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Abstract: The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels,
provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition
to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2
Metox and Hmg 1b-5, were isolated from the sea anemone Heteractis magnifica and characterized as
novel nAChR ligands and acid-sensing ion channel (ASIC) modulators. All peptides competed with
radiolabeled α-bungarotoxin for binding to Torpedo californica muscle-type and human α7 nAChRs.
Hmg 1b-2 potentiated acetylcholine-elicited current in human α7 receptors expressed in Xenopus
laevis oocytes. Moreover, the multigene family coding APETx-like peptides library from H. magnifica
was described and in silico surface electrostatic potentials of novel peptides were analyzed. To explain
the 100% identity of some peptide isoforms between H. magnifica and H. crispa, 18S rRNA, COI, and
ITS analysis were performed. It has been shown that the sea anemones previously identified by
morphology as H. crispa belong to the species H. magnifica.

Keywords: sea anemones; phylogeny; APETx-like toxins; nicotinic acetylcholine receptors; acid-sensing
ion channels

Key Contribution: Nicotinic cholinergic activity was detected for APETx-like toxins from sea
anemones and two new representatives of this class were found in Heteractis magnifica. The existence
of an APETx-like peptide combinatorial library in H. magnifica encoding by HmgTxs multigene family
was shown.

1. Introduction

For many years, the family of nicotinic acetylcholine receptors (nAChRs) has been the
focus of researchers’ interest as a vital target for the critical neurotransmitter acetylcholine
(ACh), novel drugs (e.g., myorelaxants, analgesics, and neuroprotective agents) and natural
toxins from bacteria, algae, plants, and animals [1–3]. The identification of nAChRs as
the first neurotransmitter receptors has major practical consequences from the perspective
of protein receptors targeting for therapeutic intervention and conception of allosteric
modulation, including further development of allosteric pharmacological agents [4,5].
nAChRs belong to the Cys-loop superfamily of pentameric ligand-gated ion channels. In
mammals 16 nAChR subunits (α1–10, β1–4, γ, δ, and ε) form non-muscle receptors: homo-
pentamers of α7, α8, and α9, hetero-pentamers of α2–α6 combined with β2–β4, or α7 with
β2, and α9 with α10 subunits, and in muscles hetero-pentameric receptors composed of two
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α1, one β1 and δ, plus a fetal subunit γ further replaced by adult ε subunit [3,4]. nAChRs
provide fast excitatory neurotransmission or neuromuscular transmission in both central
and peripheral nervous systems and play pivotal roles in the etiology of neurological
disorders. The diversity of nAChRs subtype composition, specific biophysical properties
and localization make it difficult to pharmacologically regulate their functions [3–5].

Today, a wide diversity of ligands affecting nAChRs has been described. The low-
molecular-weight compounds (quaternary ammonium salts, alkaloids, heterocyclic com-
pounds, etc.) [2], synthetic oligoarginine peptides [6,7] and venom peptides of various
structural classes: three-finger toxins [3,8] and phospholipases A2 from snakes [2,9], α-
conotoxins (α-CTx) [3,10], potassium channel scorpion toxins of α family (α-KTx) [11],
toxin-like Ly6 [12] and C-type lectin-like proteins [2], were shown to act as agonists, antag-
onists, blockers, positive or negative allosteric modulators of distinct nAChR subtypes. The
most investigated and numerous peptide modulators of nAChRs are snake three-finger
α-neurotoxins and α-CTx [3,10]. The first of them contributed substantially to the nAChRs
characterization [8,13] while α-CTx promoted the current theoretical framework for ligand
recognition of the muscle and non-muscle nAChRs [3,10,14].

So far, there has been only one report about a high-molecular-weight toxin Condytox-
ina 2 from the sea anemone Condylactis gigantea with unspecified sequence that affected
cholinergic responses of snail Zachrysia guanensis and mice neurons. This toxin was shown
to act as a noncompetitive antagonist at concentrations up to 25 nM and potentiate nicotine-
induced current at higher concentrations [15]. Therefore, to date no sea anemone peptides
with complete structure determined have been published as ligands to nAChRs.

Here, we report the structure and biological effect of APETx-like peptides (a well-
known fold of sea anemone toxins) as inhibitors of ASICs as well as novel nAChRs ligands.
Among isolated peptides, two peptides, named Hmg 1b-2 and Hmg 1b-4, were identical
to H. crispa toxins Hcr 1b-2 and Hcr 1b-4, previously shown to inhibit ASIC1a and inhibit
(Hcr 1b-2) or potentiate (Hcr 1b-4) ASIC3 channels [16,17]. ASICs are ligand-gated trimeric
cation channels, activated by the proton concentration increase [18–20]. In the list of ASIC
isoforms, ASIC1a and ASIC3 are the most abundant and functionally important [18,19].
ASICs activation causes a Na+ (ASIC1a and ASIC3) and Ca2+ (ASIC1a) influx leading to
cell membrane depolarization and neurodegeneration, respectively [19]. They are widely
expressed in the peripheral nervous system (ASIC1a and ASIC3) and central nervous
system (ASIC1a), contribute to nociception and co-localize with a large number of no-
ciceptive receptors. Currently ASICs are considered as a promising target for pain and
neurodegeneration management [18,19].

In addition, we have studied APETx-like peptides binding both to muscle-type nAChR
of Torpedo californica and human α7 nAChR. Moreover, we found out several APETx-like
peptide isoforms, in addition to the three non-modified ones, using a PCR technique termed
rapid amplification of cDNA ends (RACE). We assembled full transcript sequences for
Hmg 1b-2 and Hmg 1b-5, as well as determining a gene encoding sequence for Hmg 1b-5.
These results point to the existence of an APETx-like peptide combinatorial library in H.
magnifica. We also revealed and discussed the reason for the 100% identity of some isoforms
between H. magnifica and H. crispa.

2. Results
2.1. Activity-Guided Isolation of Toxins from H. magnifica

The search for active peptide components in the mucus of H. magnifica which could
compete with radiolabeled α-bungarotoxin ([125I]-αBgt) for binding to nAChRs(α1β1γδ
muscle-type from Torpedo californica ray electric organ membranes and human α7 subtype
transfected in GH4C1 cells) was carried out according to a well-established scheme combin-
ing multi-stage fractionation including hydrophobic, size exclusion chromatography, and
reverse-phase high pressure liquid chromatography (RP-HPLC) [21] with the measurement
of biological activity by radioligand assay. The total active hydrophobic fraction [21] and the
subsequent fraction 4 (Figure 1a) inhibited specific binding of [125I]-αBgt to the muscle-type
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T. californica nAChR by about 20% (data not shown). As a result of the first RP-HPLC round
of fraction 4 (Figure 1b), 16 fractions were obtained and only fraction 15 inhibited specific
binding of [125I]-αBgt to the muscle-type T. californica nAChR and human α7 nAChR (Fig-
ure 1c). The second round of RP-HPLC of the fraction 15 produced six fractions (Figure 1d),
five of them (2–6) at a concentration of 0.1 mg/mL inhibited the [125I]-αBgt-specific binding
to both receptors by 55–85% and 39–61%, respectively (Figure 1e,f). Fraction 1 was excluded
from the analysis because of the natural product amount limitation.
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Figure 1. Activity-guided isolation of H. magnifica toxins. (a) Size exclusion chromatography of the 
40% hydrophobic fraction after Polychrome-1 on a Superdex Peptide 10/30 column eluted with 10% 
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Figure 1. Activity-guided isolation of H. magnifica toxins. (a) Size exclusion chromatography of
the 40% hydrophobic fraction after Polychrome-1 on a Superdex Peptide 10/30 column eluted with
10% acetonitrile (ACN) in 0.1% trifluoroacetic acid (TFA). The numbers indicate collected and tested
fractions. Active fractions are accentuated by solid lines. (b) RP-HPLC of fraction 4 after size exclusion
chromatography on a Luna C18 (10 mm × 250 mm) column in a gradient of acetonitrile in 0.1%
TFA. The numbers indicate collected and tested fractions. Active fractions are accentuated by solid
lines. (c) Competition of fraction 15 from (b) (0.1 mg/ml) with [125I]-αBgt for binding to muscle-type
T. californica and human α7 nAChRs (average ± SEM value from three measurements; the black bars
correspond to the control 100% of the specific binding of the radioligand to the respective receptor
(calculated as the difference between total binding and non-specific binding in the presence of a large
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excess of α-cobratoxin). *, Fraction 15 showed significant inhibition both on T. californica and human
α7 nAChRs with p = 0.000146 and 0.00102, respectively, in the one-way ANOVA with the Tukey
post-hoc test versus respective Control. (d) RP-HPLC of fraction 15 on a Luna C18 (10 mm × 250 mm)
column in 40% of acetonitrile in 0.1% TFA. The numbers indicate collected and tested fractions. Active
fractions are accentuated by solid lines. (e,f) Competition of fractions 2–6 from (d) (0.1 mg/ml) with
[125I]-αBgt for binding to muscle-type T. californica (e) and human α7 nAChRs (f) (average ± SEM
value from three measurements). All fractions showed significant inhibition with p < 0.0001 (*) or
p < 0.0005 (**) in the one-way ANOVA with the Tukey post-hoc test versus respective Control.

At the final step of the purification, peptides with monoisotopic molecular masses of
4534.97 Da from fraction 2 (named Hmg 1b-2 Metox—see further), 4693.96 and 4572.06 Da
from fraction 4 (Hmg 1b-4 and Hmg 1b-5), and 4519.02 Da from fractions 5 and 6 (Hmg
1b-2) were obtained (Figure 2a–d). Fraction 3, containing peptides with molecular masses
in the ranges of 4500–4760 and 5400–5870 Da according to MALDI MS analysis, was not
taken for further studies.
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Figure 2. Activity-guided isolation of H. magnifica toxins (continued). (a–d) RP-HPLC of major
peptides from fraction 2 (Hmg 1b-2 Metox) (a), fraction 4 (Hmg 1b-4 and Hmg 1b-5) (b,c), and fractions
5 and 6 (Hmg 1b-2) (d) on a Luna C18 column (10 mm × 250 mm) in a gradient of acetonitrile in
0.1% TFA. (e,f) Competition of purified toxins Hmg 1b-2, Hmg 1b-2 Metox, Hmg 1b-4, and Hmg 1b-5
with [125I]-αBgt for binding to muscle-type T. californica at 20 µM concentration (e) and human α7
nAChRs (f) at 40 µM concentration (average ± SEM value from three measurements; the black bars
correspond to the control 100% of the specific binding of the radioligand to the respective receptor
(calculated as the difference between total binding and non-specific binding in the presence of a large
excess of α-cobratoxin). *, All toxins (Hmg 1b-2 Metox, Hmg 1b-4, Hmg 1b-5 and Hmg 1b-2) showed
significant inhibition with p = 0.00323, 0.0001204, 0.0001824 and 0.01076, respectively, in the one-way
ANOVA with the Tukey post-hoc test versus Control; **, Hmg 1b-4, Hmg 1b-5 and Hmg 1b-2 showed
significant inhibition with p = 0.00207, 0.0026 and 0.00567, respectively, in the one-way ANOVA with
the Tukey post-hoc test versus Control.
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The monoisotopic molecular masses of peptides, isolated from fractions 4 (4693.96 Da,
measured), 5 and 6 (4519.02 Da, measured), perfectly matched with those of APETx-like
peptides Hcr 1b-4 (4693.94 Da, theoretical) and Hcr 1b-2 (4519.00 Da, theoretical), previously
derived from the sea anemone H. crispa [16]. RP-HPLC co-injection of these peptides with
respective native Hcr 1b-2 and Hcr 1b-4 in a 1:1 ratio gave a single symmetrical peak each,
which allowed us to conclude that the peptides were identical. The molecular masses of
other peptides from fractions 2 (4534.97 Da) and 4 (4572.06 Da) did not correspond to any
of those described.

All purified toxins from H. magnifica, HmgTxs, inhibited [125I]-αBgt-specific binding
with both T. californica muscle-type and human α7 nAChRs (Figure 2e,f). The most active
toxins turned to be peptides from fraction 4 (Hmg 1b-4 and Hmg 1b-5), which inhibited
radioligand binding to these receptors by 50–55% and 38–40% at 20 and 40 µM, respectively
(Figure 2e,f).

2.2. Peptide Sequences Determination

To determine the sequence, each alkylated peptide was digested with cyanogen
bromide and resulting fragments were separated by RP-HPLC [16]. Peptide sequences
were determined using high-resolution tandem mass spectrometry (MS/MS). All detected
monoisotopic masses of molecular ions of polyprotonated peptides accurately correlated
with theoretical values calculated from proposed sequences. Since CID MS/MS method
does not distinguish between isobaric Leu and Ile residues, Ile/Leu assignment was based
on homology with Hcr 1b-1–Hcr 1b-4 [16,22].

The sequences of peptides with molecular masses of 4693.96 (Figure 2b) and 4519.02 Da
(Figure 2d) were shown to be completely identical to Hcr 1b-4 and Hcr 1b-2, respectively
(Figure 3), as it was proposed based on their monoisotopic masses and chromatographic co-
elution. Consequently, they were named Hmg 1b-4 and Hmg 1b-2, respectively. Sequences
of N-terminal (1–16 aa, 2022.91 Da, detected monoisotopic) and C-terminal (17–41 aa,
3102.47 Da) fragments of Hmg 1b-2 were determined based on b2–b14 ions (N-termini) and
b2–b13, y1–y15 ions (C-termini) in the CID spectra of doubly charged precursor ions (data
not shown). Hmg 1b-4 sequence was elucidated from spectra of polyprotonated alkylated
peptide (1–41 aa, 5330.33 Da) where b2, b4–b15, and y1–y8, y10–y17 ions were detected, as
well as from spectra of peptide C-terminal fragment (17–34 aa, 2259.01 Da) where ions b3,
b4 and b6–b16 were detected (data not shown).
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Figure 3. Multiple sequence alignment of the APETx-like peptides: Hcr 1b-1 (P0DL87), Hcr 1b-2
(=Hmg 1b-2) (C0HL52), Hcr 1b-3 (C0HL53), and Hcr 1b-4 (=Hmg 1b-4) (C0HL54) from H. crispa;
Hmg 1b-5 (C0HLS4) from H. magnifica; APETx1 (P61541), APETx2 (P61542), APETx3 (B3EWF9), and
APETx4 (C0HL40) from Anthopleura elegantissima; BDS1 (blood depressing substance 1) (P11494) and
BDS2 (P59084) from Anemonia sulcata. Identical and conserved amino acid residues are shown on a
dark and light gray background, respectively. Vector NTI Advance ™ 11.0 (Invitrogen, Carlsbad CA,
USA) [23] was used for multiple sequence alignment.

The amino acid sequence of the peptide with molecular mass of 4572.06 Da (Figure 2c)
was elucidated from the CID spectra of molecular ions of the polyprotonated alkylated
peptide (1–41 aa, 5208.45 Da, b2–b14 and y1–y13 identified ions) and two of its fragments
(1–16 aa, 2004.91 Da, b2–b14 identified ions, and 17–41 aa, 3191.53 Da, b2–b13 and y1–y13
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ions) (Figure 4). The novel peptide was found to be a close homolog of APETx-like peptides
Hcr 1b-1–Hcr 1b-4 from H. crispa (Figure 3) and it was named Hmg 1b-5.
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Figure 4. ESI MS/MS spectra derived from polyprotonated N- and C-terminal fragments of alkylated
peptide Hmg 1b-5. CID spectra of [M+2H]2+ molecular ion (1–16 aa, 2004.91 Da) (a) and [M+3H]3+

molecular ion (17–41 aa, 3191.52 Da) (b). Identified y- and b-type ions series are noted above the
mass spectrum. Amino acid residues are indicated by capital letters.

The sequence determination of the peptide with molecular mass of 4534.97 Da (Figure 2a)
was performed similarly. Analyses of CID spectra derived from polyprotonated alkylated
peptide (1–41 aa, 5171.36 Da, b2–b15 and y1–y15, y17 identified ions) showed that N- and
C-terminal sequences are identical to those of Hcr 1b-2 (1–15 aa and 25–41 aa). The alkylated
peptide was not digested with cyanogen bromide. It supports the idea of oxidized Met in the
peptide structure rather than substitution, since theoretical monoisotopic molecular mass
of derivative with an oxidized methionine, Hmg 1b-2 Metox (4534.99 Da) was in perfect
agreement with the detected mass of the investigated peptide (4534.97 Da). Therefore, we
concluded that the main component of fraction 2 was Hmg 1b-2 Metox.

2.3. Electrophysiological Effects of Hmg 1b-2 on nAChRs

To explore the effect of the peptide Hmg 1b-2 on nAChRs activity, electrophysiological
measurements were performed on human α7 and muscle α1β1δε receptors heterologously
expressed in Xenopus laevis oocytes. At concentration of 1 µM, Hmg 1b-2 had no activating
effect on tested nAChRs when applied by itself, but potentiated ACh-elicited current of
both α7 and α1β1δε receptors (Figure 5). In terms of peak current amplitude, Hmg 1b-2
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application induced a 50% increase of the of α7 nAChR current and a comparatively lower
and non-significant enhancement of the α1β1δε current (Figure 5a,b).
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Figure 5. (a) Electrophysiological characterization of Hmg 1b-2 (1 µM) effect on humanα7 andα1β1δε
nAChRs expressed in X. laevis oocytes. The receptors were gated by a variable time duration pulse of
ACh (red blocks, 100 µM for α7, and 500 µM for α1β1δε). The first and the second peak amplitude
represent the absence (control) and presence of 1 µM of Hmg 1b-2 (blue blocks), respectively. The
toxin was applied for 60 s, immediately followed by a pulse of ACh. (b) Comparative analysis of the
channel activity in the absence and presence of Hmg 1b-2 (n = 4) ± SEM; SEM: standard error of the
mean. ** p < 0.01; *** p < 0.001.

2.4. Electrophysiological Effects of Hmg 1b-2 Metox and Hmg 1b-5 on ASIC Channels

The toxins Hcr 1b-2 (= Hmg 1b-2) and Hcr 1b-4 (= Hmg 1b-4) were previously shown
to modulate ASIC1a and ASIC3 channels [16,17]. The ability of new toxins, Hmg 1b-2 Metox
and Hmg 1b-5, to modulate ASIC channels was assessed on homomeric rat (r) ASIC1a and
ASIC3 channels expressed in X. laevis oocytes. Inward current was induced by a rapid pH
drop from 7.4 to 5.5. The investigated peptides were applied 15 s before the acidic pulse.
In contrast to Hmg 1b-2 [16,17], the derivative peptide Hmg 1b-2 Metox demonstrated no
effect on rASIC1a or rASIC3 currents. Peptide Hmg 1b-5 inhibited the rASIC3 transient
current in a concentration-dependent manner with IC50 13.8± 0.6 µM (Figure 6). Inhibition
of the acid-induced current by the peptide was not complete and a maximal inhibitory
effect at 100 µM Hmg 1b-5 reached about 78%. The activity of Hmg 1b-5 toward rASIC1a
was negligible. At maximal applied concentration of 100 µM, it caused 17% inhibition.
Thereby only Hmg 1b-5 had inhibitory activity specific to rASIC3.

2.5. Sequence Identification and Analysis of H. magnifica APETx-like Toxins Diversity

To gain insight into diversity of APETx-like toxins, the structure and organization of
their encoding sequences were characterized using 3′- and 5′-RACE strategy. As a result of
Step-Out 3′-RACE with the two forward ASIC_SIGN and ASIC_F primers, seven different
cDNAs (~300 bp) containing the stop codon (TAA), polyadenylation site (AATAAA), and
poly(A) tract were obtained (Figure S1a). These 3′-RACE sequences were used to design
gene-specific primers, ASIC_R1 and ASIC_R2, for Step-Out 5′-RACE. Thirteen different
cDNAs (~300 bp) coding a 5′-untranslated region, a signal peptide, a propeptide with a
furine proteinase site, and an N-terminal fragment of a mature peptide were obtained
(Figure S1a). Then 5′- and 3′-RACE cDNAs were assembled, and full-length cDNAs of
~600 bp were obtained only for Hmg 1b-2 and Hmg 1b-5 (Figure S1b).

To determine HmgTx isoforms diversity, two gene-specific primers, APETx_amp_For
and APETx_amp_Rev, were designed based on the 5′- and 3′-RACE cDNAs sequences.
Cloning and sequencing of ~350 bp PCR products allowed the determination of transcripts
encoding 15 different HmgTx precursor proteins. All deduced amino acid sequences consist
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of a signal peptide (21 aa), a propeptide (13 aa), and a mature peptide (41 aa) (Figure 7).
Based on comparative analysis, HmgTx 1593 and 1547 are identical to the natural toxins,
Hmg 1b-2 and Hmg 1b-5, respectively.
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Figure 6. Inhibitory activity of peptide Hmg 1b-5 toward rASIC3 channels. (a) Acid-induced currents
through rASIC3 expressed in X. laevis oocytes were evoked by pH drop from 7.4 to 5.5; the effect of
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Figure 7. Full-length APETx-like precursors from H. magnifica. Identical and conserved amino acid
residues are shown on a dark and light gray background, respectively. Vector NTI Advance ™ 11.0
(Invitrogen, Carlsbad CA, USA) [23] was used for multiple sequence alignment.

At the result of comparison of other HmgTx isoforms, amino acid substitutions were
observed in the signal peptide region (L/P, F/V, and V/I), propeptide region (K/Q, and
A/T), and in the mature peptide chain at positions 2, 5, 7, 10, 14, 16–19, 22–24, 29, 31, 34,
36, 39 (Figure 7). Thus, the HmgTx sequences are characterized by conservative signal
peptides, propeptides, and variable mature peptides, which are characteristic features of
multigene family representatives [24].
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This fact directly indicates the existence of a multigene family of APETx-like pep-
tides (class 1b [25]) in the sea anemone H. magnifica. To confirm the presence of sev-
eral genes, we carried out PCR with H. magnifica genomic DNA and the same primers,
APETx_amp_For and APETx_amp_Rev, followed by cloning and sequencing of PCR prod-
ucts (~900–1250 bp). At least five different groups of HmgTx genes were found which
shared the exon–intron–exon structure, in which the intron fell on the propeptide encoding
region. The HmgTx genes varied in an intron length (from 501 bp up to 853 bp), whereas
exons sizes were particularly conserved (unpublished data). The structure of the Hmg 1b-5
gene was inferred by similarity with HmgTx 1547 cDNA (Figure S2). We were not able to
find any other matching gene–cDNA–protein pairs.

The deduced sequences of mature peptides have a high sequences identity (76–100%)
with natural APETx-like peptides Hcr 1b-1, 2, 3, and 4 from H. crispa [16,22]. To clarify the
phylogenetic relationships between H. magnifica and H. crispa, we sequenced 18S rRNA
(18S ribosomal RNA, ~1500 bp), ITS gene region (internal transcribed spacer, ~700 bp),
and COI gene (mitochondrial cytochrome c oxidase subunit 1, ~600 bp) of H. magnifica
91 and H. crispa 116 samples and compared with the same sequences from the GenBank.
Based on the phylogenetic analysis, both H. crispa 116 and H. magnifica 91 belong to the
Stichodactylidae family and fall into the H. magnifica group (Figure S3). Therefore, the
sea anemones previously identified by morphology as H. crispa belong to the species
H. magnifica.

2.6. Molecular Modeling of APETx-like Toxins

The HmgTx have sequence identity (41 to 48% on Figure 2) to APETx2, which served
as a valid template for 3D structures homology modeling in the case of HcrTxs [17]. The
reliable models for each HmgTxs based on the 3D structure of APETx2 (PDB ID: 1WXN [26])
were generated as described in the Materials and Methods section.

The structure–activity relationship indicated that the molecular surface of toxin
through which the dipole emerges (basic and hydrophobic patch) is involved in the interac-
tion with ion channels, in particular ASICs [16,27].

To evaluate how subtle variations in the primary structure influence the electrostatic
properties, the models of APETx-like peptides from H. magnifica were compared with the
functionally characterized homologous APETx1 and APETx2. The electrostatic surfaces
of all APETx-like peptides exhibited large strongly negative patches with the few positive
moieties (Figure 8a). For the surface electrostatic potential (EP), a similarity quantification
dendrogram was generated with the PIPSA web server [28] and the peptides were divided
into five clusters. Surprisingly, Hcr 1b-1 grouped together with A. elegantissima toxins
and demonstrated a maximum of electrostatic similarity distance to homologs from H.
magnifica. Another intriguing observation was cluster 4, where three toxins grouped with
Hmg 1b-4. Whereby these peptides may possess effects on ASICs such as Hmg 1b-4 (i.e.,
ASIC3 potentiation and ASIC1a inhibition [17]).

Regarding the dipole moment orientation, the majority of toxins may be conditionally
divided into two groups, in reference to dipole moment orientation of 1521, which is located
“in the middle” (Figure 8b). The first group consists of Hmg 1b-2, 1506, 1511, 1512, and
Hcr 1b-3, and the second includes Hmg 1b-5, 1513, 1519, 1522, 1526, 1592, 1595, and Hmg
1b-4. Three toxins, Hcr 1b-1, APETx1, and APETx2, are distinct from all others as well as
from each other and form a separate group. Remarkably, only members of clusters 4 (1513,
1519, 1592, Hmg 1b-4) and 5 (APETx1, APETx2, Hcr 1b-1) are grouped on a plot similar to
PIPSA clustering, while toxins of clusters 1–3 with worse electrostatic similarity distance
are mixed up.
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Figure 8. (a) PIPSA clustering (left) and molecular electrostatic potential surfaces (right) of the
APETx-like toxins from H. magnifica and APETx1 and APETx2 from A. elegantissima. The horizontal
axis of the dendrogram represents electrostatic similarity distance. Representation of the EP calculated
with Delphi web server projected on the molecule solvent accessible surface with Chimera. EP were
calculated using ionic strength corresponding to 150 mM salt concentration, colored with blue and
red corresponding to color key and presented in two orientations shown in a box as APETx2 molecule
ribbon representation. (b) Dipole moment direction of APETx-like peptides. 3D scatter plot of
the coordinate of superimposed molecules dipole moments. The spheres are colored according
to PIPSA clustering and their size corresponds to the dipole moment magnitude from 44 D for
HmgTx 1506 up to 148 D for APETx2. Dipole moments were calculated using Discovery studio
4.0 Visualizer (Accelrys Software Inc, San Diego, CA, USA), plot was generated using ORIGIN 7.5
software (OriginLab Corporation, Northampton, MA, USA).

3. Discussion

Both nicotinic receptors and ASIC channels are widely distributed throughout the
nervous systems and contribute to synaptic transmission, neuronal excitability, cognitive
function, pain signal transduction, etc. They are related to neurodegenerative disorders
and other pathological conditions, namely, Alzheimer’s and Parkinson’s diseases, epilepsy,
anxiety, depression and addictive behavior. Therefore, nAChRs and ASICs are promising
targets for novel neuroprotective and antidepressant drugs [19,20,29,30]. Some clinically
used drugs, such as amiloride and tetracaine, have been shown to display cross-reactivity
with nAChRs and ASICs and this phenomenon is currently under investigation [31,32].

Here, for the first time we determined that APETx-like toxins of the sea anemone H.
magnifica, HmgTxs, could compete with the [125I]-αBgt for binding to membrane prepa-
rations from the electric organ of T. californica containing the muscle-type nAChR, and to



Toxins 2022, 14, 697 11 of 20

GH4C1 cells expressing human α7 nAChR. Among them were two known toxins Hmg 1b-2
and Hmg 1b-4 identical to Hcr 1b-2 and Hcr 1b-4 [16], and two new toxins Hmg 1b-2 Metox
and Hmg 1b-5 which target muscle-type nAChRs. At a concentration of 20 µM HmgTxs
showed the following efficiency of competition with [125I]-αBgt for binding to muscle-type
receptor from T. californica membranes: Hmg 1b-2 ≈ Hmg 1b-2 Metox < Hmg 1b-5 ≈ Hmg
1b-4. The affinities to human α7 nAChR were at least twice as low (40 µM of toxins) with
the following order of effectiveness: Hmg 1b-2 Metox < Hmg 1b-2 ≈ Hmg 1b-4 ≈ Hmg
1b-5. Derivative toxin Hmg 1b-2 Metox showed the weakest inhibitory activity to human
α7 nAChR, but still retains the ability to bind with both receptors. Notably, scorpion toxin
HelaTx1 derivative with an oxidized Met was almost as active as the native toxin on T.
californica nAChR and human α7 nAChR [11].

For the electrophysiological experiments, toxin Hmg 1b-2 (=Hcr 1b-2) was chosen.
This toxin was studied by us not only as ASICs’ inhibitor [16], but it also displayed an
exceptional lack of selectivity, from the 28 tested voltage gated cation channels, comprising
16 potassium (KV), 9 sodium (NaV), and 3 calcium (CaV) channels, 26 of them were subject
to a certain degree of activation or inhibition by this toxin [33]. Despite such promiscuity to
ion channels, this toxin exhibited an antihyperalgesic effect in the model of acid-induced
muscle pain [16] and weak anxiolytic activity in the open field and elevated plus maze
tests, wherein it did not demonstrate any toxic action or stimulating effects on the central
nervous system [34].

Here, we observed that Hmg 1b-2 showed a low affinity (tens of µM) to the muscle-
type and non-muscle nAChR subtypes in competition with the [125I]-αBgt for binding to
orthosteric sites (Figure 2e,f). In X. laevis oocytes, Hmg 1b-2 at micromolar concentration
proved to be a positive modulator of both human α7 and muscle-type α1β1δε receptors.
It potentiated ACh current of α7 nAChR by 50% (Figure 5), while the enhancement of
α1β1δε current was not statistically significant. It should be noted that using ACh concen-
trations above the EC50 value may obscure the true potentiating activity of competitive
agonists. Therefore, future experiments using ACh concentrations around the EC50 value
(approximately 5 µM Ach [35]) for α1β1δε are needed to investigate more in detail the
potentiating activity of Hmg 1b-2 on α1β1δε receptors. It is still unclear if Hmg 1b-2 is
an allosteric, orthosteric or combined ligand, but its effects on cholinergic response could
be compared with the action of positive allosteric modulators such as α-conotoxin MrIC,
and protein lynx-1 [36–38]. It should be noted that, based on our previous observation of
the potentiating and inhibitory effects of APETx-like peptides on their targets [16,17,22,33],
both agonists and antagonists might be found among these toxins.

According to electrophysiological testing, Hmg 1b-2 Metox had no modulatory ef-
fect on ASIC1a and ASIC3 channels, while Hmg 1b-2 inhibited both ASIC1a and ASIC3
channels [16,17]. As far as we know there is no data describing the effect of Met oxidation
on the activity of ASICs modulators. According to the molecular modeling of Hcr 1b-2
interaction with ASIC1a, Met16 faces away from channel and does not make intermolecular
contact [17]. In the same way as Hmg 1b-2 and Hcr 1b-3 [16,17], toxin Hmg 1b-5 was shown
to be an inhibitor of both ASIC1a and ASIC3 channels. However, the activity of Hmg 1b-5
toward ASIC1a was negligible. This distinguishes it from previously characterized HcrTxs
which exhibit higher (Hmg 1b-2, Hcr 1b-3) or equal (Hcr 1b-4) activity and efficiency for
ASIC1a channels in comparison with ASIC3 [16,17].

The APETx-like peptides of H. magnifica share 34–41% of identity with BDS toxins,
41–56% with APETx1–APETx4 and demonstrate substantially higher identity to each other,
from 66 to 98%. The remarkable feature of HmgTxs is the dyad of positively charged
residues, mostly Lys40-Lys41, at the C-termini of peptide that was not observed for BDS
or APETx1–APETx4. In addition, positively charged residues are commonly localized
close to N-termini (positions 5 or 7) and at position 19. Moreover, most HmgTxs do not
contain negatively charged residues. Accordingly, HmgTxs are very basic peptides (pI
from 8.65 to 9.78). Moreover, molecules Hmg 1b-5, 1603, 1595, 1526, 1506, 1592, 1519, and
1522, have an extended positive potential which is way beyond the molecular surface of
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the peptide along one side of the molecule. Given that some HmgTxs target ASICs, this
is an important characteristic since the molecular surface of ASICs channels is negatively
charged, especially the acidic pocket, the putative binding site of APETx-like peptides [17].
Based on the electrostatic properties of the APETx-like peptides, we assumed that it is
unlikely that any of novel Heteractis peptides share the orientation of APETx2 molecule
in complex with ASIC channel. Moreover, if our previous hypothesis considering various
hot-spot interactions of Hcr 1b-2 and Hcr 1b-4 with ASIC1a is correct, it is reasonable
to assume that there are some other possible architectures of complexes between ASIC
channels and homologous peptides with unique electrostatic characteristics. This might
explain the reduced efficiency of ASIC1a inhibition (in comparison with ASIC3) observed
for Hmg 1b-5, a novel peptide with extended positive potential. In contrast, previously
investigated peptides Hcr 1b-2–Hcr 1b-4 effectively inhibit ASIC1a.

Proteinaceous toxins and neuropeptides affecting ASICs were isolated from spiders,
snakes, sea anemones, wasps, and cone snails [39,40]. There is a single report describing
conorfamides from the Mexican cone snail Conus austini that inhibit non-neuronal α7 and
muscle-type nAChRs at nanomolar concentrations as well as modulate homomeric ASIC1a
and ASIC3 at micromolar concentrations, altering channel desensitization. Interestingly,
conorfamides are linear peptides unlike disulfide-bonded α-conotoxins which are well
known as nAChRs ligands [41]. According to the data obtained in this study, APETx-like
peptides could be added to this list. It was not surprising as they are a clear illustra-
tion of the sea anemone toxins characterized by functional promiscuity [42,43]. The first
identified APETx-like peptides, BDS toxins and APETx1, were initially reported to target
voltage-gated potassium channels, KV3.4 and hERG (human ether-a-go-go related gene),
respectively [44,45]. Further electrophysiological investigation, however, showed the oppo-
site effects of BDS-I on tetrodotoxin-sensitive (TTX-sensitive) and TTX-resistant sodium
currents as well as inhibition of mammalian voltage-gated sodium channels (NaV) by
APETx1 [46,47]. APETx3 differs from APETx1 only by Thr3Pro substitution, and only inhib-
ited the inactivation of arthropods and TTX-sensitive mammalian NaV channels [46]. The
first toxin from sea anemones, which is an inhibitor of ASIC3, is the peptide APETx2 [48],
which also inhibited hERG and NaV channels [46,49]. Finally, peptide APETx4 was an
inhibitor of several NaV and KV channels including the subtype hEag1 [50]. The APETx-
like peptides Hcr 1b-1–Hcr 1b-4 turned out to be the modulators of ASIC1a and ASIC3
channels [16,17], while Hcr 1b-2 inhibited in sum 23 subtypes of NaV, KV, and CaV channels
as well as potentiate KV1.1, KV1.2, and Shaker channels [33], as noted above.

The peptides from venomous animals, including sea anemones, have been known
to form combinatorial libraries encoded by multigene families. We have reported Kunitz-
type peptide libraries [21,24,51], as well as an actinoporins library of H. crispa [52,53]
and now we have data that prove the existence of a combinatorial library of APETx-like
peptides of H. magnifica. Remarkably, the proteome and/or transcriptome studies resulted
in finding APETx-like peptides in sea anemones belonging to the family Actiniidae, such
as A. viridis [54], Anemonia sulcata [55], Cnidopus japonicus [56], A. elegantissima [57], and
Bunodosoma granulifera [58], but not in sea anemones from Stichodactylidae family, such as
Stichodactyla haddoni [59], Stichodactyla duerdeni [60], and Stichodactyla helianthus [58]. Here,
we pointed out the existence of an APETx-like peptide combinatorial library in H. magnifica
encoded by the HmgTxs multigene family. Considering that we did not find all matching
gene–cDNA–protein pairs, more experiments are needed to fully explore the structural
diversity of peptide isoforms in the sea anemone H. magnifica.

4. Conclusions

We have determined that APETx-like toxins from the sea anemone H. magnifica are
new ligands to muscle-type and α7 nAChR subtypes. The promiscuous toxin Hmg 1b-2,
acting on ASICs and voltage-gated cation channels, also selectively potentiates the ACh-
elicited current of the α7 but not muscle-type nAChRs. Oxidation of Met16 in Hmg
1b-2 was indicated to abolish its inhibitory effect on ASICs channels and radioligand
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displacement in case of the α7 nAChR but not muscle-type nAChRs. A novel peptide
Hmg 1b-5, unlike its homologues, inhibits ASIC3 and has negligible effect on ASIC1a
channels. We showed that HmgTxs form an APETx-like peptide combinatorial library
encoded by the HmgTxs multigene family that makes this sea anemone a promising source
of novel multifunctional toxins. These toxins could be seen as tools for the investigation of
functional activity of different ion channels as well as prototypes for the molecular design
of pharmacologically active agents. Additionally, we demonstrated the importance of a
combination of morphological and phylogenetic determination of biological organisms
for scientific research; since specimens, previously morphologically described as different
species, are characterized as H. magnifica in this study.

5. Materials and Methods

The specimens of H. magnifica were collected from the South China Sea near Tho Chu
islands, Vietnam (09◦19.3 N; 103◦29.6 E), during a marine expedition aboard the research
vessel Academic Oparin in 2010. Dr. E.E. Kostina (A.V. Zhirmunsky Institute of Marine
Biology, National Scientific Center of Marine Biology Far Eastern Branch, Russian Academy
of Sciences, Vladivostok, Russia) confirmed the identity of the species.

nAChR-enriched membranes from the electric organs of Torpedo californica ray were
kindly provided by Prof. F. Hucho (Free University of Berlin, Berlin, Germany). GH4C1
cells transfected with human α7 nAChR were a gift from Eli-Lilly. Radiolabeled 125I-
α-buhgarotoxin with specific radioactivity of 500 Ci/mmol was prepared as in [61]. A-
Cobratoxin was purified from Naja kaouthia venom as described in [62].

The study was conducted according to the guidelines of the Convention on Biological
Diversity, and approved by the Ethics Committee of the G.B. Elyakov Pacific Institute of
Bioorganic Chemistry (Vladivostok, Russia, Protocol No. 0037. 12 March 2021).

5.1. Extraction and Chromatographic Procedure

Sea anemones were put into the aquarium with sea water and not fed for a week, then
they were used once for mucus extraction with milking technique [63]. For this, they were
placed in a plastic bag where their tentacles were massaged to obtain mucus.

Peptide fraction was then separated by hydrophobic chromatography on polychrome-
1 (powdered Teflon, Biolar, Olaine, Latvia) column (4.5 cm× 14 cm). Hydrophobic peptides
eluted with 40% aqueous ethanol were separated by size exclusion chromatography in
an automatic FPLC system (ÄKTApurifier®, GE Healthcare, Uppsala, Sweden) using a
Superdex Peptide 10/30 column. The peptides were eluted with 10% acetonitrile in 0.1%
trifluoroacetic acid (TFA) at a flow rate of 0.1 mL/min. The protein concentration was
determined by the Lowry method [64], bovine serum albumin was used as a standard,
and using the absorbance at 280 nm. After the size exclusion chromatography active
fraction was separated by HPLC on a reversed-phase Luna C18 column (10 mm × 250 mm)
equilibrated with 10% acetonitrile solution in 0.1% TFA on an Agilent 1100 chromatograph
(Agilent Technologies, Santa Clara, CA, USA). Peptides elution was carried out using a
gradient of acetonitrile concentration (with 0.1% TFA and at a flow rate of 1 mL/min):
10% for 10 min, then 10–70% for 60 min. The further separation of the active peptide
fractions and final purification of major peptides were made on the same column in two
gradients of acetonitrile concentration (with 0.1% TFA and at a flow rate of 1 mL/min):
10% for 5 min, 10–40% for 30 min, then 40% and 10% for 5 min, 10–40% for 20 min,
then 40%. Vacuum concentrator 5301 (Eppendorf Inc., Hamburg, Germany) was used for
acetonitrile evaporation.

5.2. Reduction and Alkylation of Disulfide Bridges

Peptides were reduced and alkylated with 4-vinylpyridine as described in [65]. Sep-
aration of the reaction mixture was made on a reversed-phase Nucleosil C18 column
(4.6 mm × 250 mm) equilibrated with 10% acetonitrile in 0.1% TFA. The elution was car-
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ried out using gradient of acetonitrile concentration (with 0.1% TFA and at a flow rate of
0.5 mL/min), 10% of acetonitrile for 30 min, 10–70% for 60 min.

5.3. Cyanogen Bromide Cleavage of Alkylated Peptides

The reaction was carried out in 70% TFA at room temperature for 4 h in the dark. The
molar ratio of cyanogen bromide:peptide was 100:1. Separation of the reaction mixture
was made on reversed-phase Nucleosil C18 column (4.6 mm × 250 mm) equilibrated with
10% acetonitrile in 0.1% TFA. The elution was carried out using a combined gradient of
acetonitrile concentration at a flow rate of 0.5 mL/min, 10% of acetonitrile for 30 min,
10–70% for 60 min.

5.4. Mass Spectrometric Analysis

A mass spectrometric analysis was carried out using an Ultraflex TOF/TOF mass
spectrometer (Bruker Daltonik, Karlsruhe, Germany). The samples were solved in acetoni-
trile/water solution (1:1, v/v) containing 0.1% TFA and mixed with 10 mg/mL sinapinic
acid as a matrix. Protein molecular masses (1000–20,000 Da) were obtained in linear mode
with external calibration.

5.5. Tandem Mass Spectrometry (MS/MS), Sequence Determination and Analysis

The amino acid sequences were identified from the collision-induced dissociation
(CID) tandem mass spectra of peptide fragments obtained by the cyanogen bromide
cleavage of the peptide molecule previously treated with 4-vinylpyridine. The CID MS/MS
experiments were performed on an ultra-high resolution quadrupole time-of-flight mass
spectrometer MaXis impact (Bruker Daltonik, Karlsruhe, Germany) equipped with an ESI
ionization source. A survey mass spectrum and tandem mass spectrum were recorded
for each sample. During MS/MS, the fragment ions were generated from the isolated
multiple charged precursor ion of peptide fragments. The precursor ions were fragmented
by low-energy CID with collision energy from 30 eV to 85 eV.

The sequences identity was analyzed using amino acid sequence databases and
the BLAST algorithm (http://www.ncbi.nlm.nih.gov/BLAST (accessed on 5 September
2022)) [66]. Multiple alignment of amino acid sequences was made using Vector NTI
Advance ™ 11.0 (Invitrogen, Carlsbad, CA, USA) (https://www.thermofisher.com/ru/ru/
home/life-science/cloning/vector-nti-software.html (accessed on 15 December 2008)) [23].
The theoretical calculation of isoelectric point was performed using the software GPMAW-
Lite (https://www.alphalyse.com/customer-support/gpmaw-lite-bioinformatics-tool (ac-
cessed on 5 September 2022)). The protein sequence data of Hmg 1b-5 reported in this
paper will appear in the UniProt Knowledgebase under the accession number C0HLS4.

5.6. cDNA and Gene Sequences Determination, Phylogenetic Analysis

Genomic DNA was extracted from sea anemone tissues using the MagJET Plant Ge-
nomic DNA Kit (Thermo Fisher Scientific, Waltham, MA, USA). Total RNA was isolated
from intact RNA fixed-tentacle samples using ExtractRNA solution (Evrogen, Moscow,
Russia). Full-length-enriched cDNA libraries were prepared from the total RNA using
Mint cDNA synthesis Kit (Evrogen, Moscow, Russia). The rapid amplification of cDNA
3′-ends (3′-RACE) was carried out with the RACE primer set (Evrogen, Moscow, Rus-
sia) and the forward primers ASIC_sign (5′-TCTTTGATTGCAGCTTC-3′) on Step 1, and
ASIC_F (5′-AAGCGTGGAACASMTTG- 3′) on Step 2. The primers were designed based
on the known signal sequences of APETx-like peptides from the sea anemones of the
genus Actiniidae (UniProtKB/Swiss-Prot G0W2H8.1, G0W2H9.1, G0W2I0.1) [58], as well
the N-terminal amino acid sequences of native peptides modulating ASIC channels of sea
anemone H. crispa [16,22]. 5′-RACE was performed with the RACE primer set (Evrogen,
Moscow, Russia) and the reverse primers ASIC_R1 (5′-AAGTAGGGGCAAGAGAGA-
3′) and ASIC_R2 (5′-CATRARCCAGTAGACACC-3′), designed based on obtained 3′-
RACE sequences. The cDNA and gene sequences were amplified using PCRs with
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APETx_amp_For (5′-AATCCAATCCAAACACGGCCAT-3′) and APETx_amp_Rev (5′-
AGTTGTTTGG GTCAGATTCTTGTCA-3′) created based on obtained 3′ and 5′-RACE
sequences. All PCRs were conducted with Encyclo® DNA Polymerase (Evrogen, Moscow,
Russia). All primers were synthesized by Evrogen (Moscow, Russia).

PCR-fragments were analyzed by gel electrophoresis, purified, cloned into pTZ57R/T
using T/A cloning system (Thermo Fisher Scientific, Waltham, MA, USA), and transformed
into DH5α E. coli cells (Thermo Fisher Scientific, Waltham, MA, USA) according to standard
protocols. PCR products from positive colonies were sequenced with M13 universal primers
using the ABI 3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

The 18S rRNA and COI genes, and ITS gene region were amplified and sequenced as
described in [67]. Gene sequences were deposited in GenBank under accession numbers
ON797294 (for H. magnifica 116) and ON926908 (for H. magnifica 91) for the 18S rRNA
genes; ON797309 (for H. magnifica 116) and OP107886 (for H. magnifica 91) for the COI gene;
ON831386-ON831387 (for H. magnifica 116) and ON936908-ON936909 (for H. magnifica 91)
for the ITS genes region.

The 18S rRNA, COI, and ITS sequences were aligned by MEGA X software version
11.0.9 [68] using Clustal W algorithm with sea anemone sequence homologs searched in
the GeneBank database (http://www.ncbi.nlm.nih.gov/BLAST, accessed on 24 June 2022).
Phylogenetic analysis was conducted using MEGA X 10.2 software [68]. Phylogenetic
trees were constructed on model-tested alignments according to the maximum likelihood
algorithm. The topologies of the trees were evaluated by 1000 bootstrap replicates.

5.7. Radioligand Competition Assay

In the competition experiments with [125I]-αBgt, investigated fractions and purified
peptides (at chosen concentration) were pre-incubated for 3 h at room temperature with
T. californica electric organ membranes (final concentration 1.25 nM of toxin-binding sites)
or with the GH4C1 cells (6.5 µg of total protein with final concentration of 0.4 nM of toxin-
binding sites) in 50 µL of binding buffer (20 mM Tris-HCl buffer, 1 mg/mL of bovine serum
albumin, pH 8.0). After that, [125I]-αBgt was added to the membranes or GH4C1 cells to
a final concentration of 0.4 nM and the mixtures were additionally incubated for 5 min.
The binding was stopped by rapid filtration on GF/C filters (Whatman, Clifton, N.J., USA)
pre-soaked in 0.25% polyethylenimine, the unbound radioactivity having been removed
from the filters by washout (3 × 3 mL) with a binding buffer. Non-specific binding was
determined in all cases using 3 h pre-incubation with 30 µM α-cobratoxin.

5.8. Expression of nAChRs in Xenopus laevis Oocytes and Electrophysiological Recordings

For the expression of nAChRs (adult rat muscle-type α1β1δε and human α7 nAChRs)
in Xenopus oocytes, the linearized plasmids were transcribed to RNA using the T7 or SP6
mMESSAGEmMACHINE transcription kit (Ambion, Austin, TX, USA). Mature female
animals were purchased from Nasco (Fort Atkinson, WI, USA) and housed at KU Leuven
Aquatic Facility in compliance with the regulations of the European Union (EU) concerning
the welfare of laboratory animals, as declared in Directive 2010/63/EU. The use of X.
laevis oocytes was approved by the Animal Ethics Committee of the KU Leuven with the
license number P186/2019. Stage V–VI oocytes were collected from female X. laevis frog as
previously described [69], with the frogs anesthetized by placement in 0.1% tricaine solution
(amino benzoic acid ethyl ester; Merck, Kenilworth, NJ, USA). Oocyte microinjection was
performed using a microinjector (Drummond Scientific®, Broomall, PA, USA), with a
programmed cRNA injection volume of 50 nL. The concentration of the injected RNAs
ranged from 700–1500 ng/µL. The oocytes were incubated at 16 ◦C in ND96 solution (96 mM
NaCl; 2 mM KCl; 1.8 mM CaCl2; 2 mM MgCl2 and 5 mM HEPES, pH 7.4), supplemented
with 50 mg/L gentamicin sulfate (Panpharma GmbH, Hameln, Germany) and 180 mg/L
theophylline (Sigma-Aldrich, St Louis, MO, USA).

Electrophysiological measurements were performed at room temperature (18–22 ◦C)
using the two-electrode voltage-clamp (TEVC) technique, 2–5 days after injection. Data
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were sampled at a frequency of 100 Hz and low-pass filtered at 20 Hz by a four-pole Bessel
filter, using a GeneClamp 500 amplifier (Axon Instruments®, Burlingame, CA, USA), and
Clampex9 software (Axon Instruments®, Burlingame, CA, USA). Glass micropipettes were
produced using glass capillaries (borosilicate WPI 1B120-6) and drawn in a WPI (World
Precision Instruments®, Sarasota, FL, USA) manual stretcher. The bath and perfusion
solution was the previously described ND96.

Cells were clamped at a holding potential of −70 mV and continuously perfused
with ND96 buffer. Current responses were evoked by applying 100 µM (α7) or 500 µM
(muscle-type α1β1δε) ACh (Sigma-Aldrich, St Louis, MO, USA) solubilized in ND96 buffer,
under gravitational flow, until peak current amplitude was observed. A control of 3 pulses
of ACh was carried out, with 30 s of interval between each pulse. Hmg 1b-2 (1 µM) was
applied directly in the perfusion chamber, without gravitational flow, and incubated for
60 s. Afterwards, a new ACh pulse was applied. Peak current amplitudes was measured
prior to and following the incubation of the peptide.

The differences in channel activity between the control and toxin conditions were
compared by a one-way ANOVA followed by Tukey’s multiple comparisons test, using the
software GraphPad Prism 8.0.2. Differences were considered statistically significant when
p < 0.1.

5.9. Expression of ASIC Channels in Xenopus laevis Oocytes and Electrophysiological Recordings

Rat ASIC1a and ASIC3 channels were expressed in X. laevis oocytes after injection
of 2.5–10 ng of cRNA, as previously described [70]. After injection oocytes were kept for
2–3 days at 19 ◦C and then up to 5 days at the temperature of 15–16 ◦C in sterile ND96
medium (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 5 mM HEPES titrated to
pH 7.4 with NaOH supplemented with 50 µg/mL of gentamycin). Two-electrode voltage
clamp recordings were performed using GeneClamp 500 amplifier (Axon Instruments,
Burlingame, CA, USA). The data were filtered at 50 Hz and digitized at 1000 Hz by an
AD converter L780 (LCard, Moscow, Russia) using in-house software (Moscow). The
solutions were applied to a cell chamber (volume 50 µL). The laminar flow of an external
solution of ND96 (pH 7.4) was used at a rate of 1 mL/min. ASIC1a and ASIC3 were
activated by a short (1 s) application of a solution with a pH 5.5 (10 mM MES) using
a fast application system. Peptides were applied 15 s before the activation pulse in a
solution containing 0.1% BSA. A value of currents inhibition was calculated as the ratio
of the peak current amplitude, when the peptide was applied to the average amplitude
of the control peak currents before and after the peptide application and expressed as a
percentage. To construct the concentration-response curves, a logistic equation was the
following: y = ((1 − A)/(1 + ([C]/IC50)nH)) + A; where y is the relative value of current
inhibition; C is the peptide concentration; IC50 is the half maximal inhibitory concentration;
nH is the Hill coefficient; A is an amplitude of maximum inhibition (% of control).

5.10. Homology Modeling

Homology models of the 3D structure of APETx-like peptides from H. magnifica were
constructed using Chimera 1.11.2rc software [71] with Modeller 9.19 plug-in [72] based
on spatial structures of APETx2 (PDB ID 1WXN and 2MUB) [26,49]. Five models of each
HmgTxs were generated and those based on 1WXN 3D structure were chosen for feather
analysis as the most reliable because of minimal root mean square deviation (RMSD) values
and backbone conformations occupying “allowed” regions of the Ramachandran plot. EP
calculations were made with the Delphi web server [73], and results were visualized in the
Chimera interface. Web PIPSA software [28] was used for clustering analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14100697/s1, Figure S1: (a) 3‘- and 5‘ RACE translated
sequences. (b) Full-length cDNAs of Hmg 1b-2 and Hmg 1b-5. Amino acid substitutions are shown by
green (Hmg 1b-2) and yellow (Hmg 1b-5) colors; Figure S2: Structure of HmgTx 1b-5 gene inferred by
similarity of 42.27 gene sequence with HmgTx 1547 cDNA. The signal pep-tide region is highlighted
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by orange, the propeptide region is highlighted by green, and the mature chain is high-lighted
by blue. The furine proteinase site is colored by red. The mature peptide is highlighted by blue;
Figure S3: ML trees showing phylogenetic relationships of the sea anemone H. magnifica 91 (present
study) and H. magnifica 116 (as H. crispa 116 in previous study [16]) in the Stichodactylidae family
based on sea anemone COI gene sequences (a), 18S gene sequences (b), and ITS gene sequences (c).
Sea anemones Anthopleura elegantissima, Actinia equina, Anthopleura artemisia, Actinia bermudensis,
Bunodosoma caissarum, and Anthopleura atodai belong to the Actiniidae family. Bootstrap values (%) of
1000 replications. Nodes with confidence values greater than 50% are indicated.
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