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Abstract
Knowledge of population structure, connectivity, and effective population size re-
mains limited for many marine apex predators, including the bull shark Carcharhinus 
leucas. This large‐bodied coastal shark is distributed worldwide in warm temperate 
and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, 
the bull shark likely plays a vital ecological role within marine food webs, but is at risk 
due to inshore habitat degradation and various fishing pressures. We investigated 
the bull shark's global population structure and demographic history by analyzing 
the genetic diversity of 370 individuals from 11 different locations using 25 micros-
atellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers 
revealed clustering between sharks from the Western Atlantic and those from the 
Western Pacific and the Western Indian Ocean, with no contemporary gene flow. 
Microsatellite data suggested low differentiation between the Western Indian Ocean 
and the Western Pacific, but substantial differentiation was found using mitochon-
drial DNA. Integrating information from both types of markers and using Bayesian 
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1  | INTRODUC TION

Delineating populations and their connectivity by gene flow (i.e., 
effective dispersal) is of primary importance for the conserva-
tion and management of endangered and/or exploited species 
(Begg, Friedland, & Pearce, 1999; Moritz, 1994; Palsbøll, Bérubé, & 
Allendorf, 2007). In marine species, genetic analyses allow for stocks 
to be defined, species exploitation status to be assessed, and ge-
netic diversity underlying recruitment potential and species adapt-
ability to be preserved (Begg et al., 1999; Hilborn, Quinn, Schindler, 
& Rogers, 2003; Palumbi, 2003). Once genetically distinct groups 
(i.e., populations) that may be managed independently are identified, 
estimating abundance and the number of individuals effectively ex-
changed among populations is needed to assess population viability 
and resilience (Frankham, 2010; Schwartz, Luikart, & Waples, 2007). 
Among highly mobile, wide‐ranging species, such as marine mega-
fauna (e.g., marine mammals, seabirds, turtles, sharks, and rays) and 
large‐bodied teleosts, such studies are particularly important be-
cause of exposure to anthropogenic pressures (Halpern et al., 2008; 
Payne, Bush, Heim, Knope, & McCauley, 2016) and the key roles 
many play within food webs (Bowen, 1997; Estes, 1979; Heithaus, 
Frid, Wirsing, & Worm, 2008; Katona & Whitehead, 1988).

Studies of population structure and connectivity are challenging 
because commonly used direct approaches (mark–recapture, satel-
lite, and acoustic tracking) are often difficult to use for pelagic ma-
rine species. This difficulty leads to small sample sizes (Grothues, 
2009) and an underestimation of individual movements (Ng, Able, 
& Grothues, 2007; Thorsteinsson, 2002). Therefore, indirect meth-
ods based on the conceptual framework of population genetics have 
been increasingly used to address ecological and evolutionary ques-
tions in such species. First, genetic methods allow the assessment 
of population structure resulting from evolutionary forces shaping 
allele frequencies within and among populations (mutation, genetic 
drift, migration, and selection; Wright, 1931). At neutral loci, while 
gene flow homogenizes allele frequencies and limits population 
differentiation, genetic drift promotes population differentiation 
by randomly fixing alleles (Hartl & Clark, 1997). Second, genetic 
methods can provide estimates of the effective population size (Ne; 

Wright, 1931). This parameter represents the size of an idealized 
Wright–Fisher population affected by genetic drift at the same rate 
per generation found in the population of interest. Combined with 
the mutation rate (µ), Ne provides an estimate of population genetic 
diversity (4Neµ for the diploid autosomal part of the genome and 
Neµ for the haploid mitochondrial genome). Ne is also related to the 
number of breeders per generation (Waples, Antao, & Luikart, 2014) 
and has been shown to correlate with a population's ability to adapt 
to environmental changes (Hare et al., 2011). Ne has thus been in-
creasingly used in conservation and management to estimate the 
health status of a population and its ability to recover when depleted 
(Frankham, Briscoe, & Ballou, 2010).

Marine species characterized by large populations commonly 
show weak genetic structuring at neutral loci. In large populations, 
even a low dispersal rate can lead to weak population genetic struc-
ture because the number of migrants is not negligible. Also, genetic 
drift is limited in these species due to their large population sizes 
(Bailleul et al., 2018; Gagnaire et al., 2015; Palumbi, 1992). Weak 
genetic structuring may result from the existence of large isolated 
populations or, conversely, the existence of one large panmictic pop-
ulation. Identifying which situation is driving population structure 
can be challenging, but recent developments are providing the nec-
essary analytical resolution. Incorporation of migration into simula-
tion models, combined with new approximate Bayesian computation 
algorithm relying on random forest (i.e., ABC‐RF), allows compari-
sons and selection of alternative demographic models that best fit 
the observed dataset (Pudlo et al., 2016; Raynal et al., 2017). ABC‐
RF provides estimates of the posterior probability of the selected 
model and the parameters of interests, such as migration rates be-
tween populations and effective population size (Pudlo et al., 2016; 
Raynal et al., 2017). For both model choice and parameter estimates, 
ABC‐RF is more accurate and requires a smaller number of simulated 
datasets than previous ABC methods (Fraimout et al., 2017; Pudlo et 
al., 2016; Raynal et al., 2017).

Many large sharks face considerable exploitation, and popula-
tions have declined globally in recent decades (Dulvy et al., 2014). 
The bull shark Carcharhinus leucas is caught in recreational, sub-
sistence, and targeted commercial fisheries, as well as bycatch 

computation with a random forest procedure (ABC‐RF), this discordance was found 
to be due to a complete lack of contemporary gene flow. High genetic connectivity 
was found both within the Western Indian Ocean and within the Western Pacific. 
In conclusion, these results suggest important structuring of bull shark populations 
globally with important gene flow occurring along coastlines, highlighting the need 
for management and conservation plans on regional scales rather than oceanic basin 
scale.

K E Y W O R D S

ABC‐RF, microsatellite DNA, mitochondrial DNA, mito‐nuclear discordance, population 
genetics
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throughout its range (Aguilar et al., 2014; Almeida, McGrath, & 
Ruffino, 2001; Bonfil, 1997; Branstetter & Stiles, 1987; Clarke, 
Magnussen, Abercrombie, McAllister, & Shivji, 2006; Doukakis et 
al., 2010; Temple et al., 2018). In several locations, the bull shark 
has also been the subject of lethal risk reduction programs due to 
attacks on humans (Cliff & Dudley, 1991; Dudley, 1997; Dudley 
& Simpfendorfer, 2006; Lagabrielle et al., 2018). This high‐tro-
phic level predator inhabits warm temperate and tropical waters 
worldwide, and plays an important role in coastal and estuarine 
ecosystems (Daly, Froneman, & Smale, 2013; Matich, Heithaus, 
& Layman, 2011; Trystram, Rogers, Soria, & Jaquemet, 2017). 
Therefore, stock assessments and evaluation of genetic structure 
is a priority step for this species.

Population structuring and connectivity in large sharks vary in 
relation to environmental features, movement ecology, and habitat 
preferences (Dudgeon et al., 2012; Heist, 2005). Oceanic species 
generally exhibit high levels of genetic connectivity, including across 
ocean basins (e.g., basking shark Cetorhinus maximus; Hoelzel, Shivji, 
Magnussen, & Francis, 2006), while coastal species tend to exhibit 
more structure (e.g., blacktip reef shark Carcharhinus melanopterus 
[Mourier & Planes, 2013; Vignaud et al., 2014] and scalloped ham-
merhead shark Sphyrna lewini [Duncan, Martin, Bowen, & De Couet, 
2006]). Despite the bull shark being able to undergo long‐distance 
migrations (Brunnschweiler, Queiroz, & Sims, 2010; Daly, Smale, 
Cowley, & Froneman, 2014; Heupel et al., 2015; Kohler & Turner, 
2001; Lea, Humphries, Clarke, & Sims, 2015), its dispersal may be re-
stricted, as is suggested by high genetic differentiation observed be-
tween Fiji, the Atlantic, and Indo‐West Pacific Oceans (Testerman, 
2014). However, no genetic subdivision has been identified among 
populations within a continental basin (Karl, Castro, Lopez, Charvet, 
& Burgess, 2011; Testerman, 2014; Tillett, Meekan, Field, Thorburn, 
& Ovenden, 2012). This low connectivity has been suggested to re-
sult from (a) oceanic waters acting as a barrier and (b) possible female 
philopatry to natal nurseries.

Many sharks exhibit philopatry, returning either to specific 
feeding areas (e.g., the tiger shark Galeocerdo cuvier; Meyer, Clark, 
Papastamatiou, Whitney, & Holland, 2009; Meyer, Papastamatiou, & 
Holland, 2010) or nursery grounds (Hueter, Heupel, Heist, & Keeney, 
2005; Portnoy & Heist, 2012; Speed, Field, Meekan, & Bradshaw, 
2010). These behaviors may be sex‐specific and, for many coastal 
sharks, result in population structure at smaller geographic scales 
than would be expected based on locomotive abilities (Chapman, 
Feldheim, Papastamatiou, & Hueter, 2015). Bull sharks use es-
tuaries and rivers for nurseries (Heupel, Yeiser, Collins, Ortega, & 
Simpfendorfer, 2010; Ortega, Heupel, Van Beynen, & Motta, 2009; 
Snelson, Mulligan, & Williams, 1984), making female philopatry likely 
throughout their range (Karl et al., 2011; Tillett et al., 2012).

Estimates of long‐term effective population size of bull sharks 
vary among studies and locations, but are likely in the order of 
100,000 individuals (Karl et al., 2011; Testerman, 2014), which rep-
resents potentially greater genetic diversity than other shark spe-
cies, for which estimates of Ne are in the order of 10,000–50,000 
individuals (e.g., basking sharks, Hoelzel et al., 2006; sicklefin lemon 

shark, Schultz et al., 2008). This may suggest that (a) bull shark pop-
ulations are not severely depleted and/or (b) that fishery pressures 
are too recent to be detected through genetic analyses (Karl et al., 
2011; Testerman, 2014).

To date, few studies have investigated bull shark genetic struc-
ture and have relied either on (a) extensive sampling on a global 
scale using only nuclear markers (Testerman, 2014), or (b) a locally 
intensive sampling (either restricted to the Atlantic or Northern 
Australia), using relatively few nuclear and mitochondrial markers 
(3–5 microsatellites along with 1 or 2 mitochondrial genes; Karl et al., 
2011; Tillett et al., 2012). Thus, improving our understanding of bull 
shark population structuring and connectivity across ocean basins 
is needed. Combining the information from two types of molecular 
markers (25 microsatellite loci and three mitochondrial genes [CR, 
nd4, and cytb]), we analyzed the genetic variation in 370 bull sharks 
from 11 locations in the Western Indian Ocean, the Western Pacific, 
and the Western Atlantic, including both continental coasts and 
oceanic islands (Figure 1). By including new locations and increasing 
the number of markers presenting different modes of evolution, our 
objective was to combine classical population genetic analyses with 
coalescent‐based approximate Bayesian computation approaches 
(Beaumont, 2010; Csilléry, Blum, Gaggiotti, & François, 2010). This 
was performed to delineate bull shark populations and assess their 
demographic history and connectivity, using model selection analy-
ses to refine the evolutionary history of this species. Specifically, the 
objectives were to:

1. Expand our understanding of the genetic structure previously
documented by Testerman (2014) in order to delineate genetic
clusters at different scales (e.g., within vs. among ocean basins)
that should be managed separately;

2. Decipher whether contemporary migration occurs among defined
clusters; and

3. Estimate the effective population sizes of these clusters.

2  | MATERIAL S AND METHODS

2.1 | Sampling

Tissue samples were collected in the Western Indian Ocean (WIO), 
the Western Pacific (WP), and the Western Atlantic (WA; Figure 1). 
In the WIO, samples came from continental coasts and oceanic is-
lands: Zanzibar (ZAN), n = 13; Mozambique (MOZ), n = 18; South 
Africa (SAF), n = 32; the Seychelles (SEY), n = 39; Madagascar 
(MAD), n = 25; Reunion Island (RUN), n = 126; and Rodrigues Island 
(ROD), n = 6. Samples from the Western Pacific were collected 
in two regions along the east coast of Australia [Clarence River 
(AUS1; n = 44) and Sydney Harbour (AUS2; n = 26), New South 
Wales] and in New Caledonia (NCA, n = 10). Most of the sam-
ples came from biopsies made on individuals caught in the wild 
for commercial, risk reduction, or scientific purposes. Samples 
from Madagascar came from carcharhinid jaws or teeth found in 
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markets and a posteriori confirmed as belonging to bull sharks by 
sequencing the mtDNA control region (CR). Finally, in the Western 
Atlantic, samples were collected in the Shark River estuary in the 
Florida Coastal Everglades (Florida, US; FLO; n = 31). All samples 
were collected on subadult or adult individual, except in Florida 
where they were young‐of‐the‐year and juveniles. In total, 370 
samples were collected and preserved in 90% ethanol until labora-
tory analyses (Figure 1).

2.2 | Laboratory procedures

Genomic DNA was extracted using Qiagen DNeasy Blood & Tissue 
Kit (Qiagen, Hilden, Germany) following manufacturer instructions.

Each sample was genotyped at 25 microsatellite loci. Twenty loci 
were species‐specific (Cl01 to Cl20; Pirog, Blaison, Jaquemet, Soria, 
& Magalon, 2015) and were analyzed following the procedure de-
scribed in Pirog et al. (2015). The remaining five microsatellite loci 
were originally developed for the tiger shark G. cuvier [Gc01 (Pirog, 
Jaquemet, Blaison, Soria, & Magalon, 2016); TIG10 (Mendes et al., 
2016)], the sandbar shark Carcharhinus plumbeus (Cpl166; Portnoy, 
Mcdowell, Thompson, Musick, & Graves, 2006), the Australian 
blacktip shark Carcharhinus tilsoni (Ct05; Ovenden, Street, & 
Broderick, 2006), and the lemon shark Negaprion brevirostris (Ls24; 
Feldheim, Gruber, & Ashley, 2001) and successfully cross‐amplified 
in the bull shark. These loci were indirectly labeled using 6‐FAM, 
PET, VIC, or NED fluorochromes, and PCRs were carried out fol-
lowing Gélin, Postaire, Fauvelot, and Magalon (2017). The 25 loci 
were multiplexed post‐PCR in five panels (Appendix S1). The allelic 
sizes of the PCR products were separated on an ABI 3730XL capil-
lary sequencer at the Plateforme Gentyane (INRA) and scored with 
GeneMapper v.4.0 (Applied Biosystems) using the Genescan LIZ‐500 
size standard (Applied Biosystems). Some samples were analyzed 
twice to check the consistency of the results.

The mtDNA control region (CR) was PCR‐amplified using the set 
of primers GWF (Pardini et al., 2001) and CL2 (Tillett et al., 2012), 

the nicotinamide adenine dinucleotide dehydrogenase (NADH) sub-
unit 4 (nd4) using primers nd4 (Arevalo, Davis, & Sites, 1994) and 
H12293_LEU (Inoue, Miya, Tsukamoto, & Nishida, 2001), and the 
cytochrome b (cytb) with primers GluDG and C61121H (Naylor, 
Ryburn, Fedrigo, & Lopez, 2005). This was performed for subsets 
of the sampling: 266 individuals for CR, 255 individuals for nd4, and 
227 for cytb.

PCRs were performed in a total volume of 25 µl: 1× of MasterMix 
(Applied Biosystems), 0.3 µM of forward and reverse primers, and 
1.6 ng/µl of genomic DNA. The thermocycling program for CR con-
tained an initial denaturing step at 94°C for 5 min, 35 cycles × (94°C 
for 30 s, 56°C for 30 s, 72°C for 1 min 30 s), and a final extension step 
at 72°C for 5 min. For cytb, the same program was used, except that 
the annealing temperature was set to 53°C. For nd4, the annealing 
temperature was 50°C and the elongation step was 45 s. Amplicons 
were sequenced directly with primers used for PCR on a capillary 
sequencer ABI 3730XL (Applied Biosystems) by Genoscreen.

2.3 | Genetic diversity analysis

Among the individuals from Madagascar, 12 out of 25 samples were 
kept for data analyses, because the remaining samples extracted 
from teeth exhibited high amounts of missing data (more than 50%) 
due to low‐quality DNA.

Null alleles were assessed with Microchecker v.2.2.3 (Van 
Oosterhout, Hutchinson, Wills, & Shipley, 2004). Linkage disequi-
librium (LD) between pairs of loci was tested using a likelihood‐
ratio test with 10,000 permutations in arlequin v.3.5.1.2 (Excoffier 
& Lischer, 2010). Diversity indices such as the number of alleles 
per locus Na, observed and expected heterozygosities (HO and HE), 
and inbreeding coefficient FIS (Weir & Cockerham, 1984) were 
estimated using Fstat v.2.9.3.2 (Goudet, 1995). Departure from 
Hardy–Weinberg equilibrium (HWE) at each microsatellite locus 
was tested using 5,000 permutations in Fstat v.2.9.3.2 (Goudet, 
1995). The mean allelic richness Ar and the mean private allelic 

F I G U R E  1   Map of bull shark (Carcharhinus leucas) sampling locations (ZAN, Zanzibar; SEY, Seychelles; MOZ, Mozambique; SAF, South 
Africa; MAD, Madagascar; RUN, Reunion Island; ROD, Rodrigues Island; AUS1, Clarence River, Australia; AUS2, Sydney Harbour, Australia; 
NCA, New Caledonia; FLO, Florida). Sample sizes are in brackets. Boxes indicate ocean basins and dotted lines delineate regions
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richness Arp were calculated using a rarefaction method, as im-
plemented in hp‐rare v.1.0 (Kalinowski, 2005). This method ac-
counts for differences in sample size by standardizing Ar and Arp 
values across sampled locations by resampling the lowest number 
of genotypes available (i.e., 12 haploid gene copies or six diploid 
genotypes in Rodrigues Island) in each location.

Mitochondrial sequences were checked and aligned using 
Geneious v.8.1.2 (Kearse et al., 2012). Alignments were performed 
using the MAFFT method (Katoh, Misawa, Kuma, & Miyata, 2002) 
for each marker separately first and then for the concatenated 
sequence (CR‐nd4‐cytb). Diversity indices (i.e., number of haplo-
types, number of segregating sites, haplotype (h), and nucleotide 
(π) diversities) were calculated for the concatenated alignment and 
for each marker separately using Dnasp v.5.10.1 (Librado & Rozas, 
2009).

Detection of partitioning schemes within the concatenated 
sequence CR‐nd4‐cytb and of substitution models was performed 
using partitionFinDer v.2.1.1 (Guindon et al., 2010; Lanfear, 
Frandsen, Wright, Senfeld, & Calcott, 2017). We used Beast 
v.1.8.4 (Drummond, Suchard, Xie, & Rambaut, 2012) to recon-
struct phylogenetic relationships and infer divergence times on
the mitochondrial concatenated sequence CR‐nd4‐cytb. Bayesian
Markov chain Monte Carlo (MCMC) analyses were performed
assuming a HKY85 + I model of substitution as the latter was
shown to best fit the data. The rate of variation among sites was
modeled with a discrete gamma distribution with four rate cate-
gories. We assumed an uncorrelated lognormal relaxed clock to
account for rate variation among lineages. To minimize prior as-
sumptions about demographic history, we adopted an extended
Bayesian skyline plot (EBSP) approach in order to integrate data
over different demographic histories. Trees were calibrated using
two methods. First, an analysis was performed adding a sequence
of S. lewini (mitochondrion available in GenBank; accession num-
ber JX827259), and the tree was calibrated using the divergence
date between Carcharhinus and Sphyrna genera, 38 millions years
ago (Mya), estimated from fossil data (Maisey, 1984). Second, the
tree was calibrated using the closure of the Isthmus of Panama as
the divergence time of bull shark populations from the Western
Atlantic and the Indo‐Pacific, 3.1–3.5 Mya (Coates, Collins, Aubry,
& Berggren, 2004; Coates et al., 1992). For each analysis, a nor-
mal prior distribution was set for the calibrated node (mean ± SD:
38 ± 7 and 3.5 ± 0.4, respectively). Evolutionary model param-
eters were then estimated, with samples drawn from the poste-
rior every 105 MCMC steps over a total of 108 steps from five
independent runs. The first 107 steps were discarded as burn‐in.
Good mixing and convergence were assessed using tracer v.1.6
(Rambaut, Suchard, Xie, & Drummond, 2014), and the best tree
was selected using the maximum clade credibility option with
treeannotator v.1.8.4 (Drummond et al., 2012) and viewed with
Figtree v.1.4.0 (http://tree.bio.ed.ac.uk/softw are/figtr ee/). To fur-
ther evaluate phylogenetic relationships among haplotypes, a TCS
statistical parsimony network (Clement, Posada, & Crandall, 2000) 
was constructed using popart v.1.7 (Leigh & Bryant, 2015).

2.4 | Population genetic structure

Two complementary clustering methods were used to investigate 
population structure in the bull shark. First, Bayesian clustering 
analyses were performed using structure v.2.3.4 (Falush, Stephens, 
& Pritchard, 2003; Pritchard, Stephens, & Donnelly, 2000). For 
any given number of clusters (K) between 1 and 10, individual as-
signment probabilities to each cluster were determined so as to 
minimize departures from HWE within clusters and maximize LD 
between them. Two analyses were performed, with and without the 
LOCPRIOR model, which uses prior sampling location information 
in the Bayesian clustering to detect genetic population structure 
that might be weaker (Hubisz, Falush, Stephens, & Pritchard, 2009). 
Conditions were set to 106 chain length after a burn‐in of 5 × 105, and 
10 chains were run for each K assuming correlated allele frequencies 
and the admixture model. For a given K, distinct modes were identi-
fied, and for each mode and each individual, the assignment prob-
abilities to each cluster were averaged using CluMpak (Kopelman, 
Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015). Second, a discri-
minant analysis of principal components (DAPC Jombart, Devillard, 
& Balloux, 2010), which does not rely on HWE or LD contrary to 
structure, was performed to check whether similar clustering pat-
terns were identified. This method summarizes the genetic variation 
of the microsatellite allele frequencies using a principal component 
analysis as a prior step to a discriminant analysis and defines clusters 
such as to minimize variations within them and maximize differentia-
tion between them. DAPC was applied using the adegenet package 
(Jombart, 2008) for R (R Core Team, 2017). Methods traditionally 
used to detect the most likely number of clusters according to the 
analysis performed (Structure and DAPC) might provide different 
outputs for the same dataset. To cope with these inconsistencies, we 
chose to consider the highest number of clusters and the individual 
assignments that were retrieved by both analyses. Moreover, in a 
hierarchical approach, these analyses were repeated on each cluster 
found separately. Commonly, using Structure and DAPC, when the 
finest level of structuring is reached, adding a supplementary cluster 
leads to inconclusive assignments with individuals assigned to sev-
eral clusters in the same proportions.

Analyses of molecular variance (AMOVAs; Cockerham, 1969, 
1973) were performed to estimate the genetic variation due to the 
partitioning in clusters (identified with the TCS haplotype network for 
the mitochondrial data and with structure and DAPC for microsatel-
lite data), the variation within clusters among sampling locations, and 
the variation within sampling locations. AMOVAs were performed 
with arlequin v.3.5.1.2 (Excoffier & Lischer, 2010), and significance 
of fixation indices was tested using a nonparametric approach with 
10,000 permutations (Excoffier, Smouse, & Quattro, 1992).

To assess population differentiation between pairs of sampling 
locations, FST (Weir & Cockerham, 1984) and Dest (Jost, 2008) were 
estimated for the microsatellites using arlequin v.3.5.1.2 (Excoffier 
& Lischer, 2010) and DEMEtics v.0.8–7 (Gerlach, Jueterbock, 
Kraemer, Deppermann, & Harmand, 2010), respectively. The Dest 
is based on the effective number of alleles and is less affected by 

info:ddbj-embl-genbank/JX827259
http://tree.bio.ed.ac.uk/software/figtree/
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within‐population variation compared with FST. For the mitochon-
drial dataset, the ΦST (Slatkin, 1995) was estimated using arlequin 
v.3.5.1.2 (Excoffier & Lischer, 2010). Significance of pairwise popu-
lation differentiation indices was tested using 10,000 permutations.

2.5 | Demographic history and variations of 
effective population sizes

2.5.1 | Neutrality tests

To test for departures from a constant population size (Ramos‐
Onsins & Rozas, 2000), the summary statistics Tajima's D (Tajima, 
1989) and Fu's FS (Fu, 1997) were estimated from the concatenated 
mitochondrial dataset with Arlequin v.3.5.1.2 (Excoffier & Lischer, 
2010), with significance tested implementing 105 simulated samples.

2.5.2 | ABC‐RF analyses

Demographic scenarios

Combining the information given by both types of markers (micro-
satellites and mtDNA), we attempted to infer the intensity of gene 
flow between the Western Indian Ocean and the Western Pacific 
populations and the effective sizes of the delineated populations. 
To do so, historical scenarios of population divergence differing in 
the assumptions regarding migration were compared in a Bayesian 
framework using random forests to identify the best model of pop-
ulation split and to estimate the model parameters (ABC‐RF; Pudlo 
et al., 2016; Raynal et al., 2017). The Western Atlantic population 
deviated from a panmictic population, which might bias the analysis. 
It was therefore not included in the ABC‐RF analysis. Pooling indi-
viduals from different sampling locations, even with nonsignificant 
pairwise differentiation values, may bias results (Lombaert et al., 
2014). Hence, the two regions were represented by the sampling lo-
cation with the highest number of individuals, that is Reunion Island 
(RUN) for WIO and Eastern Australia (Clarence River, AUS1) for 
WP. Four demographic scenarios were built (Figure 2), all of them 

starting with an ancestral population from which both observed 
populations diverged. Scenarios then differed as to the occurrence 
of migration during divergence. Scenario 1 assumed constant re-
current migration from the split to present. In Scenario 2, the split 
was followed by a period of recurrent migration, itself followed by a 
period of isolation. In Scenario 3, populations diverged in isolation. 
Finally, Scenario 4 assumed that populations first went through a 
period of isolation before engaging in a period with recurrent migra-
tion. In all scenarios, recurrent migration was bidirectional but not 
necessarily symmetric.

Model choice

For each scenario, we simulated 200,000 microsatellite and mito-
chondrial datasets using FastsiMcoal (Laval & Excoffier, 2004). To ac-
count for both types of markers having different sample sizes, we 
applied a two‐step procedure (bash scripts available upon request). 
Microsatellite datasets were first simulated with parameters drawn 
in the prior distributions described in Appendix S2 (Tables S2.1 and 
S2.2). The mitochondrial datasets were subsequently simulated using 
the same historical parameters (divergence times, starting time, and 
ending time of the migration period) as for microsatellites, but with 
different sample sizes and, importantly, different demographic and 
genetic parameters (effective sizes, migration rates, and mutation 
rates). We thus estimated different migration rates and effective 
sizes for microsatellite and mtDNA. Because of the lack of knowl-
edge on effective sizes and historical divergence of bull shark popu-
lations, broad parameter ranges were chosen. Simulated datasets 
were described using 19 summary statistics (Appendix S2) related 
to the genetic polymorphism of both types of loci using ArlsuMstat 
(Excoffier & Lischer, 2010). For both markers, we computed the 
mean number of alleles over loci K and the mean of Nei's gene diver-
sity H for each population and the pairwise FST between populations. 
For microsatellite markers only, the mean over loci of the modified 
Garza–Williamson index MGW were computed for each popula-
tion and the mean delta mu‐square δµ2 (square difference in mean 
microsatellite allele length between pairs of populations) between 

F I G U R E  2   Graphical representations of the four scenarios depicting possible divergence histories for each pair of bull shark populations: 
FLO‐RUN, FLO‐AUS1, and RUN‐AUS1. The time was measured backward in generations before present. In black, is represented the 
ancestral population of effective population size Nanc; in dark gray, population 1 of effective population size N1 and in light gray, population 
2 of effective population size N2. Double arrows represent bidirectional migration events. t2, time of divergence; t1, start and end of the 
isolation period for Scenario 2 and Scenario 4, respectively
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the sampled populations. For mitochondrial markers only, the mean 
number of pairwise differences π, the Tajima's D, and the Fu's Fs 
were computed for each population. Prior checking was performed 
using principal components analyses (PCAs) to project the summary 
statistics obtained from the simulated and the observed datasets, 
and confirming the observed value of each statistic falls well within 
the distribution of the simulated datasets. The scenarios that best 
fitted the data were identified using the random forest procedure 
implemented in the abcrf R package (Marin, Raynal, Pudlo, Robert, 
& Estoup, 2017) using 20,000 of the simulated datasets, with the 
analysis replicated 10 times. The linear discriminant analysis (LDA) 
axes were added to the 19 summary statistics mentioned earlier to 
summarize the datasets, as it has been shown to improve the dis-
crimination between scenarios (Pudlo et al., 2016). The best scenario 
was identified by analyzing the posterior probabilities of each sce-
nario over the replicate analyses (Fraimout et al., 2017). The prior 
error rates of the best scenario (i.e., the probability of choosing a 
wrong model when drawing model index and parameter values into 
priors; Pudlo et al., 2016) were averaged over the replicate analyses 
(Fraimout et al., 2017).

Parameter estimations

Parameter values were subsequently inferred using ABC random 
forests as developed by Raynal et al. (2017), using 100,000 datasets 
simulated under the best scenario. To test the performance of the 
method in estimating parameters, we used 1,000 pseudo‐observed 
datasets on which the estimation procedure was applied to meas-
ure the precision of the estimation procedure. From these values, 

the 95% confidence interval (CI) and the normalized mean square 
error NMSE were computed. Parameter inference analyses were 
replicated two times to ensure consistency of ABC‐RF analyses.

3  | RESULTS

3.1 | Genetic diversity analysis

Null alleles were detected for several loci in several sampling loca-
tions, but were not constant among locations and were not corre-
lated with significant deviations from HWE. All loci were thus kept 
for further analyses. For microsatellite loci, a globally significant 
LD was detected for only four of 3,300 tests after FDR correction 
(0.12%, p < .05), and consequently, all loci were considered independ-
ent. The average number of alleles (±SE) per location ranged from 
2.88 ± 0.45 in New Caledonia and 2.88 ± 0.66 in Rodrigues Island 
to 4.56 ± 0.19 in Reunion Island. Mean allelic richness corrected by 
a standardized sample size of 6 diploid individuals remained rela-
tively constant among sampling locations, varying from 2.56 ± 0.34 
in Florida to 2.88 ± 0.66 in Rodrigues Island. HE and HO varied from 
0.42 ± 0.05 in Australia (AUS2) to 0.54 ± 0.09 in Rodrigues Island 
and from 0.37 ± 0.05 in Florida to 0.56 ± 0.10 in Rodrigues Island, 
respectively (Table 1). Significant deviation from HWE was observed 
only for Florida (FIS = 0.17, p < .01), which could be linked to sampling 
within a single nursery (sampling of juveniles within a same nursery, 
which could be related). The mean private allelic richness varied from 
0.01 ± 0.01 in Zanzibar to 0.15 ± 0.13 in Rodrigues Island in the WIO 
and the WP, and was of 0.67 ± 0.29 in Florida (Table 1).

F I G U R E  3   Maximum clade credibility tree of the mitochondrial concatenated sequence CR‐nd4‐cytb for the bull shark. Only the different 
haplotypes are represented. Boxes delineate lineages discussed in the text. Below branches, are indicated node supports above 0.90; 
above branches, are indicated the mean divergence dates (in millions years ago; Mya) retrieved using either the time of divergence between 
Carcharhinus and Sphyrna genera (38 Mya; left) or the closure of the Isthmus of Panama separating Atlantic and Pacific populations (3.1–
3.5 Mya; right)
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Summary statistics for each mitochondrial gene are pre-
sented in Appendix S3 (GenBank Accession numbers MN227021–
MN227067). We obtained sequences of 923 bp for CR, 672 pb for 
nd4, and 921 bp for cytb and resolved 19, 13, and 17 haplotypes 
with 18, 22, and 23 polymorphic sites, respectively. Total haplo-
type diversities (h) were of the same order for each gene, varying 
from 0.80 ± 0.00 for CR and cytb to 0.86 ± 0.00 for nd4. Total 
nucleotide diversity (π) was higher for nd4 (0.00834 ± 0.00003) 
than for CR and cytb (0.00448 ± 0.00001 and 0.00426 ± 0.00002, 
respectively).

The concatenated sequences CR‐nd4‐cytb (N = 218, fragment of 
2,516 bp) resolved 36 haplotypes with an overall haplotype diversity 

of 0.93 ± 0.00 and a nucleotide diversity of 0.00551 ± 0.00002. 
No partitioning scheme was detected within the concatenated se-
quence, and the HKY85 + I model of substitution was selected with 
the BIC criterion. For both calibration strategies, Bayesian analyses 
of the concatenated mitochondrial sequence CR‐nd4‐cytb produced 
topologies with high support at most internal nodes and showed 
good convergence and mixing, with ESS above 200 (Table S4.1 in 
Appendix S4). For each analysis, similar lineages were strongly sup-
ported, with a first splitting event between the WA and both the 
WIO and WP populations, a second splitting event between the 
WIO and WP populations, and a third splitting event into two lin-
eages within the WIO (Figure 3).

F I G U R E  4   TCS statistical parsimony network of 36 bull sharks mitochondrial concatenated sequence CR‐nd4‐cytb haplotypes. Each 
circle represents a haplotype and each segment, a mutation. Boxes and the dotted line separating the Western Indian Ocean in two groups 
demarcate lineages discussed in the text (WIO1/WIO2). Circle size is proportional to the number of individuals harboring each haplotype, 
and colors correspond to sampling locations (WIO1: ZAN, Zanzibar; SEY, Seychelles; MOZ, Mozambique; SAF, South Africa; MAD, 
Madagascar; WIO2: RUN, Reunion Island; ROD, Rodrigues Island; AUS1, Clarence River, Australia; AUS2, Sydney Harbour, Australia; NCA, 
New Caledonia; FLO, Florida)

info:ddbj-embl-genbank/MN227021
info:ddbj-embl-genbank/MN227067
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The calibration of the tree with the divergence date between 
Sphyrna and Carcharhinus genera, 38 Mya, provided a divergence 
rate between lineages per million years of 0.61% (95% confidence 
interval = [0.12, 1.23]). Using this calibration, populations from WA 
and both the WIO and WP diverged at 1.23 Mya [0.22, 4.27], while 
WIO and WP populations diverged at 0.75 Mya [0.05, 1.22]. The cali-
bration of the tree with the date of closure of the Isthmus of Panama, 
3.1–3.5 Mya, provided a divergence rate between lineages per mil-
lion years of 0.24% [0.14, 0.36] and a divergence date of 1.69 Mya 
[0.75, 2.69] between WIO and WP populations. The mean of the two 
divergence rates was estimated, providing a mean substitution rate 
per site per year of 4.23 × 10−9 [1.14 × 10−9, 1.17 × 10−8].

The TCS statistical parsimony network built from the CR‐nd4‐
cytb dataset retrieved the same lineages as the phylogenetic tree, 
and highlighted the absence of shared haplotypes among lineages 
retrieved in each region. Twenty‐three haplotypes were identified in 
the WIO, five in the WP, and eight in the WA (Figure 4). Furthermore, 
the two lineages retrieved in the WIO seemed to correspond to the 
locations sampled along or near the African east coast (i.e., WIO1: 
Zanzibar, Seychelles, Mozambique, South Africa, and Madagascar) 
and to the Mascarene Islands (i.e., WIO2: Reunion Island and 
Rodrigues Island), despite some shared haplotypes.

Haplotype and nucleotide diversities were globally weaker in the 
WP (h = 0.51 ± 0.01 and π = 0.00056 ± 0.00002) than in the WIO and 
in the WA (WIO: h = 0.88 ± 0.00 and π = 0.00191 ± 0.00000; WA: 
h = 0.80 ± 0.01 and π = 0.00131 ± 0.00005). Within the WIO, h ranged 
from 0.33 ± 0.01 to 0.93 ± 0.03 and π from 0.00013 ± 0.00007 to 
0.00212 ± 0.00046, both for Rodrigues Island and Madagascar, 
respectively. Within the WP, Clarence River (AUS1) showed 
the lowest values (h = 0.17 ± 0.02 and π = 0.00024± 0.00005) 
and Sydney Harbour (AUS2), the highest (h = 0.49 ± 0.02 and 
π = 0.00059± 0.00011; Table 1). Geographic distributions of all hap-
lotypes are indicated in Appendix S5.

3.2 | Genetic clustering

Structure clustering analysis suggested that the genetic structure 
is best explained by two clusters. For the microsatellite dataset 

without the LOCPRIOR model, a clear clustering was observed at 
K = 2 between samples from the WA and those from both the WIO 
and WP (Appendix S6a). For increasing K values, one cluster was 
identified in the WA, and subsequent clusters were represented 
in similar proportions in each individual from the WIO and the WP. 
When removing samples from the WA, for K = 2, each individual was 
equally assigned to both clusters, confirming the presence of only 
one genetic cluster (Appendix S6a).

Using the LOCPRIOR model on the microsatellite dataset, all 
samples included, similar results were retrieved for K = 2 (Figure 5 
and Appendix S6b). For increasing K, each newly identified cluster 
was found to be largely uninformative, with individual membership 
proportions in new clusters low. Similar results were retrieved for 
analyses using the microsatellite and mitochondrial datasets, both 
without and with the LOCPRIOR model (Appendix S6c,d).

The DAPC performed on microsatellites confirmed the clear 
clustering between the WA and both the WIO and WP with the first 
axis explaining 49.87% of total inertia. Locations from the WIO and 
the WP were not tightly grouped, with the second axis explaining 
10.29% of total inertia, and ellipses for each location still overlapped 
(Figure 6a). When removing samples from Florida, ellipses of each 
location remained overlapped, the first axis explaining 31.26% and 
the second 20.77% of total inertia (Figure 6b).

3.3 | Genetic differentiation

AMOVAs were conducted with the previously obtained clusters 
(microsatellites: WA and WIO/WP; mtDNA: WIO1, WIO2, WP, 
and WA) as first level of structuration. Percentages of varia-
tion associated with clusters were 26.35% and 81.61% for the 
microsatellite and the mitochondrial datasets, respectively. The 
weakest level of differentiation was observed among locations 
within clusters, with percentages of variation of 0.54% and 1.68% 
for the microsatellites and mtDNA, respectively (Appendix S7). 
Pairwise FST and Dest among locations from the WIO and the 
WP were weak (FST = [0.000, 0.047] and Dest = [0.000, 0.039]; 
higher values found for Rodrigues Island may be biased by 
low sample size), while the ones between all locations and WA 

F I G U R E  5   Average probability of membership (y‐axis) of bull shark individuals (N = 357, x‐axis) using 25 microsatellites, assuming 
correlated allele frequencies and admixture as performed by Structure with the LOCPRIOR model. Only major modes for K varying from 
two to three are presented. ZAN, Zanzibar; SEY, Seychelles; MOZ, Mozambique; SAF, South Africa; MAD, Madagascar; RUN, Reunion Island; 
ROD, Rodrigues Island; AUS1, Clarence River, Australia; AUS2, Sydney Harbour, Australia; NCA, New Caledonia; FLO, Florida
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were high (FST = [0.252, 0.335], all p < .001 after FDR correc-
tion and Dest = [0.313, 0.360], all p < .01 after FDR correction; 
Table 2). Similarly, pairwise ΦST values for the mitochondrial 
concatenated dataset were high among locations from the three 
regions (ΦST = [0.776, 0.929], all p < .001 after FDR correction; 
Table 2), and within the WIO, pairwise ΦST values were higher 
between locations from the Mascarene Islands (Reunion Island 
and Rodrigues Island) and the other locations that are along or 
near the African east coast (Zanzibar, Mozambique, South Africa, 
Seychelles). ΦST values varied from 0.346 (South Africa/Reunion 
Island) to 0.623 (Seychelles/Rodrigues Island; all p < .001 after 
FDR correction; Table 2). Within the WP, pairwise ΦST values var-
ied from 0.193 to 0.509 and were all significantly different from 
zero after FDR correction (Table 2).

3.4 | Demographic history

3.4.1 | Neutrality tests

Considering the concatenated mitochondrial dataset, no evidence 
of any historical population expansions or contractions was found 
with tests of selective neutrality, either by considering all locations 
separately or by grouping them in the clusters identified (all Tajima's 
D and Fu's FS not significantly different from zero; Appendix S8).

3.4.2 | Bayesian analyses using both 
microsatellite and mtDNA data

The PCAs on the space of the summary statistics and the analysis of 
the distribution of each summary statistics revealed that all scenar-
ios could produce simulated datasets mirroring the observed data-
set. On the PCAs of the summary statistics, the point representing 
the observed dataset fell within the cloud of points representing 
the simulated ones (Appendix S9). Also, most often the observed 

summary statistics fell well within the distribution obtained from the 
simulations (Appendix S10).

In all 10 replicates, Scenario 3 had the highest percentage 
of votes with 38.98% ± 0.97, while Scenario 1 the lowest with 
5.73% ± 0.73 (Table 3). Performing Tukey's post hoc tests, we con-
firmed that Scenario 3 had a significantly higher percentage of 
votes compared to all others (all p < .001), while no significant dif-
ferences were found between Scenario 2 and Scenario 4 (p = .15). 
Parameter values were thus estimated using data simulated under 
Scenario 3 only.

Using 1,000 pseudo‐observed datasets, we found that for effec-
tive population sizes, the estimation procedure had very low bias 
and good precision over the whole prior range with low NMSE val-
ues, ranging from 0.02 to 0.03 for contemporary populations and 
0.14 to 0.16 for the ancestral unsampled population (Table 4 and 
Appendix S11). Using these estimations, effective population sizes in 
number of genes estimated from the microsatellite data ranged from 
7,090 (95% CI = [775; 62,928]) for AUS1 to 7,960 (95% CI = [1,016; 
53,146]) for RUN, corresponding to effective population sizes of 
3,545 and 3,980 individuals for AUS1 and RUN populations, respec-
tively Those estimates using mtDNA varied from 376 genes (95% 
CI = [106; 4,728]) for AUS1 to 1,820 (95% CI = [494; 47,793]) for 
RUN. Other parameters were less well resolved (Appendix S12), and 
values will not be interpreted.

4  | DISCUSSION

Using a combination of markers following different models of evolu-
tion and appropriate inference methods may help reach a better un-
derstanding of genetic structure and connectivity. Here, hierarchical 
sampling (inter‐ and intra‐ocean basins) and the use of both mtDNA 
sequences and microsatellite markers allowed us to test for the ex-
istence of migration between populations and to estimate effective 

F I G U R E  6   Bull shark scatter plot output from a DAPC from microsatellites using the first and second components (a) all sampling 
locations kept and (b) removing FLO. Dots represent individuals with sampling locations in colors (ZAN, Zanzibar; SEY, Seychelles; MOZ, 
Mozambique; SAF, South Africa; MAD, Madagascar; RUN, Reunion Island; ROD, Rodrigues Island; AUS1, Clarence River, Australia; AUS2, 
Sydney Harbour, Australia; NCA, New Caledonia; FLO, Florida)
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population sizes of the bull shark. Strong genetic differentiation 
at both marker sets was observed between bull shark populations 
from the Western Atlantic and those of both the Western Indian 
Ocean and the Western Pacific (hereafter designated by Western 
Indian Ocean/Western Pacific), suggesting an absence of migration 
between the two regions. There was high differentiation in mtDNA 

in sharks from the Western Indian and Western Pacific Oceans, 
with no shared haplotype between the two regions. In contrast, 
low differentiation was inferred from microsatellite data. Within 
the Western Indian Ocean and the Western Pacific separately, this 
contrast was considerably less, suggesting some connectivity and/
or high effective population sizes within each of these regions.

TA B L E  2   Bull shark genetic differentiation between sampling locations (ZAN, Zanzibar; SEY, Seychelles; MOZ, Mozambique; SAF, South 
Africa; MAD, Madagascar; RUN, Reunion Island; ROD, Rodrigues Island; AUS1, Clarence River, Australia; AUS2, Sydney Harbour, Australia; 
NCA, New Caledonia; FLO, Florida) estimated for (a) microsatellite loci with Weir and Cockerham's FST (lower‐left matrix) and Jost's Dest. 
(upper‐right matrix) estimates and (b) the mitochondrial dataset CR‐nd4‐cytb with Weir and Cockerham's ΦST (lower‐left matrix)

ZAN SEY MOZ SAF MAD RUN ROD AUS1 AUS2 NCA FLO

(a) Microsatellites

ZAN (13) – 0.000 0.006 0.004 0.000 0.006 0.039*  0.000 0.002 0.006 0.359** 

SEY (39) 0.000 – 0.005 0.006 0.000 0.003 0.026 0.006 0.006 0.016 0.350** 

MOZ (18) 0.013 0.010 – 0.000 0.008 0.006 0.02 0.008 0.001 0.000 0.313** 

SAF (32) 0.011 0.009*  0.000 – 0.005 0.003 0.031 0.002 0.005 0.008 0.320** 

MAD (12) 0.000 0.000 0.010 0.007 – 0.000 0.014 0.001 0.007 0.019 0.360** 

RUN (126) 0.010 0.004 0.010*  0.004 0.000 – 0.032*  0.005*  0.004 0.017 0.329** 

ROD (6) 0.035 0.025 0.023 0.030*  0.009 0.030*  – 0.034* 0.031 0.056 0.357** 

AUS1 (44) 0.004 0.008*  0.008 0.001 0.007 0.008**  0.034*  – 0.005 0.015 0.340** 

AUS2 (26) 0.009 0.010*  0.001 0.005 0.015 0.006 0.033 0.004 – 0.015 0.351** 

NCA (10) 0.005 0.009 0.000 0.001 0.012 0.009 0.047*  0.005 0.009 – 0.333**

FLO (31) 0.317***  0.285***  0.272***  0.265***  0.300***  0.252***  0.335***  0.271***  0.297***  0.287***  –

(b) CR‐nd4‐cytb

ZAN (13)

SEY (36) 0.027

MOZ (18) 0.119 0.022

SAF (25) 0.184*  0.090*  0.000

MAD (8) 0.031 0.105 0.058 0.091

RUN (38) 0.396***  0.435***  0.354***  0.346***  0.108

ROD (6) 0.618***  0.623***  0.581***  0.551***  0.342*  0.057

AUS1 (23) 0.887***  0.850***  0.870***  0.856***  0.890***  0.868***  0.973*** 

AUS2 (14) 0.836***  0.816***  0.823***  0.815***  0.829***  0.840***  0.943***  0.193* 

NCA (7) 0.804***  0.805***  0.797***  0.794***  0.776***  0.821***  0.928***  0.509***  0.234*  

FLO (30) 0.883***  0.887***  0.882***  0.881***  0.874***  0.883***  0.907***  0.929***  0.909***  0.895*** 

Note: Test significances were assessed after FDR correction and values significantly different from zero are indicated in bold. The number of individu-
als used for the analyses are indicated in parentheses.
*p < .05. 
**p < .01. 
***p < .001. 

Scenario Votes (%) Posterior probability Prior error rate

Scenario 1 5.73 (0.73)

Scenario 2 26.08 (1.11)

Scenario 3 38.98 (0.97) 0.68 (0.01) 0.35 (0.00)

Scenario 4 29.2 (1.17)

Note: Values are averaged over 10 replicate analyses and in parentheses are the standard errors. In 
bold is the best scenario selected.

TA B L E  3   Model choice procedure 
of the ABC random forest method used 
to compare demographic scenarios of 
bull shark populations from the Western 
Indian Ocean (RUN, Reunion Island) and 
the Western Pacific (AUS1, Clarence 
River, Australia)
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4.1 | An ancient divergence between the Atlantic 
and the Western Indian Ocean/Western Pacific

Both mtDNA sequences and microsatellite markers showed high dif-
ferentiation, suggesting a complete absence of gene flow between 
the Western Atlantic and the Western Indian Ocean/Western 
Pacific since their divergence. This result is congruent with previous 
research on bull shark using microsatellites, which identified three 
isolated genetic clusters, one in Indo‐Australia, one in Fiji, and one 
in the Atlantic Ocean (Testerman, 2014). This possibly long‐dating 
genetic divergence may have enabled the emergence of biologi-
cal differences between Atlantic Ocean bull shark populations on 
one side, and those of the Indian and Pacific Oceans (Indian/Pacific 
Oceans) on the other. In the Indian/Pacific Oceans, individuals are 
larger, both in terms of maximum length (Blaison et al., 2015) and 
size at maturity (Cliff & Dudley, 1991) than those from the Gulf of 
Mexico (Branstetter & Stiles, 1987; Cruz‐Martinez, Chiappa‐Carrara, 
& Arenas‐Fuentes, 2005).

Divergence times were inferred based on a molecular clock es-
timate and should thus be regarded as qualitative indicators, rather 
than precise values. The use of the divergence between Sphyrna 
and Carcharhinus genera, or of the Isthmus of Panama closure as 
the divergence date between the Atlantic and the Indian/Pacific bull 
shark populations, yielded mutation rates similar to those observed 
in other shark species using several different fossil records (Duncan 
et al., 2006; Gubili et al., 2014; Karl, Castro, & Garla, 2012; Schultz 
et al., 2008). Using two different calibration dates, we estimated the 
divergence time of the Atlantic and the Indian/Pacific populations 
to be ca. 1.23 Mya [0.22 Mya–4.27 Mya], between the end of the 
Pliocene and the beginning of the Pleistocene. Divergence between 
these bull shark populations may be due to two biogeographical 
events: (a) the closure of the Isthmus of Panama, which occurred 
3.1–3.5 Mya, and was important in shaping the current distribution 
of many species and genera by closing the link between the Eastern 
Pacific and the Western Atlantic (Briggs, 1995; Coates et al., 2004), 

and (b) the formation of the Benguela Upwelling System (~2 Mya), a 
cold water oceanographic system running along the west coast of 
South Africa and Namibia (Briggs, 1995) that restricts the mixing 
of tropical species populations between the Atlantic and the Indian 
Oceans via the southern tip of Africa (see Gaither, Bowen, Rocha, 
and Briggs (2016) for a review). Nevertheless, despite a small sample 
size in the Eastern Pacific (n = 5), Testerman (2014) identified only 
one cluster that grouped bull shark samples from the Eastern Pacific 
and the Western Atlantic, suggesting that bull shark migration 
might have occurred after the Isthmus of Panama closure through 
the Panama Canal. Such a scenario is possible since bull sharks are 
known to travel many hundreds of kilometers upstream in freshwa-
ter rivers and lakes (Heupel & Simpfendorfer, 2008; Thorson, 1976). 
The lack of samples from the Eastern Pacific did not allow us to test 
this hypothesis or the presence of any relationships between animals 
from the Eastern and the Western Pacific. Yet, populations from 
these two regions might be genetically structured because of the 
East Pacific Barrier, in place since 65 Mya (Grigg & Hey, 1992). This 
biogeographical barrier is characterized by depths over 5,000 m over 
a wide oceanic distance (~7,000 km), limiting longitudinal dispersal 
across the Pacific Ocean (Briggs, 1995). Nevertheless, some gene 
flow among these three regions may have occurred after the forma-
tion of the East Pacific Barrier, via the southern tip of Africa, before 
the formation of the Benguela Upwelling System.

The Benguela Upwelling System may be more constraining than 
the closure of the Isthmus of Panama for the bull shark, which is 
more sensitive to cold temperatures than species for which some 
gene flow after the formation of this current has been highlighted 
(e.g., tiger shark Galeocerdo cuvier [Bernard et al., 2016], dusky shark 
Carcharhinus obscurus [Benavides et al., 2011], or scalloped hammer-
head shark Sphyrna lewini [Duncan et al., 2006]). Bull sharks remain 
in warmer waters, favoring temperatures of 24–26°C (Smoothey 
et al., 2016), and found less frequently in waters less than 18°C 
(Brunnschweiler et al., 2010; Lea et al., 2015; Matich & Heithaus, 
2012). The formation of the Benguela Upwelling System may have 

TA B L E  4   Characteristics of posterior distributions of bull shark effective population size (Ne) of contemporary populations estimated 
with ABC random forest method

Parameter log10(Ne(sat)RUN) log10(Ne(sat)AUS1) log10(Ne(seq)RUN) log10(Ne(seq)AUS1)

Expectation 3.89 (0.01) 3.85 (0.00) 3.37 (0.01) 2.62 (0.03)

Median 3.90 (0.03) 3.86 (0.01) 3.26 (0.02) 2.57 (0.03)

Variance 0.06 (0.02) 0.07 (0.03) 0.17 (0.05) 0.16 (0.02)

2.5% quantile 3.01 (0.00) 2.89 (0.03) 2.69 (0.03) 2.03 (0.01)

97.5% quantile 4.73 (0.01) 4.8 (0.01) 4.68 (0.02) 3.67 (0.04)

OOB‐MSE 0.05 (0.00) 0.06 (0.00) 0.10 (0.00) 0.11 (0.00)

NMSE 0.02 0.02 0.03 0.03

NMAE 0.06 0.06 0.08 0.08

Mean relative CI 0.30 0.32 0.39 0.40

Median relative CI 0.30 0.32 0.38 0.39

Note: Ne is expressed in number of genes; Ne(sat), effective population size estimated using microsatellite data; Ne(seq), effective population size 
estimated using mtDNA; OOB‐MSE, out‐of‐bag mean square error; NMSE, normalized mean square error; NMAE, normalized mean absolute error; 
CI, 95% confidence interval.
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disrupted the migratory behavior of bull sharks and led to the di-
vergence of the Atlantic and Indian Ocean populations. Additional 
samples from the Eastern Pacific and the Southern Atlantic (both 
Eastern and Western) are needed to further investigate the world-
wide phylogeography of the bull shark.

4.2 | Negligible gene flow between Western Indian 
Ocean and Western Pacific

We observed a high differentiation at mtDNA sequences and a 
low differentiation at microsatellite markers between the Western 
Indian and the Western Pacific Oceans, a finding that had not been 
identified in previous studies. For example, Testerman (2014) only 
used nuclear information and found an absence of genetic differ-
entiation between the two regions, while Tillett et al. (2012) used 
both types of markers but only sampled Northern Australia. Such 
a pattern is actually common in animal species (reviewed in Toews 
& Brelsford, 2012) and has already been described between bull 
shark populations from the northwestern and the southwestern 
Atlantic (Karl et al., 2011). Mitochondria have a uniparental mode 
of transmission and are haploid, and their sequences have a much 
lower mutation rate than microsatellites loci. Higher differentiation 
of mtDNA sequences has often been interpreted as indicative of 
female philopatry, due to the maternal inheritance of mitochondria 
and the biparental inheritance of nuclear microsatellite markers (e.g., 
Bernard et al., 2016; Karl et al., 2011; Pardini et al., 2001; Portnoy et 
al., 2015). But sex‐biased dispersal is not the only possible cause of a 
higher differentiation in mtDNA sequences as compared to micros-
atellite markers. In addition to their difference in modes of evolution, 
nonpanmictic mating systems may affect differentially the levels of 
differentiation at both types of markers. ABC random forest proce-
dure, which is regarded as one of the most precise Bayesian methods 
to identify demographic histories (Fraimout et al., 2017; Pudlo et al., 
2016; Raynal et al., 2017), offers a mean to formally test for the evo-
lutionary forces underlying genetic population structure, including 
migration regimes. To do so and to account for sex‐biased disper-
sal, we independently estimated migration rates and effective sizes 
for both types of markers. Analyses revealed that the scenario with 
no gene flow between the Western Indian Ocean and the Western 
Pacific populations since their isolation best explained the observed 
data. Indeed, while scenarios with migration were designed to allow 
sex‐biased dispersal, they were chosen significantly less to explain 
the observed data than the scenario with no migration over 10 in-
dependent replicate analyses. This may reflect either an absence of 
gene flow or dispersal events that are rare enough not to be de-
tected. For populations of large sizes (Ne > 103), rare effective dis-
persal events may be sufficient to homogenize allelic frequencies, 
leading to FST estimates nonsignificantly different from zero (in the 
order of 10−3) while maintaining high mitochondrial differentiation 
(Hauser & Carvalho, 2008; Mariani & Bekkevold, 2014).

To increase juvenile survival, females may exhibit high fidelity 
to their breeding areas and nurseries, which are typically good for-
aging areas and offer protection from large predators (Branstetter, 

1990; Castro, 1993; Heupel, Carlson, & Simpfendorfer, 2007; 
Springer, 1967). These breeding sites are sometimes the same 
as the natal places of females, as these latter represent suitable 
habitats for parturition (Heupel et al., 2007; Hueter et al., 2005). 
Female philopatry to nursery areas has notably been demon-
strated in the lemon shark Negaprion brevirostris in the Bahamas by 
reconstructing parental genotypes (microsatellites) through sam-
pling juveniles in specific nurseries over several decades: Some 
females returned to the nursery to give birth, sometimes 14 to 
17 years after being born (Feldheim et al., 2013). In contrast, males 
may exhibit roaming behaviors and undertake migration, possibly 
to avoid inbreeding depression, and demographic and environ-
mental stochasticity, especially in polygynous systems (Henry, 
Coulon, & Travis, 2016), as may occur for the bull shark (A. Pirog, 
personal communication). It is thus possible that female philopatry 
to nursery areas also occurs in the bull shark as hypothesized in 
the Western Atlantic (Karl et al., 2011) and in Australia (Tillett et 
al., 2012). Furthermore, no direct evidence of bull sharks moving 
between the Western Indian Ocean and the Western Pacific has 
been documented using satellite tracking or conventional tagging. 
While it may be due to relatively small sample sizes, it may also 
illustrate the absence, or at least extremely low occurrence, of bull 
shark migration across the Indian and Pacific Oceans.

Hypotheses of female philopatry in the bull shark, as well as the 
absence of known migration of bull sharks between the two oceans, 
support the absence of gene flow evidenced by the ABC‐RF analy-
ses. A better knowledge of the mutational models of the two mark-
ers types in the bull shark, as well as genome‐wide analyses, would 
nevertheless be useful to confirm this absence of gene flow.

The negligible dispersal between the Western Indian Ocean 
and the Western Pacific may result from environmental bar-
riers. Mitochondrial analyses indicated a divergence date of 
0.75–1.69 Mya between Western Indian and Western Pacific bull 
shark populations. With as many as 20 glacial periods during the 
Pleistocene, each lasting approximately 100,000 years, followed 
by shorter interglacial periods of about 10,000 years (Dawson, 
1992; Martinson et al., 1987), fluctuations in sea levels were as 
great as 100 m during this time period (Shackleton, 1987). These 
fluctuations may have changed the distribution of shallow, near‐
shore habitats used by bull sharks and modified their movement 
patterns along the coasts, especially in Indonesia, possibly ex-
plaining the divergence between bull shark populations from the 
Western Indian Ocean and the Western Pacific. Indeed, several 
studies on chondrichthyan species have shown greater popula-
tion subdivision between Indonesia and Northern Australia than 
within Australian waters (Dudgeon, Broderick, & Ovenden, 2009; 
Ovenden, Kashiwagi, Broderick, Giles, & Salini, 2009). It is possible 
that the deep waters of the Timor Trench (2,000–3,000 m) and 
the strong Indonesian through‐flow current along the Makassar 
and Lombok Straits induced the genetic subdivisions observed 
between Indonesian and Australian waters (Dudgeon et al., 2012, 
2009; Ovenden et al., 2009), and thus limits gene flow between 
the Indian and Pacific Oceans.
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4.3 | Gene flow within the Western Indian 
Ocean and within the Western Pacific

Low genetic differentiation was shown both within the Western 
Indian Ocean and within the Western Pacific, regardless of the mark-
ers used (microsatellites or mtDNA). To date, a limited number of 
tracking studies have explored long‐distance movements of adult 
bull sharks, but each has highlighted the capability of bull sharks 
to undertake long‐distance coast‐wise migrations (up to 1,770 km; 
Carlson, Ribera, Conrath, Heupel, & Burgess, 2010; Daly et al., 2014; 
Espinoza, Heupel, Tobin, & Simpfendorfer, 2016; Espinoza, Lédée, 
Simpfendorfer, Tobin, & Heupel, 2015; Heupel et al., 2015) and 
across hundreds of kilometers of open ocean (Soria et al., 2015). As 
such, long‐distance migration of adult bull sharks may genetically 
link ecosystems within these regions. Each movement study also 
highlights the fidelity of bull sharks to specific sites at discrete times, 
as shown in Reunion Island (Blaison et al., 2015), in New Caledonia 
(Werry & Clua, 2013), in Australia (Heupel et al., 2015), in Fiji, and 
in the Bahamas (Brunnschweiler & Baensch, 2011; Brunnschweiler 
et al., 2010). Thus, previous tracking studies and the low genetic 
differentiation from the present study suggest that individuals may 
disperse on a regular basis among locations within each of these 
regions. Nevertheless, slightly higher mitochondrial differentiation 
values were retrieved among locations separated by deep‐water 
expenses, such as the Mascarene Islands (WIO1) and locations 
along the Eastern African coast (WIO2), or among locations of the 
Eastern Australian coast and New Caledonia. These higher values 
may reflect some level of female philopatry to nursery areas at the 
described spatial scale. Indeed, even if some mitochondrial haplo-
types are shared between these locations, as samples analyzed in 
this study were taken from sharks fished or caught opportunistically, 
the geographic location assigned to each individual does not reflect 
necessarily its nursery or natal site. Hence, the shared haplotypes 
potentially reflect female (and also male) movements between two 
stays (possibly lengthy ones) in their birthing and/or natal nurseries. 
As an illustration, a gravid female bull shark satellite‐tagged in the 
Seychelles traveled 2,000 km, to the southeast coast of Madagascar, 
where it remained in shallow waters for several days, before re-
turning, no longer in a gravid condition to the Seychelles (Lea et al., 
2015), suggesting this female may have given birth in Madagascar 
(perhaps its natal site) and therefore undertakes long‐distance 
movements between Madagascar and the Seychelles. However, no 
direct evidence of female philopatry to nursery sites has been docu-
mented for bull sharks. This would require the sampling of juveniles 
in nurseries for parentage analyses as direct observation of parturi-
tion is highly unlikely, especially for tagged females, due to the turbid 
nature of estuaries and frequency of occurrence.

4.4 | Effective population sizes

Changes in population size were not detected with neutrality tests 
performed with mitochondrial data. Estimates of effective popula-
tion sizes (Ne) from the microsatellite dataset were ca. 3,000–4,000 

individuals for the Western Indian Ocean and the Western Pacific. 
We obtained much lower estimates from the mitochondrial dataset, 
for example, approximately 1,800 (approximately 1/4 the micros-
atellite estimation) and 380 (approximately 1/20 the microsatellite 
estimation) for the Western Indian Ocean and the Western Pacific, 
respectively. Nevertheless, 95% confidence intervals were large and 
those estimated with mtDNA nearly overlapped those estimated 
with microsatellite data. Under panmixia, a lower effective popula-
tion size is expected for uniparentally inherited markers, compared 
with biparentally inherited ones (autosomal markers), and a devia-
tion from that expectation may reflect sex‐biased dispersal patterns, 
social organization, or specific mating systems. Chesser and Baker 
(1996) showed that in panmictic populations and in systems with sin-
gle paternity, the effective size of maternally and paternally inher-
ited markers was one‐half of that of biparentally inherited markers 
and that social structure, sex‐biased dispersal, or different mating 
systems usually lower the effective size of autosomal markers while 
lowering or uppering maternally and paternally inherited markers. 
The bull shark has recently been shown to be a polyandrous species 
(Pirog et al., 2015). Sugg and Chesser (1994) showed that multiple 
paternity increases the effective sizes of diploid genes. However, 
because all the progeny will receive the maternally inherited genes 
from the female regardless the sire, multiple paternity should not 
affect the dynamics of the genes that are transmitted by the female 
(Chesser & Baker, 1996). Estimates of Ne inferred using mtDNA may 
thus be more accurate than those estimated using microsatellite 
data.

Using the mismatch distribution of the mitochondrial control 
region, Tillett et al. (2012) estimated larger long‐term Ne for bull 
shark populations from Northern Australia (Western Pacific), with 
a θ value of 0.293 corresponding to an effective population size of 
11,000–13,000 individuals. Comparatively, using 11 microsatellite 
loci, Testerman (2014) estimated long‐term Ne of populations from 
the Western Atlantic, the Indo‐Pacific, and Fiji to be ca. 100,000 
genes, that is, 50,000 individuals. Karl et al. (2011) found similar esti-
mates using the mitochondrial control region and five microsatellite 
loci separately for populations of the Northern and southwestern 
Atlantic, with long‐term Ne ranging from 148,000 to 214,200 indi-
viduals. The discrepancy between our microsatellite estimates and 
those of previous studies may be due to the higher number of loci we 
used, 25 versus 11 and 5, with the accuracy in the estimate of θ being 
proportional to the number of loci (Felsenstein, 2006; Pluzhnikov & 
Donnelly, 1996). It may also be due to the scale of the region studied, 
as our estimates were obtained using samples from one locality to 
represent an entire region. Our mitochondrial estimates were never-
theless lower than those previously inferred.

Estimates of effective population size using genetic markers 
are increasingly used for fisheries stock assessments (Ovenden et 
al., 2016). It has been postulated that an Ne of at least 500 individ-
uals is needed for a population to adapt to environmental changes 
(Frankham et al., 2010) although others estimate that at least 5,000 
breeding individuals may be required (Lande, 1995). Avoiding delete-
rious allele accumulation may require an Ne above 1,000 individuals 
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(Frankham et al., 2010; Palstra & Ruzzante, 2008) and inbreeding 
depression may occur if Ne falls below 50 individuals (Frankham et 
al., 2010). Our estimates (3,000–4,000 with microsatellite data; 380–
1,800 with mtDNA) are nearly in the same range as the basking shark 
Cetorhinus maximus (i.e., 8,200; Hoelzel et al., 2006), but lower than 
estimates for the lemon shark N. brevirostris (26,000 to 52,000 in the 
Atlantic) and the sicklefin lemon shark Negaprion acutidens (34,000 
to 52,000 in the Western Pacific; Schultz et al., 2008), and much 
lower than for the tope shark, Galeorhinus galeus (138,000; Chabot 
& Allen, 2009). All of these species are considered either (a) globally 
Vulnerable on the IUCN Red List or (b) subjected to a loss of genetic 
diversity due to a bottleneck (e.g., basking sharks). This may therefore 
be the case for bull sharks, especially if taking into account mtDNA 
estimates, and populations may even be depleted. Obtaining more 
precise population estimates requires greater knowledge of the re-
productive biology of the bull shark, notably the number of individu-
als that successfully reproduce in a generation (or reproductive cycle), 
the age at maturity, and the mating system (Ovenden et al., 2016).

5  | CONCLUSION

Here, we highlight several key findings about the global population 
structure of bull sharks that will inform management and conserva-
tion issues:

1. The genetic isolation between bull shark populations from the
Western Atlantic and from the Western Indian Ocean/Western
Pacific implies that the Western Atlantic populations should
be managed separately.

2. Low gene flow, and maybe even complete isolation, has also been
evidenced between bull shark populations from the Western
Indian Ocean and the Western Pacific, despite a low nuclear dif-
ferentiation. It implies that these populations should also be man-
aged separately. Understanding that low nuclear differentiation is
not a guarantee of extant gene flow may have important implica-
tions for population management.

3. Within the Western Indian Ocean and within the Western Pacific,
males and females are capable of undertaking long‐distance
movements at this scale, with either (a) both sexes contributing
to effective dispersal (i.e., gene flow) or (b) males contributing to
effective dispersal and females exhibiting philopatry to their natal 
sites for mating and/or breeding. Thus, conservation and manage-
ment programs (e.g., postattack culling programs) may be ineffec-
tive if implemented at a very localized local scale.

4. Estimates of the effective bull shark population size using mtDNA
were lower than when using microsatellite data. Lower estimates
may result from a complex reproductive system, or from signifi-
cant frequency of multiple paternity in the bull shark. While the
estimates remain comparable to other shark species, mtDNA es-
timates of effective population size may indicate depleted popu-
lations, and caution should be taken when implementing fisheries
guidelines for this species.
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