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Abstract: Phytoplankton is at the base of the marine food web and plays a fundamental role in the
global carbon cycle. Ongoing climate change significantly impacts phytoplankton distribution in
the ocean. Monitoring phytoplankton is crucial for a full understanding of changes in the marine
ecosystem. To observe phytoplankton from space, chlorophyll-a concentration (Chl) has been widely
used as a proxy of algal biomass, although it can be impacted by physiology. Therefore, there has
been an increasing focus towards estimating phytoplankton biomass in units of carbon (Cphyto). Here,
we developed an algorithm to quantify Cphyto from space-based observations that accounts for the
spatio-temporal variations of the backscattering coefficient associated with the fraction of detrital
particles that do not covary with Chl. The main findings are: (i) a spatial and temporal variation of the
detritus component must be accounted for in the Cphyto algorithm; (ii) the refined Cphyto algorithm
performs better (relative bias of 23.7%) than any previously existing model; and (iii) our algorithm
shows the lowest error in Cphyto across areas where picophytoplankton dominates (relative bias of
14%). In other areas, it is currently not possible to accurately assess the performance of the refined
algorithm due to the paucity of in situ carbon data associated with nano- and micro-phytoplankton
size classes.

Keywords: phytoplankton carbon; optical backscattering; non-algal particles; ocean colour observations;
QAA algorithm; ESA OC-CCI

1. Introduction

Phytoplankton is responsible for approximately half of global primary production and is at the base
of the marine food web [1]. Phytoplankton is consequently a fundamental actor in the global carbon
cycle [2]. Moreover, these organisms are regarded as sentinels of changes in the ocean because of their
capacity to respond rapidly to environmental perturbations. Several factors, such as ocean circulation,
anthropogenic activities, and climate affect phytoplankton abundance and distribution. In particular,
phytoplankton spatio-temporal patterns are expected to vary with climate change [3]. Monitoring the
distribution of phytoplankton is crucial for a full understanding of the oceanic biogeochemical cycles.

Ocean colour observations have significantly improved our capability to map phytoplankton
global distribution since the 1970s. Chlorophyll-a concentration (Chl; in mg m−3) is a consolidated proxy
of algal biomass [4]. However, Chl variability may not always correspond to actual changes in algal
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biomass but rather to cellular physiological adjustments in response to environmental stressors such as
light and nutrient limitation [5,6]. Therefore, there has been an increasing focus on the estimation of
phytoplankton biomass in units of carbon (Cphyto; mg C m−3). Cphyto has found application in studies
of: (i) primary production [7,8]; (ii) phytoplankton physiology [9]; (iii) phytoplankton growth/loss
rates [10,11]; (iv) comparison with marine ecosystem models [12]; (v) pools of carbon in the ocean (i.e.,
their stocks and turnover rates); and (vi) ocean–atmosphere interactions in marine phytoplankton
feedback in atmospheric aerosols [13].

Martinez-Vicente et al. (2017) recently reviewed algorithms for deriving Cphyto from satellite ocean
colour observations [14]. Three groups of algorithms are currently available: (i) backscatter-based
models developed using satellite [7] or in situ data [14–16]; (ii) Chl-based models [17,18]; and (iii)
allometric conversion-based models [19–21]. Among these algorithms, those relying on the particulate
optical backscattering coefficient, bbp (in m−1), raised high interest because bbp is related to the
concentration and composition of suspended particles in seawater, and to their size and shape [22].
Although former research suggested that bbp was mainly influenced by submicron detrital particles [22],
it has recently been demonstrated that most of the bbp signal in the surface oligotrophic ocean is due
to particles with equivalent spherical diameters between 1 and 10 µm [23], thus reinforcing the role
of phytoplankton as a source of the open-ocean bbp [24], and thus the usefulness of bbp to retrieve
Cphyto. However, satellite bbp-based algorithms show large errors in predicting Cphyto mainly because
the current formulation does not take into account the spatio-temporal changes of non-algal particles
(NAP) [25].

Here we refine the first and widely applied satellite bbp-based Cphyto model [7] and make crucial
arrangements to improve its performance. Beh05 uses the linear relationship between Chl and bbp to
estimate the background contribution of NAP to bbp(443), bk

bp, which corresponds to bbp when Chl is
zero (i.e., the intercept of the linear fit). Beh05 is based on the following equation:

Cphyto =
[
bbp(443) − bk

bp

]
·SF (1)

In Beh05, SF is the scaling factor used to convert bbp into Cphyto and is set to 13,000 mg C m−2 [7].
bk

bp is assumed to represent a stable surface population of heterotrophic and detrital particles that is

not strictly dependent on phytoplankton dynamics and physiology. Thus, in Beh05, bk
bp was assumed

as a constant value (3.5·10−4 m−1). However, NAP can include various types of particles ranging
from heterotrophic organisms such as bacteria, micrograzers, and viruses, to fecal pellets and cell
debris, and mineral particles and bubbles [22] that vary both in space and time. The nature, definition,
and evaluation of bk

bp is still under debate and has been investigated using in situ [24–26] and satellite

data [27,28]. Understanding the spatial and temporal dynamics of bk
bp in the open ocean will improve

estimations of Cphyto and, more generally, our knowledge on the fate of marine carbon.
Beh05 estimated bk

bp as the offset (intercept) of the least-square regression between monthly
satellite-derived bbp and Chl computed via the Garver-Siegel-Maritorena (GSM) semi-analytical
algorithm [29]. The regression analysis used only Chl values higher than 0.14 mg m−3 to separate the
changes in Chl due to physiology (i.e., photoacclimation) from actual changes in biomass, and thus
in Cphyto. Bellacicco et al. (2018) used satellite data from the Mediterranean Sea to estimate bk

bp for

various bioregions and seasons, and showed that bk
bp varied regionally and seasonally, thus rejecting

the hypothesis of invariance of the heterotrophic and detrital components at the sea surface [27].
Global variability in bk

bp was observed [28], with a reported median global value of 9.5 10−4 m−1,

nearly threefold that found by Beh05. The newly evaluated bk
bp resulted in Cphyto that were half those

estimated by Beh05.
The Chl–bbp relationship is influenced by phytoplankton specific composition and diversity

(e.g., size, shape, internal structure), physiology (e.g., photoacclimation), and the nature of NAP
itself [22,30,31]. For these reasons, Brewin et al. (2012) (hereafter Bre12; [26]) developed an analytical
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non-linear fit between bbp and Chl that accounted for changes in phytoplankton cell size. In Bre12,
the offset of the non-linear fit (i.e., bk

bp) between bbp and Chl in clear waters was interpreted as a constant
background of NAP or also partly influenced by very small phytoplankton (e.g., prochlorophytes) in
addition to NAP. In Bre12, the reported bk

bp values were 7.0·10−4 m−1 at the wavelength of 470 nm and

5.6·10−4 m−1 at 526 nm. More recently, the Bre12 model was used with a large database of 0–1000 m
depth profiles of Chl and bbp acquired by the global Biogeochemical-Argo (aka BGC-Argo) float array.
bk

bp was demonstrated also to vary over depth and to account only for a small fraction of total bbp in
productive areas, while being the main source of bbp in oligotrophic waters [25].

The former evidence suggests that if a realistic spatio-temporal variation of bk
bp is introduced in the

Cphyto algorithm its precision and accuracy can be largely improved. Specifically, the hypothesis that
bk

bp varies in space and time is here applied monthly at the scale of satellite pixel rather than using a

unique bk
bp value or pre-defined bioregions. Algorithm outputs are validated against the only available,

to the best of our knowledge, in situ dataset and compared to the performances of Beh05, Bel18,
and Bre12 with single bk

bp values. The performance of the new algorithm is also compared to empirical
approaches [14,16]. The analysis was developed globally by partitioning the data among Optical Water
Class (OWC; [32]) to explore the efficiency and applicability of the different tested approaches.

2. Data and Methods

2.1. Ocean Colour Data

The full European Space Agency (ESA) Ocean Colour–Climate Change Initiative (OC-CCI) time
series (1997–2019) of global daily Rrs and Chl version 4.2 data at 4 km resolution was downloaded
from the ESA OC-CCI FTP server (https://esa-oceancolour-cci.org; ftp://oceancolour.org/occci-v4.2/

geographic/netcdf/daily/rrs/). ESA OC-CCI data products are the result of the merging of SeaWiFS,
MERIS, MODIS, and VIIRS observations in which the inter-sensor biases are removed. Version 4.2
includes the latest NASA reprocessing R2018.0, which mostly accounts for the ageing of the MODIS
sensor. The ESA OC-CCI provides the daily Rrs data and associated uncertainty maps in terms of
bias and root mean square error. In this work, for each daily Rrs, the bias was also extracted and then
corrected pixel-by-pixel, as recommended in the Product User Guide [33].

Chl was estimated with a blending of the OCI (as implemented by NASA, itself a combination of
CI and OC4), OC5, and OC3 algorithms. For each daily Chl value, the bias was also extracted and
compensated at the pixel scale. Daily bbp maps at 443 nm were produced from daily Rrs for the same
period (1997–2019) by applying the Quasi-Analytical Algorithm (QAA; [34,35]) with prior correction for
Raman scattering [27,36]. The accuracy of the QAA in retrieving bbp was fully demonstrated [27,36–39].
In this work, the QAA algorithm was thus selected for its high efficiency in the bbp retrievals, and to
show consistency and coherency with the OC-CCI program in which the QAA is the designated
algorithm [37,40].

The daily datasets were then under-sampled to 25 km resolution to resolve only the broader
oceanographic scales of variability.

2.2. Computation of bk
bp

bk
bp was estimated for every pixel and month by using the following basic relationship [7,25,27,28]:

bk
bp = bbp − k·Chl (2)

where k is the slope of the least-square regression fit between daily Chl and bbp, and bk
bp is the intercept

of the fit [7]. The term k·Chl thus identifies the fraction of bbp that covaries with Chl [7,25,27,28].
A scheme of the algorithm implementation is shown in Figure S1.

https://esa-oceancolour-cci.org
ftp://oceancolour.org/occci-v4.2/geographic/netcdf/daily/rrs/
ftp://oceancolour.org/occci-v4.2/geographic/netcdf/daily/rrs/
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We computed monthly climatological bk
bp maps at 25 km by applying Equation (2) to daily Chl

and bbp data within each month of the year from 1998 to 2019. The estimation of bk
bp, and consequently

of Cphyto, relies on good relationships between Chl and bbp which then constitutes the fundamental
condition to exploit this method. To this aim, for each bk

bp map, the significance S (using Student’s
t-test), the Pearson correlation coefficient (r; not shown), and the 1σ uncertainty maps (due to the linear
fit between Chl and bbp; see Section 15.2 of [41]) were computed to give an estimate of the robustness
of the fit.

We then applied for each pixel of every resulting monthly bk
bp map an additional moving average

of 1000 km to remove any source of noise and smaller scale variability, while conserving the large-scale
oceanic patterns [42].

Finally, the monthly bk
bp maps computed with the new approach were interpolated to obtain daily

climatological bk
bp maps at 25 km resolution. Daily pixel-based estimates were then used to assess

Cphyto by applying a revised Equation (1) [7,27,28], such as:

Cphyto =
[
bbp (443) − bk

bp (443)
]
·SF (3)

In some pixels, Cphyto may show values less of, or close to 0. This occurred for pixels where the
Chl–bbp relationship had a significance S < 0.95 and r ≤ 0. In these pixels, bk

bp may be higher than
bbp thus giving non-reliable, negative estimations of Cphyto (less than 0; e.g., in the subtropical gyres).
For these areas, we applied a threshold of Cphyto equal to 0.13 mg C m−3 to highlight that Cphyto is
expected to be low [14]. All match-up points falling in the areas where the Chl–bbp relationship showed
a significance S < 0.95 and r ≤ 0 were not included in the validation and algorithm performance analysis
(Figure S1). These areas thus need to be interpreted and managed with caution.

For comparative purposes, Cphyto was also computed following the approaches of Beh05, Bel18,
and Bre12 with single bk

bp values of 3.5·10−4 m−1, 9.5·10−4 m−1, and 7.0·10−4 m−1, respectively.
In addition, the performance of the new algorithm was compared to the empirical algorithms of
Martinez-Vicente et al. (2017; hereafter MV17; [14]) and Graff et al., (2015; hereafter Gra15; [16].

2.3. In Situ Reference Data

The in situ Cphyto database [14] is a compilation of data acquired from many sources (e.g.,
MAREDAT and Atlantic Meridional Transect, AMT, cruises) for a total of N = 557 data points and
consists of carbon biomass of picophytoplankton organisms (i.e., cell size < 2 µm). It was downloaded
from http://www.zenodo.org (doi:10.5281/zenodo.1067229). For complete details about the in situ
dataset see [14]. Only pixels with a good (S ≥ 0.95 and r > 0) satellite relationship between Chl
and bbp were retained so that the original 557 data points decreased to a total of 396 matchups
(Figure 1). The final matchup database encompassed from oligotrophic to mesotrophic waters (Chl
from 0.035 to 3.13 mg m−3 and Cphyto from 1.80 to 60.25 mg C m−3) and OWC from 1 to 13. OWC from
1 to 6, corresponding to less productive waters, represented 56% of the in situ data.

2.4. Statistical Assessment

Estimated satellite Cphyto (yi) computed with Equation (3) was compared to reference in situ data
(xi) by computing the bias (δ; mg m−3), the relative bias in percentage (∇; in %), and the standard
deviation of the difference (σ∆; mg m−3). The assessment was made for each OWC individually and
for all matchups at once:

δ =
1
N

N∑
i=1

(yi − xi) (4)

∇ = 100 ∗
1
N

N∑
i=1

(yi − xi)

xi
(5)

http://www.zenodo.org
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σ∆ =

√
1

N − 1

∑N

i=1
[(yi − xi) − (yi − xi)]2 (6)Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 14 
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Figure 1. Geographical distribution of the matchup dataset (N = 396) used for the analysis.
Each datapoint is also associated with the specific Optical Water Class (OWC) (a). Number of
matchups per OWC (b).

3. Results

Algorithm Performance for Cphyto Retrievals

Results and statistics of the comparison between satellite Cphyto estimates obtained with our
algorithm and the previously published values, and in situ Cphyto, are reported in Table 1 and Figure 2.
Overall, algorithms perform with∇ values spanning from 23.7% to 203%. The algorithm here developed
shows the smallest bias (∇ of 23.7%). By comparison, the algorithms based on a constant bk

bp value
have lower performance, and Gra15, Beh05, and MV17 showed a systematic overestimation for low
Cphyto values (Table 1 and Figure 2).

The bbp-based algorithms that use a single bk
bp constant value (Beh05, Bre12, and Bel18) show

similar σ∆. Specifically, Bre12 has a bk
bp value that is twice as high as that used in Beh05, and Bel18 has

a value nearly three times larger than that of Beh05. ∇ ranges from 23.7% (Bel18) and 80.1% (Bre12),
to 130.3% (Beh05), resulting in different performance in relation to the selection of the single value.
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Table 1. Basic statistics for each single approach. For each approach is reported the bias (δ; in mg m−3), the standard deviation (σ∆; in mg m−3), and the relative
percentage bias (∇; in %). Note that OWCs 1 and 2 are grouped in a single class to increase the number of observations available for the statistics. This is also replicated
for OWCs 11, 12, and 13. The statistics using log10 transformed data for all OWCs are reported in Table S1.

OWCs N. obs.
This Study Bel18 Gra15 Beh05 Bre12 MV17

δ σ∆ ∇ δ σ∆ ∇ δ σ∆ ∇ δ σ∆ ∇ δ σ∆ ∇ δ σ∆ ∇

1:2 19 −1.9 5.0 5.0 −2.6 6.2 8.8 9.2 6.0 259.4 5.2 6.2 174.9 0.7 6.2 78.0 8.5 7.2 250.0
3 30 −1.8 3.4 −13.9 −2.8 3.4 −27.3 9.1 3.3 211.8 5.0 3.4 129.8 0.5 3.4 38.2 7.9 3.9 189.2
4 51 −1.7 7.6 18.2 −2.1 8.5 31.3 9.4 8.6 193.1 5.7 8.5 141.1 1.2 8.5 77.0 10.7 10.6 213.6
5 76 −1.6 6.6 8.1 −3.2 7.9 5.9 8.2 7.7 122.8 4.6 7.9 85.8 0.03 7.9 39.2 9.4 9.2 142.6
6 49 1.5 7.9 38.7 −0.2 9.3 26.9 11.0 9.0 131.4 7.6 9.3 99.7 3.1 9.3 57.2 14.4 11.4 163.0
7 59 −1.9 8.4 −0.4 0.2 9.5 13.7 11.3 9.0 102.9 8.0 9.5 76.0 3.5 9.5 39.7 15.2 12.4 132.3
8 44 −0.5 10.1 38.8 5.2 10.3 73.6 15.8 9.9 164.99 13.0 10.3 139.9 8.5 10.3 101.3 23.3 13.1 220.0
9 26 1.9 11.8 39.2 13.8 12.3 113.4 23.6 12.2 181.5 21.6 12.3 166.5 17.1 12.3 135.5 36.4 14.6 259.1

10 27 4.6 16.5 103.4 17.2 17.6 206.2 26.7 17.0 278.2 25.0 17.6 266.2 20.4 17.6 231.2 41.1 22.6 396.0
11:13 15 3.2 14.0 51.7 12.2 15.2 148.8 22.6 15.2 275.9 20.0 15.2 241.4 15.5 15.2 187.3 31.5 30.4 355.6
1:6 225 −1.0 6.8 14.0 −2.2 7.9 12.0 9.3 7.7 164.0 5.6 7.9 114.7 1.1 7.9 54.8 10.7 9.6 178.4
7:13 171 0.5 11.8 36.6 7.3 13.7 86.5 17.8 13.0 173.8 15.1 13.7 150.7 10.6 13.7 113.3 26.0 18.4 235.4
All 396 −0.4 9.2 23.7 1.9 11.8 44.2 13.0 11.1 168.2 9.7 11.8 130.3 5.2 11.8 80.1 17.3 16.0 203.0
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Figure 2. Matchups between satellite Cphyto versus in situ Cphyto data for each algorithm (N = 396).
The dashed line represents the 1:1 ratio. Gold dots represent in situ Cphyto data corresponding to OWCs
1–6; blue dots represent in situ Cphyto data for OWCs 7–13. Statistics are reported in Table 1.

In the case of Beh05, a source of discrepancy leading to such a bias may be linked to the bbp input
from the algorithm as also highlighted in [27]. Indeed, the original equation was derived using the
GSM algorithm [29] for obtaining a relationship between Chl and bbp and thus for the bk

bp estimation,
instead of the QAA, applied here. In addition, it has recently been found that Raman scattering (here
corrected prior to the QAA application) plays a fundamental role for the retrievals of bbp in very clear
waters because, if not corrected, it results in overestimation of bbp [36,43].

However, these results highlight how the use of a single bk
bp determines a strong overestimation

of satellite Cphyto, in line with the results of MV17 (Table 1 and Figure 2). The comparison between our
approach and previously published models underlines the necessity to account for the spatio-temporal
variability of the bk

bp for satellite-based Cphyto calculation. However, because Bre12 and Bel18 show
relatively low bias, such approaches might be used alternatively to the new approach proposed here
because it may occur in the most oligotrophic waters (e.g., subtropical gyre areas). Note that in Bre12,
the bk

bp was at 470 nm so that the overestimation of Cphyto can decrease if the bk
bp is reported to the

band of 443 nm.
The empirical algorithms of Gra15 and MV17 yield the worst results in terms of ∇. In the case

of Gra15, this is the consequence of the few in situ measurements used for the algorithm definition,
located in the Equatorial Pacific Ocean and in the Atlantic Ocean. Extrapolation of their algorithm,
developed at 470 nm, to 443 nm, may also have had an effect. Regarding MV17, the results found are
consistent with those reported in Tables 3 and 5 of their work.

MV17 reported that the geographical distribution of the in situ data, the median Cphyto

concentrations, and the carbon-to-chlorophyll ratios are in agreement with previous observations in
oligotrophic oceanic conditions [16,18]. The fact that the in situ Cphyto dataset used here contains only
data from the picophytoplankton population must be taken into account for the interpretation of the
algorithm evaluation. In most oligotrophic waters (OWCs from 1 to 6), δ shows the lowest values for
all of the algorithms, with a maximum value of 14.4 mg m−3 (Table 1). However, when analyzing the ∇
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index, the Cphyto computed by considering the spatio-temporal variability of bk
bp is the most efficient

(Table 1), with the exception of OWCs 5 and 6, for which Bel18 shows the best performance. Indeed,
within OWCs in which picophytoplankton is expected to dominate (OWCs from 1 to 6), the performance
of the majority of the tested algorithms generally improves (Table 1), with the exceptions of Gra15 and
MV17. As expected, there is a decrease in the accuracy for all of the algorithms in the OWCs from 7 to
13. This could be influenced by the dominance of nano- and micro-phytoplankton (cell size > 2 µm) in
these waters, whereas the picophytoplankton contribute in low relative proportions [14]. Because most
of the bbp signal is due to particles with equivalent diameters larger than that those associated with
picophytoplankton [23], a decreasing performance of the bbp-based algorithms in water dominated by
larger cells (e.g., nano- and micro-phytoplankton) was expected (Table 1).

4. Discussion

4.1. Spatial and Temporal Distribution of Cphyto

The global mean climatology of Cphyto (Figure 3a) agrees with the expected geographical
distribution [14]. Cphyto highs are found in the most productive regions such as the high latitude
regions and coastal areas, and in upwelling systems such as those off Mauritania and Perù, the Benguela
and Kuroshio currents, and along the equatorial belt of the Pacific Ocean (Figure 3a). Cphyto lows are
found in mid-latitude areas such as the subtropical gyres or the Eastern Mediterranean Sea and Black
Sea. Cphyto varies within the same order of magnitude of recent estimates made using satellite data [14]
and biogeochemical models [44]. The two main oceanic regimes as defined by [45] are also highlighted
from our analysis: “photoacclimation-dominance” and “biomass-dominance”. The former is typical of
oligotrophic areas (e.g., subtropical gyres) where the variability of Chl is uncoupled from biomass and
the process of acclimation to light and nutrients drives Chl variations [45]. In these areas, Cphyto shows
the lowest mean values (<10 mg C m−3). Conversely, the latter is typical of most productive areas
where Chl and bbp strongly covary [31,46]. The high Chl-bbp co-variability indicates that particles (and
biomass) co-vary with phytoplankton abundance, whereas the physiological photoacclimation process
plays a secondary role in determining the Chl variations; e.g., in the North Atlantic and Southern
Oceans, Cphyto shows the highest mean values (>30 mg C m−3).

The amplitude of seasonal variations (i.e., interannual variability) of Cphyto is shown in Figure 3b.
Most of the variability is observed at high latitudes (e.g., Baltic Sea, Irish Sea, Norwegian Sea, North Sea),
in the North Pacific and North Atlantic Oceans, and in the Southern Ocean, because σstd values are
higher than 12 mg m−3. The North Atlantic and Southern Oceans are characterized by high seasonal
variations due to intense productive months followed by unproductive periods [47–49] (Figures S2–S13).
In the North Atlantic Ocean, Cphyto starts to increase in May, reaching the maximum values in June and
July (>50 mg C m−3) following the spring bloom. Then, Cphyto decreases to the lowest values for the
remainder of the year [47]. In the Southern Ocean, Cphyto follows the typical seasonal cycle with high
values during the most productive months which occur from November to March (>50 mg C m−3).
Highs are mostly observed in the Antarctic Circumpolar Current (ACC) and the Patagonia Shelf. Later,
there is a decrease in Cphyto from May to September (Figures S2–S13). Additionally, the northwestern
Indian Ocean, known to be an Oxygen Minimum Zone, as well as the Benguela upwelling system, also
show significant variability in Cphyto, with σstd greater than 12 mg m−3. Conversely, mid-latitude areas
(e.g., in the subtropical gyres), display much lower variability, with σstd less than 2 mg C m−3.

Figure S14 clearly shows how the single bk
bp of Beh05 is located at the lowest limit of possible

values, confirming that reported in [28], whereas the Bel18 and Bre12 single values are representative
of a wider area. In the subtropical gyres, bk

bp does not significantly deviate from the coefficient found
by Beh05, but in the most productive regions (e.g., North Atlantic and Southern Oceans, high latitude
seas, and coastal upwelling regions), they largely differ with great impact on Cphyto estimations.
This discrepancy in Cphyto is still valid in the case of the use of Bel18 and Bre12 single values, but for
other areas (e.g., in the subtropical gyres or in the Mediterranean Sea), the use of the single value of Bel18
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or Bre12 yields an underestimation of Cphyto, whereas in the productive Arctic and Southern Oceans
Cphyto is generally overestimated. This is also indicated in the seasonal bk

bp variation as reported in the

Figures S2–S13. In the North Atlantic Ocean, bk
bp shows high values during the spring bloom and low

values from December to April. However, in this area, the bk
bp is only a small fraction of the entire bbp

signal as the consequence of the high variability in the bbp and phytoplankton abundance [25,27] thus
following the phytoplankton dynamics. In the Southern Ocean, and especially the region influenced
by the ACC and Patagonia Shelf, bk

bp shows highs from December to April (i.e., due to coccoliths)
and lows in the period May–September in accordance also with the Cphyto seasonal cycle [25]. In less
productive seas, the seasonal cycle of bk

bp is smooth, suggesting low NAP variations. In these areas,

the seasonal bk
bp change is weak throughout the year but also dominates the bbp signal [25]. These areas

are characterized by limited nutrient availability determining low Cphyto, mostly of picophytoplankton
class, high bacterial, and detrital concentrations [50–52]. It follows that the use of a varying bk

bp enables
accounting for its seasonal variations in the Cphyto computation, giving the model more flexibility in
relation to the change of the biogeochemical and trophic conditions.
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4.2. Caveats of the Cphyto Algorithm

Three main caveats of the algorithm should be noted. The first is that Cphyto assumes a constant
scaling factor, SF, equal to 13,000 mg C m−2, following [7]. This can be an additional possible source of
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error in the satellite retrievals of Cphyto. Therefore, one important future effort should be to investigate
a refined scaling factor relating bbp to Cphyto coupled with the bk

bp space–time variability as presented
in this work. With this perspective, additional laboratory work should be done to evaluate if change in
SF values can affect the Cphyto estimations.

The second caveat of the algorithm is that it relies on a tight relationship between bbp and
Chl, which is influenced by the algorithms (including the atmospheric correction) used for Chl and
bbp retrievals, in addition to the environmental conditions. In some areas of the subtropical gyres,
the Chl–bbp relationship showed S < 0.95 (Figures S2–S13) and r smaller than or close to 0, as also
reported by [28]. The main reason for this relationship may be the photoacclimation process, known
to be dominant in such areas over the year, and which introduces variability in Chl that is unrelated
to biomass. In these areas, our refined method must be applied with caution. With this perspective,
one future challenge is to solve this limitation in bk

bp computation and, consequently, in the satellite
Cphyto. Indeed, as the subtropical gyres cover about 60% of the global ocean, it can be of a great
importance to compute Cphyto and Chl:Cphyto to understand oceanic biogeochemical cycles. Conversely,
the remaining areas of global ocean (e.g., the North Atlantic Ocean) present significant positive r and
highly significant S (Figures S2–S13) throughout the year, indicating that either bbp or Chl can be used
for determining the phytoplankton dynamics and distribution, as expected in open-ocean waters [27].
In these areas, the algorithm performance is robust.

The third caveat is that the algorithm validation is restricted only to in situ Cphyto data associated
with picophytoplankton carbon. It determines that the algorithm performance has to be interpreted
with caution in those areas where other phytoplankton size classes dominate. This means that, currently,
it is not possible to define the accuracy for OWCs from 7 to 13. Indeed, Table 1 shows that there is a
decrease in the accuracy for all of the algorithms in the OWCs where nano- and micro-phytoplankton
dominates. Thus, one future need is to improve the in situ Cphyto dataset with new measurements
representative of all of the phytoplankton size classes.

5. Conclusions and Future Perspectives

In this work, a revisited version of the original bbp-based algorithm for Cphyto retrieval from
space [7] was proposed. The spatio-temporal variations of the background backscattering coefficient
of non-algal particles (bk

bp) is the crucial part of this refinement, and builds upon a series of recent
studies [25,27,28]. The main findings are:

1. The new Cphyto algorithm proposed here performs better than any previously published model,
with a relative error of 24% (Table 1 and Figure 2) with respect to a reference in situ dataset.

2. The new algorithm shows the lowest error in Cphyto (14.0%) across most of the OWCs in which the
picophytoplankton population dominates (Table 1). On the contrary, the highest errors (36.6%)
occur in OWCs 7–13 in which larger phytoplankton cells are supposed to dominate (Table 1).

However, we acknowledge that the refined algorithm presented here could be improved by
addressing the caveats mentioned above. Enlarging the databases of quality-controlled and freely
accessible in situ Cphyto at the different size-classes (pico-, nano-, and micro-), measured simultaneously
with an array of optical variables (particularly bbp) could help to reduce uncertainties in Cphyto retrieval
from space. Improving the accuracy of satellite Cphyto could be of great importance to adding new
knowledge regarding the contribution of phytoplankton to particulate organic carbon, and for the
validation of ocean primary productivity and biogeochemical models at a wider scale [8,12].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/21/3640/s1,
Figure S1: Scheme of the algorithm developed, Table S1: Basic statistics of the validation analysis for all the
matchup with log10 transformed data: Figures S2–S13: global monthly climatologies of bk

bp (a), 1-σ uncertainty (b),

significance S (c) and Cphyto (d); Figure S14: global mean and standard deviation bk
bp maps.
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