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Torino, 10125 Torino, Italy; and jIstituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino, Italy

Edited by Vladimir Zakharov, University of Arizona, Tucson, AZ, and accepted by Editorial Board Member Herbert Levine March 6, 2019 (received for review
December 25, 2018)

Solitons and breathers are nonlinear modes that exist in a wide
range of physical systems. They are fundamental solutions of
a number of nonlinear wave evolution equations, including the
unidirectional nonlinear Schrödinger equation (NLSE). We report
the observation of slanted solitons and breathers propagat-
ing at an angle with respect to the direction of propagation
of the wave field. As the coherence is diagonal, the scale in
the crest direction becomes finite; consequently, beam dynamics
form. Spatiotemporal measurements of the water surface ele-
vation are obtained by stereo-reconstructing the positions of
the floating markers placed on a regular lattice and recorded
with two synchronized high-speed cameras. Experimental results,
based on the predictions obtained from the (2D + 1) hyperbolic
NLSE equation, are in excellent agreement with the theory. Our
study proves the existence of such unique and coherent wave
packets and has serious implications for practical applications
in optical sciences and physical oceanography. Moreover, unsta-
ble wave fields in this geometry may explain the formation
of directional large-amplitude rogue waves with a finite crest
length within a wide range of nonlinear dispersive media, such
as Bose–Einstein condensates, solids, plasma, hydrodynamics, and
optics.
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Ocean waves are complex 2D dynamical structures that can-
not be easily modeled in their full complexity. Variations

of depth, wind strength, and wave breaking; randomness; and
large-amplitude waves add tremendously to this complexity (1).
Despite these complications, the research on water waves is
important and significant advances have been made so far (2).
The progress is mainly due to simplified models that are used
to analyze their dynamics (3). Moreover, validity of these mod-
els can be confirmed in down-scaled experiments in water wave
facilities that exist in many research laboratories around the
world. These experiments are crucially significant to build our
understanding of larger-scaled oceanic waves. Evolution equa-
tions and their solutions are essential for water wave model-
ing, while computerized equipment is key for their accurate
generation.

One of the essential complications in ocean wave dynamics
is the unavoidable existence of two horizontal spatial coordi-
nates. Directional behaviors of the surface waves in nature are
of principal importance for practical applications ranging from
wave forecast through modeling air–sea interactions to, most
importantly, environmental and optical sciences. In a simpli-
fied way, such a wave field consists of many waves crossing
each other at various angles, implying at a linear level that the
water surface is a mere interference of short- and long-crested
waves coming from different directions (4–6). Here, we leave
aside these complexities. Instead, we start with a simple ques-
tion: What does the second coordinate add to the dynamics
when the waves are mostly unidirectional? This simple ques-

tion must be answered before considering more complicated
cases.

Indeed, unidirectional nonlinear wave dynamics on the water
surface in deep water, that is, assuming that the water depth is
significantly larger than the waves’ wavelength, can be described
by the nonlinear Schrödinger equation (NLSE) that takes into
account dispersion and nonlinearity (7). Being an integrable evo-
lution equation, it allows for the study of particular and localized
coherent wave patterns, such as solitons and breathers (8–10).
The latter are of major relevance to study the fundamental wave
dynamics in nonlinear dispersive media with a wide range of
applications (11–13). While the NLSE has been formulated for
planar waves and wave packets propagating in the same direc-
tion as the underlying carrier waves, there is also a generalization
of the framework, the so-called directional NLSE, which allows
the envelope and homogeneous planar carrier wave to propa-
gate at an angle to each other. This possibility adds unexpected
features to well-known nonlinear and coherent wave propaga-
tion motions as we examine in this work. Unfortunately, from
the theoretical perspective, the directional deep-water NLSE
is not integrable. As a consequence, these nontrivial nonlinear
solutions are not easy to identify. Early attempts to gener-
ate some nonlinear states were based on symmetry considera-
tions (14). It has been shown (15, 16) that each unidirectional
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solution of the NLSE has a family counterpart solution for
which the packet beam propagates obliquely to the short-crested
carrier wave.

These types of wave processes are directly relevant in oceanog-
raphy (17–20). However, taking into account many areas in
physics for which the NLSE is the fundamental governing equa-
tion, our ideas can be bluntly expanded to fields such as solids,
Bose–Einstein condensates, plasma, and optics (21–25).

In the present study, we report an experimental frame-
work and observations of hydrodynamic diagonal solitons and
breathers in a deep-water wave basin. Our results confirm and
prove the existence of such unique and coherent beams of a
quasi-1D and short-crested wave group in a nonlinear dispersive
medium.

Methodology
Our theoretical framework is based on the space-(2D + 1)
NLSE for deep-water waves (7). For a wave envelope ψ(x , y , t)
with carrier wavenumber k along the x direction and carrier
frequency ω=

√
gk , we have

i

(
∂ψ

∂t
+ cg

∂ψ

∂x

)
−λ∂

2ψ

∂x2
+ 2λ

∂2ψ

∂y2
− γ|ψ|2ψ= 0, [1]

where λ= ω
8k2 , γ= ωk2

2
, and g denotes the gravitational acceler-

ation. At the leading order, it is known that ∂ψ
∂t
'−cg ∂ψ∂x . This

relation can be used to write the equation to express the wave
packet propagation in space along the spatial x coordinate to
give a time-(2D + 1) NLSE (9)
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)
− λ

c3g

∂2ψ
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+ 2

λ

cg

∂2ψ

∂y2
− γ

cg
|ψ|2ψ= 0. [2]

As the measurements are made at fixed positions along the
flume, Eq. 2 can be used for experimental investigations. Now,
we introduce the following transformation,

T = t cosϑ− y

cg
sinϑ, [3]

with variable parameter ϑ that sets a special relation between
time, t , and the spatial coordinate y . Then, the evolution
equation for the new wave function, ψ(x ,T ), reads

i

(
∂ψ

∂x
+

1

Cg

∂ψ

∂T

)
−Λ

∂2ψ

∂T 2
−Γ|ψ|2ψ= 0, [4]

with Cg = cg/ cosϑ, Λ =λ(1− 3 sin2 ϑ)/c3g , and Γ = γ/cg . When
the angle |ϑ|<

√
arcsin (1/3)' 35.26◦ (15, 16), Eq. 4 is the stan-

dard (1D + 1) focusing NLSE that is known to be integrable (8,
26, 27). When ϑ 6= 0, the envelope and the phase travel at a finite
angle to each other.

From an experimental point of view, the boundary condition
for the surface elevation η(x , y , t) at the wave maker, placed at
x = 0, can be described, to the leading order, by the expression

η(x = 0, y , t) =
1

2
[ψ(0,T ) exp (−iωt) + c.c.], [5]

where ψ(0,T ) is the desired solution of the (1D + 1) NLSE in
Eq. 4 and T is given by Eq. 3. Eq. 5 is used for driving the wave
maker.

To illustrate this type of universal and directional wave packet,
in Fig. 1 we show an example of the dimensional shape of an
envelope soliton and a Peregrine breather, as parameterized in
refs. 26 and 28, with amplitude a = 0.02 m propagating at zero
diagonal angle (Fig. 1 A and C) and at an angle of ϑ= 20◦

(Fig. 1 B and D) with respect to the carrier wave whose steepness
is ak = 0.1.

Fig. 1. Normalized representation of a unidirectional as well as slanted
NLSE envelope soliton and Peregrine breather for a carrier amplitude
a = 0.02 m and steepness ak = 0.1 at t = 0. (A) Unidirectional envelope soli-
ton dynamics for ϑ= 0◦. (B) Envelope soliton dynamics slanted by an angle
of ϑ= 20◦. (C) Unidirectional Peregrine breather dynamics for ϑ= 0◦. (D)
Peregrine breather dynamics slanted by an angle of ϑ= 20◦.

Experimental Setup
The experiments were performed in a directional wave basin,
installed at the University of Tokyo. Its dimensions are 50×
10× 5 m3.

To measure the directional wave evolution, a marker net was
deployed at the center of the basin. The motion of the mark-
ers was recorded by two high-speed cameras with a resolution
of 2,048× 1,080 pixels at 100 frames per second. The two cam-
eras are fully synchronized and are separated by 7.1 m distance
across the tank in the y direction and positioned at 3.3 m from
mean water level and about 10 m away from the center of the
marker net in the x direction. Moreover, a series of wave wires
were installed along the basin to follow the wave dynamics along
the x coordinate. These were placed at 5.21 m, 9.20 m, 10.97 m,
14.01 m, 17.16 m, 20.15 m, 23.02 m, 27.04 m, 28.91 m, and
32.05 m from the directional plunger-type wave maker, which
consists of 32 sections. Each plunger has a width of 32 cm. More
details on the methodology adopted for the data acquisition
can be found in ref. 29. A picture and a sketch of the experi-
mental setup and the coordinate system adopted are depicted
in Fig. 2.

We emphasize that due to the significant size of the digi-
tally collected data, the stereo-reconstruction, that includes an
interpolation process, is very challenging (29).

Observations
The measured evolution of a sech-type envelope soliton (26) as
well as the results obtained from the (2D + 1) NLSE predic-
tion are illustrated in Fig. 3 A and B. Each of the corresponding
six plots shows the oblique propagation of the localized and
coherent structure with an angle of ϑ= 20◦ with respect to
the carrier wave with parameters ak = 0.2 and a = 0.02 for the
time interval of ∆t = 0.39 s starting at t0 = 67.04 s; that is,
tn = t0 +n∆t , n = 0, . . . , 5. Indeed, the direct comparison of
the experimentally captured slanted envelope soliton in Fig. 3A
with the analytical (2D + 1) NLSE prediction following Eq.
4 in Fig. 3B reveals a very good agreement. This becomes
particularly clear when comparing the accuracy of the phase
as well as group velocities of the soliton propagation in the
two cases, their amplitudes, and particularly the short crest
lengths of the waves resulting from the infinite extent as well as
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Fig. 2. Experimental setup. The picture and the sketch show the dimensions
of the flume, the location of the marker’s grid, and positions of the two
stereo cameras.

localization of the wave packet in the transverse direction in each
time frame.

The obliqueness angle ϑ also influences other parameters of
the localized solutions. In particular, it affects the shape and the
width of the soliton as well as the crest length of the directional
wave field. Fig. 4A shows the case of the envelope soliton while
Fig. 4B shows the Peregrine breather envelope profiles as func-
tions in time for several angles of propagation ϑ= 0◦, ϑ= 20◦,
and ϑ= 35◦.

The soliton becomes thinner with increasing angle of prop-
agation. The same applies to the Peregrine solution. Again,

the profile of the solution compresses with increasing angle. In
the case of periodic solutions, such as Akhmediev breathers or
modulation instability in a general context, the period of the
modulation will be also compressed.

In view of this angle-dependent compression, adjusted group
velocity, and the complexities in the marker-net evaluation of the
data, we restricted ourselves to the wave gauge measurements
along the flume and the x direction.

Fig. 4C displays the evolution of the slanted envelope soliton
for ak = 0.1, a = 0.02 m, and ϑ= 20◦, while Fig. 4E shows the
corresponding curves calculated theoretically.

The agreement between the experimental data and theoretical
predictions is striking, especially when considering the preser-
vation of the coherence and taking into account relatively large
propagation distance of the soliton.

The oblique geometry also influences pulsating solutions local-
ized in the propagation direction such as the Peregrine breather.
Our equipment allowed us to generate them for a wide range
of angles of propagation. Movies S1 and S2 show the evolution
of the periodic Akhmediev and doubly localized breathers and
corresponding legends for Movies S1 and S2 can be found in SI
Appendix. Movies S1 and S2 clearly exemplify that the breather
propagation direction differs from the carrier propagation direc-
tion just as in the case of the soliton. The difference of these
directions is the major result of our observations. This discovery
also demonstrates that localized, short-crested and directional
water waves, particularly short-crested rogue waves, can be also
described by a nonlinear framework.

Indeed, the Peregrine solution can be considered as the limit
of the Akhmediev breather, the analytical and deterministic
modulation instability model, when the period of the modula-
tion tends to infinity (30, 31). Then, maxima of the periodic
modulated structure are well separated and only one localized
peak remains at the center. The temporal evolution of a slanted

Fig. 3. Evolution of a slanted envelope soliton propagating obliquely relative to the carrier wave. The amplitude, expressed in centimeters, is represented
in color scale and the snapshots of the surface elevation are shown at intervals of time ∆t = 0.39 s. The parameters adopted are a = 0.02 m, ak = 0.2, and
ϑ= 20◦. (A) Stereo-reconstructed surface elevation of the deep-water soliton, propagating in the wave basin. (B) Analytical solution of the corresponding
NLSE surface elevation of the slanted coherent structure following the NLSE 4 at the same time intervals.
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Fig. 4. Influence of the obliqueness angle on the temporal width of two localized structures for representative carrier parameters of a = 0.02 m and
ak = 0.1. (A) Theoretical envelope soliton surface for three different obliqueness angles. (B) Theoretical Peregrine breather surface for the same angle
values as in A. (C) Temporal water surface profiles of the envelope soliton for ϑ= 20◦ as measured in the basin. (D) Temporal water surface profiles of the
Peregrine breather for ϑ= 20◦ as measured in the basin. (E) Theoretical water surface profiles corresponding to C. (F) Theoretical water surface profiles
corresponding to D.

Peregrine solution measured in the experiment is shown and
compared with the (2D + 1) NLSE predicted wave curves in
Fig. 4 D and F, respectively. Again, comparison of the wave pro-
files in Fig. 4 D and F pair shows a remarkably good agreement
between the measurements and the directional NLSE theory.
The measured and calculated focusing distances, the maximal
amplitudes, and the width of this localized and pulsating solution
are all in excellent agreement at all stages of propagation.

Discussion
Overall, our results reveal the existence of nonlinear solitary
wave packets and breather beams, propagating obliquely to the
direction of the wave field. This fact is confirmed by our experi-
mental measurements for surface gravity water waves in a deep
and directional water wave facility, installed at the University of
Tokyo. Movies S1 and S2 clearly demonstrate and visualize this
particular feature of nonlinear wave dynamics. The evolution of
these packets is in excellent agreement with the (2D + 1) NLSE
framework in regard to all wave features. A remarkable property
of these particular localized wave packets studied here is their
finite crest length. The latter can be observed by simply watching
the ocean waves. The crest length and thus the transverse size
of the waves is always limited. Now, it turns out that coherent

waves with finite crest length might be a consequence of nonlin-
ear beam dynamics. This is an important observation especially
for the breather solutions, as this suggests that the nonlinearity
is also a possible underlying mechanism for the actual finite-
length–crested rogue wave events, complementing the linear
superposition and interference arguments as has been generally
suggested. Further studies using a fully nonlinear hydrodynamic
approach (32, 33) may increase the accuracy of the description.
These will characterize the ranges of accuracy of the approach;
however, they will not add anything substantial to the concept.
The serious implications of such wave packets in oceanography
are an important aspect of our results (19). They include direc-
tional wave modeling, swell propagation, and diffraction as well
as remote sensing of waves to name a few. Moreover, investi-
gating wave breaking processes (34, 35) and prediction (36, 37)
of extreme directional waves is also crucial for future application
purposes. Since the effect can be explained by means of a general
and universal theory for 2D nonlinear wave fields in disper-
sive environments, its further extensions can stimulate analogous
theoretical, numerical, and experimental studies in 2D optical
surfaces and multidimensional plasmas, among other relevant
physical media, elevating our level of understanding of these
phenomena.

9762 | www.pnas.org/cgi/doi/10.1073/pnas.1821970116 Chabchoub et al.
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