.88

Ciliata 146 0.39 48 0.89 0.88 0.88 288 0.93 0.49 0.64

Additional classes

Heterocyte 158 0.88 52 0.76 0.75 0.76 318 0.72 0.51 0.60

Beads 75 0.90 25 0.44 0.64 0.52 0 ND ND ND

Unclassifiable 12600 94028
fro
ntiersin
Classes are organized by the size of the training set to different taxonomic groups. N is the number of images per class in the Training Data, Test Data and Evaluation Data. Threshold is the
class-specific threshold used for the classification, determined with the Validation Data. ND in the Evaluation Data means “Not Determined”, the metrics were not calculated for classes with
< 10 images. The group level results are presented in brackets after each taxonomic group (the percentage of how big portion of the images belonging to that group were correctly classified to
the group).
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TABLE 2 Class pairs with the highest number of inter-class classification errors.

Group Actual label A A -> B (%) Predicted label B Group
Dinophyceae Dino

Peridiniella catenata single Dino

Peridiniella catenata single DIno

Eutreptiella sp. Eugleno

Cryptomonadales Crypto

Oocystis sp. Chloro

Snowella sp. / Woronichinia sp. Cyano

Eutreptiella sp. Eugleno

Eutreptiella sp. Eugleno

Thalassiosira levanderi Diatom

Chaetoceros sp. chain Diatom

Pennales thin Diatom

Chaetoceros sp. chain Diatom

Aphanizomenon flosaquae Cyano

Cryptomonadales Crypto

Dinophyceae Dino

(Continued)
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Dino Gymnodinium like
cells

35
8

Dino Amylax triacantha* 25
33

Dino Gonyaulax verior* 20

Dino Gymnodiniales 7

Dino Gymnodiniales 7

Chloro Chlorococcales 26

Chloro Chlorococcales 11

Crypto Cryptomonadales 10

Eugleno Euglenophyceae 10

Diatom Cyclotella
choctawhatcheeana

14

Diatom Cyclotella
choctawhatcheeana

5

Diatom Pennales thick 5

Diatom Chaetoceros sp.
single

7

Cyano Nodularia spumigena 6

Other Katablepharis remigera 9

Other Katablepharis remigera 9
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TABLE 2 Continued

Group Actual label A A -> B (%) Predicted label B Group
Other Katablepharis remigera 9 Heterocapsa triquetra Dino

Heterocapsa triquetra Dino

Cryptophyceae/ Teleaulax sp. Crypto

Cryptophyceae/ Teleaulax sp. Crypto

Heterocapsa triquetra Dino

Aphanizomenon flosaquae Cyano

Chaetoceros sp. chain Diatom

Chaetoceros sp. single Diatom

Pennales thin Diatom

Aphanizomenon flosaquae Cyano

Mesodinium rubrum Ciliata

Chaetoceros sp. chain Diatom

d label B). The middle column contains the portions of images in class A that were incorrectly classified to class B. The results
esholds) and the rest of the results are for the Evaluation Data. The cells with two confusion values are: top: the test set, below:
yanophyceae; Eugleno, Euglenophyceae; Dino, Dinophyceae; Diatom, Bacillariophyceae; Ciliata, Ciliophora. The example
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Dino Gymnodiniales 5

Crypto Cryptomonadales 5

Eugleno Euglenophyceae 6

Eugleno Euglenophyceae 6

Diatom Pennales thin 8

Diatom Nitzschia paleacea* 25

Diatom Nitzschia paleacea* 25

Diatom Ceratoneis closterium 7

Cyano Aphanothece paralelliformis* 22

Ciliata Ciliata 5

Ciliata Ciliata 6

The table contains each class (Actual label A) with higher than 5% confusion to another class, as well as the terminal classes (Predict
highlighted in blue are for the test set of SYKE-plankton_IFCB_2022 (without unclassifiable images and probability filtering with th
the Evaluation Data. The abbreviations of the phytoplankton groups are: Chloro, Chlorophyta; Crypto, Cryptophyceae; Cyano,
images were randomly selected and not necessarily misclassified. Classes with * included <10 images.
e
r
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were confused (35%) for Dinophyceae and placed within a

higher taxonomic branch, Amylax triacantha and Gonyaulax

verior (with 4 and 5 images in the Test Data respectively) were

confused (25% and 20% respectively) for Peridiniella catenata

single (539 training images). Chlorococcales was also

considerably confused for Oocystis sp. (26%). From

filamentous cyanobacteria, only 6% of Nodularia spumigena

was confused with Aphanizomenon flosaquae (Table 2). A

confusion matrix with all confused classes is provided as

supplementary material (Supplementary 1).

Confusion was lower among classes in the Evaluation Data

when probability filtering with thresholds was applied. However,

several images were left unclassified, as a delicate balance

between TP and FN must be achieved for threshold

assignation. A class-specific confusion matrix for the

Evaluation Data, including those left unclassified, is provided

as supplementary material (Supplementary 2). Similar, to the

Test Data without filtering, the highest confusion among classes

in the Evaluation Data was mainly between classes of close

taxonomic relation. The highest confusion occurred (> 15%)

between classes with < 10 images of data. Therefore, drawing any

conclusion should be done very scarcely. What can be said

reliably, is that classes with a small amount of training data are

easily confused with classes similar in morphological

appearance. Otherwise, the confusion rates were very

moderate (5 – 8%) (Table 2).

When looking at confusion at the level of broader taxonomic

groups there was practically no confusion between different

groups (Figure 3). However, the proportion of images left

unclassified due to probability filtering with thresholds varied

greatly. Groups with the best identification rates, and with the

least unclassified images, were Cyanophyceae, Cryptophyceae

and Bacillariophyceae (6%, 11% and 13% respectively). For the

classes, Euglenophyceae, Dinophyceae and Ciliophora, a

reasonable proportion of images were left unclassified (22%,

24% and 19% respectively). Chrysophyceae and Chlorophyta

had the highest proportion of unclassified images (49% and 65%

respectively) (Figure 3).
3.2 Implementation of a near-real-
time phytoplankton community
information system

The operability and utility of the near-real-time data

processing pipeline were used in the summer of 2021, as a

demo, for up-to-date information on the abundance of the three

bloom-forming cyanobacteria taxa of the Baltic Sea (with

approx. 2h delay between sampling and online publication of

classified results) (Figure 4). A simple visualization of the

cyanobacteria situation was created and published online

(“Cyanobacteria biomass” in https://swell.fmi.fi/hab-info/) to

ensure public accessibility of the prevailing situation. The
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visualization shows a continuously updated graph containing

information on the biomass of three main bloom-forming

cyanobacteria taxa. This biomass graph was used, as an

indicator of the predominant taxa off the coast of Finland, in

SYKE’s weekly cyanobacterial reports in summer 2021 (https://

www.syke.fi/en-US/Current/Algal_reviews).

Dolichospermum sp./Anabaenopsis sp. started to bloom in

late June, quickly achieving high biomass (peak in ~500 µg L-1

on July 2) followed by a quick drop within a few days. While

Dolichospermum sp./Anabaenopsis sp. biomass was on the

decline, Aphanizomenon flosaquae biomass started to increase,

reaching its peak (~400 µg L-1) within approximately five days

(on July 5). A. flosaquae achieved a lower biomass peak but was

spread over a longer period than that of Dolichospermum sp./

Anabaenopsis sp. A secondary and smaller peak (~150 µg L-1)

appeared later in July (19th/20th) and was caused by both

Dolichospermum sp./Anabaenopsis sp. and A. flosaquae. A.

flosaquae formed a third peak at the end of July reaching a

biomass of ~400 - 500 µg L-1.Nodularia spumigena was detected,

sporadically more abundant in some samples but did not exhibit

a consistent biomass increase (Figure 5A). Although it was the

cyanobacterial bloom season, the total fi lamentous

cyanobacteria biomass constituted only approx. a third of the

total phytoplankton community biomass. Simultaneously to the

decline of the first cyanobacteria peak, the phytoplankton

community’s total biomass increased (Figure 5B). The third

cyanobacteria peak achieved a similar magnitude as the second

peak, but with differing community composition, demonstrating

the importance of obtaining more detailed, higher-resolution

information on community composition (Figures 5A, B).
4 Discussion

Recently plankton imaging systems have become numerous,

diverse and widely used (Lombard et al., 2019). The classification

of plankton images has become popular resulting in multiple

publications and classification algorithms, often focusing on

CNN applications (see e.g. Dunker et al., 2018; Luo et al.,

2018; Lumini and Nanni, 2019; Kerr et al., 2020; Lumini et al.,

2020; Guo et al., 2021; Henrichs et al., 2021; and the references

therein). This popularity is due to the great need for efficient

solutions for automated analysis and data flows of the vast

amounts of image data produced, and underlines the

importance of the quality of the data products (Muller-Karger

et al., 2018).

However, papers on plankton classification often report only

the classification performance and do not account for its

practical implications on aquatic research, such as the effect of

confused classes and classification processes from an operational

point of view (e.g. Orenstein and Beijbom, 2017; Bures ̌ et al.,
2021). In transitioning to more frequent use of these new

instruments it is important to focus on the steps needed for
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operationality and reference them with traditional light

microscopy (Haraguchi et al., 2017; Kraft et al., 2021) as well

as combining the two methods, as different methods confer

different advantages. Between-sensor studies are scarce,

nevertheless, in future, they will be sorely needed.

We demonstrated in this paper the functionality of CNN in

classifying IFCB images from the Baltic Sea. Furthermore, we
Frontiers in Marine Science 14
developed a framework for near-real-time image classification,

which is sorely needed in HAB observations and also supports

the future development of operational modelling and remote

sensing applications. We provided a practical example with

near-real-time observations of the summer cyanobacteria

blooms, a reoccurring nuisance for users of the Baltic Sea. The

species composition, timing and magnitude of the blooms are
FIGURE 3

Confusion matrix of the Evaluation Data aggregated on broader taxonomic group level.
FIGURE 4

Scheme of the automated data flow and the subsequent data processing pipeline.
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difficult to predict as controlling factors are still something of a

puzzle (Kahru and Elmgren, 2014; Kownacka et al., 2018; Kahru

et al., 2020). The summer of 2021, for example, was atypical

(Figure 5) and the highest biomass peaks were only half that of

the peaks recorded during an intensive bloom in 2018 (Kraft

et al., 2021). The three major bloom-forming taxa in the Baltic

Sea are Nodularia spumigena, Aphanizomenon flosaquae and

Dolichospermum spp. (Niemistö et al., 1989; Stal et al., 2003;

Olofsson et al., 2020), of which only A. flosaquae is not known to

be toxic. Therefore, the separation of these three taxa in the

Baltic Sea environment is highly important, which was already

achieved (Table 1, Supplementary 2).

Though this paper is not about the study of ecological

phenomena, two observations highlighting its future potential

are worth mentioning. First, even during the filamentous

cyanobacteria bloom peaks, their biomass was a third of the

total phytoplankton biomass (Figure 5B). Second, while the total

cyanobacteria biomass was of the same order of magnitude

during the second and third peaks, the species composition

differed, with the second peak consisting of approximately equal

parts of two taxa, Dolichospermum sp./Anabaenopsis sp. and

Aphanizomenon flosaquae, and the third peak almost solely of

the latter. These observations, as well as the variability of the

overall phytoplankton species composition, will be considered in
Frontiers in Marine Science 15
a more ecologically focused follow-up study. However, it

demonstrates that the utilization of new automated methods,

such as imaging flow cytometry, plays a key role in deepening

our understanding of these bloom processes (Kraft et al., 2021).

Yet, these measurements must be made in conjunction with

physical and biogeochemical observations, using the same

observation platforms, such as the one at Utö (Laakso et al.,

2018; Honkanen et al., 2021; Kraft et al., 2021).

Before digging into the ecology behind these phenomena,

there are still a few practical aspects to be considered from an

operational point of view. First is the classification model

performance. The level of performance must be adequate to

enable utilization of the results and verification of these results

needs to be done for natural samples to ensure adequate

performance during operational use. Second is the

implications of confused classes. Some confusion doesn’t mean

the results are unusable, but a proper aggregation level needs to

be selected, otherwise, the results of only certain classes that

meet the user’s criteria should be used. Third, some practical

decisions on how to deal with the large number of difficult-to-

assign images should be made. There is a lot of work to be done

before the plankton classification problem is solved and data

collected during the meantime needs to be harnessed while

development continues.
A

B

FIGURE 5

The biomasses of the three bloom forming filamentous cyanobacteria taxa of the Baltic Sea in summer 2021, black = Aphanizomenon
flosaquae, orange = Dolichospermum sp./Anabaenopsis sp., green = Nodularia spumigena (A). The total phytoplankton community biomass
(grey) and the total filamentous cyanobacteria biomass (green) from the same period (B). The data was classified with the automated CNN
model in near-real time.
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4.1 Classification model performance

Overall, the CNN model used for classification in this study

performed very well, although there was some class-specific

variation in the classification scores (Table 1). The overall F1-

score for the Test Data was 0.95. This can be considered highly

accurate and is on par with the results obtained in recent

phytoplankton studies (Lumini and Nanni, 2019; Lumini et al.,

2020; Walker and Orenstein, 2021). There was a drop in

performance when using the classifier in operational mode

(the overall F1-score for the Evaluation Data was 0.82). Recht

et al. (2019) found that the accuracy of models tends to drop

even when tested with data created to match the training data’s

distribution profile. This is due to human labeling subjectivity

which makes it impossible to produce the same distribution.

They concluded that the models are insufficient for

generalization to more difficult images e.g. absence or

deficiency of necessary features in the image. In our case, this

drop may partly be due to the different distribution of training

images compared to the target data and is partly explained by the

inferior performance of some classes. Similar to the conclusions

of Recht et al. (2019), the drop in our case is probably largely due

to the large number of so-called borderline cases in natural

samples, which make them difficult to classify. This makes the

decision on where to draw the line difficult and leads to a high

number of both FP and FN.

The drop, when applying the classifier during operational

use, was in either precision or recall, or both. In many cases, the

drop was larger with precision than recall meaning that the

thresholds applied to those classes should be adjusted

downward. Also, in many cases, the drop in recall was higher

than that of precision meaning that thresholds for those classes

should be adjusted upward. This proves the importance of

threshold selection and although our results indicate that

Validation Data is adequate for setting initial threshold values,

it does not provide optimal thresholds as the borderline images

are missing from the Validation Data. However, threshold

adjustment is done cumulatively based on operational data

such as is collected at Utö and they need to be adjusted and

refined as data and information is accumulated. After adjusting

the threshold values, it is not a heavy task to compute the

previous time series using the new threshold values since the

predictions have already been done.

In our study, we included some classes with only ~20-70

images per class and still reached relatively high classification

metrics with the Test Data for some of those classes (Table 1).

This is partly explained by the efficient data augmentation

methods, as supported by the results of e.g. Correa et al.

(2017) and partly by the unique morphology/appearance

compared to other classes (Figure 1). However, those classes

(except Pauliella taeniata and Melosira arctica) experienced a

noticeable drop or didn’t contain sufficient occurrences for the
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proper estimation of performance when classifying the

Evaluation Data (Table 1). In the case of Ceratoneis closterium,

Licmophora sp. and perhaps Cyclotella choctawhatcheeana this

may also be a need for adjusting the class-specific thresholds

since there was a relatively high difference between their

precision and recall. Although it is possible to increase the

training set of classes with low numbers of images using data

augmentation, the classification results cannot be considered

reliable when they are based on only few images e.g.< 10 images.

The classification score improved when more images were

available in the Training Data, with a greater improvement for

classes containing > 2000 images. All classes with large training

sets had an F1-score > 0.9 for both the Test Data and the

Evaluation Data. Although more images in the training set seem

to be advantageous, there were also several classes (Nodularia

spumigena, Peridiniella catenata chain, Pauliella taeniata,

Licmophora sp., Melosira arctica and Monoraphidium

contortum) with relatively good F1-scores (> 0.8) even with<

200 images in the training set. This would imply that

distinguishable features (e.g. a specific shape) strongly

influence the successful identification of specific classes

amongst those with less labeled images (Figure 1, Table 1).
4.2 Class-specific confusion and its
practical implications

Characteristic features of an organism tend to lead to a more

accurate classification of images, however, many common Baltic

Sea phytoplankton species, such as dinoflagellates, do not have

obvious distinguishable features in their IFCB images which could

be used to differentiate them. Consequently, those cases which

were most confused were among classes of dinoflagellates

(Table 2). Confusion within classes closely related taxonomically,

such as classes on a higher and lower level of the same taxonomic

hierarchy or different species belonging to the same order (Oocystis

sp. and Chlorococcales, Eutreptiella and Euglenophyceae,

Mesodinium rubrum and Ciliata, Cyclotella choctawhatcheeana

and Thalassiosira levanderi, Nodularia spumigena and

Aphanizomenon flosaquae) were usually due to those classes

being very similar in appearance (Table 2). The same holds for

other types of flagellates, e.g., classes Cryptomonadales and

Euglenophyceae. Similar results have also been found by Sosik

and Olson (2007), but it is difficult to compare our findings to the

literature as class-specific confusion is usually not presented, let

alone discussed. Inmany cases of confusion, the class differentiated

with fewer training images was confused with a class differentiated

by a large training image set with a close morphological

resemblance. This emphasizes the power of larger training sets

(Table 1, Table 2). This is a common problem with imbalanced

data sets as the trained classifiers tend to be biased towards more

numerous classes (Johnson and Khoshgoftaar, 2019).
frontiersin.org

https://doi.org/10.3389/fmars.2022.867695
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kraft et al. 10.3389/fmars.2022.867695
Confusion of classes does not always create a major problem.

In some cases, it is sufficient to simply achieve group-level

identification. However, this must be carefully evaluated for

research topics which require species discrimination. If the focus

is on the identification of phytoplankton functional groups, it

may be sufficient to determine which groups of plankton, e.g.

dinoflagellates or diatoms, dominate the community. However,

group-level differentiation is insufficient if we are interested in

determining the biodiversity or whether toxic species are

present. Group-level identification means that the results of

classes closely related taxonomically, such as the Eutreptiella

sp. and Euglenophyceae, can be united without having a

practical impact. Looking at our classification results on a

broader taxonomic group level it is evident that the results are

reliable, at least for some groups. For the groups, Cyanophyceae,

Cryptophyceae, and Bacillariophyceae 86 – 94% of the images

were correctly classified, and for Euglenophyceae, Dinophyceae

and Ciliophora 75 – 76% were correctly classified. For

Cryptophyceae and Chlorophyta, less than 50% of the images

were correctly identified and there was high uncertainty limiting

the ability to make conclusions about their presence and

abundance (Table 1, Figure 3). Confusion between groups was

minor and incorrectly classified images were usually assigned to

the unclassified group due to thresholding (Figure 3). It is always

best to determine community composition down to the lowest

taxonomical level possible. This is also desirable when using

automated classification systems, especially when it is possible to

identify them visually.
4.3 Towards operationality

Though often considered superior to other methods, CNNs

are still not widely utilized for classifying and analyzing natural

phytoplankton data sets. While the deep feature extraction

outperforms handcrafted features, the latter performs well for

several phytoplankton groups originally classified with both

SVM and RF-based classifiers (Sosik and Olson, 2007; Laney

and Sosik, 2014; Anglès et al., 2015; Bueno et al., 2017; Anglès

et al., 2019; Fischer et al., 2020; Kraft et al., 2021). Currently,

most ecological studies using phytoplankton data sets collected

with an IFCB base their classification on the features and method

developed by Sosik and Olson (2007) using RF instead of SVM.

One reason for this is that CNNs typically require a long training

time, high computing power and many training images,

requiring more time and effort to establish an operational

classification system. Additionally, publicly available codes and

workflow are accessible for the RF-based classifier system, thus

making it easier for biologically oriented groups to begin

establishing new classifier systems (https://github.com/hsosik/

ifcb-analysis).

CNNs require a notable amount of computational

resources especially if they are trained from scratch. We
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showed that even relatively shallow CNN model requiring

only a quite basic level of computing power with a small

number of training data (26 classes out of 50 contained less

than 300 training images) performs well. Previous studies

support these findings (Bures ̌ et al. , 2021). During

operational mode (the Evaluation Data), classification

performance dropped drastically for many of the classes with

few training images. However, 12 of those also achieved an F1-

score of 0.7-0.97. This suggests not all classes require extremely

large training sets, speeding up the process.

Creating the training sets in and of itself is laborious. It is

therefore impractical to create classes for images of all small

objects of similar shapes, such as different types of detritus and

other types of difficult-to-assign objects. The creation of classes

for such images will lead to too many variations in appearance.

This will result in the matching of such images to other classes

with similar features causing confusion. Hence we chose not to

classify such images, but used thresholds instead. However, there

is some benefit to creating classes for certain types of detritus as

it allows them to be filtered out from the total community

biomass. On the other hand, this leads to questions such as when

should a phytoplankton cell be considered detritus, considering

that all images have been triggered by a certain level of

chlorophyll a. Therefore, all the collected images cannot be

assigned to a specific class, but need to be filtered out.

A common approach in filtering of difficult-to-assign images

is to apply thresholding to the class probabilities. Unfortunately,

this approach is impractical, since thresholds need to be tailored

to each class (see e.g. Luo et al., 2018). However, using thresholds

is presently one of the most common methods when classifying

natural samples (Sosik and Olson, 2007; Laney and Sosik, 2014;

Anglès et al., 2015; Bueno et al., 2017; Anglès et al., 2019; Fischer

et al., 2020; Kraft et al., 2021). In addition, the use of probability

thresholds with CNNs is not straightforward due to the softmax

function in the network architecture which converts neuron

activations into class probabilities. This forces the network to

assign a high probability to a specific class from the training set

even when the input image is from a novel class. This makes it

impossible to spot images which do not belong to existing classes

because they are assigned to the wrong class creating false

positives with high probabilities. We solved this problem by

smoothing out the probability distribution making it easier to

use this approach.

Classifier systems also tend to struggle with open-class

problems, i.e., when it is applied to novel data whose classes

are not featured in the training data (e.g. new species). It is

impossible to make training sets for all possible new classes in

advance and they would need to be distinguished from the

classification results. Therefore, as has been noted in other

studies, there is a need to solve this open-class problem.

Exploration of different solutions such as anomaly detection

(Pu et al., 2021), metric learning (Teigen et al., 2020), and hard

negative mining (Walker and Orenstein, 2021) are ongoing.
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4.4 Future perspectives

Utilizing new instruments which provide high-frequency

information on plankton communities, combined with data

analysis using CNNs are powerful tools for the investigation of

plankton community dynamics. However, these methods

require an entirely new way of both transferring and

managing the data, as well as ensuring data quality. The

possibilities provided by these new methods are only fully

exploited when setting up a real-time data flow and analysis.

The data pipeline we created would have been more difficult

to build without a proper service provider. We use an existing

optical fibre infra for part of the data transfer but in most cases, a

powerful cloud service is the most convenient solution. Here, the

importance of the accessibility of these services with regards to

both data transfer and storage for different fields of science along

with technical developments is highlighted. The next step is to

connect the different data pipelines to national and global level

data repositories, broadening the accessibility and findability of

different data, bearing in mind all the FAIR-data principles

(Wilkinson et al., 2016). This also includes sharing large

manually labeled image data sets, making it possible to adapt

the new methods more quickly to a broader range of users.

Additionally, data sets used to assess model performance should

be more widely shared for testing purposes of new machine

learning methods. However, validation of different image data

sets is important as manual labeling is prone to human error.

Additionally, it is often the more inexperienced taxonomists who

carry out the manual image labeling tasks even if expert

taxonomists would have been involved in the creation of the

classes and identification of example images (Irisson et al., 2022).

Sharing labeled data sets is fundamental to the rapid

development and implementation of classifier systems as this

is the most laborious part of their set-up. The creation of a model

library with pre-trained CNN models of different plankton

communities could also aid the more widespread adoption of

these new methods. According to Orenstein and Beijbom (2017)

the best classification performance was achieved with a model

originally trained with a general image repository and fine-tuned

for plankton images. Models, already fine-tuned for different

plankton communities, could be adopted into use for

communities with similar species compositions and further

fine-tuned to the target data with only a moderate amount of

training data and computing resources. This would be useful

because of the lack of machine learning expertise and the lack of

availability of computational resources among plankton

researchers as well as reducing the amount of training data

needed in the final stage. It would also make it easier to test

previously developed methods on different data and to find the

most suitable solutions for different types of data sets. To get

towards this the EcoTaxa (Picheral et al., 2017) has been created.

However, it is a tool for storing, browsing and classifying slightly
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smaller data sets and is not targeted to large data sets (e.g.

minimum of tens of millions of images per year as at Utö)

produced by operational use (Irisson et al., 2022).
5 Conclusions

Novel automated microscopic imaging solutions, like

imaging flow cytometry, combined with automated data flow

and analysis systems take us a step towards real-time plankton

community information. This is especially important for

harmful algal bloom observations, such as the filamentous

cyanobacteria in the Baltic Sea. Nevertheless, high-frequency

community information will also be important in model

development and remote sensing data validation. Thus, the

development of these systems underlines the importance of

data flow and analysis infrastructure as well as principles of

open science. Collecting large, annotated image data sets

requires a lot of work and creating efficient and functioning

data pipelines and classification systems requires a substantial

amount of coding. Sharing image data sets and classification

models vastly ease the implementation of these systems and

would accelerate the exploration of the vast number of plankton

data sets already collected within a multitude of monitoring

programs and research projects around the world.

Multiple studies have shown that CNNs function well in the

classification of plankton. We also achieved high classification

accuracy with transfer learning and relatively shallow CNN

architecture. Moreover, our method was able to adequately

classify natural samples making our approach suitable for

operational use. Some issues in the utilization of automatic

classification methods, such as CNNs, remain due to them

struggling with the open-class problem. During the search for

more sophisticated solutions, the use of probability thresholds can

enable the filtering of images not belonging to those classes.

However, this does not solve the problem of detecting and

identifying new species. Although the use of thresholds is quite

tedious and time-consuming, at the moment it is still the most

commonly used solution. Some of the workload can be reduced

with the use of validation and test sets of the labeled image data set

to set proper thresholds and evaluate their suitability. However,

the ideal method of setting thresholds would be by use of a data set

consisting of images from different seasons and locations as well as

multiple years. This can be achieved by gradually fine-tuned the

thresholds while compiling data. High classification confusion is

often related to close taxonomic affiliations, which is not an issue if

the goal is to determine the dynamics of larger functional

groups rather than the determination of species-specific

dynamics. Our study represents a step forward in the

development of automated, fully operational, near-real-time

classification system which can ultimately help to uncover novel

insights in plankton ecology.
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