
1. Introduction
The changes in Arctic phytoplankton activity observed in recent decades related to changing Arctic sea ice 
and ocean conditions (Ardyna & Arrigo, 2020; Arrigo & van Dijken, 2015; Lewis et al., 2020) are expected to 
continue in this century (SIMIP Community, 2020; Vancoppenolle et al., 2013), with important implications for 
the Arctic marine food web (Post, 2017). However, large uncertainties remain, mostly due to a lack of knowledge 
of phytoplankton activity in the subglacial environment, hardly observable from satellites (Ardyna et al., 2020). 
Earth System Models (ESMs) and their sub-components foster progress in the knowledge of the Arctic Ocean 
phytoplankton and help quantifying pan-Arctic marine primary production (Clement Kinney et al., 2020; Horvat 
et al., 2020; Zhang et al., 2015). However, in the Arctic, ESMs inconsistently simulate the factors limiting phyto-
plankton growth, namely nutrients and light levels (Popova et al., 2012; Vancoppenolle et al., 2013).

Abstract The intensity and spectrum of light under Arctic sea ice, key to the energy budget and primary
productivity of the Arctic Ocean, are tedious to observe. Earth System Models (ESMs) are instrumental 
in understanding the large-scale properties and impacts of under-ice light. To date, however, ESM 
parameterizations of radiative transfer have been evaluated with a few observations only. From observational 
programs conducted over the past decade at four locations in the Northern Hemisphere sea ice zone, 349 
observational records of under-ice light and coincident environmental characteristics were compiled. This data 
set was used to evaluate seven ESM parameterizations. Snow depth, melt pond presence and, to some extent, 
ice thickness explain the observed variance in light intensity, in agreement with previous work. The effects of 
Chlorophyll-a are also detected, with rather low intensity. The spectral distribution of under-ice light largely 
differs from typical open ocean spectra but weakly varies among the 349 records except for a weak effect of 
snow depth on the blue light contribution. Most parameterizations considered reproduce variations in under-ice 
light intensity. Large errors remain for individual records, on average by a factor of ∼3, however. Skill largely 
improves if more predictors are considered (snow and ponds in particular). Residual errors are attributed to 
missing physics in the parametrizations, inconsistencies in the model-observation comparison protocol, and 
measurement errors. We provide recommendations to improve the representation of light under sea ice in the 
ice-ocean model NEMO, which may also apply to other ESMs and help improve next-generation ESMs.

Plain Language Summary The Arctic sea ice cover has rapidly decreased over the last four
decades, and Earth System Models (ESMs) project a complete decay of summer Arctic sea ice in the coming 
decades. As a result, phytoplankton, micro-algae growing and drifting within seawater, experience increased 
light supply, favorable to photosynthesis. Phytoplankton is central to the Arctic marine ecosystem, because of 
its role as a carbon source to the whole food chain. However, there is low confidence in the capacity of models 
to project Arctic phytoplankton. This is because of large difficulties in simulating nutrient and light supply 
mechanisms, stemming from limits in basic understanding. Here we gather and analyze a large database of 
observations of the sea ice environment from the Northern Hemisphere. Snow depth and melt ponds emerge as 
key drivers of the under-ice light climate. We also evaluate and improve a calculation method for light intensity 
and color used in several ESMs, and largely improve agreement with observations as compared with reference. 
Our results will contribute to lower uncertainties in light climate under sea ice in future ESM projections.
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In the Arctic, phytoplankton is exposed to generally low and highly variable light intensity (Ardyna et al., 2020; 
Hill et al., 2018; Katlein et al., 2019). Solar radiation shows large seasonal variations between polar day and 
night (Berge et al., 2015; Peixoto & Oort, 1992) and is highly reflected by sea ice (Perovich, 2017). Deep snow 
and thick ice increase surface albedo and reduce light intensity under sea ice, while openings in sea ice, melt 
ponds and wet snow reduce albedo and increase transmission (Assmy et al., 2017; Ehn et al., 2011; Grenfell & 
Maykut, 1977; Katlein et al., 2015; Light et al., 2008). As sea ice conditions are highly variable at the meter scale, 
under-ice variations in light intensity span several orders of magnitude (Katlein et al., 2015; Matthes et al., 2020) 
and superimpose on the strong seasonal component (Hill et al., 2018; Katlein et al., 2019). Understanding of light 
under sea ice remains limited, though, and time series of under-ice light intensity can be difficult to interpret (see 
e.g., Arndt et al., 2017; Boles et al., 2020).

Some ESMs suggest variations in light intensity under the ice at large space and time scales (Horvat et al., 2017; 
Stroeve et al., 2021). Yet ESM calculations of under-ice light intensity carry substantial errors due to biased sea 
ice state or intrinsic parameterization problems (Katlein et al., 2019). This can be expected since the parameter-
izations of radiative transfer in sea ice were originally designed with the surface energy balance as a target but 
were never fully evaluated for under-ice light intensity. In addition, ESM parameterizations of radiative transfer 
in sea ice present important variations (Keen et al., 2021, Table 2). A first generic approach (which bases on the 
Apparent Optical Properties or AOPs of sea ice) is to combine albedo empirically calculated from surface state, 
with some representation of light transmission through sea ice, with varying complexity. Indeed, some ESMs 
assume no penetration of solar radiation into the sea ice, whereas several others allow it, but only for zero snow 
depth (Maykut & Untersteiner, 1971). More elaborated empirical representations of light transmission through 
sea ice, accounting for snow depth, sea ice thickness and melt ponds (Grenfell & Maykut, 1977) are implemented 
into the LIM1D process model (Vancoppenolle & Tedesco, 2017), the ice-ocean mitGCM model (Castellani 
et al., 2017) and MPI-ESM (Pedersen et al., 2009). A second approach is the two-stream, four-band scheme of 
Briegleb and Light (2007), based on the Delta-Eddington approximation of the phase function. Snow, ice and 
water inherent optical properties (IOPs) are specified as a function of prescribed microstructure profiles. This 
parameterization is used by the many ESMs using the CICE/Icepack sea ice model (Hunke et al., 2022).

Less documented and investigated are assumptions made in the ocean component on the spectral distribution of 
light at the ocean surface right under sea ice. In the NEMO ocean model (Madec et al., 2022), the spectral distri-
bution of light at the ocean surface is prescribed, without consideration for the presence of sea ice. Yet the light 
spectrum right under sea ice can vary considerably, associated with changes in snow depth and Chlorophyll-a 
(Chl-a) content of sea ice (Mundy et al., 2007; Nomura et al., 2020; Perovich, 2017; Wongpan et al., 2018, 2020).

Benefitting from advances in optical instrumentation, numerous under-ice light observations were performed in 
the Arctic Ocean and other boreal marine waters over the last decade (e.g., Arrigo, 2014; Massicotte et al., 2020; 
Nomura et al., 2020), allowing a highly needed observation-based evaluation of parameterizations of radiative 
transfer in ESM sea-ice components. With such a goal in mind, specifically seeking to improve the NEMO-SI 3 
ice-ocean model (Madec et al., 2022), we question in this work which of the currently used approaches are the 
most appropriate for ESM under-ice light intensity calculations, at large spatial and temporal scales. A fairly large 
number of optical and environmental observations (349 records) were compiled from 4 regions of the Northern 
Hemisphere (2014–2019), and different ESM parameterizations of radiative transfer in sea ice were tested against 
it. The reference NEMO-SI 3 approach, several evolutions of the AOP-based approach described above, and the 
two parameterizations from the CICE/IcePack model were retained.

In Section  2, we present our observational compilation and the retained parameterizations. In Section  3, we 
describe the main features of the observational database and evaluate how the different ESM parametrizations 
capture observed light intensity and spectral variations. Results are discussed in Section 4 and the conclusions 
are given in Section 5.

2. Data and Methods
Our main goal is to evaluate against observations how ESMs represent the under-ice light intensity. To char-
acterize the latter, ESMs generally work with downwelling planar irradiance (W/m 2), often integrated over the 
full solar spectrum (broadband irradiance 𝐴𝐴 𝐴𝐴  , 300–2,800 nm), or split into several spectral bands. Observational 
devices measure irradiance, either broadband or spectrally resolved (𝐴𝐴 𝐴𝐴(𝜆𝜆) , W/m 2/nm).
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To characterize under-ice light intensity, we use transmittance:

𝑇𝑇 = 𝐼𝐼
𝑡𝑡𝑡𝑡∕𝐼𝐼0

. (1)

𝐴𝐴 𝐴𝐴
tr and 𝐴𝐴 𝐴𝐴

0 are the under-ice and above-ice downwelling planar broadband irradiances, respectively.

To characterize the under-ice light spectrum, we use the same energy fraction diagnostics as defined in NEMO 
(Madec et  al.,  2022), namely the spectral-to-visible energy fraction in the red (R, 600–700  nm), green (G, 
500–600 nm), and blue (B, 400–500 nm) bands

𝑓𝑓𝑅𝑅∕𝐺𝐺∕𝐵𝐵 = ∫
𝑅𝑅∕𝐺𝐺∕𝐵𝐵

𝐸𝐸
tr (𝜆𝜆)𝑑𝑑𝜆𝜆∕∫

700 nm

400 nm

𝐸𝐸
tr (𝜆𝜆)𝑑𝑑𝜆𝜆𝑑 (2)

and the non-visible to broadband energy fraction

𝑓𝑓no−vis = 1 − ∫
700 nm

400 nm

𝐸𝐸
tr (𝜆𝜆)𝑑𝑑𝜆𝜆∕𝐼𝐼 tr

, (3)

Where 𝐴𝐴 𝐴𝐴
tr
(𝜆𝜆 ) is the under-ice spectral irradiance. These three diagnostics and how they respond to changes in the 

sea ice environment are compared within observational and ESM frameworks. Below we describe the observa-
tions and ESM approaches used to estimate transmittance.

2.1. Observational Sources and Measurements

We assembled above- and under-ice optical measurements with sea ice environmental observations, summarized 
in Table 1, from a series of field campaigns in four regions of the seasonal sea ice zone in the Northern Hemi-
sphere (see map in Figure 1).

2.1.1. Sampling Sites

The Baffin Bay activities took place in 2015 & 2016 under the auspices of the GreenEdge project. These include 
two landfast sea ice camps, held from April to July 2015/2016 near Qikiqtarjuaq Island, and a cruise onboard 
CCGS Amundsen across the sea ice edge in June–July 2016. GreenEdge involved many other physical and bioge-
ochemical sampling activities (Massicotte et al., 2020; Oziel et al., 2019; Randelhoff et al., 2019).

The SUBICE Chukchi Sea cruise took place in first-year pack ice, in May–June 2014, on the Chukchi Shelf 
(Arrigo, 2014; Selz et al., 2018). As for the GreenEdge campaigns, several physical and biogeochemical meas-
urements were collected.

Table 1 
Summary Description of Observational Campaigns and Measurements: Location and Program Name, Ice Type, Year of Sampling, Total Number of Records (Number 
of Records With Available Chl-a Is Also Given if Different From Total), Ice Thickness (hi), Snow Depth (hs), Ice Chl-a Content (M Chl-a), Transmittance (T), As Well As 
Under-Ice Irradiant Energy Fraction Within Blue (fB), Green (fG), Red (fR) and Non-Visible Wavebands (fno-vis)

Location (Program) Ice Type Year(s)
Records (with 

Chl-a) hi [m] hs [m] M Chl-a [mg/m 2] T 10 −2 fB [%] fG [%] fR [%] fno-vis [%]

Baffin bay 
(GreenEdge)

Fast ice 2015 152 1.21 ± 0.07 0.20 ± 0.11 0.4–35.3 0.6 ± 1.8 46 ± 10 46 ± 6 8 ± 6 15 ± 1

2016 71 (68) 1.28 ± 0.11 0.19 ± 0.14 0.2–8.9 2.3 ± 3.2 43 ± 5 46 ± 3 11 ± 4 15 ± 1

Drift ice 2016 34 (6) 0.72 ± 0.18 0.02 ± 0.04 0.01–0.3 11.7 ± 6.2 42 ± 4 40 ± 2 18 ± 4 16 ± 2

Chukchi Sea 
(SUBICE)

Drift ice 2014 79 1.22 ± 0.19 0.06 ± 0.03 6.2–109.9 6.7 ± 7.5 40 ± 5 44 ± 3 16 ± 2 16 ± 2

Svalbard (OPTIMISM) Fast ice (Stf) 2016 3 0.63 ± 0.08 0.22 ± 0.14 0.3–1.4 0.5 ± 0.3 46 ± 3 40 ± 2 14 ± 6 13 ± 1

Fast ice 
(VMf)

2018 6 0.51 ± 0.12 0.11 ± 0.08 0.6–9.0 0.8 ± 1.0 46 ± 4 40 ± 2 14 ± 5 13 ± 1

Saroma (SLOPE) Fast ice 2019 4 0.49 ± 0.03 0.07 ± 0.01 22.7–37.6 0.3 ± 0.1 16 ± 1 53 ± 1 31 ± 1 8 ± 1

Note. Stf = Storfjorden, VMf = Van Mijen Fjorden.
Mean ± standard deviation is given, except for chl-a for which the range is given.
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Two other locations were sampled in the framework of smaller-scale activities. The Svalbard activities took place 
under the auspices of the OPTIMISM-bio project, on landfast sea ice from two different areas (Van Mijenfjorden 
and Storfjorden), in April, and repeated over 3 years (2016–2018). Nine sampling sessions were completed, three 
per year of sampling.

Landfast sea ice from the saltwater Saroma-ko Lagoon on the Okhotsk Sea coast of Hokkaido (Japan) was 
sampled over four days in February 2019 with the same instrument set up as in Svalbard, under the SLOPE 
project. Other under-ice optical measurements allowed for inter-calibration of our optical instruments with those 
from other research groups (Nomura et al., 2020).

2.1.2. Snow Depth, Ice Thickness, and Melt Ponds

Snow depth is an average of stick-based measurements; ice thickness is retrieved as the average length of extracted 
ice cores. At Svalbard and Saroma sites, snow depth and ice thickness were measured within a meter of the light 
measurement site. At the Baffin Bay and Chukchi Sea sites, they were measured within a few tens of meters of 
the optical site and may not closely characterize the latter.

As melt ponds are deemed important for the nearby under-ice light field (Frey et al., 2011; Massicotte et al., 2018) 
and some model parameterizations include the effects of melt ponds, we strived to get an estimate of pond fraction 
from on-site photography. Pond fraction is set to 5% on the first day of pond appearance, and linearly increases 
up to 25% at the day of last observation, in line with what is classically seen in the Arctic (Perovich et al., 2002).

2.1.3. Chl-a Content From Melted Ice Cores

Chl-a concentration measurements in sea ice are available for 318 of the 349 records. Chl-a was measured by 
fluorometry using standard protocols (Holm-Hansen et  al.,  1965; Lorenzen, 1967; Yentsch & Menzel, 1963) 
from melted then filtered ice core sections. In Baffin Bay and Chukchi Sea, only the bottom 10 cm were sampled, 
whereas in Svalbard and Saroma, full-depth cores were sampled. Volumetric concentrations (in μg/L) were 
converted into chlorophyll-a content (M Chl-a), that is, vertically-integrated values (mg/m 2, Meiners et al., 2012). 

Figure 1. Location of sampling sites (circles) in the 4 different regions: (a) Baffin Bay: red circles = R/V Amundsen cruise stations, yellow circle = Qikiqtarjuaq (Qik) 
land-fast sea ice site, (b) Chukchi Sea, (c) Svalbard (VMf = Van Mijen Fjorden, Stf = Storfjorden), d, Saroma Lagoon. Red stars in panel e depict the location of each 
sampling region.
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As for ice thickness and snow depth, M Chl-a averages several measurements, made within one m of optical meas-
urements in Svalbard and Saroma, and within a few tens of meters in Baffin Bay and Chukchi Sea. This could 
affect how well the Chl-a values characterize the optical measurements, especially if horizontal variability 
(patchiness) is high.

2.1.4. Optical Measurements and Processing

Several types of optical measurements above and under sea ice are available. Depending on the case, broadband 
irradiance, spectral irradiance and seldom spectral radiance (directional) measurements were collected using 
pyranometers, radiometers and spectrophotometers (see technical specifications in Table  2). Above sea ice, 
instruments were typically deployed on tripods, whereas under sea ice, they were attached to profiling systems 
(Nomura et al., 2020; Oziel et al., 2019).

The Baffin Bay and Chukchi sites had C-OPS micro-radiometers (Compact Optical Profiling System, Biospheri-
cal Instruments Inc, Morrow et al., 2010) measuring irradiance in 19 visible and near-UV channels with 26–29 nm 
spectral resolution (Oziel et al., 2019), and deployed above and under sea ice. Profilers vertically scanned the 
upper ∼100 m of the water column under sea ice. Our analysis restricts to measurements performed within 20 cm 
under sea ice.

At Saroma and Svalbard sites (Nomura et al., 2020), above-ice broadband irradiance was measured with a Kipp 
and Zonen CNR4 pyranometer. Under sea ice, an Ocean Optics STS-VIS micro-spectrometer (STS) was deployed 
on the underwater module of the Ice-T buoy (Vivier et  al., 2016), scanning depths between 90 cm and 5 m. 
The STS measures spectral radiance with a spectral resolution of 10 nm over the 350–800 nm range. Radiance 
was converted into irradiance assuming an elliptical distribution, an assumption validated from intercalibration 
with a TriOS RAMSES ACC hyper-spectral radiometer deployed nearby on a few occasions during the Saroma 
campaign (Nomura et al., 2020).

2.1.5. Observation-Based Retrieval of Irradiance, Transmittance and Spectral Energy Fractions

Transmittance and spectral energy fractions were derived from processing optical observations from all instru-
ments at all sites. Raw spectral irradiances were interpolated onto a common 1 nm-resolution grid using a cubic 
spline method, giving 𝐴𝐴 �̃�𝐸(𝜆𝜆) . Above-ice broadband irradiance 𝐴𝐴 𝐴𝐴

0 was measured directly at Svalbard and Saroma 
sites. At the Baffin Bay and Chukchi sites 𝐴𝐴 𝐴𝐴

0 was calculated from above-ice spectral irradiance 𝐴𝐴 𝐸𝐸0(𝜆𝜆) using 

𝐴𝐴 𝐴𝐴
0 = 2.1 × ∫ 700 nm

400 nm
𝐸𝐸0(𝜆𝜆).𝑑𝑑𝜆𝜆, where 2.1 is a visible-to-shortwave conversion factor (Frouin & Pinker,  1995; 

Stroeve et al., 2021). Under-ice irradiance 𝐴𝐴 𝐴𝐴
tr was obtained by integrating under-ice spectral irradiance 𝐴𝐴 𝐸𝐸𝑡𝑡𝑡𝑡(𝜆𝜆) 

over the spectral range of the corresponding instrument. Linear scaling corrections were applied to account for 
the varying spectral span and deployment depth of under-ice instruments.

Transmittance was obtained from the ratio of above- and under-ice irradiances, see Equation 1. Similarly, spectral 
energy fractions 𝐴𝐴 𝐴𝐴no−vis and 𝐴𝐴 𝐴𝐴𝑅𝑅∕𝐺𝐺∕𝐵𝐵 were obtained from Equations 2 and 3, using processed spectral irradiance and 
broadband irradiance data.

Based on an instrument inter-comparison exercise (Nomura et  al.,  2020), we evaluated observational and 
sampling errors of 2 W/m 2 for incoming irradiance and 0.1 W/m 2 for transmitted irradiance. Assuming a typical 
spring-summer value for incoming irradiance (200 W/m 2) and propagating errors in Equation 1, we find the 
relative error on transmittance is less than 10% for transmittance values >5 × 10 −3 (which represents 51% of 

Table 2 
Summary Description of the Optical Instruments Relevant to This Study: Two Slightly Differently Configured C-OPS 
(Compact Optical Profiling System, Biospherical Instruments Inc, Morrow et al., 2010) Radiometer Arrays Used in the 
GreenEdge and SUBICE Programs; As Well As the Kipp and Zonen CNR4 Pyranometer and the Ocean Optics STS-VIS 
Micro-Spectrometer (STS) Used in the OPTIMISM and SLOPE Programs

Instrumen Platform Spectral channels (range) Type Deployment location Sites

C-OPS Profiler 19 (320–875 nm) Irradiance Above/few cm under ice Baffin Bay drift ice

19 (380–875 nm) Baffin Bay fast ice, Chukchi

CNR4 Tripod 1 (300–2800 nm) Irradiance Above ice Saroma, Svalbard

STS Profiler 1024 (350–800 nm) Radiance 0.5–3 m under ice
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the data set). Above transmittance values of 10 −3 (75% of the data set), the error is less than 50%. Below 10 −3, 
transmittance retrievals are considered only indicative, as they suffer from large errors, reaching one order of 
magnitude below 5 × 10 −4.

2.2. Evaluating the ESM Representation of Under-Ice Light Climate

2.2.1. Sea Ice Transmittance Retrieved From ESM Parameterizations of Radiative Transfer

We evaluate several AOP-based parameterizations of shortwave radiation transfer in sea ice designed for ESM 
use, against observation-based transmittance. Transmittance calculations from the selected ESM parameteriza-
tions are summarized in Table 3. More details on the parameterization choices are given hereafter.

Among the selected parameterizations, five use the NEMO (Madec et al., 2022) framework. NEMO calculates 
irradiance at various depths in the ice based on a specification of sea ice AOPs, as about half of CMIP6 ESMs 
(see Table 2 in Keen et al., 2021).

Our starting point is the reference parameterization of NEMO (Fichefet & Morales Maqueda, 1997; Maykut & 
Untersteiner, 1971; Vancoppenolle et al., 2009), referred to as NEMO-0. In this parameterization, snow is consid-
ered opaque, only snow-free ice transmits light and other possible contributors (e.g., melt ponds, ice algae) are 
ignored. Two layers are used to calculate light transmission through bare ice. The uppermost layer is a thin, high 
scattering layer (surface scattering layer, SSL, depth 𝐴𝐴 𝐴𝑜𝑜 ), whereas the lower layer (depth 𝐴𝐴 𝐴 − 𝐴𝑜𝑜 ) is characterized 
by weak exponential attenuation, following Beer-Bouguer-Lambert law. Therefore, under-ice irradiance reads:

𝐼𝐼
𝑡𝑡𝑡𝑡 = 𝑖𝑖𝑜𝑜.𝐼𝐼

0
.(1 − 𝛼𝛼).𝑒𝑒−𝜅𝜅(ℎ−ℎ𝑜𝑜). (4)

𝐴𝐴 𝐴𝐴𝑜𝑜 is the surface transmission parameter describing light transmission through the SSL, 𝐴𝐴 𝐴𝐴 is the surface albedo, 
and κ is the attenuation coefficient (m −1) in the lower ice layer. Reference values for 𝐴𝐴 𝐴𝐴𝑜𝑜 and κ are given in Table 4. 
Surface albedo is parameterized as a function of environmental conditions, which we further develop later.

Table 3 
Transmittance Calculation in the Different Radiative Transfer Parameterizations (See Also Section 2.2.1).

Name Type Optically-active components Tuning Spectral formulation Transmittance calculation

NEMO-0 AOP Ice No Broadband

𝐴𝐴 𝐴𝐴NEMO−0 =

⎧

⎪

⎨

⎪

⎩

𝑖𝑖0(1 − 𝛼𝛼)𝑒𝑒−𝑘𝑘𝑖𝑖(ℎ𝑖𝑖−ℎ0) 𝑖𝑖𝑖𝑖 ℎ𝑠𝑠 = 0

0 𝑖𝑖𝑖𝑖 ℎ𝑠𝑠 > 0

IS AOP Ice, snow Partial ”

𝐴𝐴 𝐴𝐴IS =

⎧

⎪

⎨

⎪

⎩

𝐴𝐴NEMO−0 𝑖𝑖𝑖𝑖 𝑖𝑠𝑠 = 0

𝑖𝑖0(1 − 𝛼𝛼)𝑒𝑒−𝑘𝑘𝑠𝑠(𝑖𝑠𝑠−𝑖0)𝑒𝑒−𝑘𝑘𝑖𝑖,𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑠𝑠 > 0

ISP AOP Ice, snow, ponds Full ” 𝐴𝐴 𝐴𝐴ISP =
(

1 − 𝑓𝑓𝑝𝑝

)

𝐴𝐴𝐼𝐼𝐼𝐼 + 𝑓𝑓𝑝𝑝⋅

(

1 − 𝛼𝛼𝑝𝑝

)

⋅ 𝑖𝑖𝑜𝑜𝑜𝑝𝑝⋅𝑒𝑒
−𝑘𝑘𝑖𝑖ℎ𝑖𝑖

ISPA AOP Ice algae Partial ” 𝐴𝐴 𝐴𝐴ISPA = 𝐴𝐴ISP⋅𝑒𝑒
−𝑎𝑎∗(1+𝑓𝑓det )𝑀𝑀𝐶𝐶𝐶𝐶𝐶−𝑎𝑎

ISdP AOP Ice, snow distribution, ponds Partial ” 𝐴𝐴 𝐴𝐴ISdP = ∫ ∞

0
𝐴𝐴ISP(ℎ𝑠𝑠) ⋅ 𝑔𝑔(ℎ𝑠𝑠) ⋅ 𝑑𝑑ℎ𝑠𝑠

CCSM3 AOP Patchy snow No 1 visible + 1 IR Briegleb et al. (2004)

dEdd IOP Ice, snow, ponds No 1 visible + 3 IR Briegleb and Light (2007)

Note. The NEMO-0 parameterization originates from the NEMO reference and considers light penetration through bare ice only. IS, ISP, ISPA and ISdP improve over 
NEMO-0 by considering extra physics in the calculation of vertical light attenuation (S = snow, P = ponds, A = ice Algae, Sd = Snow depth small-scale Distribution). 
The CCSM3 and dEdd parameterizations are popular options from the CICE/IcePack model (Briegleb and Light, 2007; Briegleb et al., 2004; Hunke et al., 2022). For 
NEMO-0, CCSM3 and dEdd parameterizations, the tuning parameters (io, кi, кs) were taken from reference publications or code releases; for the IS, ISP, ISdP and 
ISPA parameterizations, they were tuned against observed transmittance using the ISP parameterization (see Table 4 for values). Independent variables are the ice 
thickness 𝐴𝐴 (ℎ𝑖𝑖) , snow depth 𝐴𝐴 (ℎ𝑠𝑠) , Chl-a content 𝐴𝐴

(

𝑀𝑀
𝐶𝐶𝐶𝐶𝐶−𝑎𝑎

)

 and pond fraction 𝐴𝐴
(

𝑓𝑓𝑝𝑝

)

 . The surface albedo 𝐴𝐴 (𝛼𝛼) is calculated from 𝐴𝐴 𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝑠𝑠 with the parameterization of Shine 
and Henderson-Sellers (1985). Constant parameters are 𝐴𝐴 𝐴𝐴𝑝𝑝 = 0.27 the pond albedo (Lecomte et al., 2015), 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜 = 0.75 the surface transmission parameter for ponds, 
corresponding to 20 cm of water (assumed as mean pond depth), 𝐴𝐴 𝐴𝑜𝑜 , the surface layer thickness (3 cm for snow and 10 cm for sea ice), 𝐴𝐴 𝐴𝐴

∗ = 0.035m−1 per (mg Chl-a 
/ m 3), the specific absorption coefficient of Chl-a (Smith et al. 1988), 𝐴𝐴 𝐴𝐴

det
= 20% , an assumed optical contribution of detrital matter. 𝐴𝐴 𝐴𝐴(ℎ𝑠𝑠) is an idealized snow depth 

distribution, uniform between zero and twice the mean value. The tuning parameters are 𝐴𝐴 𝐴𝐴𝑜𝑜 the surface transmission coefficient and 𝐴𝐴 𝐴𝐴𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑠𝑠 , the attenuation coefficients 
for sea ice and snow.
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Key drivers of sea ice transmittance, namely snow and melt ponds were iden-
tified during analysis. They are missing from the NEMO-0 parameterization 
and were introduced separately. A first modified parameterization (termed 
IS) introduces light transmission through snow, using an exponential atten-
uation approach. In snow, as in other natural media such as seawater or sea 
ice, exponential attenuation is an imperfect representation of reality. Devia-
tions from exponential behavior would be strongest near the air-snow inter-
face, due to the proximity of a boundary and to rapid changes in IOPs with 
depth. Deep enough in the medium, however, IOPs are more homogenous, 
and an asymptotic exponential regime is reached (Mobley, 2022). Single- and 
two-layer exponential approaches were tested at the tuning stage. The series 
of experiments aiming at tuning simulated transmittance against observations 
(see Section 2.2.3) suggests that, in wet snow, best performance is achieved 
using a two-layer approach, with a thin surface layer (ho = 3 cm, io = 0.45) 
and a lower-attenuation layer deeper in the snow (κs = 5 m −1). By contrast, 
for dry snow, we found a single-layer approach (κs = 7 m −1) performs best.

In the ISP parameterization, in addition to snow, melt ponds are considered. Calculated under-ice irradiance is 
the sum of ponded ice and pond-free ice contributions, weighted by pond fraction. Irradiance under pond-free ice 
is parameterized exactly as in the IS parameterization. Under ponded ice, irradiance is similarly formulated, but 
a specific (expectedly larger) surface transmission parameter is used and no SSL is considered. Within an ESM, 
pond depth could be explicitly considered. Here, as we rely upon pictures to characterize melt ponds, we avoided 
adding extra uncertainty from ill-known pond depth.

Two extra modifications were added to the ISP parameterization and tested. The first, ISPA, takes ice algae into 
account. An idealized vertical profile of Chl-a is considered by uniformly distributing the observed Chl-a content 
over the bottom 10 cm of the ice and assuming no Chl-a elsewhere. We use the value of Smith et al. (1988) for the 
specific absorption coefficient of ice algae a* = 0.035 m 2/mg Chl-a and assume that light attenuation increases 
due to detritus by 20% of the Chl-a contribution (Arrigo et al., 1991). The second parameterization, ISdP consid-
ers the effect of snow depth variations at small horizontal scales. Transmitted irradiance integrates contributions 
from the different snow depths, assuming a uniform snow depth distribution between 0 and twice the mean value. 
The assumption of uniform distribution closely mimics the effect of more complex distributions (e.g., gamma 
distribution, Abraham et al., 2015).

In order to put the evaluated parameterizations into a broader context, we also consider two widely used CICE/
IcePack parameterizations (Hunke et al., 2022). The first one is the 2-band AOP-based, CCSM3 parameterization 
referred to as CCSM3 (Briegleb et al., 2004). The other (dEdd) is the 3-band, two-stream, IOP-based parameter-
ization of Briegleb and Light (2007), using a Delta-Eddington approximation of the phase function.

2.2.2. Comparison Protocol of Observation- and ESM-Based Sea Ice Transmittance

We compared observation- and ESM-based transmittances as closely as possible. This involves the specification 
of the relevant environmental characteristics, careful consideration for surface albedo and an appropriate choice 
of model parameters, which we now describe.

For each observational transmittance value, a corresponding ESM-based value was obtained from each parame-
terization by applying environmental characteristics from the corresponding sampling location and time. These 
are observed ice thickness, air temperature and cloud fraction, and, optionally, snow depth, pond fraction and 
Chl-a content. Surface temperature and cloud fraction are required because the state of the surface (melting or 
not) and the type of light conditions (direct or diffuse light) affect AOPs, namely io, κ, and α. Surface temperature 
is well approximated by the near-surface (∼1 m) air temperature collected in situ. Cloud fraction is inferred from 
on-site pictures and/or logbooks and assigned 0 or 1 whether clear or overcast conditions were seen or reported.

For surface albedo, special treatment was applied. The NEMO albedo parameterization is used, rather than obser-
vations. This is because much fewer broadband albedo (N = 32) than transmittance (N = 349) measurements are 
available in our data set. The NEMO reference albedo parameterization (Shine & Henderson-Sellers, 1985) calcu-
lates surface albedo as an empirical function of snow depth, ice thickness, surface temperature and cloud fraction, 
with pivotal albedo values calibrated from observational studies (Brandt et al., 2005; Grenfell & Perovich, 2004). 

Table 4 
Values of the Tuning Parameters for the Different AOP-Based 
Parameterizations

NEMO-0 IS, ISP, ISPA, ISdP CCSM3

hs > 0 hs = 0 hs > 0 hs = 0 hs > 0 hs = 0

dry wet

io n.a. 0.35–0.53 a 1 0.45 0.26 n.a. 0.7 d

ho (cm) n.a. 10 a 0 3 c 10 a n.a. 10 a

κs (m −1) n.a. n.a. 7 5 n.a. n.a. n.a.

κi (m −1) n.a. 1 b 1 1 1 n.a. 1.4 d

 aThe io range reflects variations in cloud fraction (Grenfell and 
Maykut, 1977).  bLight et al. (2008).  cPerovich (2007).  dBriegleb et al. (2004).
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This parameterization was tested over the 32 records with measured albedo and environmental parameters. We 
find the parameterized albedo is biased low, by 0.035 ± 0.07 (see Figure S1 in Supporting Information S1), 
implying that transmittance is underestimated on average by 3.7 × 10 −3 (see Table S1 in Supporting Informa-
tion S1). Using parameterized rather than observed albedo also allows for the evaluation of the full set of radiative 
transfer calculations in NEMO, and consistent comparison with CCSM3 and dEdd parameterizations.

The CCSM3 and dEdd parameterizations were taken directly from the original FORTRAN routines (Hunke 
et al., 2022), and fed with observed snow depth, ice thickness, cloud fraction and air temperature as inputs. We 
run the calculation routines with 100 W/m 2 as an input for above-ice downwelling irradiance 𝐴𝐴 𝐴𝐴

0 . The correspond-
ing transmittance was obtained by dividing the calculated under-ice irradiance 𝐴𝐴 𝐴𝐴

tr by 𝐴𝐴 𝐴𝐴
0 , and verifiably does not 

depend on the arbitrary choice of 100 W/m 2 for the 𝐴𝐴 𝐴𝐴
0 value. The CCSM3 routine includes its own, dual-band 

albedo parameterization, empirically specifying the albedo as a function of snow depth, ice thickness and surface 
temperature; whereas in the dEdd routine, albedo is not empirically imposed but diagnostically computed.

2.2.3. Choice and Tuning of Parameters in ESM Parameterizations

Input parameters for all parameterizations are carefully selected (see Table 4). For NEMO-0, CCSM3 and dEdd, 
we apply the default choices in the published NEMO and CICE/IcePack code references. For the newly developed 
parameterizations (IS, ISP, ISdP, and ISPA), we rely upon tuning of the ISP parameterization against observed 
transmittance, retaining surface transmission (𝐴𝐴 𝐴𝐴𝑜𝑜 ) and attenuation (𝐴𝐴 𝐴𝐴 ) coefficients as free parameters (see Table 4 
for final values and Appendix A for details). We assume 𝐴𝐴 𝐴𝐴𝑜𝑜 and 𝐴𝐴 𝐴𝐴 take specific values for three different surface 
types: dry snow, wet snow and bare ice. The retained 𝐴𝐴 𝐴𝐴𝑜𝑜 and 𝐴𝐴 𝐴𝐴 values compromise between low transmittance 
mean bias and standard deviation of error.

A final remark on parameters: NEMO-0 uses values for the surface transmission parameter (io) originally from 
Grenfell and Maykut  (1977), but in a context inconsistent with the original definition. Indeed, Grenfell and 
Maykut applied io to incident solar radiation, whereas here (as in all sea ice models), io applies to net solar radi-
ation. Such practice spuriously underestimates transmittance by (1-α) in the NEMO-0 parameterization, but this 
is not obviously influential here, as our data set has only a few bare ice records. Other parameterizations do not 
suffer from that issue since io is a tuning parameter.

2.2.4. NEMO Assumptions on the Under-Ice Light Spectrum and Their Evaluation

NEMO, as possibly other ocean models, simplifies the spectral distribution of shortwave radiation at the ocean 
surface without distinguishing between ice-covered and ice-free waters. Downwelling shortwave irradiance right 
under the ocean surface is divided into one non-visible (near-IR and UV) and three visible (RGB) spectral bands 
(Lengaigne et al., 2007). The distribution of shortwave energy in the spectral bands is prescribed. A fraction 

𝐴𝐴 𝐴𝐴no−vis = 58% of the total (i.e., broadband) energy is assigned to the non-visible band and absorbed in the upper 
∼50 cm of the ocean. The remainder of the energy (42%) is equally distributed into the three R/G/B bands, that
is, 𝐴𝐴 𝐴𝐴𝑅𝑅∕𝐺𝐺∕𝐵𝐵 = 1∕3 . Energy in these three bands then attenuates with depth in the water using band-specific atten-
uation coefficients. This approach emulates the 61-band bio-optical model of Morel (1988), itself derived from 
optical measurements from low and mid-latitude oceans. In order to evaluate the NEMO assumptions on the 
shortwave energy partitioning in ice-covered waters, 𝐴𝐴 𝐴𝐴no−vis and 𝐴𝐴 𝐴𝐴𝑅𝑅∕𝐺𝐺∕𝐵𝐵 were calculated from optical observations 
and compared with the default NEMO values.

3. Results
We first describe environmental conditions, in particular the characteristics of the sea ice cover, at the different 
observation sites. We then focus on the transmittance of the snow-ice system from observations and parameteri-
zations. We finally discuss the spectral distribution of under-ice irradiance and evaluate the corresponding ESM 
assumptions.

3.1. Environmental Description of the Sites

Observations are exclusively from the Northern Hemisphere. 73% of the records are from Baffin Bay first-year 
ice, most of which (64% of the total) come from landfast sea ice. 23% of the records document summer first-year 
pack ice from the Chukchi Sea ice edge region and less than 5% of the records are from Svalbard and Saroma 
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Lake (see Table 1). Despite a seasonal bias toward spring and early summer, wide-ranging variations in ice thick-
ness (0.4–1.7 m), snow depth (0–0.5 m) and Chl-a content in sea ice (0–110 mg/m 2) are covered.

Baffin Bay pack ice, Svalbard and Saroma records come from thin first-year ice (50–70 cm). Records from other 
regions come from thicker ice (about 120 cm). Snow is generally on the thin end of the range (between 0 and 
20 cm), with the highest values in Baffin Bay and Storfjorden landfast sea ice. Chl-a content in sea ice (M Chl-a) 
features large variations in space and time. The lowest M Chl-a values (<0.1 mg/m 2) are from early spring Baffin 
Bay pack ice, whereas the largest values (>20 mg/m 2) correspond to the Chukchi Sea and Saroma records. Chuk-
chi Sea records largely differ from the other records in terms of M Chl-a, with much larger and more variable values 
(44.7 ± 27.3 mg/m 2) than the rest of the data set (11.1 ± 9.6 mg/m 2), and lower snow depth (6 ± 3 cm for Chukchi 
Sea against 19 ± 14 cm for other records).

Our data set documents the late spring/early summer transition (Figure 2), with a rapid decrease in snow depth, a 
slow decrease in ice thickness, an overall increase in under-ice irradiance and the development of ice algae over 
spring and early summer, with highest algal activity from mid-May to mid-June. Several differences can be found 
between regions. The timing of melt onset and melt ponding onset varies among sites and years of sampling: in 
2014, in the Chukchi Sea, the melt season started on June 2; whereas in Baffin Bay, in 2015, melting started on 
May 25, and in 2016 on May 20. Both Saroma and Svalbard campaigns are too early in the season for surface 
melting and pond development. Because of late snowfall events and northerly winds during the Chukchi Sea 
campaign, melt onset occurred later than usual in this region and no melt ponds were reported. In Baffin Bay, 
melt ponds appeared on June 22 in 2015 and on June 15 in 2016.

During the Chukchi Sea cruise, snow depth seems unimpacted by melt onset. This can be due to the already thin 
snow at the start of activities or to a sampling artifact. In both 2015 and 2016 Baffin Bay campaigns, snow depth 
starts decreasing right after melt onset, whereas ice starts thinning shortly after melt ponding onset.

3.2. Under-Ice Irradiance

3.2.1. Physical Drivers of Under-Ice Irradiance

Now we analyze under-ice irradiance and its potential drivers. Observation-based transmittance is log-normally 
distributed and spans three orders of magnitude (from 2.1 × 10 −4 to 0.31, median 6.3 × 10 −3), with an overall 

Figure 2. Time series of compiled observations of (a) ice thickness, (b) snow depth, (c) Chl-a content in sea ice, and (d) 
transmittance. Colors highlight three key periods: dry snow, wet snow/ice and melt ponds, whereas symbols refer to the 
different sampling regions. Gray shading is applied where relative measurement errors on transmittance exceed 50% (see 
Section 2.1.5).



Journal of Geophysical Research: Oceans

LEBRUN ET AL.

10.1029/2021JC018161

10 of 23

increase with time of the year. Relationships between the logarithm of transmittance and environmental param-
eters (snow depth, pond fraction, ice thickness, integrated Chl-a content) were analyzed visually (see Figure 3), 
and quantitatively within a linear regression model framework (Table 5). All p-values (p) are much smaller than 
0.05.

Snow depth explains the largest fraction of 𝐴𝐴 log(𝑇𝑇 ) variance (𝐴𝐴 𝐴𝐴
2 = 0.73 , see Figure  3a). Pond fraction also 

explains a significant part of 𝐴𝐴 log(𝑇𝑇 ) variations 𝐴𝐴
(

𝑅𝑅
2 = 0.28

)

 , and a larger part for records with non-zero pond 
fraction 𝐴𝐴

(

𝑅𝑅
2 = 0.36, 𝑁𝑁 = 65

)

 .

By comparison, variations in ice thickness (𝐴𝐴 𝐴𝐴
2 = 0.09 ) and integrated chlorophyll (𝐴𝐴 𝐴𝐴

2 = 0.05 ) explain a small 
fraction of the variance 𝐴𝐴 log(𝑇𝑇 ) , when the entire data set is considered. However, restricting the analysis to thin-
snow records (𝐴𝐴 𝐴𝑠𝑠 < 5 cm,N = 84), the strength of the 𝐴𝐴 log(𝑇𝑇 ) — 𝐴𝐴 𝐴𝑖𝑖 relationship increases 𝐴𝐴

(

𝑅𝑅
2 = 0.31

)

 .

Chukchi Sea (SUBICE) records largely differ from other records in terms of the 𝐴𝐴 log(𝑇𝑇 ) — 𝐴𝐴 𝐴𝐴
𝐶𝐶𝐶𝐶𝐶−𝑎𝑎 relation-

ship.  For SUBICE records, the latter is weak and insignificant (𝐴𝐴 𝐴𝐴
2 = 0.005 𝑝𝑝 = 0.5, 𝑁𝑁 = 79 ). By contrast, 

when the SUBICE records are excluded (𝐴𝐴 𝐴𝐴 = 239 ), the 𝐴𝐴 log(𝑇𝑇 ) — 𝐴𝐴 𝐴𝐴
𝐶𝐶𝐶𝐶𝐶−𝑎𝑎 relationship is much stronger 

Figure 3. Observed transmittance versus a, snow depth, (b) ice thickness and (c) Chl-a content in sea ice. In panel a, color relates to ice thickness, whereas in panels 
(b and c) color indicates snow depth. In all panels, dots corresponding to reported melt ponds are red. In panel (c) records from the SUBICE campaign (Chukchi 
Sea), are colored in gray, because they are deemed non-representative of the optical observation sites (see also Section 3.2.1). Gray shading is applied where relative 
measurement errors on transmittance exceed 50% (see Section 2.1.5).

Table 5 
Summary Statistics of Linear Regression Models, Relating the Observed Optical Diagnostics (Predictands, Columns) to the Sea Ice Environmental Parameters 
(Predictors, Rows)

Predictand log (T) fno-vis fR fG fB

Predictor (X) Subset # R 2 p-value slope R 2 p-value R 2 p-value R 2 p-value R 2 p-value

Snow depth All 349 0.73 <10 −98 −5.87 0.19 <10 −16 0.50 <10 −53 0.090 <10 −7 0.14 <10 −11

Ice thickness All 349 0.09 <10 −7 −1.15 0.001 0.517 0.14 <10 −12 0.064 <10 −5 0.02 0.008

Integrated Chl-a All 318 0.05 <10 −4 0.0092 0.024 0.004 0.006 0.1 0.003 0.3 0.0008 0.6

Pond fraction All 349 0.28 <10 -25 7.49 0.09 <10 −8 0.17 <10 −14 0.058 <10 −5 0.030 0.001

Snow depth hs > 1 cm 326 0.71 <10 −87 −5.81 0.235 <10 −19 0.49 <10 –48 0.07 <10 −5 0.14 <10 −11

Ice thickness hs < 5 cm 84 0.31 <10 −8 −0.71 0.0003 0.86 0.19 <10 −4 0.24 <10 −5 0.0003 0.9

Integrated Chl-a no SUBICE 239 0.27 <10 −17 −0.043 0.048 <10 −3 0.21 <10 −14 0.03 0.004 0.05 <10 −3

Pond fraction fp > 0 65 0.36 <10 −6 3.52 0.06 0.04 0.047 0.08 0.23 <10 −4 0.05 0.05

Note. Optical diagnostics are the logarithm of transmittance and the under-ice light energy fractions in spectral bands. Models were regressed from the whole 
observational database (4 uppermost rows) or specific subsets of it (4 lowermost rows). Assuming transmittance T is exponentially related to the environmental 
variables x, T  =  A.e (κ.x), the logarithm of transmittance is log T  =  log A  +  κ.x, hence the slope of the linear regression corresponds to a bulk attenuation 
coefficient. Bold numbers indicate significant correlations (p<0.05).
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(𝐴𝐴 𝐴𝐴
2 = 0.27, 𝑝𝑝 𝑝 10−17, see Figure 3c). In Section 4, we discuss why we consider this is due to high Chl-a patchi-

ness and a spatial mismatch between coring and optical sites in our SUBICE data set.

The slope of a linear regression between 𝐴𝐴 log(𝑇𝑇 ) and environmental parameters corresponds to a bulk attenuation 
coefficient (see Table 5 for details). For snow depth, we find bulk attenuation coefficients of 5.81 or 5.87 m −1, 
whether all records or only those with 𝐴𝐴 𝐴𝑠𝑠 > 1  cm are considered. For ice thickness, we get an attenuation coef-
ficient of 0.71 m −1 when considering records with less than 5 cm of snow. When all 349 records are considered, 
we get a higher value (1.15 m −1). For 𝐴𝐴 𝐴𝐴

𝐶𝐶𝐶𝐶𝐶−𝑎𝑎 , we find a rather weakly positive slope of 0.0092 m 2/mg Chl-a if 
all records (i.e., including SUBICE) with available Chl-a (N = 318) are considered. This would imply an increase 
in transmittance with Chl-a content, opposite to expectation. Without SUBICE records, the slope is negative 
(−0.043 m 2/mg Chl-a), more conform to expectation. Finally, the slope of the relationship between 𝐴𝐴 log10(𝑇𝑇 ) and 
fp is 7.5 or 3.5 whether we consider all records or only those with non-zero pond fraction.

The Baffin Bay and Chukchi Sea records are somehow inconsistent in terms of seasonal evolution of trans-
mittance. A rapid increase in transmittance around melt onset is seen in Baffin Bay landfast sea ice records 
(Figure 2d) associated with an overall reduction in snow depth (Figure 2b) and a change in snow physical prop-
erties due to melting. In Chukchi Sea pack ice, however, the transmittance is already in the high range by the 
second half of May, with no remarkable increase after the detected melt onset, consistent with the stable snow 
depth after melt onset at this site.

3.2.2. Evaluation of Model Transmittance With Obsermodel Transmittance With Observations

In Figures  4–6 the transmittance calculated from the different radiative transfer parameterizations is plotted 
against observational values. The NEMO reference parameterization assumes non-zero transmittance only for 
zero snow depth. Therefore, only the 19 records with zero snow depth have non-zero transmittance and show up 
in the log-log plot used (see Figure 4). Observations show a quite more nuanced picture than the parameterization 
with values ranging over 10 −4 to 10 −1. Systematic errors in NEMO-0 lead to a large, negative transmittance bias 
(MBE ± STD = −0.03 ± 0.06), with the largest amplitude among all evaluated parameterizations.

Considering snow and ponds improves the consistency between calculated and observed transmittance, giving 
much lower mean bias in the IS parameterization (MBE ± STDE = −4.5 𝐴𝐴 ×  10 −3 ± 4.5 𝐴𝐴 ×  10 −2, Figure 4b) and in 
ISP (−1,5 𝐴𝐴 ×  10 −4 ± 4.3 𝐴𝐴 ×  10 −2, Figure 4c). The ISP statistics are the best we could achieve, since ISP was used 
for tuning transmittance against observations, in a semi-automated manner (see Section 2.2.3 and Appendix A). 
However, regardless of the parameterization used and despite tuning, a large dispersion around the y = x line 
remains (i.e., STDE ∼ 0.04), and more so for transmittance values below 10 −2, which correspond to deep snow. 
The largest systematic errors are also found for deep snow, for which all parameterizations tend to underestimate 
transmittance by about one order of magnitude.

Figure 4. Calculated (TCAL) versus observed (TOBS) transmittance for (a) NEMO-0 (b) IS and (c) ISP parameterizations. 
NEMO-0 considers ice thickness only, whereas IS adds the effect of snow and ISP the effect of snow and ponds. Colors and 
symbols highlight different surface types. Because snow transmittance is zero in NEMO-0, records with non-zero snow depth 
do not appear in panel a. Numbers at the bottom right corner of each panel are calculated minus observed transmittance mean 
bias error ± standard deviation. Gray shading is applied where relative measurement errors on transmittance exceed 50% (see 
Section 2.1.5).
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We now evaluate parameterizations more elaborated than ISP.  We first consider the ISPA parameterization, 
which includes the effects of light absorption by Chl-a in sea ice (Figure 5a). Note that only records with a Chl-a 
measurement are retained in this analysis. ISPA gives systematically lower transmittance than ISP, with largest 
impact for the largest Chl-a values. ISPA has measurably better error statistics than ISP, but the differences are 
small, because records with high Chl-a also have low transmittance. The mean transmittance bias to observation 
is lower in ISPA (−8.9 × 10 −4) than in ISP (1.2 × 10 −3), but STDE is slightly higher in ISPA (4.4 × 10 −2) than 
in ISP (4.3 × 10 −2). SUBICE records with a weak relationship between Chl-a and transmittance could influence 
the results. Excluding the former, all statistics improve: absolute mean bias is lower in ISPA (1.07 × 10 −2) than in 
ISP (1.14 × 10 −2); STDE is now also smaller in ISPA (2.11 × 10 −2) than in ISP (2.16 × 10 −2); and the R 2 between 
observed and calculated transmittance increases, from 0.693 to 0.704.

Second, in the ISdP parameterization, the effects of small-scale snow depth horizontal variations were explored. 
ISdP calculates the under-ice light intensity with snow depth uniformly distributed from zero and twice the 

Figure 5. Calculated (TCAL) versus observed (TOBS) transmittance for the ISPA and ISdP parameterizations. ISPA (a) 
considers the effects of ice algae. ISdP (b) considers the horizontal distribution of snow depth. In both (a, b) results from 
ISP are given for reference and numbers at the bottom right corner indicate calculated minus observed transmittance (mean 
bias error ± standard deviation). In panel (a), gray symbols depict Chukchi Sea (SUBICE) records; gray numbers correspond 
to all records with available Chl-a measurements including SUBICE records (N = 318), and colored numbers to the same 
subset but excluding SUBICE records (N = 239). In panel (b) numbers are computed with the whole data set (N = 349). Gray 
shading is applied where relative measurement errors on transmittance exceed 50% (see Section 2.1.5).

Figure 6. Calculated (TCAL) versus observed (TOBS) transmittance for (a) the CCSM3 parameterization and (b) the 2-stream 
Delta-Eddington method (dEdd). Data is split according to surface type. Calculated minus observed transmittance mean bias 
error ± standard deviation are given at the bottom right of each panel. Gray shading is applied where relative measurement 
errors on transmittance exceed 50% (see Section 2.1.5).
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mean. ISdP assumes thin snow is present even when snow is deep on average, which increases the lowest trans-
mittances by up to an order of magnitude. This has a remarkable effect on the mean bias (−1.53 × 10 −4 in ISP 
and 6.22 × 10 −3 in ISdP) and reinforces the existing bias toward the overestimation of low transmittance values.

Two other radiative transfer parameterizations used in ESMs (CCSM3 and dEdd) have also been evaluated using 
the same framework (Figure 6). Both parameterizations were not tuned to the observations like the ISP param-
eterization (and IS, to a lesser extent). The absence of tuning most likely explains why the bias is >10 −2 for 
CCSM3 and dEdd, against >10 −4 for ISP (Table 6). By contrast, the three parameterizations are much closer in 
terms of STDE (between 4.3 and 5.3 × 10 −2).

Finally, for all parameterizations, the bias is 2–10 times higher on average and errors are more variable (STDE is 
2–3.5 times higher) in pack ice than in landfast ice.

3.3. Spectral Distribution of Downwelling Shortwave Radiation Under Sea Ice

We now evaluate the NEMO assumptions regarding the spectral distribution of downwelling shortwave radiation 
under sea ice.

First, the fraction of non-visible to total shortwave energy, averaged over all observations, is fno-vis = 0.15 ± 0.016, 
which is much lower than 0.58, the reference NEMO value for near-surface ice-free waters (Table 1, Figure 7). Of 
this non-visible light, ∼30% is IR whereas ∼70% is ultra-violet (UV), according to Baffin Bay pack ice records, 
which have the widest wavelength coverage (320–875 nm). There are variations in fno-vis that can be partly attrib-
uted to environmental parameters (see Table 5), mostly due to variations in IR absorption. fno-vis decreases with 
snow depth (R 2 = 0.19, p < 10 −16): mean fno-vis is 0.162 where hs ≤ 5 cm and 0.152 for higher snow depth values. 
More melt ponds increase fno-vis, which is higher under ponded ice (0.163) than with no ponds (0.152). fno-vis is also 
larger under overcast skies (0.154) than under clear skies (0.149). All these differences conform to expectation 
but are small, corresponding to a few tenths of watts per square meter at most.

Second, energy fractions in RGB bands are less even than in open water, with a shift of energy toward blue 
wavelengths: fB = 0.43 ± 0.08, fG = 0.45 ± 0.05 and fR = 0.12 ± 0.07 (Figures 7a and 7b). Variations around 
the mean are smaller than the mean, and somehow larger for blue and red than for green bands. Variations in 
fR can largely be attributed to snow depth (R 2 = 0.50); to a lesser extent to pond fraction (R  2 = 0.17) and ice 
thickness (R 2 = 0.14). Ignoring SUBICE records, one finds M Chl-a also explains a large part of the variability in fR 

Table 6 
Performance Statistics from the ISP, CCSM3 and dEdd Parameterizations

# ISP (10 −2) CCSM3 (10 −2) dEdd (10 −2)

All 349 −0.01 ± 4.3 −2.64 ± 5.3 −2.16 ± 4.9

Dry snow 168 −0.04 ± 4.5 −2.15 ± 5.0 −1.93 ± 4.7

Wet snow 110 −0.001 ± 4.0 −1.32 ± 4.4 −0.70 ± 4.3

Ponded ice 65 0.12 ± 4.6 −6.07 ± 5.9 −5.17 ± 5.4

Bare ice 6 −1.15 ± 3.1 −3.59 ± 3.0 −3.06 ± 3.3

Drift ice 113 −2.48 ± 6.5 −6.82 ± 7.2 −5.91 ± 6.9

Fast ice 236 1.16 ± 1.8 −0.64 ± 2.0 −0.37 ± 1.9

Baffin Bay 2015 (fast) 152 0.91 ± 1.1 −0.36 ± 1.6 −0.05 ± 1.5

Baffin Bay 2016 (fast) 71 0.78 ± 1.0 −1.42 ± 2.6 −1.15 ± 2.4

Baffin Bay 2016 (drift) 34 −1.36 ± 5.7 −8.21 ± 6.6 −6.91 ± 6.2

Chukchi Sea (drift) 79 −2.97 ± 6.8 −6.22 ± 7.4 −5.47 ± 7.2

Van Mijen Fjorden (fast) 6 6.69 ± 5.1 0.04 ± 0.7 0.06 ± 0.5

Storfjorden (fast) 3 3.35 ± 4.5 −0.04 ± 0.5 −0.23 ± 0.5

Saroma (fast) 4 6.14 ± 1.2 0.57 ± 0.13 0.21 ± 0.1

Note. Mean bias error (MBE) ± standard deviation of error (STDE), calculated minus observed. Calculations were performed 
for several subsets of the observational compilation, splitting according to surface type, ice type, and observation program.
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(R 2 = 0.21). The red fraction decreases with snow depth: fR = 0.17 for records with hs ≤ 5 cm and 0.10 otherwise 
(Figures 7c, Table 5). This is consistent with more absorption at larger wavelengths by snow (Perovich, 1996). 
Linear regressions between fB or fG and environmental parameters are weaker and less significant (Table 5).

The NEMO representation of the spectral distribution of downwelling shortwave irradiance under sea ice, based 
on constant values derived from open water conditions, can easily be improved. A straightforward approach 
is to replace the reference values for spectral energy fraction parameters with under-ice mean values, that is, 
fno-vis = 0.15, fB = 0.43, fG = 0.45, and fR = 0.12. A more elaborated approach can reproduce the essential changes 
in R-G-B fractions in response to snow depth changes (see Figure 7e). Imposing that fractions sum to one, we 
propose an exponential fit with snow depth for red fraction, a constant value for green fraction, and the residual 
for blue fraction, giving:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓𝑓𝑅𝑅 = 0.21𝑒𝑒(−4.39ℎ𝑠𝑠),

𝑓𝑓𝐺𝐺 = 0.45,

𝑓𝑓𝐵𝐵 = 1 − 𝑓𝑓𝑅𝑅 − 𝑓𝑓𝐺𝐺.

(5)

The exponential fit for snow depth captures more than half of the variance in fR (R 2 = 0.504), which is slightly 
better than a linear fit (R 2 = 0.496). Using Equation 5 reduces the standard deviation of error for RGB fractions: 
STDE is 0.026 for fR (instead of 0.034 for constant fR) and 0.052 for fB (instead of 0.055). Approaches are identical 
for fG, giving STDE = 0.030.

4. Discussion
4.1. Observational Compilation Is Robust and Representative of Arctic Conditions

In this work, several ESM parametrizations of radiative transfer in sea ice were evaluated using a compilation 
of optical and environmental observations from northern hemisphere sea ice field surveys. We argue that this 
compilation is robust and representative of Arctic conditions.

Variations in light intensity under the ice in response to environmental changes are consistent with physi-
cal expectations and previous work. Mean observed sea ice transmittance of 3.4 ± 5.8 × 10 −2 compares with 
4.3 ± 2.2 × 10 −2 reported by Katlein et al. (2019) from 35,642 Arctic records. Distribution is log-normal, reflect-
ing an exponential dependence on normally-distributed predictors. Three-quarters of variations in the log of 
transmittance come from snow depth, consistently with Baltic Sea (Arst et al., 2006; Kari et al., 2020) and Arctic 

Figure 7. (a, b) Probability histograms of energy fractions in red (fR), green (fG) and blue (fB) bands relative to total visible; and in non-visible band relative to total 
shortwave (fno-vis, see Section 2 for definitions), for all records (color) and records with snow deeper than 5 cm (dots). Numbers refer to mean ± standard deviation over 
the whole data set. Bin width is 0.1 for fR, fG, and fB; and 0.02 for fno-vis. (c) fR, fG, and fB versus snow depth from all observational records (dots, stars and triangles), 
and from the proposed parameterization (Equation 5, dotted lines). Calculated minus observed standard deviation of absolute error (STDE) is given for each waveband 
along the corresponding curve.
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(Anhaus et al., 2021) observations, indicating an important role for snow in the light intensity under the sea ice. 
Other environmental parameters (melt ponds, ice thickness and Chl-a in sea ice) have detectable effects, consist-
ent with previous Arctic work (see e.g., Frey et al., 2011; Katlein et al., 2015; Mundy et al., 2007), but play a 
role at specific times of the year. That transmittance decreases with snow depth, ice thickness and Chl-a content, 
and increases with melt pond fraction is consistent with state-of-the-art radiative transfer physics (see e.g., Light 
et al., 2008; Perovich, 1996).

Observation-based bulk attenuation coefficients fall in the literature range. κs = 5.9 ± 0.19 m −1 lies in the lower 
part of the 3–30 m −1 range suggested by Perovich  (2007). κi = 0.71 ± 0.12 m −1 is obtained when consider-
ing records with less than 5 cm snow, which is consistent with Arctic summer ice values of 0.6 and 0.8 m −1, 
respectively observed for bare and ponded ice (Light et al., 2008). When all 349 records are considered, we get 
a higher value (1.15 ± 0.20 m −1), consistent with 1.12 ± 0.19 m −1 reported from robust Arctic FY ice recently 
reported by Veyssière et al. (2022). For Chl-a specific attenuation, we get 0.043 ± 0.005 m 2/mg Chl-a, leaving 
SUBICE records aside. For a consistent comparison with the ISPA framework, a 20% contribution of detritus 
to attenuation must be considered (see Table 4), giving a* = 0.036 ± 0.004 m 2/mg Chl-a, which is consistent 
with a* = 0.035 m 2/mg Chl-a from Smith et al. (1988) but >4 times higher than the value of a* = 0.008 m 2/
mg Chl-a derived from Arrigo et al. (1991). Finally, our best estimate for the slope of the relationship between 

𝐴𝐴 log10(𝑇𝑇 ) and fp is 3.5, implying a one-order-of-magnitude increase in transmittance between bare ice and 20% 
melt pond coverage, consistent with Frey et al. (2011). Note that the observation-based attenuation coefficients 
differ from the values resulting from tuning the ISP parametrization (Table 4). Observation-based values apply 
to a single-exponential framework, whereas the ISP-tuned values apply to a 2-level exponential framework, with 
separate treatment of dry and wet surfaces.

The light spectrum under sea ice differs widely from typically observed open water spectra, with less energy in 
the infrared and red and more energy in the blue and green bands, a trend enhanced under deep snow, which is 
consistent with previous work (see Perovich, 2017 for a review). Yet, overall variations in the color of light under 
sea ice are small (typical energy fraction variations in RGB bands are about 10% of the average). We attribute 
this to similar and mostly thickness-independent spectral variations in the optical properties of snow and ice. For 
both media, absorption increases with wavelength (Warren, 2019), giving similar spectral variations in albedo 
and attenuation coefficients (Light et al., 2022; Vérin et al., 2022).

Overall, the light intensity and spectrum observed under sea ice appear reliable and representative of Arctic 
conditions. However, this does not exclude problems, especially methodological ones. Most notable of these is 
the inconsistency between transmission and Chl-a content in the SUBICE observations selected for this study. 
Indeed, SUBICE recordings taken alone show a small, insignificant, increase in transmission with Chl-a in 
sea ice. This is unexpected, especially because SUBICE recordings have among the largest Chl-a values in our 
compilation (between 6.2 and 109.9 mg/m 2). By contrast, without SUBICE records, transmittance significantly 
decreases with Chl-a content in sea ice, more consistently with expectation. We surmise the absence of a rela-
tionship between transmittance and Chl-a content in sea ice relates to the combination, specific to SUBICE, of 
large horizontal variability of Chl-a or patchiness (see Figure 7 in Arrigo, 2014; Selz et al., 2018) and relative 
remoteness of optical and coring sites. Based on this, we left SUBICE records aside when concluding on the links 
between transmittance and Chl-a in sea ice. Other methodological issues are that our pond fraction estimates 
are indirect, which implies significant uncertainty; and that the spectral range of the spectrometers we used is 
restricted to wavelengths below 875 nm, which could induce a low bias in fno-vis.

Some relationships present in the data set are not necessarily causal. For instance, transmittance in pack ice 
samples (range 3 × 10 −3 — 0.3) appears an order of magnitude higher than in landfast ice (range 2 × 10 −4–0.15, 
see Table 1). To explain this, one could speculate on different IOPs between pack ice and fast ice, resulting from 
intrinsic microstructure differences. However, a simpler explanation is that pack ice in our data set has on average 
thinner snow and larger pond fraction (5 ± 4 cm, 25%) than fast ice (22 ± 1 cm, 15%). Moreover, snow depth, ice 
thickness, pond fraction and Chl-a are not independent. The fraction of common variance between them proves 
generally well below 10%. However, for all but SUBICE records, snow depth and Chl-a in sea ice share 15% of 
variance, which should be kept in mind when interpreting the linear regression analysis (Table 5).

Finally, although the environmental conditions sampled capture a variety of conditions encountered under Arctic 
sea ice, the 349 records may not be fully representative. Our compilation only has first-year ice records. However, 
Veyssière et al. (2022) obtained 1.24 ± 0.26 m −1 as a mean bulk extinction coefficient from 12 Arctic multi-year 
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ice cores, which is compatible with our overall value, and the lack of multi-year ice cores should not strongly 
affect our analysis. Antarctic sea ice records are also missing, and therefore the effects of specific processes such 
as surface flooding (Arndt et al., 2017) are not included; and some seasons, especially late summer, are not well 
sampled. Overall, this may influence mean transmission and dispersion, but not so much its identified dependen-
cies, although some specific modes of variation may remain unnoticed.

4.2. Evaluation of ESM Parameterizations for Under-Ice Light Calculations

The compilation allows testing of ESM parameterizations of radiative transfer in sea ice in a variety of situations. 
Specifically, we now examine whether the evaluated ESM parametrizations are suitable for under-ice light inten-
sity calculations and whether we find some parametrization strategies better than others.

Generally, since the attenuation of light in the ocean largely depends on wavelength (Morel,  1988), light 
under sea ice should have a realistic spectral distribution when transmitted to the ocean component. Coupled, 
spectrally-resolved parameterizations of radiative transfer in both sea ice (e.g., Briegleb & Light,  2007; Jin 
et al., 2022) and ocean components would achieve this, provided they perform well. In NEMO, however, short-
wave radiation is represented as broadband in the sea ice component, and with a few spectral bands in the ocean 
component. Also, the surface ocean only receives a single field for shortwave radiation intensity. Therefore, 
assumptions on the spectral distribution of surface shortwave energy must be made. Observations suggest that 
prescribing the energy fractions in the spectral bands within the oceanic component is appropriate to represent 
the spectral distribution of light under sea ice. Yet the values of prescribed energy fractions applied under sea ice 
should differ from those applied in open water conditions. Mainly, instead of 58% of non-visible light (mainly 
IR, absorbed over a few tens of a cm in the near-surface ocean; Lengaigne et al., 2007; Madec et al., 2022), 15% 
should be applied below the sea ice. NEMO and perhaps other ocean models fail at this task, which overestimates 
solar absorption in the near-surface ocean and presumably sea ice melt. Unequal fractions in the RGB bands with 
more energy in the green and blue bands than in the red bands are also desirable and making them dependent on 
snow depth (Equation 5) is the most realistic option available.

Regarding the representation of variations in under-ice light intensity, we find that parameterizations consider-
ing snow depth, ice thickness and melt pond fraction (ISP, ISPA, ISdP, CCSM3, dEdd) qualitatively reproduce 
observed transmittance, whereas simpler parameterizations (NEMO-0, IS) miss important seasonal transitions 
associated with snow or ponds. This is overall consistent with the idea that snow depth, ice thickness and melt 
pond fraction are well-understood and important drivers of under-ice light intensity.

Using more sophisticated physics (ISPA, ISdP parameterizations) generally does not remarkably improve perfor-
mance, but this does not mean they are negligible. Indeed, considering the attenuation of light by Chl-a in sea 
ice (ISPA parameterization) reduces the global bias for the transmittance and improves its variability, especially 
for low values. This could improve the transmission simulated by ESMs in regions of high Chl-a and thin snow, 
such as the Canadian Archipelago or the Antarctic fast ice zone. However, the overall impact may be small, since 
considering Chl-a in ISPA has a small impact on the average transmission error and dispersion over the entire 
compilation. In addition, accounting for the effect of small-scale variations in snow depth assuming a uniform 
distribution of snow depth (ISdP parameterization) represents the effect of low snow depths and increases the 
lowest transmittance values. This reinforces a pre-existent high bias, and therefore deteriorates the transmit-
tance error statistics, which could be because the real distribution of snow depth was not uniform (which can be 
expected under fast ice, however, there are no observations to confirm or infirm this).

Finally, considering a more elaborated physical framework (CCSM3 and dEdd parameterizations) leads to no 
improvement. CCSM3 (Briegleb et al., 2004) uses separate bands for visible and infrared radiation in an exponen-
tial framework, whereas dEdd (Briegleb & Light, 2007) uses a 4-band, 2-stream framework and a delta-Eddington 
approximation (Joseph et  al.,  1976) for radiative transfer. For both parameterizations, the transmittance bias 
increases, whereas error dispersion (STDE) remains similar, as compared with the ISP parameterization. It would 
be tempting to conclude that CCSM3 or dEdd are not as good parameterizations as ISP. However, CCSM3 or 
dEdd were included to test the influence of more elaborate physics but not tuned, as ISP was. If CCSM3 and dEdd 
had been tuned, the average transmittance bias could have been adjusted to much lower values. That error disper-
sion (STDE) is similar among ISP, CCSM3 and dEdd parameterizations argues for roughly similar performance 
among the three schemes and suggests remaining errors are to find elsewhere.
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Large residual transmittance errors remain, though. Residual errors are manifested by the large dispersion in the 
calculated versus observed transmittance plots (e.g., Figures 3–5). Our tuning experience of the ISP parameteri-
zation shows that residual errors can be largely reduced but not eliminated. Large post-tuning errors, averaging a 
factor of about 3, remain. An illustration of the robustness of such errors is that STDE has a non-zero minimum 
in the explored parameter space, around 4.3 × 10 −2 (Figure A1).

Observation errors contribute but are not the only source of residual transmittance errors. The lowest transmit-
tance values, below 10 −3, suffer from observation errors above 50%, however above that value, observation errors 
are smaller than the residual transmittance errors (see Section 2.1.5). Environmental variables used in transmis-
sion calculations (ice thickness, snow depth, pond fraction, air temperature) could also suffer from measurement 
errors. In addition, we use calculated, not observed, surface albedo. In Table S1 in Supporting Information S1, 
we impose standard perturbations on the environmental variables and assess the impact on the calculated trans-
mittance. We find they sum to 1.3 × 10 −2. Therefore, the errors in the environmental variables are smaller than 
the overall uncertainty in calculated transmittance (4 × 10 −2) but could contribute to it.

Remaining plausible error sources relate to the model-observation comparison protocol, or missing physics in 
the parameterizations. Model-observation comparison protocol issues include for instance three-dimensional 
features in the environment or in the light field (Katlein et al., 2021), which are not, or wrongly, represented 
in the 1D model framework. For instance, pond fraction is considered, however, the light field also depends on 
melt pond distribution and geometry (Horvat et al., 2020). Possibly missing physics include the microstructure 
of snow (crystal size, specific surface area, see Warren, 1982, 2019) and ice (brine and gas inclusions, see Jin 
et al., 2022; Light et al., 2004; Warren, 2019; Yu et al., 2022). Snow-related issues may seem important, as the 
largest relative errors coincide with snow-covered ice. Light-absorbing impurities such as black carbon or sedi-
ments are also neglected and probably contribute (Goldenson et al., 2012; Light et al., 1998).

4.3. Implications on the Skill of ESMs to Simulate Under-Ice Light Characteristics

What can we tell of the ability of ESMs (or of their sub-components) to simulate under-ice light intensity? 
Ice-ocean models used to study phytoplankton dynamics over the recent past (Clement Kinney et al., 2020; Gao 
et al., 2022; Horvat et al., 2017; Zhang et al., 2015) typically consider the effects of snow, ice and melt ponds, 
and should therefore properly resolve the seasonal evolution of under-ice light. By contrast, the many ESMs with 
no or oversimplified parameterizations of radiative transfer through sea ice (Keen et al., 2021; Table 2) miss key 
transitions in the seasonal variations in under-ice light intensity, as we expect for NEMO and as was highlighted 
due to the lack of consideration for melt ponds in mitGCM (Katlein et al., 2019).

Quantitatively speaking, ESMs may suffer from large errors, including those with the most elaborate radiative 
transfer parameterizations, since even the latter feature large residual errors. Also, many ESMs probably make 
wrong assumptions about the spectral distribution of light under sea ice. Furthermore, the simulated under-ice 
light intensity would be quite sensitive to biases in sea ice state. In most ice-ocean model simulations, such biases 
are reasonable but not zero (Zhang et al., 2015) and in ESMs, they are commonly quite large (Keen et al., 2021; 
Roach et  al.,  2020; SIMIP Community,  2020). In this context, careful examination (and possibly tuning) of 
simulated under-ice light levels or transmittance would be required to ensure sensible simulations. Specific ESM 
experiments may also help to understand, quantify and evaluate the impacts of such errors, and the benefits 
of reducing them. Indeed, impacts on the ocean temperature profile, sea ice mass balance, and phytoplankton 
phenology remain difficult to assess.

5. Conclusion
Light under the sea ice is a key uncertainty factor in ESM calculations of present and future Arctic marine 
primary production. To address this issue, we evaluated several contemporary ESM parametrization approaches 
in their ability to represent light intensity under sea ice. This was accomplished using a compilation of optical 
observations under (mostly) Arctic sea ice, unique in terms of number of records and availability of environmen-
tal metadata.

We find that ESMs are a priori able to simulate the intensity of light under sea ice, provided that the effects of the 
snow depth, ice thickness, melt ponds and ice algae, are considered in the calculations of radiative transfer in sea 
ice. The spectral distribution of light under sea ice is also important and must be carefully considered.
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Many contemporary ESM sea ice-ocean components do not satisfy the requirements listed above. Moreover, even 
the most realistic and best tuned ESM parameterizations would imply large errors in simulated under-ice light. 
Intrinsic errors remain in all parameterizations, stemming from missing, uncertain, or misrepresented physical 
processes, for instance related to snow and ice microstructure or to the presence in the ice of organic and mineral 
particles. Improper treatment of small-scale variability in the sea ice medium and in the light field could also 
largely contribute to uncertainty as already pointed out (Horvat et al., 2020; Katlein et al., 2021).

On this basis, we confirm that light intensity under sea ice as calculated by ESMs may suffer from important 
errors. To progress, minor modifications of the ESMs along the lines developed in this paper could largely reduce 
uncertainties in under-ice light climate for the next generation of climate projections. Direct evaluation and possi-
bly tuning of simulated under-ice light in ESMs would help and benefit from including under-ice light intensity 
and sea ice transmittance as standard ESM outputs (Notz et al., 2016). In the long-term, both experimental and 
theoretical research on optics in ice-covered seas is needed to fundamentally improve ESM representations.

Appendix A: Tuning the ISP Parameterization of Radiative Transfer in Sea Ice
Improved parameterizations are tuned to observed transmittance statistics, by adjusting three parameters in the 
reference ISP parameterization: the surface transmission parameter (io) and the sea ice and snow attenuation coef-
ficients (κi, κs, [m −1]). All these take a priori specific values for bare ice, dry snow and wet snow cases, except κs, 
which is undefined over bare ice. The surface albedo, calculated with the modified parameterization of Shine and 

Figure A1. Contour plots of transmittance statistics as a function of model tuning parameters, used to decide the final 
retained parameter values. Absolute mean bias error (AMBE, left) and standard deviation of error (STDE, right) of 
transmittance (10 −2) as a function of io and κi for bare ice records (top, N = 19) and as a function of io and κs for dry snow 
(middle, N = 169) and wet snow (bottom, N = 162) records. White stars represent the best choice of both parameters to 
minimize AMBE and STDE.
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Henderson-Sellers (1985) is excluded from tuning, because of the relatively low uncertainties on this parameter. 
We also exclude the SSL thickness parameter h0, which has a weak influence on retrieved transmittance (chang-
ing by about 5% for a 10% change in h0). ho is, first, assumed 3 cm for snow-covered ice (Perovich, 2007) and 
10 cm for bare ice (Grenfell & Maykut, 1977).

The transmittance statistics retained for optimization are the absolute mean bias error (AMBE) and standard 
deviation of error (STDE):

AMBE(𝑝𝑝1, 𝑝𝑝2) =
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|
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|

|

|
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(

𝑇𝑇
𝑗𝑗

calc
(𝑝𝑝1, 𝑝𝑝2) − 𝑇𝑇

𝑗𝑗

obs

)

, (A2)

given a series of selected observational sites (j = 1, …, N), and a pair of tuning parameters 𝐴𝐴 (𝑝𝑝1, 𝑝𝑝2). 𝐴𝐴 𝐴𝐴
𝑗𝑗

obs
is the 

observational estimate of transmittance at jth site, and 𝐴𝐴 𝐴𝐴
𝑗𝑗

calc
(𝑝𝑝1, 𝑝𝑝2) the calculated transmittance. Parameters are 

tuned separately for each surface type (bare ice, dry snow, wet snow).

Tuning is done through the examination of AMBE and STDE contours in two-dimensional parameter space, 
shown in Figure A1, for the bare ice, dry snow and wet snow sites. The resulting optimized values are given in 
Table 3. For all surface types, AMBE takes minimum values on a line in 2D parameter space, leaving large free-
dom on the possible parameter values. STDE provides a stricter constraint, more influential on the final param-
eter values. STDE typically takes a minimum around 4%, regardless of surface type. The combined minimum 
AMBE and STDE criteria always provides a single parameter couple.

The range of tested parameter values is selected based on the observational constraints we are aware of Grenfell & 
Maykut (1977), Järvinen and Leppäranta (2011), Light et al. (2008), Perovich (1996). For io, we explore the [0, 1] 
range with 10 −2 precision; for 𝐴𝐴 𝐴𝐴𝑖𝑖 , [0.8, 2 m −1] with a precision of 0.1 m −1; for 𝐴𝐴 𝐴𝐴𝑠𝑠 , [1, 50 m −1] with 0.1 m −1 precision.

Bare ice parameters (io and κi) are adjusted by fitting the calculated transmittance 
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 , 

calculated albedo 𝐴𝐴 𝐴𝐴
𝑗𝑗 at station j, and ho = 10 cm are imposed throughout. Optimization leads to io = 0.26 and 

κi = 1 m −1, rather close to standard sea ice model values (io = 0.17 and κi = 1.5 m −1, Maykut & Untersteiner, 1971). 
As 𝐴𝐴 𝐴𝐴𝑖𝑖 is barely influential when the ice is snow-covered, we assume 𝐴𝐴 𝐴𝐴𝑖𝑖 independent of surface type.

Optimal i0 and 𝐴𝐴 𝐴𝐴𝑠𝑠 for snow-covered records greatly differ whether snow is dry or wet, which is why we tune dry 
and wet snow parameters separately. We optimize the following transmittance
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at 168 dry snow sites and 110 wet snow sites. Observed snow depth 𝐴𝐴 𝐴
𝑗𝑗

𝑠𝑠 , ice thickness 𝐴𝐴 𝐴
𝑗𝑗

𝑖𝑖
 and calculated albedo 𝐴𝐴 𝐴𝐴

𝑗𝑗 at 
station j, ho = 3 cm and κi = 1 m −1 are first imposed. Optimization leads to io = 0.45 and κs = 5 m −1 for wet snow. 
For dry snow, optimization leads to io = 1 whatever the chosen κs. The optimal surface transmission is 100% in 
dry snow hence we consider only one layer in dry snow (ho = 0; io = 1) and only tune 𝐴𝐴 𝐴𝐴𝑠𝑠 (Figure A2), leading 
to κs = 7 m −1. Both dry and wet snow attenuation coefficients are in the range of observational values, which is 
rather large (Järvinen & Leppäranta, 2011; Perovich, 2007).

Melt ponds are present for 52 wet snow records and 13 bare ice records. For these records, the calculated trans-
mittance, estimated from either A3 (bare ice records) or A4 (wet snow records), is recombined with an estimation 
of melt ponds contribution:
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where fp is the reconstructed pond fraction (see main text), and 𝐴𝐴 𝐴𝐴
𝑗𝑗

𝑝𝑝  is the estimated ponded ice transmittance:

𝑇𝑇
𝑗𝑗

𝑝𝑝 = (1 − 𝛼𝛼𝑝𝑝).𝑖𝑖𝑜𝑜𝑜𝑝𝑝.𝑒𝑒
−𝜅𝜅𝑖𝑖ℎ

𝑗𝑗

𝑖𝑖 𝑜 (A6)

where 𝐴𝐴 𝐴𝐴𝑝𝑝  = 0.27 is ponded ice albedo and 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜  = 0.75 is the transmission parameter of liquid water. We decide not 
to tune optical parameters for ponded ice, because we have little information on their characteristics.
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