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Abstract: Soil salinity has a major impact on agricultural production. In a changing climate with
rising sea-levels, low-lying coastal areas are increasingly inundated whereby saltwater gradually
contaminates the soil. Drought prone areas may suffer from salinity due to high evapotranspiration
rates in combination with the use of saline irrigation water. Salinity is difficult to monitor because soil
moisture affects the soil’s spectral signature. We conducted Fourier-transform infrared spectroscopy
on alluvial and sandy soil samples in the coastal estuary of the Red River Delta. The soils are
contaminated with NaCl, Na2CO3 and Na2SO4 salts. In an experiment of salt contamination, we
established that three ranges of the spectrum were strongly influenced by both salt and moisture
content in the soil, at wavenumbers 3200–3400 cm−1 (2.9–3.1 µm); 1600–1700 cm−1 (5.9–6.3 µm);
900–1100 cm−1 (9.1–11.1 µm). The Na2CO3 contaminated soil and the spectral value had a linear
relationship between wavelengths 6.9 and 7.4 µm. At wavelength 6.99 µm, there was no relationship
between absorbance and soil moisture, but the absorbance was proportional to the salt content
(R2 = 0.85; RMSE = 0.68 g) and electrical conductivity (R2 = 0.50; RMSE = 3.8 dS/m). The relationship
between soil moisture and spectral absorbance value was high at wavelengths below 6.7 µm, resulting
in a quadratic relation between soil moisture and absorbance at wavelength 6.13 µm (R2 = 0.80;
RMSE = 5.2%). The spectral signatures and equations might be useful for mapping salt-affected soils,
particularly in difficult to access locations. Technological advances in thermal satellite sensors may
offer possibilities for monitoring soil salinity.

Keywords: soil; salinity; Fourier-transform infrared spectroscopy; FTIR; Vietnam

1. Introduction

Salinity is one of the most serious environmental stresses in the 21st Century, since it
largely affects agricultural production through decreasing cultivated areas, productivity
and the quality of agricultural products [1–3]. An estimated 20% of the total cultivated area
and 33% of irrigated agricultural land worldwide are affected by high salinity levels [3,4].
In addition, more than 50% of the arable land is projected to be at risk of salinization by the
year 2050, which necessitates breeding salt-tolerant crops to address food security [5–7].

Salt accumulates in the soil due to natural processes and occurs in drylands due to a
combination of high evapotranspiration rates and erratic rainfall, and the natural presence
of soluble salts. In coastal areas, soil salinity occurs due to seawater intrusion into the
surface water, groundwater and wetlands, and subsequently enters agricultural fields, as
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observed in southeast Vietnam [8,9]. Seawater intrusion can be caused by tides, waves
during storms and storm surges, which are projected to increase due to sea levels rising
in a changing climate. The accumulation of salt in coastal environments due to natural
processes is called primary salinity, and occurs over a time scale of about 100,000 years or
longer [10]. Soil salinity can also occur in a secondary form and can be human-induced in
irrigated areas. Primary salt-affected soils are estimated globally at about 955–1070 Mha
during 1986–2016, while secondary salinization affects around 77 Mha, with 58% of these
in irrigated areas [4,11]. Secondary salinization occurs especially in arid areas, which have
high evaporation rates such as in the drier provinces of southeast Vietnam [8,9,12]. In coastal
areas, the salinity of cultivated land is affected by aquaculture and, in particular, by shrimp
cultivation, where seawater is deliberately pumped into the fields. Currently, this activity
is expanding rapidly in Vietnam and therefore, soil salinity has increased accordingly [8].
Sea level rise is a serious climate threat and leads to severe salinity intrusion and tidal
inundation in coastal areas [8,9,12]. Torrential rainfall contributes to flooding by rivers in
many coastal and estuarine areas [13], and adds to spreading salinity in low-lying areas.

Salt-affected soils have a high content of soluble salts that interfere with plant growth [14],
and are referred to as saline, saline-sodic and sodic, depending on the total salt concen-
tration, the amount of sodium present and the soil reaction [15]. Sodium salts are capable
of alkaline hydrolysis, particularly Na2CO3, and have also been termed ‘alkali’ [16]. Soil
salinity is assessed by its influence on crop yield and quality, and measured as the electrical
conductivity (EC) of the saturation extract (ECe) in the root zone [16]. Soil salinity can
be classified into five levels depending on the influence on the plants [16,17]: non-saline:
0–2 dS/m; slightly saline: 2–4 dS/m; moderately saline: 4–8 dS/m; strongly saline: 8–
16 dS/m; and very strongly saline: >16 dS/m. Other studies have classified saline soils
with values exceeding 4 dS/m (approximately 40 mM NaCl) at 25 ◦C and having an
exchangeable sodium percentage of 15% [6,18,19].

The mineralogy of carbonate, sulfate and chloride salts can be determined by the
presence or absence of absorbance features in the electromagnetic spectrum. The V–NIR–
SWIR absorbance bands in the spectrum of salt minerals are largely associated with the
vibration of the anion groups HOH, OH, CO and SO4 [11,20,21]. The soil salinity state
has been identified using laboratory spectroscopy in the visible (550–770 nm) and NIR
(900–1030 nm, 1270–1520 nm, 1940–2150 nm, 2150–2300 nm and 2330–2400 nm) parts of
the spectrum [22,23]. In arid soils, the reflectance spectra of saline soils produced distinct
spectral absorbances [24–26], where crusting and salt residues were associated with high
reflectance in the visible and near-infrared spectrum [24,27,28]. Spectral signatures of
pure halite crystals (NaCl) do not show absorbance in the visible, infrared and thermal
regions [29], and absorbances near the 1400, 1900 and 2250 nm were attributed to moisture
associated with the salt [30–33]. The continuous spectra of halite (NaCl) and cinnite (KCl)
show an absorbance at 1440 and 1933 nm, while soil samples treated with MgCl2 (Bischofite)
showed absorbance at 1190 and 1824 nm [23,33]. Overall, an increased absorbance was
associated with an increased salt content in soils [32,33].

The presence of water darkens the soil [34], mainly due to a change in the refractive
index (n) of the environment [35]. This reduces the contrast of soil particles and increases
scatter and spectral absorbance [36]. Soil moisture and salt, depending on type, have
similar effects on the soil reflectance spectrum, and may therefore cause erroneous salinity
predictions from remote sensing data and increase the difficulty of monitoring saline soils
over time [4,22,37–39]. Although hyperspectral remote sensing has been widely applied,
only a few studies have concentrated on the effects of soil moisture in estimating salt
from spectral reflectance [40–43]. Moisture resistance estimation methods are used for
the early detection and rapid monitoring of large-scale salinity intrusion, and observing
moisture changes in space and time [39,44]. Detection of soil salinity with remote sensing
offers possibilities for soil salinity monitoring, and an exploration beyond the near-infrared
spectrum may offer possibilities for monitoring with newly planned long-wave and thermal
infrared satellite sensors [45].
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Estuarine and coastal areas suffer from increased salinity risks due to sea level rise,
while drought prone areas may suffer from salinity due to high evapotranspiration rates
in combination with the use of saline irrigation water [12,46]. Therefore, the development
of methods to monitor salinity is important. The advent of novel thermal satellite sensor
technologies will enable new applications and monitoring of the difficult to access terrains.
We hypothesized that salinity can be detected without interference from soil moisture
in the spectral range of 2.5 to 15.4 µm. The main objective was to find spectra in which
salt contamination can be detected without the influence of soil moisture, to estimate salt
content from absorbance peaks and to explore possibilities for monitoring saline and sodic
soils in areas at risk, that also have a high soil moisture content and/or are difficult to
access when taking soil samples. We used Fourier-Transform InfraRed (FTIR) spectroscopy
to build a spectral database of saline soils with salinity levels, based on salt contamination
with NaCl, Na2SO4 and Na2CO3. The corresponding electrical conductivity of the 1:5 soil
to water extract was assessed in combination with changes in soil moisture levels from dry
to fully-saturated.

2. Materials and Methods
2.1. Soil Sampling Sites

The study area is the coastal area of Hai Phong-Thai Binh located in the Red River
Delta, with four estuaries (Figure 1): Van Uc (1), Thai Binh (2), Tra Ly (3) and Red River
(4), that are strongly affected by sediment transport and tidal dynamics. According to the
WRB reference soil groups [14], there are four main reference soil groups in the study area:
Fluvisol (FL), Gleysol (GL), Arenosol (AR), and Cambisol (CM). According to the soil maps,
soil salinity accounts for about 27 % of the total area in Hai Phong, Thai Binh and Nam
Dinh. The process of soil salinization is affecting not only Fluvisols, but also Gleysols and
Arenosols.

Soil samples were taken of Fluvisols and Arenosols with an electrical conductivity
(EC1:5) below 1 dS/m. The sampling method followed the Vietnamese protocol of soil
sampling in agricultural areas TCVN 4046-85 [47]. Samples were collected from 11 separate
points (Figure 1). At each point, soil was taken from 20 adjacent positions and mixed
together, amounting to a weight of 1 kg. Samples were taken at a depth of 0–10 cm and
stored in a labelled bag. The samples were brought to the laboratory and pre-treated
according to ISO 11464:2006 [48]. The soil samples were air-dried in a cool place. Gravel
and plant roots were removed. The samples were crushed with a ceramic mortar, sieved
through a 2 mm sieve and mixed prior to physical and chemical analysis and spectroscopic
research.
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Figure 1. The study area: Hai Phong-Thai Binh coastal area, Vietnam. (1) Van Uc estuary; (2) Thai 
Binh estuary; (3) Tra Ly estuary; (4) Red River estuary. 
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soil samples in the laboratory were determined according to laboratory standard TCVN 
4080:2011 [49]. A total of 5 g of air-dried soil sample was weighed on an analytical balance, 
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105 °C to constant mass weight. The sample was cooled in a desiccator for about 20 to 30 
min, and the mass was determined with an analytical balance. The moisture content of 
the sample was subsequently determined. 

The particle size distribution (PSD) of soil samples was determined according to la-
boratory standard TCVN 8567:2010 [50]. The air-dried soil sample was processed through 
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pyro phosphate (Na4P2O7) and sodium carbonate (Na2CO3) at the ratio of 1:2 (w/v), left to 

Figure 1. The study area: Hai Phong-Thai Binh coastal area, Vietnam. (1) Van Uc estuary; (2) Thai
Binh estuary; (3) Tra Ly estuary; (4) Red River estuary.

2.2. Laboratory Experimental Design
2.2.1. Analysis of Soil Characteristics in the Laboratory

The moisture content of the soil collected in the field and the moisture content of the
soil samples in the laboratory were determined according to laboratory standard TCVN
4080:2011 [49]. A total of 5 g of air-dried soil sample was weighed on an analytical balance,
and put into a weight-fixed aluminum box. The box was oven-dried at a temperature of
105 ◦C to constant mass weight. The sample was cooled in a desiccator for about 20 to
30 min, and the mass was determined with an analytical balance. The moisture content of
the sample was subsequently determined.

The particle size distribution (PSD) of soil samples was determined according to
laboratory standard TCVN 8567:2010 [50]. The air-dried soil sample was processed through
a 2 mm sieve to determine the PSD. Soil samples were soaked with a mixture of sodium
pyro phosphate (Na4P2O7) and sodium carbonate (Na2CO3) at the ratio of 1:2 (w/v), left
to disperse overnight, and passed through a 0.02 mm sieve to determine the sand. The
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suspension was subsequently brought to a 1 L cylinder for the determination of silt and
clay particles by the pipette method.

The results of the textural composition of the soil samples in the coastal estuaries of
Hai Phong-Thai Binh (Table 1) shows a USDA textural class variability from Sand in Kien
Thuy 2 to Clay Loam in Tien Lang 2. The following soil samples were selected for further
salinity experimentation: Tien Lang 2 sample (symbol: TL2) represents an alluvial soil and
Kien Thuy 2 sample (Symbol: KT2) represents a sandy soil from a river bank.

Table 1. Soil texture, USDA soil textural class and electrical conductivity (EC1:5) of topsoil samples at
the coast of Hai Phong-Thai Binh. Reference soil groups are classified according to [14]. The locations
are shown in Figure 1.

ID Location Clay
(%)

Silt
(%)

Sand
(%)

EC1:5
(dS/m)

Moisture
(%)

Textural
Class RSG

gt1 Giao Thuy 10.40 10.26 79.34 0.30 20.1 Sandy Loam Fluvisol
gt2 Giao Thuy 9.52 1.24 89.24 0.24 21.8 Loamy Sand Fluvisol
gt3 Giao Thuy 8.76 2.52 88.72 0.28 21.9 Loamy Sand Fluvisol
vb1 Vinh Bao 25.44 40.32 34.24 0.54 31.4 Loam Fluvisol
tl1 Tien Lang 28.82 28.10 43.08 0.32 33.9 Clay Loam Arenosol
tl2 Tien Lang 37.08 38.82 24.10 0.51 34.5 Clay Loam Fluvisol
th1 Tien Hai 8.02 1.52 90.46 0.65 20.4 Sand Arenosol
th2 Tien Hai 9.38 2.46 88.16 0.44 28.2 Loamy Sand Fluvisol
kt1 Kien Thuy 19.8 19.82 60.38 0.60 24.2 Sandy Loam Arenosol
kt2 Kien Thuy 9.14 0.24 90.62 0.12 21.1 Sand Arenosol
tt1 Thai Thuy 18.58 18.02 63.40 0.29 25.1 Sandy Loam Fluvisol

The electrical conductivity of the soil samples collected in the field and soil samples
generated in the laboratory was determined according to the laboratory standard TCVN
6650:2000 (ISO 11265:1994) [51]. A sample of the air-dried soil was pre-processed in
accordance with ISO 11464:2006 [48] to prepare a 1:5 (w/v) ratio of soil to water extract. KCl
solutions at concentrations of 0.1 mol/L, 0.02 mol/L, 0.01 mol/L were used for calibration.

2.2.2. Soil Salinity Experiment

The electrical conductivity in a 1:5 (w/v) soil to water extract of the 11 soil samples
was evaluated from slightly to strongly saline (Table 1). Two samples were taken for further
experiments: Tien Lang 2 (TL2) and Kien Thuy 2 (KT2). The selected soil samples had an
electrical conductivity (EC1:5) of 0.51 and 0.12 dS/m, which corresponds to a calculated
ECe of 7.5 and 2.2 dS/m (Table 2), and were therefore classified as moderately saline and
slightly saline soils, according to [16,17].

Table 2. Electrical conductivity (EC1:5) in soils at Tien Lang (TL2) and Kien Thuỵ (KT2).

ID EC1:5 (dS/m) ECe (dS/m) Temperature (◦C) Salinity Class

TL2 0.51 7.5 23.6 Moderately saline
KT2 0.12 2.2 23.6 Slightly saline

We subsequently conducted a salinity experiment on these two selected soils, whereby
water and salt were added in controlled laboratory circumstances to obtain 56 different
mixtures of soil (2), salt type (7) and salt amount (4). Seven salt types were prepared in the
laboratory to obtain mixtures of: a: NaCl; b: Na2SO4; c: Na2CO3; d: NaCl: Na2SO4= 1:1; e:
NaCl: Na2SO4= 1:5; f: NaCl: Na2SO4= 1:10; and g: NaCl: Na2SO4: Na2CO3= 1:1:1. From
each of these salt mixtures 0.35 g, 1.75 g, 3.5 g and 7 g were weighed, mixed into 100 gr of
air-dried and sieved soil, and subsequently brought to saturation level.

The following mixtures were prepared:
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• Salinity level 1 (slevel 1): 100 g of air-dried and sieved soil, to which 0.35 g salt was
added (NaCl or Na2SO4 or Na2CO3 or a mixture of salts). Water was added until
saturated soil moisture content;

• Salinity level 1 (slevel 2): 100 g air-dried and sieved soil, to which 1.75 g salt was
added (NaCl or Na2SO4 or Na2CO3 or a mixture of salts). Water was added until
saturated soil moisture content;

• Salinity level 1 (slevel 3): 100 gr air-dried and sieved soil, to which 3.5 g salt was added
(NaCl or Na2SO4 or Na2CO3 or a mixture of salts). Water was added until saturated
soil moisture content;

• Salinity level 1 (slevel 4): 100 g of air-dried and sieved soil, to which 7 g salt was added
(NaCl or Na2SO4 or Na2CO3 or a mixture of salts). Water was added until saturated
soil moisture content.

2.2.3. Soil Spectral Measurements and Analysis

Field soil samples and laboratory soil samples were measured spectroscopically with
a diamond-faced probe. These samples were pressed directly on the instrument Agilent
Cary 630 FTIR of Agilent Technologies. Data processing was achieved with the MicroLab
PC spectrometer software and Agilent Resolution spectrometer software.

The soil moisture monitoring and spectroscopy measurements were conducted during
five sampling days:

• Sampling day 1: The soil samples were saturated with water. The soil moisture and
FTIR spectrum were measured;

• Sampling days 2–4: The soil samples were left to air-dry. The soil moisture and FTIR
spectrum were measured. The duration from 1st to 2nd day, 2nd to 3rd and 3rd to 4th
was one day and night;

• Sampling days 5–6: The soil samples were dried at 105 ◦C until constant weight. The
soil moisture, FTIR spectrum and electrical conductivity were measured. The duration
from the 4th to 5th day was 2 days and nights.

The database is hosted on a website with a general introduction on the determination
of salinity level of surface soil for agricultural cultivation in some areas near the coastal estu-
aries of Hai Phong-Thai Binh. Alluvial and sandy soils were measured in the laboratory and
some spectral samples were measured in the field. The spectral data provide information on
the FTIR spectroscopy measured in the laboratory samples. Transmittance measurements,
i.e., the percentage of incident light which is transmitted, were converted to absorbance
using Equation (1). Conversion of wavenumbers into wavelength, commensurate with
satellite sensor specifications, was accomplished using Equation (2).

A = 2 − log10(%T) (1)

WL = 107 1
WN

(2)

where %T is transmittance in percentage, A is absorbance, WN is wavenumber (cm−1) and
WL is wavelength (nm).

The database includes 280 FTIR spectral samples measured in the laboratory of a
Fluvisol (TL2) and Arenosol (KT2) contaminated with: NaCl, Na2SO4, Na2CO3 or a mixture
of: NaCl:Na2SO4 in 1:1 proportion; NaCl:Na2SO4 in the proportion of 1:5; NaCl:Na2SO4 in
the proportion 1:10; NaCl:Na2SO4:Na2CO3 in the proportion of 1:1:1 with four increasing
salinity levels. The samples were monitored and measured at five different moisture levels.
The electrical conductivity (EC1:5) was determined in a 1:5 (w/v) soil to water extract after
the salts were added. The experiments were repeated three times, the results presented
are the averages; the coefficient of variation was lower than 1.3%. A two-way analysis of
variance was conducted in R [52] to compare the main effects of soil, salinity level and
sampling time and the interaction effect of soil, salinity level and sampling time on the
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moisture content. Tests for normality were performed using the R packages nortest [53]
and rstatix [54], while ggpubr [55] was used for preparing factorial plots.

3. Results
3.1. Salinity and Moisture Characteristics

The initial spectral profiles of a field sample of a clay loam topsoil (Fluvisol) and a
sand topsoil (Arenosol) are shown in Figure 2.
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Figure 2. Spectral profile of a field sample of a clay loam topsoil (Fluvisol, TL2) and a sand topsoil
(Arenosol, KT2).

The salinity characteristics of the two soils contaminated with NaCl, Na2SO4, Na2CO3,
as mono-salt in mixture, clearly demonstrate the effect of NaCl on the electrical conductivity
of each of the 56 soil samples (Figure 3). The four levels of salt amounts added to the soil
corresponded to a different electrical conductivity (EC1:5). EC1:5 ranged from 0.35–1.41
dS/m for salinity level 1, 2.90–6.34 dS/m for salinity level 2, 8.04–12.90 dS/m for salinity
level 3, and 13.30–22.40 dS/m for salinity level 4 (Figure 3). The EC1:5 of the sand soil
sample (KT2-a), to which more than 3.5 g NaCl was added, was higher.
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two soil samples (TL2, KT2), four salinity levels and seven different salt types, where a: NaCl;
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NaCl:Na2SO4:Na2CO3 = 1:1:1).
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Clear differences were observed between the moisture levels at different salt concen-
tration levels for each of the two soils (Figure 4). Two soil types were included (sand, clay
loam), the salinity included four levels and the sampling time consisted of five sampling
days (Figure 4). All effects were statistically significant at the <.001 level. The main effect
yielded an F ratio of F(1, 240) = 1064, p < 0.001 for soil, F(3, 240) = 84, p < 0.001 for salinity
level, and F(4, 240) = 4189, p < 0.001 for sampling time, indicating a significant difference
between soils, salinity levels and sampling times. All of the interaction effects were sig-
nificant, ranging from the interaction between the soil, salinity level and sampling time
on soil moisture with an F ratio of F(12, 240) = 7.1, p < 0.001 to the interaction of the soil
and sampling time on soil moisture with an F ratio of F(4, 240) = 79, p < 0.001. A model
incorporating the salt type together with the soil type, salinity level and sampling time,
but without considering interaction effects, did not have a significant influence on soil
moisture, where F(6, 265) = 0.639, p = 0.699. Though differences were observed between
salt types with respect to soil moisture, these were not significant. Overall, the higher the
salinity level, irrespective of the salt type, the higher the soil moisture. This effect was
more pronounced at lower moisture levels: for sand, the effect occurred from the second
sampling day onwards and for clay loam, from the third sampling day onwards.
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3.2. Spectral Characteristics of Soil Samples Contaminated with NaCl, Na2SO4, Na2CO3

The spectral signatures of the Fluvisol and Arenosol soil samples showed that these
were strongly affected by soil moisture. The results are discussed in terms of transmittance
and absorbance patterns. We expressed spectral measurements in % transmittance projected
on an infrared range from 4000 to 650 cm−1 wavenumber equivalent to wavelengths from
2.5 µm (near infrared) to 15.4 µm (thermal infrared).

Figure 5 represents the soil spectrum for the dry soil samples containing NaCl, Na2CO3
or Na2SO4. When the soil was dry, the spectral images showed some fluctuation in the
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wavenumber, ranging from 650 cm−1 to 1200 cm−1 (8.33–15.4 µm), with a major spectral
absorbance around 1000 cm−1 (10 µm) (Figure 5). Figure 5B shows an additional absorbance
from 1200 to 1500 cm−1 (6.67–8.33 µm), with a peak spectral absorbance around 1300 cm−1

(7.69 µm) that represented dry soil contaminated with Na2CO3.
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influence of moisture in the soil (Figures 6–8). The higher the moisture, the deeper the
absorbance. These fluctuations did not appear when the soil was dry for a wavelength
range from 1200 to 650 cm−1 (8.33–15.38 µm). Figure 6 represents the soil spectral signature
at different moisture levels and contaminated with Na2CO3. Three absorbance bands were
similar to the spectrum of soil contaminated with NaCl (Figure 5) or Na2SO4 (Figure 8),
ranging from 3600 to 2900 cm−1; from 1700 to 1500 cm−1; and from 1200 to 650 cm−1. An
additional absorbance peak appeared in the wavelength range from 1500 to 1200 cm−1

(Figure 7). This wavenumber range displayed a deep absorbance depending on the salt
concentration, that also appeared when the soil was dry and not affected by soil moisture.

Spectral characteristics of the soils contaminated with NaCl are depicted in Figure 6.
The spectra of the NaCl saline soils were the same as when the soil was dry for different
salinity levels, not showing a difference in the spectral absorbance at 775 cm−1 and 911 cm−1.
When the soil had different moisture levels and the same salinity level (Figure 6), the higher
the moisture content, the higher the spectral absorbance around 775 cm−1 and 911 cm−1.
When the moisture was at saturation, the spectral shape from 680 cm−1 to about 1200 cm−1

changed.
The characteristics of the soil spectrum contaminated with Na2CO3 are depicted in

Figure 7. In the highly and severely Na2CO3 contaminated soils, a spectral absorbance
appeared in the wavenumber range 1240–1480 cm−1, and more specifically around 1380 cm−1,
whereby the depth differed with soil moisture. In the soils contaminated with NaCl (Figure 6),
this absorbance does not appear, but in the soils contaminated with Na2CO3 the higher the
salinity level, the higher the absorbance or lower the transmittance (Figure 7). This spectral
interval proved important for detecting the Na2CO3 content in the soil.
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The spectral characteristics of the soil contaminated with Na2SO4 (Figure 8) depended
on the soil moisture. In comparison to the general spectral characteristics described for
the Na2CO3 contaminated soil (Figure 7), the Na2SO4 contaminated soil (Figure 8) did not
show any additional absorbance peak. However, there was no clear difference between
the samples of the dry soil spectrum with different salinity levels (Figure 5). Absorbance
occurred when the soil was moist. The higher the soil moisture, the lower the transmittance
or the higher the absorbance (Figure 8).
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Spectral signatures of mixed salts (Figure 9) were similar to the spectra of single
salt-contaminated soils. Soil mixtures with Na2CO3 salt had absorbances from 1240 to
1480 cm−1 and multiple absorbance/transmittances at different wavelengths depending
on the moisture and salt content. An additional absorbance occurred between 1364 and
1430 cm−1 (Figure 9).
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3.3. Model Calibration

The spectra of the soil samples contaminated with Na2CO3 at different concentrations,
combined with different moisture levels from saturated to dry, showed that the spectral
absorbance depended on both the salt and moisture contents of the soil. Almost all of
the absorbances were concentrated at specific wavenumbers. Absorbance peaks related
to changes in soil moisture occurred at wavenumbers 1000 cm−1 (10 µm) and 1630 cm−1

(6.13 µm) (Figure 10). Absorbance peaks related to the occurrence and changes in Na2CO3
content were concentrated in the wavenumber range from 1370 to 1420 cm−1 (7.0–7.3 µm)
(Figure 10).
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The relationship between the absorbance peaks and the change in salt content oc-
curred between wavelengths 6.9 and 7.4 µm, with a peak at 6.99 µm. Between the Na2CO3
contaminated soil and the spectral absorbance value was a linear relationship (Figure 11A)
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with R2 > 0.5 between wavelengths 6.9 and 7.4 µm and a maximum of R2 = 0.85 at 6.99 µm.
Moreover, at these wavelengths, the relationship between the soil moisture and the spectral
absorbance value showed very low correlations, R2 = 0.0406 (Figure 11B). The relation-
ship between the Na2CO3 contaminated soil and spectral absorbance is at wavenumber
1431 cm−1 (wavelength 6.99 µm) and can be used to predict the salt content in the moist
soils of delta areas.
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The absorbance peaks between wavelengths 6.9 and 7.4 µm had a clear relationship
with the change in Na2CO3 salt content that was also found with electrical conductivity
(EC1:5 in dS/m) as a measure for salt content in the soil (Figure 12).
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The relationship between soil moisture and spectral absorbance value was high at
wavelengths below 6.7 µm with R2 > 0.5 between wavelengths 5.7 and 6.6 µm, reaching a
quadratic relation between soil moisture and absorbance at wavelength 6.13 µm (R2 = 0.7979;
Figure 13).
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4. Discussion

The experiment was conducted on two soil types, Folic Fluvisol and Fluvic Arenosol,
which are the two dominant soil types in the coastal and estuarine areas in Vietnam, such
as the Red River delta. Arenosols are among the most extensive soils in the world, covering
about 900 million hectares or seven percent of the land surface [14]. In the humid tropics,
Arenosols are either young soils in coarsely textured alluvial, lacustrine or aeolian deposits,
or they are very old soils in residual acid rock weathering that lost all primary minerals
other than (coarse grained) quartz in the course of an impressive pedogenetic history [56].

The spectral features of the salts commonly found in soils are different from the spectral
signals from soils contaminated with these salts, particularly for mono-salts. Mono-salts that
commonly occur in soils include halite (NaCl), thenardite (Na2SO4), nahcolite (NaHCO3),
calcium carbonate (CaCO3) and gypsum (CaSO4.2H2O). The spectral absorbance of Na2SO4
g is similar to gypsum at 1.978 µm, making it difficult to distinguish between them [32].
Absorbances at 1.4, 1.9 and 2.25 µm were attributed to moisture [30–33,39,44]. Dissolved salts
dominate the spectrum, e.g., in soils with NaHCO3 and CaCO3, NaHCO3 dominates the
spectral signature with absorbances at 1.334, 1.472, and 1.997 µm [32,44,57].

In our experiments, no specific spectral absorbance region was found for NaCl and
Na2SO4 contaminated soil in the wavenumbers ranging from 650 to 4500 cm−1 (2.2–
15.4 µm), but a clear absorbance for Na2CO3 contaminated soils was found. The strength of
the absorbance was related to the salt content in the soil. The depth of spectral absorbances
was different when both the soil moisture and salt concentration changed, which was
confirmed by [32,33]. In general, the spectral absorbances of salts are influenced by water
molecules [28,44].

Besides the influence of moisture and soluble salts, absorbance spectra are also in-
fluenced by the soil’s physico-chemical characteristics, such as clay and organic matter
content [58,59]. We found that the Fluvisol had stronger absorbances than the Arenosol.
The relationship between the spectral absorbance and the added mass of Na2CO3 (in g) is
better (R2 = 0.85) than with the electrical conductivity (R2 = 0.50), which can be explained
by the physico-chemical soil characteristics and the dynamics in the soil solution [59]. There
is a need for physico-chemical analysis of initial and altered salt compositions following the
addition of dry salt mixtures to the soil, to elucidate the soil’s salinity dynamics. Further
research will be needed to establish whether the accuracy of salt prediction is influenced by
soil colloid characteristics in the spectral range of 2.2 to 15.4 µm.
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Most research has focused on the remote sensing detection of soil salinity in the visible
spectrum and near- to shortwave infrared [11,60–62]. Current satellite sensors offering data
in the spectra beyond the near-infrared spectrum have ground sampling distances ranging
from 100 m for Landsat and Aster to 1 km for Modis and Sentinel-3 [45]. Despite low
spatial and temporal resolutions of the current satellite sensors, detection of soil salinity in
the long-wave and thermal spectrum offers possibilities for soil salinity monitoring [4,63].
Newly planned thermal infrared satellite constellations will enable a revisit time of a few
days and a resolution below 100 m.

5. Conclusions

Soil moisture had a large impact on the soil spectrum. The impact of salt contamination
was located in three main wavelength ranges: 3400–3200 cm−1, 1700–1600 cm−1 and 1100–
900 cm−1. The salt-contaminated soils did not have the same diagnostic absorbance as
the spectral signatures of the salt minerals. The spectra of soil contaminated with NaCl
and Na2SO4 salts was similar to the spectra of soils that were not contaminated with
salt. The spectra of soil contaminated with Na2CO3 salt showed clear signs of spectral
absorbance in the wavenumbers ranging from 1360 to 1464 cm−1. At wavelength 6.99 µm,
there was no relationship between the absorbance and soil moisture, but the absorbance
was proportional to the salt content (R2 = 0.8529; RMSE = 0.68 g) and electrical conductivity
(R2 = 0.4972; RMSE = 3.8 dS/m). Therefore, these spectra could be used to estimate Na2CO3
salt content in moist soil. Moreover, these wavelengths were not affected by soil moisture.
The relationship between the soil moisture and spectral absorbance value was high at
wavelengths below 6.7 µm, resulting in a quadratic relation between soil moisture and
absorbance at wavelength 6.13 µm (R2 = 0.7979; RMSE = 5.2%). Advances in thermal
infrared sensor technologies may offer possibilities for soil salinity monitoring in difficult
to access locations.
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