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Abstract: The first major step in training an object detection model to different classes from the
available datasets is the gathering of meaningful and properly annotated data. This recurring task
will determine the length of any project, and, more importantly, the quality of the resulting models.
This obstacle is amplified when the data available for the new classes are scarce or incompatible, as in
the case of fish detection in the open sea. This issue was tackled using a mixed and reversed approach:
a network is initiated with a noisy dataset of the same species as our classes (fish), although in different
scenarios and conditions (fish from Australian marine fauna), and we gathered the target footage (fish
from Portuguese marine fauna; Atlantic Ocean) for the application without annotations. Using the
temporal information of the detected objects and augmented techniques during later training, it was
possible to generate highly accurate labels from our targeted footage. Furthermore, the data selection
method retained the samples of each unique situation, filtering repetitive data, which would bias
the training process. The obtained results validate the proposed method of automating the labeling
processing, resorting directly to the final application as the source of training data. The presented
method achieved a mean average precision of 93.11% on our own data, and 73.61% on unseen data,
an increase of 24.65% and 25.53% over the baseline of the noisy dataset, respectively.

Keywords: environmental monitoring; marine fishes; object detection; fish detection; pseudo-labeling;
underwater video; deep learning

1. Introduction

The oceans are a vast and complex system, continuously changing and adapting due
to external influences, and yet it remains ruled by equilibrium. Monitoring these changes in
the underwater realms differs deeply from the surface environments, where the open space
allows monitoring from the orbit of our planet using satellites, or using, e.g., IoT solutions.

These inherent constraints, intertwined with the constant underwater environmental
shifting, create challenging obstacles to the mission of monitoring our oceans in real time.
Because of our neglect towards a balance between exploration, maintenance of the oceans,
and care for the environment, some ocean properties are changing, including the rising sea
levels [1]. Our drive for knowledge of marine realms is magnified by its necessity [2].

Project KTTSeaDrones focuses on this necessity for deeper knowledge. In a nutshell
(see more details in Section 3), one of the goals is to analyze the local marine environment by
developing an underwater monitoring station prototype, which shares two main function-
alities: (a) monitoring the coastal marine fauna and (b) station scalability, i.e., the station,
when deployed in the ocean, should adapt itself (with no human intervention) to different
environmental areas, conditions, and fauna, in such a way to work as a multipurpose
underwater station.
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Usually, surveys of the marine fauna are performed either by scientists or by local
fisheries, normally resorting to trawls. The latter, although manually performed, offers
daily updates on the state of the local coast; however, it is a biased method that relies heavily
on the location of the capture and does not account for “undesired” species. Scientists focus
on a broader approach that, while still performed by invasive techniques, present a better
understanding of the state of the local marine fauna, although the obtained analytics were
shifted in time to the date of the capture.

With the evolution of technology, the initial method of survey, which requires scientists
to dive and visually analyze the site, can be replaced by baited remote underwater video
(BRUV). BRUV allows a more reliable analysis in exchange for hours of manual footage
examination performed by marine biologists [3]. This survey analysis is a tedious and
repetitive process that produces variable outcomes and human errors correlated to the level
of knowledge, attention, and vigor of the human specialist interpreting the data. The next
step in the evolution is the necessity of relieving the burden of manually reviewing footage
and developing automated processes to monitor the local marine fauna.

The present state of the art in machine learning, including deep learning (DL) tech-
niques, allows for pursuing challenges not yet completely addressed, such as the one
presented, using computer vision (CV) techniques for, e.g., surveillance analysis, which has
been revolutionized by numerous DL algorithms, in particular by the You Only Look Once
(YOLO) architecture [4,5] for object detection and classification.

In the field of underwater monitoring, the application of DL pipelines conjoined with
CV is no novelty, with multiple authors already proving the success of these techniques [6–9].
Nevertheless, combining DL and CV approaches to analyze data from a single location
or area results in custom models that are over-achievers to their specific trained domain.
Monitoring stations typically are static by their nature and coastal surveys are normally
performed along a specific range of coasts; therefore, local object detection and classification
models for either real-time monitoring feedback or for automating the analysis of the
obtained footage from the BRUVs perform extremely well on their data. However, this
narrow approach introduces limitations in terms of scalability, where the previously trained
models can outperform depending on environmental factors or different marine fauna.
Therefore, if the manual creation of a custom dataset was previously required, it can become
a recurring task that is necessary for the deployment of new monitoring stations or the
evaluation of footage from disparate areas.

This paper focuses on the challenge of automation of the data annotation process [10]
required for the training pipeline of an object detection model intended for underwater
fish monitoring. Similar to previous work on fish detection [11], the detection stage is
separated from the classification phase, with the latter being out of the scope of the present
paper. The proposed approach tackles the creation of a new custom object detection
dataset in reverse, focusing on the static nature of the target location footage of underwater
monitoring stations and BRUVs, allowing the dataset annotations retrieved by automatic
pseudo-labeling to refit a previously trained model from a foreign coastal environment to
different marine fauna. The OzFish dataset [12] is used for model initialization through the
technique of transfer learning [13], and the object detector process is performed using the
YOLO architecture [5,14].

The main contribution of this paper is twofold: (a) The presentation of a transversal
method able to automatically generate localized underwater datasets from foreign loca-
tions, regardless of the deployment application and the baseline dataset quality, type of
species, and environmental conditions. (b) The presentation of a full pipeline, which allows
the duplication of the method with different objects and environments (not limited to
underwater objects—fish).

The structure of this paper is as follows: The present section introduced the agenda
and the contributions of the paper; related works and the current state of the art are
presented in Section 2, followed by a brief introduction to the KTTSeaDrones project in
Section 3, and an analysis of the target data for this project and the pertinent available data
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in Section 4. Next, the proposed method is presented and detailed in Section 5, succeeded
by the experimentation and achieved results, accompanied by the discussion in Section 6,
and finally, the conclusions and prospects for future work in Section 7.

2. Related Work

The first records of the use of video underwater date back to the 1950s, with an
increased use of remote solutions during the 2000s [6], removing or reducing the presence
of humans underwater. Regardless of the visual limitations introduced by the nature of our
oceans, the use of underwater footage for marine monitoring, either streaming or recording,
remains a viable and necessary solution.

Recently, the conjunction of a technological evolution marked the beginning of a
new age in artificial intelligence (AI) techniques: the maturation of image sensors offer
higher resolutions, sharper images, and increased dynamic ranges, which are essential to
low-light applications, such as in underwater environments; the exponential expansion
of computational power available, in particular the parallelization ability of graphical
processing units (GPU), and the development of advanced mathematical libraries that
revolutionized modern science and research, simplifying complex tasks while offering
the ability to solve advanced challenges. The synergy of these technological advances
converges in the separation of traditional and modern CV [7,15], introducing an expeditious
development in underwater monitoring applications.

Considering the diversified nature of marine environments, the application of tradi-
tional CV proved to be convoluted and impractical, requiring static and adequate image
conditions to perform classical CV algorithms [16]. With the emergence of DL techniques
and their inherent versatility and performance, multiple complex tasks were finally effi-
ciently achieved, replacing the previous state of the art and swiftly approaching metrics
similar to human performance—even surpassing it [17,18]. However, the CV object de-
tection performance accomplishments, even while achieving exceptional generalization,
endure different limitations and variability while performing underwater [19]. Never-
theless, while the creation of a universal marine classifier and object detector represents
colossal challenges, narrow applications of DL methods to monitor local marine fauna
proved to be successful [7].

A crucial requirement for the application of DL methods is data; specifically, properly
annotated datasets [20]. Subsequently, the performance of any trained DL model is directly
related to the chosen input data, either by its quality or quantity. Notwithstanding the
progress achieved through preprocessing procedures, data augmentation, tuning hyperpa-
rameters, or fine-tuning convolutional neural networks, the base outcome remains directly
correlated to the trained dataset [21]. Properly annotated data results from the combination
of dedication, skill, and time. The initial approach to data gathering bifurcates into a
question of generalization or applicability. Therefore, during the first stage of a custom
object detection project, the abstractly chosen data, prior to the labeling phase, can already
influence and bias the output model [21]. However, distinct applications may require
generalization, while static underwater monitoring stations may benefit from fitted models.

Underwater environmental biodiversity raises a convoluted obstacle to the generation
of a universal dataset to observe and analyze marine ecosystems. Therefore, available
underwater visual datasets [2], either for classification or object detection, normally rep-
resent local marine visual conditions, restricting an attainable application to dissimilar
underwater areas.

A landmark underwater dataset aimed at the study of marine ecosystems is the
Fish4Knowledge dataset (F4K) [22], was obtained from the capture of live video in the open
sea. The ImageCLEF initiative introduced the LifeCLEF14 and LifeCLEF15 datasets [23],
increasing the number of annotated videos containing fish, while also resorting to the
F4K dataset. Focusing on the task of fish recognition, the WildFish and WildFish++
datasets [24,25] made available hundreds of thousands of images containing thousands of
fish species. The availability of the OzFish dataset [12] increased the published videos and
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annotated bounding boxes to the order of thousands. Additional segmentation annotations
were presented on the DeepFish dataset [26], which also introduced marine videos under
different conditions. The SUIM dataset [27] focused on the semantic segmentation of
underwater images, while the NorFisk dataset [28] focused on fish farms.

Current DL object detection methods are divided into two main approaches, the
one-stage detectors [5,14] and the two-stages detectors [29,30]. The idea behind two-
stage detectors is simple: the first stage extracts sparse region proposals through a region
proposal network (RPN), which are later classified, and the corresponding bounding
boxes are found through regression tasks in the second stage. The most relevant two-
stage detectors are the R-CNN [31], SPPNet [32], Fast R-CNN [33], Faster R-CNN [29], and
Feature Pyramid Networks (FPN) [30]. One-stage detectors remove the region proposal step
by proposing predicted bounding boxes directly from the input images, therefore increasing
computational efficiency. Prominent one-stage detectors are the SSD [34], RetinaNet [35],
and the YOLO family [4,5,14,36].

In summary, two-stage detectors are more accurate in exchange for computational
performance, while the one-stage are more computationally efficient in lieu of accuracy.
Therefore, the choice between both approaches is defined by the desired applicability for
the resulting models, either for real-time applications, such as underwater monitoring
stations, or for more precise demanding deployments, such as the medical imaging field.

YOLOv4 [5] solidified the importance of data augmentation and post-processing
techniques, while also promoting the evaluation and integration of techniques introduced at
first with two-stage detectors, such as the FPNs [30]. Notwithstanding the current evolution
and performance of modern object detection algorithms, the diverse ever-changing nature
of underwater environments introduces new challenges, either in the input stage, requiring
image enhancement techniques due to inherent light propagation limitations, or at the
neck, due to multiscale-targeted objects, which may camouflage with the environment,
or directly at the chosen dataset, which may prove unreliable for different locations or
conditions.

Multiple methods have been investigated to detect, classify, or perform both when
monitoring fish. Regarding the dataset used, there are two distinguished approaches:
the integration and evaluation of previously published datasets, and the generation of
a custom dataset for evaluation of the published methods. Cutter et al. [37] published
the Labeled Fishes in the Wild dataset and applied several Haar cascade classifiers [38],
obtaining precise detection rates between 66% and 81%. Choi [39] used a custom dataset
for comparison between traditional detection methods through the Histogram of Oriented
Gradients (HOG) [40] feature descriptor plus support vector machine (SVM)- [41] and DL-
based detection methods, resorting to the GoogLeNet [42] network architecture, reporting
F-measure results always below 49% for the HOG+SVM approach versus a minimum of
55% for the GoogLeNet DL approach. Choi [39] fused traditional background subtraction
methods for fish detection while fine-tuning a pre-trained GoogLeNet [42] network for
fish identification on the LifeCLEF15 dataset [23], obtaining counting scores above 85%
and precision scores above 71%. Li et al. [43] and Ash et al. [44] applied Fast R-CNN and
Faster R-CNN on the same dataset, achieving a mean average precision (mAP) of 81.4%
and 82.7%, respectively.

Qin et al. [45] proposed the extraction of the foreground, resorting to sparse and
low-rank matrix decomposition, later applying a linear SVM for classification, achieving
an accuracy of 98.64% on the F4K dataset classification task. Mandal et al. [46] combined
a Faster R-CNN with three classification networks, namely two modified AlexNet [47]
networks and a VGG-16 [48] network, obtaining an average precision of 82.4% on the
classification of their custom dataset. Xu and Matzner [49] employed the YOLO architecture
on a challenging underwater custom dataset, obtaining a direct mean average precision of
53.92%, proving the challenging variability of the object detection task underwater.

Salman et al. [50] evaluated the published findings with the LifeCLEF15 dataset,
and additionally with the F4K dataset [22], exploring the temporal information through
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Gaussian mixture models (GMM) and optical flow, and a CNN to train an R-CNN network,
achieving an F-score, i.e., the weighted harmonic mean between precision and recall, of
87.44% and 80.02%, accordingly. Jalal et al. [51] also evaluated the published findings
with the LifeCLEF15 dataset and additionally a custom dataset; similarly, the temporal
information used the previously proposed methods, although a parallel YOLO network
was applied, combining the proposed location and classification at a later stage, increasing
the F-score on the LifeCLEF15 to 95.47%, and achieving a classification accuracy of 91.64%,
while obtaining 91.2% detection accuracy on the custom dataset, and 79.8% on classification.

Pedersen et al. [52] published the Brackish dataset, comparing the performance of
the YOLOv2 and YOLOv3 through the Intersection over Union (IoU) metric, achieving
with the latter a mAPIoU=0.50 of 83.72%, and a more challenging mAPIoU=0.50:0.05:0.95 of
39.83%. Zhang et al. [19] also evaluated the previous dataset with the YOLOv4 [5] net-
work, the tiny YOLOv4 [53] architecture, and their proposed YOLOv4 modified network
with MobileNetv2 [54] as the backbone, achieving a mAP of 93.56%, 80.16%, and 92.65%,
accordingly, while reducing the necessary model parameters.

Labao and Naval Jr [55] suggest an ensemble of two-stage object detection networks
connected by long short-term memory networks through cascade structures applied to a
custom challenging dataset containing variable quantities of small-scale objects, obtaining
an average of 60% on both precision and recall metrics. Ditria et al. [18] proved the
reliability of DL approaches for underwater monitoring, comparing the results obtained
from the implementation of a Mask R-CNN [56] network on a custom dataset against an
analysis from marine experts and citizen scientists, recording an increase in the abundance
detection of 7.1% and 13.4% for single images, and 1.5% and 7.8% for videos, respectively.
Knausgård et al. [11] used the F4K dataset to train a pre-trained classifier and further train
with a limited custom dataset. The detection and classification tasks were divided, with
the YOLOv3 [36] architecture responsible for the object detection stage and a Squeeze-and-
Excitation [57] architecture employed for classification. A mAP of 86.96% was obtained for
the object detection task, while the classification achieved an accuracy of 99.27% on the F4K
dataset and 83.68% on the custom dataset.

Stavelin et al. [9] also implemented the YOLOv3 on a limited annotated dataset,
retaining the detections above 25% confidence score and manually correcting the predictions
for further network retraining, achieving a mAP of 88.09%. Ditria et al. [58] created
combinations of five diverse custom datasets obtained from reef and seagrass footage from
different locations, and trained an implementation of Mask R-CNN to demonstrate the
improved generalization across different habitats.

As it can be seen, previous works have approached the integration of DL-based ob-
ject recognition techniques for autonomous underwater monitoring by either focusing on
improving state-of-the-art results across public datasets, implementing novelty methods
to underwater conditions and comparing performance evolutions, or building localized
custom datasets. More importantly, the majority of recently presented works have increas-
ingly required the creation of new and locally fitted datasets, normally distributed for
only one location per dataset. None of the authors presented a solution that allows an
autonomous adaptation to different underwater locations by automatically generating
human-free distilled pseudo-labels, promoting a faster and easier expansion in underwater
monitoring, independent of the geographic location.

3. Project KTTSeaDrones

The multiple effects of climate change across the previous decades and the rise of the
ocean’s temperature introduced detrimental consequences to coastal marine life, such as the
arrival of invasive species to the shores [59]. It has become imperative to access real-time
data, providing our oceanographers and marine biologists with the necessary information
for the formulation of real-time solutions. The KTTSeaDrones project aims, among other
goals, at installing a state-of-the-art underwater monitoring station for autonomous reports
of the local fauna, in terms of the quantity of local species and the presence of invasive
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species at multiple locations. The station should work under variable environmental
conditions and must be equipped with edge processing (local) and offer the possibility
of cloud or hybrid processing. The station has a system (camera) for fish detection and
recognition, and the quantification of species, and should generalize across the regional
underwater fauna and environmental conditions, becoming also the baseline model for
regional baited remote underwater videos and future monitoring stations.

The generic block diagram for the KTTSeaDrones underwater monitoring station
prototype is presented in Figure 1. The diagram shows on the left the Land Station (LS),
composed of power and data units that are connected to the Underwater Monitoring
System (UMS), on the right, by submarine optic fiber and power cables. This system (UMS)
can work in a stand-alone mode or in a hybrid mode, communicating with LS at specific
hours of the day, or in a fully connected mode, transmitting in real time all the information
that is acquired by the sensors to the LS. The underwater station uses several sensors to
acquire information, such as sonar, acoustic, environmental, and camera, etc. Additionally,
included are the edge processing units, where all the relevant processing is performed.
All the data is stored in the data module (and transferred, when and if requested, to the
land station). More details about the complete project and the different modules can
be consulted on the project website at https://kttseadrones.wixsite.com/kttseadrones
(accessed on 1 May 2022).
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Camera

Low-Light HD 
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Figure 1. Diagram presenting the overall structure of the underwater monitoring station prototype,
with the underwater monitoring station connected to the land station by submarine optic fiber and
power cables.

4. Data

As already mentioned, datasets are a crucial part of the modern DL object detection
method, where the quality of the annotations, scenes, and object variability, as well as the
appropriate and balanced quantity of samples, are pivotal for the training of unbiased and
functional models. This direct correlation can be observed between the evolution of two
landmark large object detection datasets, the PASCAL Visual Object Classes Challenge [60],
and the MS-COCO dataset [61], with the latter increasing the number of available images,
annotations, classes, and, more importantly, the presence and density of small objects,
approaching the object distributions closer to the real world [17]. Therefore, the data
collected and annotated should reflect similar guidelines, either in location precision or
object density, to maintain a uniform level of labeling quality.

The demand for creating custom datasets emerges from the absence of the targeted
classes on available datasets, the unreliability of noisy datasets, and performance improve-
ment limitations caused by constrained localization or for specific controlled applications.
However, the acquisition and proper labeling of data for the generation of a reliable dataset
is a tedious and time-consuming process, which is especially dependent on the annotator’s
skills, attention, and endurance. Nevertheless, several approaches were proposed to ex-
pedite the annotation process, focusing primarily on expanding limited annotated data to
automatically annotate unlabeled data, i.e., pseudo-labeling.

https://kttseadrones.wixsite.com/kttseadrones
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Regarding object detection, three mechanisms are usually chosen: a semi-supervised
learning approach, exploring the relation between labeled and unlabeled data; an active
learning approach, which automatically selects the next most relevant unlabeled sample,
optimizing the annotation process; and the automatic generation of a dataset based on a
pre-trained model, which relies profoundly on the ability to properly generalize unseen
data. Nonetheless, these methods are primarily suitable for the classification task, while
still empirical for the object detection task.

In order to test the model presented in this paper, underwater footage from the
Algarve seabed in Portugal was gracefully provided by the Algarve Centre of Marine
Sciences (CCMAR). This data was obtained using BRUV techniques, consisting of 21 uncut
and unlabeled videos from different locations, as can be observed in Figure 2, containing
diverse habitats and environmental conditions, which is either a generalization challenge
or a baseline solution [58]. The gathered recordings have an average duration of 33 min
each, summing to a total of 695 min, while still containing initial parts onboard the research
vessels, and random endings, which are either underwater, transitioning, or back onboard.
A collection of 383 unseen images from different areas were annotated by a marine biologist,
providing a ground-truth test evaluation.

Figure 2 shows in the top row samples (frames) of CCMAR unlabeled footage in
different environments, in an underwater stage. This targets the sector of the video where
the camera is stable on the seabed. In the middle row, it is the same as previously, but
with the ground-truth annotations performed by a marine biologist. In the bottom row,
negative sample frames are obtained from the video that do not occur underwater, i.e.,
the overwater stage, where the camera is out of the ocean, for the two leftmost images,
and the transition stage for the two rightmost images. The transition state focuses on the
phase where the camera is being dropped or pulled onboard. This process of overwater
and transition footage is completely automated, but it is out of the focus of the present
paper. A following paper will detail all the information on the CCMAR dataset, which
will be publicly available, including the ground-truth annotated by a marine biologist, the
classification of frames that are overwater, in transition, and underwater, as well as the
resulting labeling provided by the present method.

Figure 2. Top row: sample of CCMAR unlabeled footage. Middle row: ground-truth annotations of
CCMAR videos. Bottom row: negative sample images obtained from the video classification step.

Finally, it is important to stress that for the initial transfer learning process applied
in the method (see Section 5), the OzFish dataset [12] was used, which is a BRUV public
dataset of the Australian marine fauna. Although this data reflects antipode species to
our targeted application, which would result in an unreliable object detection model, the
use of a contrasting and noisy dataset is a fundamental part of our presented method
to demonstrate the knowledge transferability and applicability in the generation of an
automatically local labeled dataset.
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The object detection fraction of OzFish was evaluated initially through an exploratory
data analysis of the remaining 1753 frames; some images with annotations are presented
on the top row in Figure 3. One important remark about this dataset is the outsourcing
nature of the available annotations, which introduces noise to the dataset either by wrong
or missing annotations or bounding box labels, e.g., the existence of 935 annotations with
an area smaller than 1% of the mean bounding box area, including an annotation with an
area of 9 pixels. Some examples can be observed in the bottom row of Figure 3. Albeit the
existence of inconsistencies in the available data for the object detection task, as mentioned,
such as wrong annotations, multiple bounding boxes for the same object, and miniature
boxes with no recognizable target inside, we decided against cleaning and preparing the
data for a traditional object detection model training pipeline, focusing on automating
the learning stage to filter and minimize the effects of noisy data on the training process
instead of filtering the data a priori. Furthermore, employing the method on noisy data
without the curating step significantly reduces the overall time spent on an object detection
project. Nevertheless, although part of the data is unreliable, the remaining data still
contain relevant information and should not be discarded.

Figure 3 shows in the top row samples of OzFish dataset; in the bottom row, examples
of erroneous annotation; from left to right, overlapped annotations over the same target,
and a negligible small bounding box, reef, feeder structure, starfish, and floating rope, all
annotated as fish. In the next section, the developed method is going to be presented.

Figure 3. Top row: sample of OzFish dataset object detection images. Bottom row: examples of
wrong annotations. From left to right: overlapped annotations over the same target, negligible small
bounding box, reef, feeder structure, starfish, and floating rope, all annotated as fish.

5. Method

Beforefurther explanation of the method, it is important to stress that it is only applied
in frames from the underwater stage (see Section 4). The method follows the overall pipeline
presented in Figure 4, and it is divided into five main modules. It begins with the (i) Data
Preparation pipeline ((a) to (f)), which consists the data generated for the initial transfer
learning process. This data comes from two sources: CCMAR negative samples and the
OzFish dataset (see Section 4). Then, applied is the (ii) Transfer Learning pipeline (g), which
consists preparing the baseline model training. This starts a training loop cycle, which is the
(iii) Self-Supervised Learning pipeline ((h) to (k)), where data mining is applied to the CCMAR
data, collecting multiple annotations, which are then used for pseudo-labeling, distilling,
and preparing the new images to continue training the previous models, returning then
to the video data mining stage, and only exiting to the (iv) Prepare Data for Final Model
pipeline ((l) to (m)), which generates a final dataset after stalling the training loop. Lastly,
the pseudo-labeled dataset is generated. The dataset is then used for the (v) Final Model
pipeline (n), which is finally adapted to local fauna (in this case Portugal—the Algarve
coast) and consists in training a new and localized (final) model. The entire pipeline is
presented in detail below.
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Figure 4. Overall pipeline of the proposed method. Each stage is identified by (∗).

5.1. Data Preparation

Pipelines (a) to (f), according to Figure 4, are comprised of data preparation to start
the method. Pipelines (a) and (b) consist in obtaining OzFish dataset [12] and performing
exploratory data analysis (EDA). Regardless of using all the available annotations, the
(EDA) remains an important step in abstractly evaluating and understanding the data
present in any dataset, particularly in the visual assessment of the data viability for the
intended detection and recognition targets. In parallel, in (c–f) the CCMAR videos were
accessed and segmented into overwater, transition, and underwater (see also Section 4). After
this classification, the negative samples (f) are used in conjunction with OzFish data for
step (g).

5.2. Transfer Learning

The YOLOv4 architecture [5] was adopted for the implementation of pipeline (g). The
main advantage of using the YOLO architecture is the balance between its fast detection rate,
by design, and the high accuracy maintained, even across complex scenes, while requiring
moderate computational power. Furthermore, since the whole image is considered either
during the training or inference phases, the additional contextual information contributes
to a lower false-positive rate, although, due to the removal of the region proposal step, some
objects, specifically smaller objects, can fail to be localized [62]. It is important to stress at
this moment that the YOLOv4 is used across the different steps of the method, enabling
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the possibility of the detection of multiple planes of distance, extensive environmental and
target generalization, various input image resolutions, and a further reduction of type I
and II errors.

The baseline-trained model follows the traditional transfer learning object detection
training algorithm, where the weights are already initialized from previous training, resort-
ing to higher computational power requirements on a major carefully curated dataset. The
transfer learning technique [13] grants the advantage of a faster model training, requiring
fewer resources while achieving similar accuracy and performance results to the original
training models. In the present case, the initial YOLOv4 network was previously trained
on the Common Objects in Context (MS-COCO) dataset [61], which consists of 80 classes
distributed through more than 118 k images for training, and 5 k images for validation.
Arguably, the use of a multi-class network for the object detection task of detecting one class
seems unreasonable, although the targeted class for the purpose—fish—contains multiple
species, with distinct peculiarities across them. Furthermore, isolating the detection and
classification stages aims at providing, at a later stage, a crucial element for the recognition
of invasive fishing species.

The default training configuration of the baseline model using the YOLOv4 network
architecture was altered to detect only a single class named “fish”, and the input three color
channel images remained at 608 × 608 pixels. The OzFish dataset images were divided
into training, validation, and test subsets, following a ratio of distribution of 80%, 15%,
and 5%, respectively, for a total of 1753 images. The CCMAR negative sample was added,
proportional to the number of original images from the OzFish dataset, i.e., 1753 images
were retrieved from the overwater and transition states of the original CCMAR videos.

Additional default hyperparameters were altered as follows: the number of anchor
boxes remained the same, although their values were recalculated to improve small object
detection, either on a further plane or on smaller species, replacing the initial MS-COCO
dataset values by pairs of width and height as: 16 × 25, 37 × 50, 73 × 72, 61 × 137,
125 × 119, 123 × 265, 209 × 184, 276 × 331, and 483 × 518. The batch size was set as 128,
with the subdivisions set at 16. Even though using a large batch size affects negatively the
model generalization [63], it became necessary, as this noisy dataset, after multiple initial
training, was unable to converge to the global minima. The maximum number of iterations
was set to 10k, with steps of 8k and 9k; the learning rate was adjusted to 0.005, while the
decay remained at 0.0005 and the momentum at 0.949. Furthermore, also applied, from the
bag of freebies introduced with YOLOv4, were data augmentations techniques as follows:
the mosaic augmentation, which generates four-image mosaics during training instead of
using only single images, further improving the accuracy, and the blurring, which, although
having not improved the accuracy at the experiments presented with YOLOv4 [5], helped
reduce the rate of type-I and II errors resulting from wrong or missing annotations present
on the OzFish dataset.

5.3. Self-Supervised Learning

Pipeline (h) to (k), starting with (g) as the baseline model (trained on the OzFish dataset
and CCMAR negative samples), initiates a loop of self-supervised learning, consisting of four
distinct stages in the pipeline (Figure 4): (h) CCMAR video data mining; (i) the generation
and aggregation of a temporary dataset; (j) a pseudo-labeling process over the filtered
frames, and (k) continual object detection model training.

The data mining stage (h) essentially performs inference using the current model
version (g) over the underwater frames of the CCMAR videos, while resorting to a simpler
tracking method using the Euclidean distance, which associates nearby bounding boxes
coordinates across multiple frames to maximize and fill parts of missing annotations
across those multiple frames. This tracking process is performed forwards and backwards,
allowing for a more complete analysis of the available footage, i.e., tracking the original
path of a detected target. For example, a target that originated from a background area
and was briefly detected with low confidence, thus discarded as a false positive, may have
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a possible path retrieved for it when the target is continuously detected on a foreground
plane. Associating the additional information from the tracking method, even with the
limited propagation across multiple frames, with the bounding boxes detected running
inference through the current model, enhances the confidence of true-positive detections
while assisting in the process of discarding false-positive detections.

The result of the previous step is a collection of annotations paired with their confi-
dence levels for each frame (i). Considering this, all the current information for training a
new model or continuing the training of the previous model would exacerbate an already
noisy model.Therefore, it was decided in this stage which frames and annotations would
be considered for the next step. This process is achieved by performing autonomous EDA
on the obtained results, isolating the clustered detections, prioritizing the detections by
their hybrid confidence level and their inference plus tracking information, and defining
a temporal threshold, tt, for the chosen frame, in order to prevent over-similar images
from the same sequences, and thereby improving the dataset generalization. A selection is
filtered from this analysis considering all the scattered detection locations based on: (i) the
number of detections by image ndi, and the confidence level of the detected bounding boxes,
cl (with, in the present case, tt = 20s, ndipresent >= ndipast + 1, and cl >= 70 v 90%). An
example of the evolution of the model predictions during this loop stage can be observed
at Figure 5.

Figure 5. Example of model progression during the self-supervised pseudo-labeling loop cycle
(see text).

The following step could define the entire loop. The (j) pseudo-labeling method is
an unsupervised learning technique, where models train on a small labeled subset of the
dataset and expand the labels across the unlabeled data by initially calculating the loss on
the labeled data, followed by the prediction of pseudo-labels over the unlabeled data, and
finally, the calculation of the loss of the unlabeled data. In comparison, the initial model
training was performed on foreign species data, related only by association of belonging to
the same animal class. Therefore, the automated labeling method presented initiates using
unlabeled sequences of frames from the underwater portions of the CCMAR footage. This
stage is more prominent after additional loop cycles, when the previous pseudo-generated
labels are used to expand the bounding boxes pool or to increase confidence.

The obtained pseudo-data is then filtered by high-accuracy labels: above 90% accuracy
and decreasing on each loop until 70%, with multiple detections across frames, i.e., tracked
fish with more than 20 highly accurate detections; a selection of frames containing the
higher amount of detections in comparison to other frames within the same loop during
small sequence windows of 20 seconds; and prioritizing environmental diversity and
conditions, i.e., footage from different locations. The use of densely filtered annotations of
the CCMAR footage to (k) continue the training of the model emphasizes the importance
of understanding that, in an object detection architecture, in this case YOLOv4, while
conducting the training stage on a one-class model, the training is actually being performed
on two classes: the target and the background, or, technically, the training is always
performed on the number of classes plus one.

Therefore, the background information is extremely valuable, especially when con-
taining faulty annotations, either missing false negatives, or erroneous false positives.
Considering that in the first-loop cycles only highly confident annotations are going to be
considered for continual training, this leaves the remaining low-confident positive detec-
tions scattered across the images. To prevent the effects of this noisy information during the
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training stage, a progressive averaging blur was applied over the undetected areas, which
consists in increasing the box filter kernel, from 3 × 3 until 21 × 21, with the distance from
the detected areas.

The training configuration during the self-supervised learning process differs from the
previous baseline configuration, with the input images resolution increased to 960 × 960, in
order to improve the detection of smaller objects, with the anchors being recalculated with
each cycle to the current sub-sample used for continual training. The maximum number of
iterations increased with the range of the new high-confidence images available and the
batch size remained at 64, while the subdivisions were altered to 32. More importantly, the
learning rate is altered between 0.005 and 0.001 through a direct correlation to the predicted
accuracy rates.

This self-supervised learning loop continues (h–k), always using the latest continual-
trained model to process and reanalyze the CCMAR underwater footage, until reaching a
stalling threshold, where lowering the high-confidence pseudo-labeled detections from 90%
until 70% fails to introduce significant new annotations when compared to the aggregations
from the previous cycles, i.e., the amount of new annotations is lower than 10% of the
total amount of accumulated annotations. Another essential highlight is the importance of
attaching an object tracker to the presented method in order to improve the detected object
confidence. This enhancement allows for the propagation of high-confidence detections of
foreground objects across different environmental conditions, or while navigating across
multiple depths of field. Due to the simplicity of the object tracker applied, this certainty
required two conditions: separate pathways from different targets, especially if the cross is
slow or stalled, and a minimum of a weighted average of confidence detections superior to
the required threshold, with the minimum accuracy starting at 90% and decreasing until
70% with each loop, i.e., when a target is detected and tracked, allowing for a continual
association of different precision metrics and prioritizing higher accuracy.

5.4. Data Preparation for Final Model

Pipelines (l) to (m), after reaching the stalling threshold, advance into the (l) generation
of an (m) updated dataset, matching the number of extracted labeled images from the
negative sample bundle, i.e., images not containing any objects similar to the intended
targets. Albeit being an analogous process in comparison with the first stages of the
self-learning loop, the compounded information obtained from the multiple loop cycles
provides an additional filtering of images containing false positives, while also decreasing
the occurrence of false negatives. During these steps it is possible to determine the amount,
label locations, and type of annotated images required for further training, allowing an
interactive interchange between the aimed applications for the future trained model: edge
devices, mobile devices, or cloud processing, where the nature of the required images for
training may shift according to the environmental conditions and targets.

5.5. Final Model

At the last stage (n), the previous model is finally used to continue training, or a new
model is trained, by either randomized weights or using a transfer learning approach. The
configuration used for the training of new models during this stage varies depending on
the intended application and device. In the present paper, maintaining the continuity, the
transfer learning approach was used again to achieve the final model.

It is important to stress once again that, despite using YOLOv4 as the final architecture,
the automatically generated final dataset (Section 5.4) can be used to train simpler and
more localized object detection networks, which can immensely reduce the necessary
computational power on an edge device, while releasing resources that can further improve
the detection rate and accuracy. The next section will present the tests performed with the
methods and the results achieved.
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6. Experimental Results and Discussion

The presented results were obtained using a single NVIDIA RTX 3090, with 24 GB of
VRAM used for all the training of the presented method, with a main focus on the ability to
reproduce similar results without the necessity of resorting to higher computational power.
The presented method was also adapted and reproduced on an NVIDIA RTX 2070 Super
with only 8 GB of VRAM, achieving similar results, thus verifying the versatility of this
method for further adaptation and applicability.

For the baseline training stage of the presented method, we evaluated the OzFish
dataset [12], bare and accompanied by the negative sample, i.e., images not containing any
targets, therefore, without annotations. The results can be observed in Table 1, where the
mAP50, i.e., the mean Average Precision (mAP) at Intersection over Union (IoU) of 50%,
increased by 4.47% from 68.46%, and 9.99% from 25.94%, for mAP75, with the addition of a
negative sample. The average IoU also increased by 7.68% from 59.28%, and interestingly,
the recall, which is the metric responsible for measuring the number of targets identified
in an image, only increased by 1% from 65%, while the precision, which evaluates if
the detection is a true positive, increased by 7% from 79%. Therefore, the addition of
negative samples, even from unrelated images, and without representing the dataset
bare background, considerably improves the model accuracy, especially at a higher IoU,
although it did not significantly improve the recall, i.e., the metric used for evaluating the
number of positive detections for available objects in the image.

Table 1. Model training parameters and results using the YOLOv4 methods.

Method Dataset Size #Images 1 #Annotations 1 mAP50 mAP75 IoU 2 Precision 2 Recall 2

YOLOv4 OzFish 608 1753 43,572 68.46% 25.94% 59.28% 79% 65%
YOLOv4 OzFish+NS 3 608 3506 43,572 72.93% 35.93% 66.96% 86% 66%

YOLOv4 CCMAR 608 4100 13,318 88.33% 65.78% 70.36% 85% 84%
YOLOv4 CCMAR 608 12,500 67,750 92.99% 74.49% 73.44% 87% 86%
YOLOv4 CCMAR 416 35,510 113,886 91.90% 68.96% 73.31% 88% 83%
YOLOv4 CCMAR 512 35,510 113,886 92.74% 72.67% 74.28% 88% 84%
YOLOv4 CCMAR 608 35,510 113,886 93.11% 74.70% 75.10% 89% 84%

YOLOv4-tiny CCMAR 416 35,510 113,886 85.00% 45.33% 68.74% 87% 71%
YOLOv4-tiny-3l CCMAR 608 35,510 113,886 89.66% 61.02% 73.69% 90% 73%

1 # means number of. 2 For IoU threshold at 50%. Confidence threshold at 50%. 3 Negative sample images.

Measuring the model evolution during the self-supervised pseudo-labeling loop is
a convoluted challenge, considering that the main objective for the proposed method is
the autonomous generation of an object detection model based on unlabeled footage, from
and for the local fish population from unlabeled footage: resorting to carefully annotated
images for algorithmic guidance during the self-learning cycle would corrupt the purpose.
Therefore, the results of the self-learning loop can only be genuinely calculated after the
end of the loop cycle. However, it is possible to observe the evolution of the autonomous
annotations across the cycle evolution in terms of incidence, overlap, increased accuracy,
and the increment or stall of the pseudo-labeled annotations for each frame, as can be
observed in Figure 5 (from left to right shows the progression during the self-supervised
pseudo-labeling loop cycle). Moreover, it is important to notice the implementation of track-
ing techniques in order to increase the overall accuracy for each prediction, which interferes
with an instance object detection analysis. Nevertheless, even though the collected annota-
tions also presented a noisy dataset, some samples can be observed in Figure 6; the obtained
metric results sustain the viability of the presented method for local model adaptation.
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Figure 6. Sample of correct instant detections over frames obtained from the CCMAR footage.
Top row: correct detections. Middle row: partially correct detections. Bottom row: failed cases.

Before proceeding to the final stage of the presented method, an EDA on the obtained
pseudo-dataset was performed, which revealed different results relative to the underlying
environmental conditions. While evaluating the bounding box automatic annotations,
which influence the IoU metrics, a recurrent tendency across the fish movement was
observed, where the end part and the tail zone were extended from the fins, leaving a blank
space proportional to the size of the bounding box, while the head of the fish presented
the opposite, with the head presenting itself on the edge or outside the bounding box
annotation; some of these results can be reviewed in Figure 6. This effect can be the result of
compounded errors of the applied tracking system during the training loop, or derivative
of the rapid movement of the fish’s tail.

To evaluate the automatically generated CCMAR dataset, we trained multiple models,
varying the number of images from 4100 to 12,500 and 35,510, and afterward, the network
size from 416 × 416 to 512 × 512 and 608 × 608, while training with 35,510 images. It is
important to note that the amount of annotated images corresponds to half of the data used
for training, and the other half represents the negative sample. Another relevant point is
the almost proportional rise in the number of annotations versus the number of images,
although the distribution of the number of fishes varied between one and more than sixty
fishes in one frame. The images without annotations were not considered due to their
possibility of containing false-negative detections. Moreover, the obtained metrics are
presented in Table 1.

For the dataset size variation, an expected rise across all the relevant metrics was
observed. The mAP50 rose 4.66% from 88.33% when increasing the automated pseudo-
labeled images from 4100, i.e., 2050 annotated images plus the negative sample to 12,500,
having increased an insignificant 0.12% when expanding the number of images to 35,510.
Similarly, the mAP50 rose by 8.71% from 65.78%, and then by 0.21%, respectively. The IoU
increase also followed similar proportions, rising 3.08% from 70.36%, and afterwards 1.66%.
Precision rose from 85% to 87%, and finally to 88%, while recall increased from 84% to 86%,
and then regressed to 84%.

Considering the obtained results, it was observed what apparently could become a
threshold to predict the exact amount of images needed for a dataset, reducing the training
requirements needed to obtain the desired results. Furthermore, the first sample increment
introduced significant gains, while the latter even reduced the number of targets detected.
Nevertheless, it is important to stress that increasing indiscriminately the amount of images
from the presented method will introduce additional noise, similar to what can be observed
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in Figure 6, although, in comparison with the OzFish dataset metrics, there was a significant
increase across almost all metrics, specifically the mAP75 and the recall. Notwithstanding,
the obtained results are evaluated against the generated dataset at this stage; therefore, this
analysis of these metrics must be evaluated in between the same data; however, a formal
ground-truth evaluation is presented in Table 2.

Table 2. Results obtained from testing the models with the marine biologist-annotated images from
different locations.

Method Dataset Size mAP50 mAP75 IoU 1 Precision 1 Recall 1

YOLOv4 OzFish 608 48.60% 27.56% 76.22% 94%|70% 35%|44%
YOLOv4 CCMAR 608 74.05% 43.40% 72.29% 90%|85% 49%|66%

YOLOv4-tiny-3l CCMAR 608 68.62% 38.30% 78.83% 98%|79% 39%|61%
YOLOv4-tiny CCMAR 416 61.83% 28.38% 72.63% 92%|73% 38%|64%

1 For IoU threshold at 50%. Confidence threshold at 50% on the left, and 10% on the right.

Evaluating the effects of network input image size variation, an increase was observed
in the mAP50 of 0.84% from 91.90%, followed by an increase of 0.37%, while the mAP75 rose
3.71% from 68.96%, and afterwards 2.03%. The variation of the IoU at 50% was also minimal,
increasing 0.97% from 73.31%, and 0.82%. The precision only increased 1% from 88% when
changing the network size from 512 × 512 to 608 × 608, while the recall also increased 1%
from 83% when the network varied from 416 × 416 to 512 × 512. The number of images
used for this evaluation was 35,510, as it had provided the higher results previously.

The obtained results demonstrate a small decay in mAP and IoU while reducing
the network input image size, which confirms the potential of the presented method to
automatically generate a robust and efficient distilled dataset adapted for the deployment
of smaller networks, such as with edge devices. Therefore, a smaller version of the YOLOv4
was trained, the YOLOv4-tiny, with two YOLO layers, and the YOLOv4-tiny-3l, with
the original three YOLO layers. In comparison, the YOLOv4 model has 137 pre-trained
convolutional layers, while the YOLOv4-tiny has 29 pre-trained convolutional layers. The
network image size varies from 416 for the smaller network to 608 for the head with three
YOLO layers.

Using the same amount of images, a mAP50 of 85.00% and 89.66%, respectively, was
observed, as well as a significant increase in the mAP75, with 45.33% and 61.02%. The IoU
at 50% varied from 68.74% to 73.69%, while the precision varied from 87% to 90%, and
the recall varied from 71% to 73%. Comparing these results to the obtained while using
the complete YOLOv4 complete model, there is a decay in the performance at higher IoU,
which is also expressed in a lower recall. Nevertheless, these outcomes have proven the
viability of the proposed method for smaller neural networks aimed at edge deployment,
especially considering the high mAP50.

To further evaluate the performance and adaptive generalization of the proposed
method, the trained models were evaluated on the unseen image collection annotated by a
CCMAR marine biologist; these results are presented in Table 2. The first two models were
trained with a network input image size of 608 and the full YOLOv4 model layers, with the
first trained on the OzFish dataset and the second on the automatically generated CCMAR
dataset. Comparing the two models, a significant increase in the mAPs was observed, with
the mAP50 rising 25.45% from 48.60% to 74.05%, and the mAP75 increasing 15.84% from
27.56% to 43.40%. Curiously, the IoU decreased 3.93% from 76.22%; the same also occurred
to precision, decreasing 4% from 94%. However, the recall increased 14% from 35% to 49%.

These results confirm a higher accuracy using the proposed method with a baseline
noisy dataset to refit and automatically generate a new dataset directly associated with the
desired final application. The lower IoU can derive from the observed issue of an additional
annotation space after the fish’s tail. The high precision obtained with the OzFish-trained
model is directly correlated to the lower recall, meaning that the lower quantity of detected
objects were the targets, while the CCMAR-trained model presented higher false positives.
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It is possible to observe in Table 2, the direct relation between precision and recall with the
variation of the confidence threshold.

The smaller network models evaluation on unseen images presented exceptional
results, with the three YOLO-layered heads obtaining a mAP50 of 68.62%, and a mAP75 of
38.30%. The IoU increased in comparison with the previous validation, as presented in
Table 1, to 78.83%, including the precision at 98%, although the recall majorly decreased to
39% for a confidence threshold of 50%. After evaluating the reason for such a low recall,
two occurrences were detected: the smaller fish being undetected, which can be a result of
the use of the YOLO architecture, as was previously mentioned, and a repetitive failure of
detecting fishes surrounding the feeder, which also occurred with the training images, as
can be observed on the bottom row of Figure 6. The smaller model also reproduced desired
outcomes, with the mAP50 of 61.83%, and with the mAP75 of 28.38%, the IoU of 72.63%,
the precision at 92%, and the recall at 38%, for a confidence threshold of 50%. Nevertheless,
these results, specifically with high precision, can be deployed for highly accurate continual
underwater station monitoring.

7. Conclusions and Future Work

The presented method allowed for an autonomous annotation of almost 700 min
of raw footage; moreover, the distillation and augmentation techniques inside the self-
learning loop significantly increased the detection rate, while also preventing the increase
of false positives and false negatives. Additionally, multiple underwater environments
and conditions, including obscured scenarios with the suspension of sand, were used and
tested, proving its versatility. Furthermore, the obtained results against the ground-truth
annotations of unseen images provided an exceptional instant detection mean average
precision, even in smaller models aimed at edge deployment.

Future work is presented in Figure 7. It consists of the implementation of an advanced
and more state-of-the-art tracking method, which will allow for more precise detection,
either inside the self-supervising loop or when performing distillation while generating a
new dataset. As for future dataset publication and availability, a more advanced tracking
method allows for curating the more relevant images and sending them already pseudo-
labeled for validation with the marine biologist, assisting in the creation of a ground-truth
dataset. With the obtained results from the smaller networks, a possible implementation
of inline training after deployment for in-site adaptation will be explored. Lastly, the
development of a universal metric is mandatory for the evaluation of the progress during
the self-supervising loop, and the application of the proposed method to different datasets
and the cross-validation of the achieved results with the state of the art.
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