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ABSTRACT

Background. The unique and complex paleoclimatic and paleogeographic events
which affected the Mediterranean Sea since late Miocene deeply influenced the distribu-
tion and evolution of marine organisms and shaped their genetic structure. Following
the Messinian salinity crisis and the sea-level fluctuations during the Pleistocene,
several Mediterranean marine species developed deep genetic differentiation, and some
underwent rapid radiation. Here, we consider two of the most prioritized groups for
conservation in the light of their evolutionary history: sharks and rays (elasmobranchs).
This paper deals with a comparative multispecies analysis of phylogeographic structure
and historical demography in two pairs of sympatric, phylogenetically- and ecologically-
related elasmobranchs, two scyliorhinid catsharks (Galeus melastomus, Scyliorhinus
canicula) and two rajid skates (Raja clavata, Raja miraletus). Sampling and experimental
analyses were designed to primarily test if the Sicilian Channel can be considered as ef-
fective eco-physiological barrier for Mediterranean demersal sympatric elasmobranchs.
Methods. The phylogeography and the historical demography of target species were
inferred by analysing the nucleotide variation of three mitochondrial DNA markers
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(i.e., partial sequence of COI, NADH2 and CR) obtained from a total of 248 individuals
sampled in the Western and Eastern Mediterranean Sea as well as in the adjacent
northeastern Atlantic Ocean. Phylogeographic analysis was performed by haplotype
networking and testing spatial genetic differentiation of samples (i.e., analysis of molec-
ular variance and of principal components). Demographic history of Mediterranean
populations was reconstructed using mismatch distribution and Bayesian Skyline Plot
analyses.

Results. No spatial genetic differentiation was identified in either catshark species,
while phylogeographic structure of lineages was identified in both skates, with R.
miraletus more structured than R. clavata. However, such structuring of skate lineages
was not consistent with the separation between Western and Eastern Mediterranean.
Sudden demographic expansions occurred synchronously during the upper Pleistocene
(40,000-60,000 years ago) in both skates and G. melastomus, likely related to optimal
environmental conditions. In contrast, S. canicula experienced a slow and constant
increase in population size over the last 350,000 years.

Discussion. The comparative analysis of phylogeographic and historical demographic
patterns for the Mediterranean populations of these elasmobranchs reveals that histor-
ical phylogeographic breaks have not had a large impact on their microevolution. We
hypothesize that interactions between environmental and ecological/physiological traits
may have been the driving force in the microevolution of these demersal elasmobranch
species in the Mediterranean rather than oceanographic barriers.

Subjects Biogeography, Evolutionary Studies, Genetics, Marine Biology

Keywords Chondrichthyans, Phylogeography, Demography, Natural history, Demersal
elasmobranchs, Mediterranean sea, Sicilian channel, Catsharks, Skates, North-Eastern Atlantic
Ocean

INTRODUCTION

The Mediterranean Sea has been universally recognised as a cradle of biodiversity (Cuttelod
et al., 2009; Coll et al., 2010; Lejeusne et al., 2010; Mouillot et al., 2011). This characteristic
of the Mediterranean is due to its origin in the unique and complex paleoclimatic and
paleogeographic histories of the ancient Paratethys (Rogl, 1999) and still relies on the
unusual salinity and water circulation conditions, driven by topography and local climatic
regimes (Robinson et al., 2001). After the almost total closure of the Atlantic seaway, the
basin experienced a nearly complete desiccation (the Messinian Salinity Crisis, ~5.33 MYA)
and about 40 warm interglacial-cold glacial cycles during the Pleistocene (from 2.5 to 0.01
MYA), which caused sea-level oscillations and sea-water temperature changes (Waelbroeck
et al., 2002). These events have deeply influenced the distribution and evolution of marine
organisms and shaped their genetic structure (Nikula ¢ Viinold, 2003; Boudouresque, 2004;
Duran, Pascual & Turon, 2004; Worheide, Solé-Cava ¢ Hooper, 2005; Pérez-Losada et al.,
2007).

The majority of genetic studies on Mediterranean fishes have focussed on teleosts
(Magoulas et al., 20065 Rolland et al., 2007), whilst there have been far fewer studies
conducted on elasmobranchs (Chevolot et al., 2006; Griffiths et al., 20105 Iglésias, Toulhoat
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& Sellos, 20105 Pasolini et al., 2011). Considering their uniqueness in terms of evolutionary
history, Mediterranean elasmobranchs (89 species; FAO, 2018a; FAO, 2018b) should be
high priority for conservation plans to protect against overfishing, by-catch, habitat loss
and fragmentation (Serena, 2005; Cavanagh & Gibson, 2007; Serena, Mancusi ¢ Barone,
20105 Froese ¢» Pauly, 2017; Stein et al., 2018). Hence, for conservation and management
purposes, genetic surveys have recently been carried out to disentangle the genetic structure,
phylogeography and gene flow among several Mediterranean populations in an important
fishery resources, including Scyliorhinus canicula (Barbieri et al., 2014; Gubili et al., 2014;
Kousteni et al., 2015) and the endemic skates Raja polystigma (Frodella et al., 2016) and
R. asterias (Cariani et al., 2017).

By analysing mtDNA variation in sympatric species and reconstructing the impact of
the past events and processes leading to contemporary biota, comparative phylogeography
can contribute to inferences of common evolutionary and demographic processes (Avise
et al., 1987; Avise, 2000; Arbogast & Kenagy, 2001). In particular, phylogeography helps to
unravel the distribution of ancestral lineages based on haplotypes shared by contemporary
individuals under a coalescence process. Moreover, targeting phylogenetically and
ecologically closely-related species may help to identify unifying/similar mechanisms
triggering the evolution of particular marine species (Arbogast ¢ Kenagy, 2001). Hence,
the coupling of a phylogeographic approach with historical demography may empower the
testing of micro-evolutionary hypotheses (Drummond et al., 2005; Campos et al., 2010; Ho
& Shapiro, 2011), the identification of factors driving past population dynamics (Finlay et
al., 2007; Patarnello, Volckaert & Castilho, 2007; Atkinson, Gray & Drummond, 2008; Stiller
et al., 2010) and range expansions (Fahey et al., 2012).

Within the Mediterranean Sea, the transition area of the Sicilian Channel has been
considered a major barrier to the dispersal of marine species between the Western and
Eastern sub-basins, even if it is not the unique barrier assessed therein (Bianchi ¢» Morri,
2000; Bianchi, 2007; Patarnello, Volckaert ¢ Castilho, 2007; Coll et al., 2010). However, the
role of the Sicilian Channel as a partial barrier to marine species dispersal rather than a
transition/genetic admixture area is still under scrutiny (Pascual et al., 2017). This transition
area affects the species richness of elasmobranchs, which are higher in the western part
of the Mediterranean than in the eastern part (Coll et al., 2010). However, even if tested
with different experimental designs and molecular markers, the barrier role of the Sicilian
Channel transition area in the geographical structuring of mtDNA variation seems to be
comparatively low. The small-spotted catshark S. canicula exhibited strong genetic structure
as revealed by significant mtDNA and microsatellite-based fixation indexes, regardless a
consistent strong phylogeographic break between western and eastern populations. Indeed,
haplotypes from the two sub-basins were phylogenetically intermingled and weakly
divergent in the haplotype median-joining networks (Barbieri et al., 2014; Gubili et al.,
2014; Kousteni et al., 2015). In R. polystigma, Frodella et al. (2016) found a lack of genetic
structure and a very weak phylogeographic break between the western Mediterranean and
the Adriatic population, representing the only sample from the eastern sub-basin.

The processes shaping the genetic architecture in marine species are affected by historical
abundance and dispersal. Changes in population size and geographical distribution can
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be reflected by changes in the genetic diversity and differentiation (Grant ¢ Waples,
20005 Patarnello, Volckaert & Castilho, 2007). Although temporal estimates based on
molecular-clock calibration are constrained by molecular and physiological parameters
(due to differences in evolutionary rates across taxa, and the effects of differences in
generation time, metabolic rate and body size; Martin ¢» Palumbi, 1993; Gillooly et al.,
2005; Grant et al., 2012), haplotype diversity and divergence still demonstrate different
signatures in bottlenecked, expanding and constant-size populations (Grant & Waples,
20005 Patarnello, Volckaert ¢ Castilho, 2007). Improved models and analytical tools for
the inference of demographic changes over time based on genetic data have been shown
to be highly informative for elucidating past population dynamics (Kuhner, 2009). It has
been demonstrated that the elasmobranch mtDNA substitution rate is approximately 10%
slower than that of teleosts, and that the combined use of multiple sequence markers can
improve the resolution of phylogeographic and demographic analyses (Frodella et al., 2016).
This paper deals with a comparative multispecies analysis of phylogeographic
structure and historical demography in two pairs of sympatric, phylogenetically-
and ecologically- related elasmobranchs to test for common natural histories and
environmental/climatic factors (i.e., phylogeographic breaks), which may potentially have
driven their microevolution. Nucleotide variation in the target species, namely the rajid
skates Raja clavata L. (thornback ray) and R. miraletus L. (brown skate), and the scyliorhinid
catsharks Galeus melastomus (Rafinesque, 1810; blackmouth catshark) and Scyliorhinus
canicula L. (small-spotted catshark), was analysed at three mitochondrial gene fragments
which have been proven polymorphic at the population level (Barbieri et al., 2014; Gubili
et al., 2014; Kousteni et al., 2015; Frodella et al., 2016; Cariani et al., 2017; Ramirez-Amaro
et al., 2018). Sampling and experimental analyses were designed to primarily test if the
Sicilian Channel has been acted as an eco-physiological barrier for Mediterranean demersal
sympatric elasmobranchs. Moreover, the inclusion of several population samples from two
geographical areas within each sub-basin will allow the opportunity to detect additional
phylogeographic breaks in the region.

MATERIALS AND METHODS

Sampling

A total of 248 tissue specimens (fin clip or skeletal muscle) and associated biological data
were collected during international research cruises (e.g., MEDITS Bertrand et al., 2002) or
by contracted commercial fishermen between 2001 and 2010 from 17 sites, located in the
northeastern Atlantic and throughout the Mediterranean Sea (Fig. 1, Table 1, Table S1).
The sampling design was established according to the main zoogeographical boundary
dividing Western (WMED) and Eastern (EMED) Mediterranean sub-basins as proposed
by Péres ¢ Picard (1964), Giaccone ¢ Sortino (1974) and Bianchi & Morri (2000), Bianchi
(2007). Within each sub-basin, sampling locations were grouped into two geographical
areas (Table 1, Table S1). In this study, satisfactory sample sizes remained a major challenge,
especially for the species that are inadequately represented in commercial catches (i.e., R.
miraletus) due to catchability and/or selectivity characteristics of associated fishing methods
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Figure 1 Sampling locations of the four demersal elasmobranchs in the study. Numbers of sampling
locations refer to Table 1. Sampling locations for each species are colour coded according to four geo-
graphical areas as reported in Table 1. North-Eastern Atlantic sampling locations are not represented. The
map was created using R v.3.4.1 (R Core Team, 2016; Wickham, 2010; Becker et al., 2016).

Full-size Gl DOI: 10.7717/peerj.5560/fig-1

(i.e., trawl system vs. “rapido” trawl). Individuals were specifically assigned using the
available identification guidelines and keys (Serena, 2005; Serena, Mancusi & Barone, 2010).

Sampling of sharks and skates was carried out fully respecting the fishing dispositions
of the Regulation of the European Parliament and of the Council on certain provisions for
fishing in the GFCM (General Fisheries Commission for the Mediterranean) Agreement
area and amending Council Regulation (EC) No 1967/2006 concerning management
measures for the sustainable exploitation of fishery resources in the Mediterranean Sea,
adopted by the Council on 20th October 2011 (2011/C 345 E/01).

Molecular methods

After on-board collection, individual tissues were preserved in 96% ethanol at —20 °C
until laboratory analyses. Total genomic DNA (gDNA) was extracted using the CTAB
protocol (Doyle ¢ Doyle, 1987). Three mitochondrial gene fragments were amplified and
sequenced: the cytochrome oxidase ¢ subunit I (COI), the nicotinamide dehydrogenase
subunit 2 (NADH2) and the control region (CR). Skate-specific primer pairs for the
amplification of the mitochondrial NADH?2 gene were designed. This was carried out using
homologous complete mitochondrial DNA (mtDNA) sequences of Okamejei kenojei
(AY525783.1; NC_007173.1; Kim et al., 2005) and Amblyraja radiata (NC_000893.1;
Rasmussen & Arnason, 1999). Available sequences were retrieved from GenBank and
aligned using ClustalW algorithm implemented in MEGA7 (Kumar, Stecher ¢ Tamura,
2016). A consensus sequence was then used as input for primer design. Primer pairs
were chosen using the online tool PRIMER3 v.4 (Untergasser et al., 2012) according to the
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Table 1 Sampling data. Sampling information, including species, sub-basin and geographical area, sampling location and country, sampling code
(see Fig. 1 for location), sample size (N'), sampling year and geographical coordinates of the Mediterranean and North-eastern Atlantic samples of
the four target elasmobranch species.

Species Sub-basin/ Sampling Sample N Sampling Latitude Longitude
Geographical area location, code year (N) (E)
Country
Raja clavata Western Mediterranean
Algerian coasts Annaba, Algeria 1 5 2001 36°54'166 07°47'152
Bouharoun, Algeria 3 6 2003 36°37'472 02°38'124
Ligurian-Tyrrhenian Sea Genova, Italy 5 3 2001 44°22'171 08°50'152
Fiumicino, Italy 6 4 2001 41°45'273 12°07'324
Tuscany, Italy 7 7 2002 43°22/022 09°55'322
Cagliari, Italy 8 3 2009 38°52'011 09°20'353
Eastern Mediterranean
Adriatic Sea Marche, Italy 10 5 2002 43°21'330 14°17'510
Croatian coasts, 11 3 2002 45°07'845 14°25'664
Croatia
Fano, Italy 12 9 2006 44°31'120 13°00'250
Levantine Sea Antakya, Turkey 14 6 2004 36°15'203 35°19'114
Iskenderun, Turkey 15 5 2004 35°52'352 33°33/532
Cyprus coasts, 16 4 2009 34°21'396 33°08'564
Cyprus
North-Eastern Atlantic
Portuguese coasts, 8 2005 40°85'00 9°20'00
Portugal
North Cardigan, UK 1 2006 52°42'00 4°32/00
The Wash, UK 1 2006 53°08'00 1°33'00
Total 70
Raja miraletus Western Mediterranean
Algerian coasts Cap Djinet, Algeria 2 7 2009 36°53'012 03°40'201
Annaba, Algeria 1 3 2010 36°54'166 07°47'152
Tipaza, Algeria 4 2 2010 36°50'176 03°22/063
Balearic-Tyrrhenian Sea Tuscany, Italy 7 8 2010 43°22'022 09°55'322
Southern Minorca, 9 7 2008 39°35'540 04°33'306
Spain
Eastern Mediterranean
Adriatic Sea Fano, Italy 12 11 2006 44°31'120 13°00'250
Croatian coasts, 11 9 2002 45°07'845 14°25'664
Croatia
Levantine Sea Haifa, Israel 17 4 2010 32°53'567 34°17'550
Iskenderun, Turkey 15 2004 35°52'352 33°33'532
Cyprus coasts, 16 2009 34°21'396 33°08'564

North-Eastern Atlantic

Cyprus

(continued on next page)
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Table 1 (continued)

Species Sub-basin/ Sampling Sample N Sampling Latitude Longitude
Geographical area location, code year (N) (E)
Country
Portuguese coasts, 3 2005 38°08'456 08°49'579
Portugal
Total 60
Galeus melastomus Western Mediterranean
Algerian coasts Bouharoun, Algeria 3 19 2010 36°37'472 02°38'124
Tyrrhenian Sea Cagliari, Italy 8 17 2009 38°52'011 09°20'353
Eastern Mediterranean
Adriatic-Tonian Sea Fano, Italy 12 2007 44°31'120 13°00'250
Ionian Sea, Italy 13 2008 39°39'065 17°37'390
Levantine Sea Cyprus coasts, 16 2009 34°21'396 33°08'564
Cyprus
North-Eastern Atlantic
Rockhall Plateau, 5 2010 - -
UK
Total 58
Scyliorhinus canicula Western Mediterranean
Algerian coasts Bouharoun, Algeria 3 10 2010 36°37'472 02°38'124
Annaba, Algeria 1 3 2010 36°54'166 07°47'152
Tipaza, Algeria 4 12 2010 36°50'176 03°22/063
Tyrrhenian Sea Cagliari, Italy 8 14 2009 38°52/011 09°20'353
Eastern Mediterranean
Adriatic Sea Fano, Italy 12 10 2006 44°31'120 13°00'250
Levantine Sea Cyprus coasts, 16 5 2009 34°21'396 33°08'564
Cyprus
North-Eastern Atlantic
Rockhall Plateau, 6 2010 - -
UK
Total 60

minimum probability of primers to produce dimers or hairpins. Primers were tested on
a Biometra Gradient Thermocycler to define the most suitable melting temperatures (Tm
ranging from 50 °C to 60 °C). The complete list of primers used to amplify mtDNA gene
fragments in each species is reported in Table 52. PCR reactions were performed in 50
nL reactions using the Taqg DNA polymerase PCR kit (Invitrogen). The thermal profile
consisted of an initial denaturation step at 94 °C for 5 min, 35 cycles of denaturation at
94 °C for 30 s, annealing at Ta (as detailed in Table S2) for 30 s, extension at 72 °C for 30
s, and a final elongation step at 72 °C for 10 min. Total PCR products were purified and
sequenced at Macrogen Europe.

Data analyses

For each species, COI, NADH2 and CR partial sequences were aligned with ClustalW
algorithm implemented in MEGA and concatenated to generate a combined dataset for
subsequent analyses.
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The software DnaSP v.6 (Rozas et al., 2017) was used to identify the number of
haplotypes, the number of polymorphic and parsimony informative sites for each
mitochondrial marker and for the combined dataset. Haplotype and nucleotide diversity
(£standard deviations) were computed as measures of genetic diversity for each
geographical area and sub-basin, and significant differences between the two sub-basins
were tested for with Ruxton (2006) test.

Species-specific haplotype networks were created using the TCS method as implemented
in PopART v.1.7 (Leigh & Bryant, 2015).

The Analysis of Molecular Variance (AMOVA) was performed with Arlequin v.3.5
(Excoffier & Lischer, 2010) grouping the Mediterranean samples on the basis of a
priori hierarchical geographical structure on three levels: between sub-basins; between
geographical areas, within sub-basin; within geographical areas. The statistical significance
of the resulting ® values was estimated by comparing the observed distribution with a null
distribution generated by 10,000 permutations, in which individuals were redistributed
randomly into samples.

The population structure was also assessed by a Principal Component Analysis (PCA)
performed with the software Past v.2.03 (Hammer, Harper ¢» Ryan, 2001) on a pairwise
genetic distance matrix calculated between individuals using the best-fitting models selected
with MEGA. The 95% ellipses were plotted to obtain the probabilistic distribution space
of each geographical population sample.

The demographic histories of the Mediterranean shark and skate populations were
reconstructed using three different approaches. We firstly performed the Tajima’s D,
Fu’s Fs and Ramos-Onsis & Rozas’s R, neutrality tests (Tajirma, 1989; Fu, 1997; Ramos-
Omnsins ¢ Rozas, 2002) as implemented in DnaSP. Under a population expansion model,
significant negative values of D and Fs and significant positive values of Rywere expected;
the statistical significance was tested using 10,000 permutations. In the second approach,
we estimated the “mismatch distribution” (Rogers ¢ Harpending, 1992), i.e., the frequency
distribution of the pairwise differences among sequences. The mismatch distribution
was estimated under the assumption of a sudden expansion model as implemented in
Arlequin. To determine the fit of our experimental data to the model distribution, the
sum of squared deviations (SSD) between observed and expected mismatch distributions
and the raggedness index (rg) were used as test statistics with 1,000 bootstrap replicates.
Lastly, we reconstructed the historical demography using the coalescent-based Bayesian
Skyline Plot approach (BSP; Kingman, 1982a; Kingman, 1982b; Drummond et al., 2005;
Ho & Shapiro, 2011) implemented in the software package BEAST v.1.8.4 (Drummond
et al., 2012), under the best-fit models previously selected, a strict molecular clock and a
mutation rate of 0.005/million years (Chevolot et al., 2006). This mutation rate was obtained
using a substitution rate estimated in a wider taxonomic framework using the times of
divergence between Rajinae and Amblyrajinae (at 31 Myr) and within the main groups
within Rajinae determined by Valsecchi et al. (2005). However, because mutation rates may
vary across elasmobranch lineages and across genes within the mtDNA genome, applying
this mutation rate to catsharks and to other mtDNA gene fragments should be considered
with caution. To ensure convergence of the posterior distributions, we performed two
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Table2 Sequence information of the separate and combined mtDNA datasets in the four target species.

Species COI NADH2 CR Combined

SLy VS Pi SLy Ny VS Pi SLy Ny Vs Pi SLy Ny Vs Pi
Raja clavata 579 16 7 748 8 8 4 354 9 7 2 1,681 26 31 13
Raja miraletus 601 6 698 14 15 7 732 12 13 12 2,031 21 35 25
Galeus melastomus 593 0 673 9 9 7 667 16 11 11 1,933 30 29 18
Scyliorhinus canicula 596 13 6 749 12 11 10 624 44 25 21 1,969 54 49 37
Total 81 131

Notes.

SLy, haplotype sequence length; Ni;, number of haplotypes; VS, number of variable sites; Pi, number of parsimony informative sites.

independent Markov Chain Monte Carlo runs of 50,000,000 generations sampled every
5,000 generations, with the first 10% of the sampled points discarded as burn-in. Runs were
subsequently combined in LogCombiner (included in the BEAST package). The quality of
the run was assessed by effective sample size (ESS) >200 for each parameter using Tracer
v.1.5 (Rambaut & Drummond, 2007). This software was also used to generate the skyline
plots.

RESULTS

The sequence variation of the separate and combined datasets in each species is reported
in Table 2. As expected, the non-coding CR haplotypes (81) outnumbered those of the
coding genes (COI: 38; NADH2: 43). The percentage of variable sites and of parsimony
informative sites for the combined dataset ranged from 1.5% to 2.5% and from 0.7% to
1.8%, respectively.

Estimates of haplotype diversity (h) were high in all samples, with the exception of the
skate samples from Balearic, Ligurian and Tyrrhenian Seas (Table 3). Mean values of h and
nucleotide diversity (7 ) were significantly higher in the EMED than in the WMED samples
in all species, except for S. canicula (Ruxton test, P < 0.001; Table 3).

The thornback ray R. clavata showed a star-like network with the most common
haplotype shared by all Mediterranean samples as well as by the northeastern Atlantic
(NEATL) (Fig. 2). Slightly differentiated geographical haplotype lineages were detected
in EMED (i.e., one formed by Adriatic individuals and one predominated by Levantine
individuals) and in WMED. In addition to the most common haplotype, two low-frequency
haplotypes were shared between Algerian coasts and the Adriatic and Levantine Sea. A
divergent NEATL lineage formed by two unique haplotypes was also detected.

In contrast, the brown skate R. miraletus, exhibited a stronger phylogeographic structure
across the Mediterranean samples than R. clavata, indicated by the presence of three
Mediterranean and one northeastern Atlantic/Western Mediterranean haplotype clusters
(Fig. 3). Another lineage included haplotypes shared by Portuguese (NEATL) and Algerian
individuals. This haplogroup slightly differed from a second haplogroup formed by the
most frequent Mediterranean haplotype shared by Balearic-Tyrrhenian Sea and Adriatic
Sea individuals and three single-individual haplotypes. Additionally, two more divergent
lineages were constituted by Adriatic-Levantine and Levantine brown skates.
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Table 3 Mitochondrial gene polymorphism of the species considered across the sampling areas.

Species Geographical area/ N Ny h+S.D. p m £ S.D. p
Sub-basin
Raja clavata North-Eastern Atlantic 10 5 0.756 =+ 0.130 0.00241 =+ 0.00066
Algerian coasts 11 6 0.727 £ 0.144 0.00054 £ 0.00015
Ligurian-Tyrrhenian Sea 17 4 0.493 £+ 0.131 0.00032 £ 0.00010
Adriatic Sea 17 8 0.779 £ 0.099 0.00114 £ 0.00018
Levantine Sea 15 8 0.829 £ 0.085 0.00078 4 0.00014
WMED 28 8 0.579 £ 0.104 <0.001 0.00041 £ 0.00009 <0.001
EMED 32 15 0.855 £ 0.050 0.00117 £ 0.00016
Raja miraletus North-Eastern Atlantic 3 3 1.000 £ 0.272 0.00098 £ 0.00035
Algerian coasts 12 7 0.773 £0.128 0.00081 4= 0.00023
Balearic- Tyrrhenian Sea 15 2 0.133 +£0.112 0.00007 =+ 0.00006
Adriatic Sea 20 4 0.574 £ 0.090 0.00209 =+ 0.00025
Levantine Sea 10 6 0.844 £ 0.103 0.00373 £ 0.00071
WMED 27 9 0.698 + 0.082 <0.001 0.00109 £ 0.00017 <0.001
EMED 30 10 0.798 £ 0.057 0.00323 £ 0.00034
Galeus melastomus North-Eastern Atlantic 5 4 0.900 £ 0.161 0.00083 £ 0.00025
Algerian coasts 19 13 0.942 £ 0.037 0.00231 = 0.00022
Tyrrhenian Sea 17 10 0.882 £ 0.059 0.00196 £ 0.00033
Adriatic-Ionian Sea 12 12 1.000 £ 0.034 0.00247 4 0.00037
Levantine Sea 5 5 1.000 £ 0.126 0.00321 £ 0.00077
WMED 36 17 0.916 £ 0.028 <0.001 0.00213 4 0.00018 <0.001
EMED 16 16 0.993 £ 0.023 0.00269 £ 0.00034
Scyliorhinus canicula North-Eastern Atlantic 6 6 1.000 £ 0.096 0.00400 £ 0.00074
Algerian coasts 25 24 0.997 £ 0.012 0.00336 £ 0.00029
Tyrrhenian Sea 14 10 0.923 + 0.060 0.00254 £ 0.00039
Adriatic Sea 10 10 1.000 £ 0.045 0.00326 £ 0.00046
Levantine Sea 5 5 1.000 £ 0.126 0.00284 £ 0.00055
WMED 39 34 0.989 + 0.010 NS 0.00355 =+ 0.00021 NS
EMED 15 15 1.000 £ 0.024 0.00340 £ 0.00033

Notes.

N, Sample size; Ny, number of haplotypes; h, haplotype; p, nucleotide diversity (£standard deviations, S.D.) for each species in each geographical area and sub-basin; P, proba-
bility values of the Ruxton test between WMED vs. EMED hand p values; NS, not significant.

The haplotype networks of both catsharks showed a complete lack of phylogeographic

signal, without any geographical distinction between Mediterranean and NEATL samples,

or between WMED and EMED samples (Figs. 4 and 5).

The PCA results were consistent with those of the haplotype network analysis (Fig. 6),

revealing a lack of spatial structure in G. melastomus and S. canicula, the partial genetic

differentiation of NEATL and Adriatic samples of R. clavata and the separation of

R. miraletus samples into three genetic groups.

The AMOVA (Table 4) did not reveal significant divergence between WMED and EMED
in any species, even though R. miraletus and G. melastomus showed remarkable percentages

of molecular variation between sub-basins (28.70% and 7.01%, respectively). Conversely,

high molecular variation was detected between geographical areas within sub-basins in R.
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Figure 2 TCS network of combined haplotype of Raja clavata. Circles are proportional to haplotype
frequencies. Colours are consistent with Fig. 1; with the North-eastern Atlantic haplotypes indicated in
green. Orthogonal bars between branch nodes indicate substitutions.Black nodes represent unsampled se-
quences.

Full-size &l DOI: 10.7717/peerj.5560/fig-2

clavata, R. miraletus and S. canicula, revealing a genetic structure independent from their
grouping in Western and Eastern Mediterranean sub-basins.

The estimated Tajima’s D, Fu’s Fs and Ramos-Onsins & Rozas’s R, indexes were largely
consistent within each species (Table 5). Significant indexes strongly suggested a sudden
demographic expansion of the Mediterranean R. clavata, while no significant values were
obtained for the populations of other species with the exception of Fu’s Fg index in S.
canicula.

Both catsharks showed a unimodal mismatch distribution, R. clavata showed a skewed
unimodal mismatch distribution, and the mismatch distribution of R. miraletus was
bimodal (Fig. 7). The statistical analysis of the species-specific mismatch distributions
(Table 5, SSD and rg indexes) revealed that the observed distributions were not statistically
different from those expected under a sudden expansion model in all species, even if the
SSD and rg values of R. miraletus were higher than those estimated for the other species
(Table 5). In R. clavata, R. miraletus and G. melastomus the BSP analysis consistently
indicated that sudden demographic expansions occurred approximately 40,000-60,000
years ago, while S. canicula exhibited a constant, slow demographic expansion over the last
350,000 years (Fig. 8).
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Figure 3 TCS network of combined haplotype of Raja miraletus. Circles are proportional to haplotype
frequencies. Colours are consistent with Fig. 1; with the North-eastern Atlantic haplotypes indicated in

green. Orthogonal bars between branch nodes indicate substitutions. Black nodes represent unsampled se-
quences.

Full-size Gl DOI: 10.7717/peerj.5560/fig-3

DISCUSSION

This study was characterized by a high sampling effort in terms of geographical coverage.
Despite the variability and some restrictions of the sample size, we were able to sample 17
locations across the Mediterranean Sea as well as including samples from the northeastern
Atlantic. One limitation of this work is the lack of samples from the Alboran and
Aegean Seas, two areas that are known to be conservation and biodiversity hot spots
for elasmobranchs (Coll et al., 2010) and in which some of the target species have shown
independent historical population dynamics (e.g., the demographic decline shown by

S. canicula in the Aegean Sea; Kousteni et al., 2015).

The multispecies comparative analysis did not reveal phylogeographical structuring on a
latitudinal scale. However, distinct groups were found within sub-basins in both the brown
skate and the small-spotted catshark, although not for the tested hypothesis of western-
eastern historical separation. These results refute the hypothesis of an effective role of the
Siculo-Tunisian transition area as a barrier in shaping natural history and microevolution
of these demersal sharks and skates. However, it should be noted that physical and/or
physiological barriers (e.g., the Strait of Gibraltar, the Almeria-Oran oceanographic front)
did not always differentiate populations of marine phylogenetically- and ecologically-
related taxa with similar differentiation patterns for instance, the discordant differentiation
genetic patterns of the Atlantic-Mediterranean seabream species Diplodus puntazzo and D.
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Figure 4 TCS network of combined haplotype of Galeus melastomus. Circles are proportional to hap-
lotype frequencies. Colours are consistent with Fig. 1; with the North-eastern Atlantic haplotypes indi-
cated in green. Orthogonal bars between branch nodes indicate substitutions. Black nodes represent un-

sampled sequences.
Full-size &l DOL: 10.7717/peerj.5560/fig-4

sargus described in Bargelloni et al. (2005). In addition, the Siculo-Tunisian transition area
can also affect the contemporary population connectivity and gene flow, leading to strong
genetic divergence among western and eastern populations as shown for the small-spotted
catshark S. canicula (Gubili et al., 2014; Kousteni et al., 2015).

Our results indicate a lack of deep phylogeographic structure in both scyliorhinid
sharks: the blackmouth catshark G. melastomus, a species widely distributed in the outer
continental shelves and upper slopes (55-1,200 m depth), and the small-spotted catshark
S. canicula, which inhabits the shallow waters of continental shelves (prevalent in 10-100
m depth) and the uppermost slopes (200-400 m depth). For the blackmouth catshark,
our findings are consistent with the results of a recent small-scale study, which showed
an absence of population structure and high connectivity in the Western Mediterranean
Sea (Ramirez-Amaro et al., 2018). In contrast, the lack of phylogeographic structure we
observed in the Mediterranean for the small-spotted catshark could not be considered to
be entirely consistent with the results of previous studies. Gubili et al. (2014) combined
mitochondrial (CR) and nuclear (SSRs) markers and detected a strong differentiation
within the Mediterranean Sea, where regardless of which molecular marker was used.
Accordingly, the population from Eastern Mediterranean was significantly divergent from
those of the other geographical areas (Gubili et al., 2014). Similarly, Kousteni et al. (2015)
identified a deep genetic structure between the Western and the Eastern sub-basins and
a weak differentiation of the Aegean population. In contrast, samples from the Levantine
Sea shared haplotypes with both Western and Eastern sub-basins. Barbieri et al. (2014)
analysed the geographical variation of S. canicula and observed several region-unique COI
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Figure 5 TCS network of combined haplotype of Scyliorhinus canicula. Circles are proportional to
haplotype frequencies. Coloursare consistent with Fig. 1; with the North-eastern Atlantic haplotypes indi-
cated in green. Orthogonal bars between branch nodes indicate substitutions. Black nodes represent un-
sampled sequences.

Full-size G4l DOI: 10.7717/peerj.5560/fig-5

haplotypes corresponding to the Western-Eastern Mediterranean Sea and the Adriatic Sea,
suggesting that the Sicilian Channel could not be considered a barrier to gene flow for this
species. However, the haplotype networks built in all these studies did not detect western
and eastern Mediterranean mtDNA clades, though all haplotype-frequency-based estimates
indicated strong and significant contemporary differentiation between the sub-basins and,
within each of them, among populations from different seas (Barbieri et al., 2014; Gubili
et al., 2014; Kousteni et al., 2015). Such discrepancies could be due to incomplete lineage
sorting likely related to the recent origin of the Mediterranean populations. In order to
infer a reasonable phylogeographic scenario, even more Mediterranean areas need to be
included, such as the Alboran and Aegean Seas, as well as samples from the southernmost
coasts (e.g., Gulf of Sirte). Nevertheless, the phylogeographic pattern we detected in S.
canicula widely overlaps with those identified in previous works.

Raja miraletus showed a considerably different phylogeographic pattern compared to
those of both catsharks and the congeneric species, R. clavata. In contrast, the thornback
ray (R. clavata) did not display well-identified geographical haplotype clusters. Both species
showed any specific mtDNA lineage in the Adriatic Sea and this appears different with
respect to the R. polystigma, that exhibited a weakly divergent but fixed COI haplotype
(Frodella et al., 2016). The present findings for the thornback ray agree with those of
Chevolot et al. (2006), in which a relic, unique cytb haplotype was identified for samples
from Corsica, the Adriatic and Black Seas. Our findings also coincide with the CR
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Figure 6 Principal Components Analysis plots. Plots illustrating the spatial structure of the elasmo-
branch species considered: (A) Raja clavata, (B) R. miraletus, (C) Galeus melastomus and (D) Scyliorhinus
canicula. Colours are consistent with Fig. 1; the North-eastern Atlantic haplotypes are indicated in green.
The PCA were carried out on individual sequences, however, only the haplotypes are reported here (dots).
For each sample, the 95% ellipse illustrating the probabilistic distribution space of each geographical sam-
ple are shown.
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results of Pasolini et al. (2011), in which no geographical clades were identified within the
Mediterranean. Due to a higher adult dispersal potential as suggested by a larger body size,
R. clavata may be able to inhabit deeper waters and may thus be able to colonize different
geographical areas compared to coastal, shallow-water species, such as the small-sized
congeneric R. miraletus (Sion et al., 2004; Serena, 2005; Serena, Mancusi & Barone, 2010).
Although mtDNA variance was not significantly different between Western and Eastern
Mediterranean populations in any of the elasmobranch species considered, we detected
significant differences in the levels of genetic diversity in three out of four taxa. In R. clavata,
R. miraletus and G. melastomus, the mtDNA diversity of the Western Mediterranean
samples was significantly lower than the Eastern ones, while the Balearic, Ligurian and
Tyrrhenian samples revealed the lowest haplotype and nucleotide diversity, especially in
R. miraletus. In general, low values of haplotype and nucleotide diversity may indicate
evolutionary and ecological processes (i.e., bottleneck or recent founder events). Thus,
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Table 4 Analysis of Molecular Variance (AMOVA) of mtDNA of the four elasmobranch species.

Source of variation d.f. Sum of squares % of variation p

Raja clavata

Between sub-basins 1.00 3.05 —1.51 1.00
Between areas, within sub-basin 2.00 6.57 22.85 0.00
Within geographical areas 56.00 35.03 78.66 0.00
Raja miraletus
Between sub-basins 1.00 55.94 28.70 0.35
Between areas, within sub-basin 2.00 39.51 32.87 0.00
Within geographical areas 53.00 84.42 38.44 0.00
Galeus melastomus
Between sub-basins 1.00 6.23 7.01 0.32
Between areas, within sub-basin 2.00 4.68 0.37 0.39
Within geographical areas 48.00 109.11 92.61 0.08
Scyliorhinus canicula
Between sub-basins 1.00 9.99 —4.15 1.00
Between areas, within sub-basin 2.00 27.49 23.18 0.00
Within geographical areas 50.00 151.95 80.97 0.00
Notes.

d.f., degrees of freedom; P, probability values.

Table 5 Historical demography of the target elasmobranch species. The Tajima’s D, Fu’s Fs, Ramos-Onsins & Rozas R, and mismatch distribu-
tions indices (i.e., sum of squared deviations from the sudden expansion model, SSD, and raggedness index, rg) are reported for each species. The
corresponding P-values are given in brackets.

Species D F; R, Mismatch distribution

SSD rg
Raja clavata —2.260 (0.000) —20.287 (0.000) 0.032 (0.002) 0.002 (0.320) 0.050 (0.540)
Raja miraletus —0.393 (0.376) —2.724 (0.210) 0.090 (0.373) 0.026 (0.190) 0.054 (0.090)
Galeus melastomus —0.998 (0.179) —18.111 (0.999) 0.072 (0.165) 0.004 (0.680) 0.016 (0.660)
Scyliorhinus canicula —1.110 (0.117) —61.416 (0.000) 0.073 (0.166) 0.001 (0.540) 0.007 (0.710)

further analyses based on high-resolution markers, should be conducted in order to explore
these scenarios.

Although the Sicilian Channel has not been a significant barrier in the historical
process of differentiation in these demersal elasmobranchs, it may currently be acting
as an effective barrier limiting dispersal and gene flow between populations inhabiting
the Mediterranean sub-basins (Gubili et al., 2014; Kousteni et al., 2015). Similar patterns
of genetic differentiation were also recently detected in R. miraletus (Ferrari, 2017)
and in R. asterias (Cariani et al., 2017). The role of the Siculo-Tunisian area as a
physical/physiological barrier to population connectivity has also been demonstrated
for several teleost fish (Kotoulas, Bonhomme ¢ Borsa, 1995; Mattiangeli et al., 2003; Suzuki
et al., 2004; Garoia et al., 2007; Debes, Zachos ¢ Hanel, 2008). Differential physiological
effects of seawater temperature and salinity discontinuities in the area and the differences
between the Western and Eastern Mediterranean (Hopkins, 1985; Coll et al., 2010) are likely
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Figure 7 mtDNA mismatch distribution of the four demersal elasmobranchs in the study. Observed
(bars) and expected (line) mismatch distributions under the sudden expansion model for the Mediter-
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to affect the level of early-life stage dispersal of bony fish. However, the magnitude of this
oceanographic break is more evident in benthic teleosts (Kotoulas, Bonhomme ¢ Borsa,
1995; Suzuki et al., 2004; Garoia et al., 2007) and in species inhabiting the northern part of
Mediterranean (Debes, Zachos ¢~ Hanel, 2008).

Complementary to microevolutionary processes, environmental and ecological factors
could also have driven the diversification of Mediterranean elasmobranchs and may
account for their discordant phylogeographic patterns. The fundamental role of ecological
features in the demographic histories of demersal elasmobranchs is further emphasised by
the mismatch distribution and the BSP analyses conducted here. Despite the application of
a mutation rate (used as prior in the BSP analysis) that has been estimated solely from rajid
lineages and with different mtDNA gene fragments (cytb and 16S rDNA; (Valsecchi et al.,
2005; Chevolot et al., 2006), past demographic expansions were detected in all investigated
species. In particular, synchronous sudden expansions were experienced by the thornback
ray, brown skate, and the blackmouth catshark approximately 40,000-60,000 years ago.
In contrast, the small-spotted catshark exhibited a constant demographic growth in
the last 350,000 years. Recently, Kousteni et al. (2015) utilised mitochondrial COI and
estimated a weak decline in population size in the Aegean Sea that has been related to
the restricted habitat availability during the Pleistocene. In contrast, the glacial period
potentially caused a slight increase of the population size in the Ionian Sea (Kousteni
et al., 2015). Middle and Late Pleistocene cycles of glacial and interglacial periods, with
related paleoclimatic and sea-level changes, seem to have influenced demographic histories
of the northeastern Atlantic and Mediterranean marine fauna as indicated by species-
or population-specific demographic expansions between 1.1 and 0.05 MYA (e.g., algae,
Hoarau et al., 2007; invertebrates, Luttikhuizen et al., 2003; Stamatis et al., 2004; Caldéron,
Giribet & Turon, 2008; vertebrates, Gysels et al., 2004; Aboim et al., 2005; Alvarado Bremer
et al., 2005; Charrier et al., 2006; Chevolot et al., 2006; Larmuseau et al., 2009). Among
Mediterranean fish populations, more recent expansions (from 350,000 to 50,000 years
ago) have affected those of the Atlantic Bluefin tuna, Thunnus thynnus (Alvarado Bremer
et al., 2005) and the sand goby, Pomatoschistus minutus (Larmuseau et al., 2009). While
remains difficult to identify factors that could have driven the demographic expansion
of these benthic marine taxa in the Mediterranean, overlapping demographic expansions
may have been caused by similar environmental shifts such as benthic habitat changes
at the beginning of the last glacial period (Wiirm, from 70,000 to 15,000 years ago;
(Graham, Dayton ¢ Erlandson, 2003; Liu et al., 2011). However, within this period our
data indicate that the Last Glacial Maximum (from 26,500 to 20,000 years ago) did not
strongly affect the demographic histories of marine species and populations inhabiting
the northeastern Atlantic and Mediterranean ecosystems by blurring the previous Middle
and Late Pleistocene demographic expansions (Chevolot et al., 2006; Hoarau et al., 2007,
Larmuseau et al., 2009).

CONCLUSIONS

The comparative analysis of phylogeographic and historical demographic patterns for the
Mediterranean populations of these elasmobranchs reveals that historical phylogeographic
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breaks have not had a large impact on their differentiation. The minor role of the Sicilian
Channel transition area has potentially prevented the complete sorting of haplotype lineages
between the Western and Eastern Mediterranean, though sub-basin-specific lineages have
been observed among the species. The demographic histories of the four target species
are very similar, indicating a recent origin of these populations with the exception of the
brown skate, suggesting that may have experienced a different demographic history likely
related to past changes in the benthic habitat conditions. Overall, historical barriers to
dispersal appear to play a negligible role in the ecology, distribution and genetic diversity of
elasmobranch populations in the Mediterranean compared to biotic and abiotic factors.
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