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Abstract
The origin of complex cellular life is a key puzzle in evolutionary research,
which has broad implications for various neighbouring scientific disci-
plines. Naturally, views on this topic vary widely depending on the world
view and context from which this topic is approached. In the following, I will
share my perspective about our current scientific knowledge on the origin
of eukaryotic cells, that is, eukaryogenesis, from a biological point of view
focusing on the question as to whether an archaeon was the ancestor of
eukaryotes.

CELLULAR LIFE AND HISTORICAL VIEW
ON THE ORIGIN OF EUKARYOTES

Based on our current understanding, cellular life can
be divided into three distinct major domains: the Bac-
teria, Archaea and Eukaryota (Woese et al., 1990).
Despite fascinating and important exceptions
(Greening & Lithgow, 2020; Volland et al., 2022), Bac-
teria and Archaea share various cellular features such
as their generally small cells that are enclosed by
membranes and comprise genetic material but few
internal structures with membranes discontinuous
from the outer cell membrane. In contrast, eukaryotic
cells are often larger and characterized by a diversity
of internal membrane-bound organelles such as the
nucleus, mitochondria, Golgi apparatus, endoplasmic
reticulum, and chloroplasts present in photosynthetic
eukaryotes.

The idea that at least some of these organelles origi-
nated through endosymbiosis and/or the uptake of formerly
free-living bacteria goes back to the end of the 19th and
early 20th century,withKonstantinMereschkowski and sub-
sequently Ivan Wallin proposing that chloroplasts and mito-
chondria are derived from cyanobacteria (Mereschkowsky,
1905, 1910) and alphaproteobacteria (Wallin, 1927),
respectively. Decades later, Lynn Margulis elaborated on
these ideas in her serial endosymbiosis hypothesis
(Margulis, 1981, 1996; Sagan, 1967). Specifically, upon the
discovery of the Archaea as a domain distinct from Bacteria
(Woese et al., 1990; Woese & Fox, 1977) and the finding
that archaeal cells harbour a simplified informational
machinery resembling that of eukaryotes (e.g. transcription
and translation), she and other authors put forth the hypoth-
esis that an archaeon may have been the symbiotic partner
of the bacterial endosymbiont(s) (Lopez-Garcia et al., 2017;
Margulis, 1981, 1996; Searcy, 1992).

Received: 15 December 2022 Accepted: 21 December 2022

DOI: 10.1111/1462-2920.16323

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Author. Environmental Microbiology published by Applied Microbiology International and John Wiley & Sons Ltd.

Environ Microbiol. 2023;25:775–779. wileyonlinelibrary.com/journal/emi 775

https://orcid.org/0000-0002-6518-8556
mailto:anja.spang@nioz.nl
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/emi


STATE-OF-THE-ART VIEW ON
EUKARYOGENESIS AND THE DISCOVERY
OF ASGARD ARCHAEA

The suggestion that eukaryotic cells may have origi-
nated through the merging of an archaeal host and bac-
terial symbionts, while not very popular initially, has
obtained increasing support over the recent years
(Eme et al., 2017; Guy et al., 2014; Koonin &
Yutin, 2014; Lopez-Garcia et al., 2017; Lopez-Garcia &
Moreira, 2020; Martin et al., 2015) and led to the pro-
posal that eukaryotes represent a secondary domain of
life (Williams et al., 2013). Particularly, improved phylo-
genetic approaches combined with a better genomic
representation of genome-sequenced organisms have
allowed to improve our view of the tree of life (TOL) and
microbial genomic diversity, with several implications
for our understanding of eukaryogenesis. While
Archaea were initially thought to represent the sister lin-
eage to an independent (autogenously evolving) line-
age leading to eukaryotes (Woese et al., 1990), with
few exceptions (Da Cunha et al., 2017; Da Cunha
et al., 2018), the majority of phylogenetic analyses
today, based on concatenated universally conserved
single-copy marker genes, indicate that the branch
leading to eukaryotes emerges from within the Archaea
(Cox et al., 2008; Foster et al., 2009; Guy & Ettema,
2011; Raymann et al., 2015; Spang et al., 2015, 2018;
Williams et al., 2011, 2020; Zaremba-Niedzwiedzka
et al., 2017) as originally suggested by Lake and
coworkers (Lake et al., 1984). Specifically, the discov-
ery of the Asgard archaea (Seitz et al., 2016; Spang
et al., 2015; Zaremba-Niedzwiedzka et al., 2017),
which appear to be more closely related to eukaryotes
than any of the previously known archaeal lineages,
increased support for the placement of the eukaryotic
branch within Archaea, that is, as a sister to or within
the Heimdall�/ Gerd�/ Kari�/ Hod�/ Wukongarch-
aeota clade (Cai et al., 2020; Liu et al., 2021; Seitz
et al., 2019; Zaremba-Niedzwiedzka et al., 2017).
Asgard archaea were found to encode various so-
called eukaryotic signature proteins, that is, proteins
generally absent from genomes of Archaea and Bacte-
ria and/or encoding domains underlying key aspects of
eukaryotic cellular complexity such as an active actin
cytoskeleton consisting of actins, profilins and gelso-
lins, a ubiquitin system as well as cell division and traf-
ficking components (incl. homologues of endosomal
sorting complexes required for transport (ESCRT) sys-
tems) (Liu et al., 2021; Spang et al., 2015; Zaremba-
Niedzwiedzka et al., 2017). Subsequent experimental
work on some of these proteins has confirmed a con-
servation in function. For instance, it has been demon-
strated that Asgard profilins can regulate mammalian
actin (Akil & Robinson, 2018), with heimdallarchaeal
profilins inhibiting both eukaryotic and heimdallarchaeal
actin polymerization, and binding being regulated by

polyproline motifs (Survery et al., 2021). Furthermore,
certain Asgard archaeal gelsolins were shown to
enhance filament disassembly in eukaryotic cells in a
calcium-regulated manner (Akıl et al., 2020). Remark-
ably, the cultivation of the first representatives of the
Asgard archaea, that is of the Lokiarchaeota (Imachi
et al., 2020; Rodrigues-Oliveira et al., 2022), indicates
that extant members of this group harbor complex cel-
lular features including protrusions supported by cyto-
skeletal filaments comprising lokiactins (Rodrigues
Oliveira et al., 2022). This suggests that the last com-
mon ancestor of eukaryotes and the Asgard archaeal
sister lineage might already have harboured a complex
cytoskeleton. Notably, another study has recently
revealed that Asgard archaeal proteins with domains
homologous to eukaryotic ESCRT-I, II and III and ubi-
quitin system components, comprise a ubiquitin-
coupled ESCRT system functioning in a similar manner
as in eukaryotes (Hatano et al., 2022).

Together, this strongly indicates that certain building
blocks essential for the evolution of complex eukaryotic
cells have originated in a lineage of the Archaea and
were directly inherited by eukaryotes from their
archaeal ancestry. In turn, while the origin of the
nucleus remains unresolved (Eme et al., 2017), recent
research seems to unequivocally support a symbioge-
netic origin of the eukaryotic cell from an archaeon con-
tributing key informational and cellular machinery and
bacterial symbionts underlying the origin of mitochon-
dria (Fan et al., 2020; Martijn et al., 2018; Muñoz-
G�omez et al., 2022; Roger et al., 2017) and chloro-
plasts (Sibbald & Archibald, 2020), respectively.

DOES THIS IMPLY THAT AN ARCHAEON
IS THE ANCESTOR OF EUKARYOTES?

Recent findings leave little doubt that archaea account
for at least part of eukaryotic ancestry. However, to fully
resolve to what extend eukaryotes are archaea, it is
important to agree on a definition as to what eukaryotes
are and at which point during eukaryogenesis they
would have been eukaryotic in nature. Part of the cur-
rent discussion and controversy around this question
may arise from distinct views on the essential features
of a eukaryote. Is a cell with either a nucleus or an
endomembrane system a eukaryote? What about pro-
karyotes that harbour nucleus-like structures (Avcı
et al., 2021; Katayama et al., 2020), endosymbionts
(Husnik et al., 2013; von Dohlen et al., 2001) or inter-
nalized cells (Shiratori et al., 2019)? On the other hand,
did the host cell only become a eukaryote once it
engulfed symbionts to power its metabolism? What
about eukaryotes that secondarily lost mitochondria
altogether?

Etymologically, the word eukaryote is derived from
Greek εὖ (eu) and κάρυον (karyon) meaning ‘true kernel’
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and places emphasis on the presence of a nucleus
enclosing the genome as the defining feature of eukary-
otes. In this context, it may be argued that neither the
evolution of an endomembrane system nor of mitochon-
dria mark the boundary between a prokaryotic and
eukaryotic cell. Unfortunately, it remains unclear whether
the nucleus has symbiogenetic origins or evolved autog-
enously before or after the endosymbiosis of an alpha-
proteobacerial cell within an archaeal host. For instance,
in a recent perspective, Lopez-Garcia and Moreira
updated their original syntrophy hypothesis (Lopez-
Garcia & Moreira, 2020) proposing that three rather than
two partners were involved in the origin of the eukaryotic
cell, that is, a hydrogen-producing Asgard archaeon was
suggested to have been engulfed within a complex
sulfate-reducing deltaproteobacterium and stood at the
basis of the evolution of a nucleus with the mitochon-
drion evolving later upon the acquisition of alphaproteo-
bacterial endosymbiont(s) by this deltaproteobacterial/
archaeal hybrid organism. Others have suggested that a
virus may be at the origin of the nucleus (Bell, 2022;
Takemura, 2020). However, the most common hypothe-
ses envision an autogenous origin of the nucleus
(reviewed by Baum & Baum, 2014; Guy et al., 2014;
Imachi et al., 2020; Koonin & Yutin, 2014; Lopez-Garcia
et al., 2017; Martin et al., 2015), though the timing of its
origin relative to other eukaryotic cellular features
remains unknown (Eme et al., 2017; Pittis & Gabaldon,
2016; Vosseberg et al., 2021).

If the nucleus evolved autogenously in a hypotheti-
cal archaeal ancestor prior to the acquisition of an
endosymbiont and is chosen as the defining feature of
eukaryotes, an archaeon is not only the ancestor of
eukaryotes, but eukaryotes could be regarded as a
clade of Archaea.

Alternatively, if the acquisition of alphaproteobacter-
ial symbionts is seen as key or at least similarly impor-
tant for eukaryogenesis, eukaryotes are a symbiosis of
at least two partners and as much bacterial as they are
archaeal. The nucleus could have evolved autoge-
nously prior or after this event or be the result of an
additional symbiosis event. Considering that phyloge-
netic analyses suggest that all extant eukaryotic pro-
teomes comprise more proteins derived from bacterial
rather than archaeal ancestry (Brueckner & Martin,
2020; Pisani et al., 2007; Rochette et al., 2014), that all
but the most reduced amitochondriate eukaryotes
(Karnkowska et al., 2016) contain a legacy of genes
tracing back to alphaproteobacterial origins (Embley
et al., 2003; Hjort et al., 2010; Müller et al., 2012;
Philippe et al., 2000; Stechmann et al., 2008), and that
mitochondria, if not essential (Lynch & Marinov, 2017),
may have been key for eukaryotic diversification
(Schavemaker & Muñoz-G�omez, 2022), it may seem
worth reconsidering the strict etymological definition of
eukaryotes based on the presence of a nucleus alone.

In the latter case, however, one may wonder whether
photosynthetic eukaryotes with plastids should be
defined as yet additional domains of life, considering
that they too, emerged through a symbiosis event that
led to a new cellular organelle.

While it may be difficult to reach a consensus regard-
ing the definition of eukaryotes and answer the question
to what degree eukaryotes are archaea, contemplating
this topic can guide prospective research avenues.
Future progress on our understanding of eukaryogen-
esis will in part rely on the further exploration of Asgard
archaeal phylogenetic diversity and the study of their cell
biological features and lifestyles as this may allow to bet-
ter constrain the order of events in which eukaryotic cel-
lular complexity has evolved (Eme et al., 2017). For
example, will we discover (Asgard) archaea with a true
nucleus (Avcı et al., 2021)? Furthermore, a better char-
acterization of the origin of eukaryotic proteins and cellu-
lar features, particularly those which currently lack
homologues in both the putative Asgard archaeal host
and alphaproteobacterial endosymbiont, will help to
determine whether additional partners were involved.

The ever-increasing genomic sampling of archaeal
diversity combined with profound technological devel-
opments in phylogenetics, and microscopy, will without
doubt lead to many new and fascinating discoveries in
the coming years, which promise to further illuminate
the deep origin of the eukaryotic cell and might require
us to reconsider our definition of cellular life and
eukaryotes.
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