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Abstract
A staggering loss of US$10 billion to US$23 billion is incurred each year due to illegal, unreported, and
unregulated (IUU) �shing activities along with a severe loss to biodiversity. The Automatic Identi�cation
System (AIS), is a tool used to track vessel activity and avoid collisions. It is now being used to detect IUU
activities as well, but it has a major drawback as the AIS transponders could be disabled due to various
reasons, either illegal or otherwise, hence reducing its effectiveness. According to Welch et al. (2022),
more than 55,000 suspected intentional disabling events (> 4.9M hours) occurred between 2017 and
2019. Thus the need for much more sophisticated global surveillance has increased and algorithms to
analyze such huge amounts of data are required. We present a machine learning solution based on
historical data to detect vessels of interest using the AIS Disabling Events dataset obtained from the
Global Fishing Watch combined with the Regional Fisheries Management Organizations (RFMOs)
datasets containing details of vessels caught in IUU �shing activities previously within their respective
regions. One of our best models is the XGBoost with cost-sensitive learning boasting a minority recall of
0.79 and a majority recall of 0.76.

I. Introduction
Supervision of marine vessels and �shing practices is becoming an increasing necessity. The amount of
economic loss caused by Illegal, Unreported, and Unregulated (IUU) �shing activities annually ranges
from USD 10 Billion to USD 23 Billion, along with severe effects on marine biodiversity. Over 26 Million
tonnes of �sh are lost annually due to IUU activity, according to the United Nations Food and Agriculture
Organization (FAO)[2]. The Automatic Identi�cation System (AIS) is a tool for detecting and monitoring
vessel locations to prevent collisions at sea. It is now being used to detect vessels of interest and prevent
IUU activities. However, a major drawback of this system is that the AIS transponders could be disabled
due to various reasons, either illegal or otherwise, which is a common occurrence. According to Global
Fishing Watch (GFW), which is an international non-pro�t organization, more than 4.6 million hours of
AIS disabling events were recorded between 2017–2019. Thus it's becoming increasingly important to
address this issue which has a direct implication on �sheries, government authorities, and consumers.

Due to a large amount of data being available, machine learning can be leveraged in this domain to take
a step toward solving this problem. Welch et al. (2022) have published a dataset on the GFW website that
has intentional AIS Disabling Events[4]. Then we needed to label the dataset to make it suitable for
machine learning, the label would be binary - ‘1’ for the vessels that had previously been caught doing IUU
�shing by the authorities and ‘0’ for the vessels that haven’t been caught by the authorities, we obtained
the list of vessels that had been caught previously from various RFMOs, research papers, and news
articles. We then added several features based on existing attributes to improve the performance of the
models. The labeled dataset we obtained was highly imbalanced and that is why we had to apply
machine learning techniques like oversampling (SMOTE), undersampling, and cost-sensitive learning.

Ii. Dataset Preparation
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In this study, we utilized the AIS Disabling Events dataset obtained from the Global Fishing Watch[3][4].
The dataset contained the Maritime Mobile Service Identity (MMSI) numbers of ships that disabled their
Automatic Identi�cation System (AIS), along with their vessel class, �ag, vessel tonnage, vessel length,
latitude/longitude of when they disabled and enabled their AIS, number of hours for which AIS was
disabled (gap hours), and the time when AIS disabled and enabled.

To identify vessels of interest we needed labeled data of which vessels were caught doing IUU �shing
previously so that we could train our machine-learning model on that data. To do that, we collected the
vessel identity information from various Regional Fisheries Management Organizations (RFMOs),
including the South Paci�c Regional Fisheries Management Organisation (SPRFMO)[5], the Commission
for the Conservation of Antarctic Marine Living Resources (CCAMLR) [6], the Commission for the
Conservation of Southern Blue�n Tuna (CCSBT)[7], General Fisheries Commission for the Mediterranean
(GFCM)[8], the Inter-American Tropical Tuna Commission (IATTC) [9], the Indian Ocean Tuna Commission
(IOTC)[10], Northwest Atlantic Fisheries Organization (NAFO) [11], North East Atlantic Fisheries
Commission (NEAFC)[12], The North Paci�c Fisheries Commission (NPFC)[13], South East Atlantic
Fisheries Organisation (SEAFO)[14], Southern Indian Ocean Fisheries Agreement (SIOFA)[15], Western and
Central Paci�c Fisheries Commission (WCPFC)[16] manually, along with these RFMOs we also used the
IUU Vessel List provided by TM-Tracking is a non-pro�t organisation that provides national �sheries
authorities and international organisations with �sheries intelligence, analysis, and capacity building with
the goal of reducing illegal �shing and improving ocean governance more broadly.[17]. We also tried
�nding such vessels in news articles or other research papers[4][27][28]. These datasets contained details
of vessels that had been caught previously in Illegal, Unreported, and Unregulated (IUU) �shing activities
within their respective regions. However, the datasets were disorganized and some lacked the identity
information of some of the vessels and a lot of the RFMOs had cross-listed the vessels meaning a lot of
the vessels were common for various RFMOs.

We combined the vessel identity information we gathered from the RFMO datasets into a single excel �le
and used a python script to obtain the MMSI numbers of the respective International Maritime

Organization (IMO) numbers from the Global Fishing Watch API. After obtaining the MMSI numbers, we
combined them with the AIS Disabling Events Dataset and found 13 MMSI numbers that had been
caught doing IUU �shing according to various RFMOs and also disabled their AIS according to the Global
Fishing Watch dataset.

The existing attributes in the GFW AIS Disabling Events dataset weren’t enough to train machine learning
models. To generate more features from the available attributes, we wrote some python scripts[34]. The
features generated included -

The gap hours, which meant the number of hours the vessel was dark, this feature was included in
the original GFW AIS Disabling Events dataset.
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The spherical distance traveled during the AIS disabling period, for this, we used the
latitude/longitude of when the AIS was disabled and when it was enabled again.

To determine whether or not AIS was disabled within the Exclusive Economic Zone (EEZ), we used
the distance from shore attribute from the GFW AIS Disabling Dataset. The EEZ is a 200 nautical
miles (370400 meters) band from a country’s shore in which only the said country can conduct
economic activities.

The exact gear type of the vessel, which was obtained by passing the MMSI to the GFW API.

The average speed of the vessel during the disabling event which was obtained by dividing the
spherical distance by the gap hours.

To determine during which part of the day the disabling event took place, here we divided the day
into 6 parts each of 4 hours starting from 00:00 hours to 24:00 hours and classi�ed all values into
one of these 6 categories.

00:00 hours − 04:00 hours = twilight

04:00 hours − 08:00 hours = dawn

08:00 hours − 12:00 hours = morning

12:00 hours − 16:00 hours = afternoon

16:00 hours − 20:00 hours = evening

20:00 hours − 24:00 hours = night

As seen in Fig. 1. there are certain times of the day when AIS gets disabled more often.

The identi�cation of the ocean in which AIS was disabled, for this we used the start latitude and
longitude of the disabling event to identify the ocean. To accurately identify the ocean, initially, we
utilized GeoJSON �les obtained from the FAO[18] which contained the major �shing areas and ocean
names. Then we wrote a python script to �nd in which zone the lat/long for each disabling event lay,
but due to the complexity of the GeoJSON, we were getting thousands of events as False meaning
they didn’t lie in any ocean. So then we went to the International Hydrographic Organization (IHO)
website, which contained the GeoJSON for all the oceans and so we downloaded the JSON for all
the oceans separately - Arctic ocean[19], Atlantic ocean[20], Baltic sea[21], Indian ocean[22],
Mediterranean sea[23], Paci�c ocean[24], South China sea[25], Southern ocean[26] and ran a for loop
in python checking each point in every ocean’s JSON. But, getting only the ocean name wasn’t
enough as most of the disabling events took place in 2 oceans namely the Paci�c and the Atlantic,
so we extracted the exact ocean name, every ocean is divided into small parts or seas like the
Atlantic can be divided into North Atlantic, South Atlantic, etc. This gave a more detailed view of the
ocean giving us 36 values for the ocean name attribute as compared to the previous 8.

The �nal dataset consisted of 55,129 entries of vessels not caught in IUU �shing activities and 239
entries of vessels caught in IUU �shing activities. The dataset was highly imbalanced. We then performed
one-hot encoding on 3 of our categorical variables to make them viable for machine learning - gear type,
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time of the day when AIS was disabled, and the ocean where AIS was disabled. Finally, we split our
dataset into training and testing data with a 60/40 train/test split.

Iii. Machine Learning
After preparing the dataset, we started implementing machine learning models, since our dataset is highly
imbalanced with 55,129 entries for the majority class v/s only 239 entries for the minority class, we
applied methods such as oversampling, undersampling, and cost-sensitive learning. Our test set has
22,097 samples out of which 22,001 samples are negative samples ‘0’ (low suspicion of IUU activity) and
96 samples are positive samples ‘1’ (high suspicion of IUU activity). For our project, we would be using 2
performance measurement indicators namely -

The Receiver Operating Characteristics Area Under the Curve (ROC_AUC) which is a measure of
classi�cation problem performance at various threshold settings, the top left-most point of the curve
gives the optimal threshold setting for the given model, higher the ROC_AUC score the better the
model is at classifying the samples.

Recall, in our project the cost of misclassifying a positive case (vessel conducting IUU activity) as a
negative case (vessel not conducting IUU activity) is more. The top left-most point of the ROC_AUC
curve gives us the best trade-off between the recall of the majority and minority classes. The higher
the recall, the better the model is performing.

Oversampling is a technique of creating arti�cial samples for the minority class, one of the popular
oversampling techniques is the Synthetic Minority Over-sampling Technique (SMOTE)[29], which creates
synthetic samples by randomly sampling the characteristics of the minority class. We oversampled our
training data’s minority class using SMOTE and kept the testing data separate so that the testing data
doesn’t get contaminated. We then trained various models like -

Arti�cial Neural Network (ANN) with 3 dense layers (including 1 input and 1 output layer), the �rst
layer had 50 neurons with Relu activation, the second layer had 15 neurons with Relu activation, and
the output layer had 1 neuron with Sigmoid activation since we wanted to classify the sample as
binary (0 - low suspicion of IUU activity, 1 - high suspicion of IUU activity). We used the Adam
optimizer and ‘binary cross entropy loss function. After training the model on X_train, we plotted the
ROC_AUC graph, using which we found the best threshold value for classifying the predicted values
of the test set. The recall for the majority and minority classes are 0.75 and 0.71 respectively for the
test set.
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Table 1
Confusion Matrix of ANN (oversampling)
  Actual Values

0 1

Predicted Values 0 16,524 5,477

1 28 68

XGBoost stands for “Extreme Gradient Boosting”, is an optimized distributed gradient boosting
library designed for e�cient training of machine learning models[30]. We used a high gamma value
and a low max depth value because the model was over�tting. The recall for the majority and
minority classes are 0.78 and 0.67 respectively for the test set.

Table 2. Confusion Matrix of XGBoost
(oversampling)

  Actual Values

0 1

Predicted Values 0 17,134 4,867

1 32 64

Logistic Regression estimates the probability of an event occurring, in this case, was the vessel
conducting IUU (1) or not (0), based on a given dataset of independent variables. The recall for the
majority and minority classes are 0.91 and 0.40 respectively for the test set. 
Table 3. Confusion Matrix of Logistic Regression 

(oversampling)

  Actual Values

0 1

Predicted Values 0 20,073 1,928

1 58 38



Page 7/20

Ensemble learning is a process in which multiple models are combined to solve a given problem and
produce better results than the individual models[31]. Here, we did ensemble learning of XGBoost
and Logistic Regression, with soft voting wherein the probabilities of each prediction in each model
are combined and the prediction with the highest total probability is picked. The recall for the
majority and minority classes are 0.90 and 0.47 respectively for the test set.

 

Table 4. Confusion Matrix of Ensemble
Learning (oversampling) 

  Actual Values

0 1

Predicted Values 0 19,773 2,228

1 51 45

Stacking is a method to explore different models for the same problem, here, we take some base
models and train them on the training set, then we append the predictions (of the training set) of
each of the base model to the training set, �nally, we train the meta-model on the new training set
containing the results of the base models. Here, we took the base models as ANN and Logistic
Regression and the meta-model as XGBoost. The recall for the majority and minority classes are 0.91
and 0.40 respectively for the test set.

 

Table 5
Confusion Matrix of Stacking model

(oversampling)
  Actual Values

0 1

Predicted Values 0 20,073 1,928

1 58 38
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As seen in Fig. 3. above, the best tradeoff for the recall of the majority and minority classes belongs to
ANN and XGBoost for oversampling.

Undersampling is a technique to randomly remove samples from the majority class of the training
dataset, resulting in a better class distribution, which can reduce the skew from a 1:100 to a 1:10, or like
in our case to a 1:1[33]. We performed random undersampling on our training data’s majority class and
kept the testing data separate so that the testing data doesn’t get contaminated. We then trained models
similarly as we did while oversampling-

Arti�cial Neural Network (ANN), with a similar con�guration as used for oversampling. We used the
Adam optimizer and ‘binary cross entropy loss function. The recall for the majority and minority
classes are 0.64 and 0.74 respectively for the test set.

 

Table 6
Confusion Matrix of ANN (undersampling)
  Actual Values

0 1

Predicted Values 0 14,033 7,968

1 25 71

XGBoost, for which the recall for the majority and minority classes are 0.77 and 0.77 respectively for
the test set.

Table 7. Confusion Matrix of XGBoost
(undersampling) 

  Actual Values

0 1

Predicted Values 0 16,938 5063

1 22 74
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Logistic Regression, with a similar con�guration as used for oversampling The recall for the majority
and minority classes, are 0.72 and 0.72 respectively for the test set.

Table 8. Confusion Matrix of Logistic Regression (undersampling)

  Actual Values

0 1

Predicted Values 0 15,942 6,059

1 27 69

Ensemble Learning with XGBoost and Logistic Regression, with soft voting. The recall for the
majority and minority classes are 0.78 and 0.75 respectively for the test set.

 Table 9. Confusion Matrix of Ensemble Learning (undersampling)

  Actual Values

0 1

Predicted Values 0 17,126 4,875

1 24 72

Stacking model with the base models as cost-sensitive ANN and Logistic Regression with the meta-
model as XGBoost.  The recall for the majority and minority classes are 0.29 and 0.96 respectively
for the test set.

 Table 10. Confusion Matrix of Stacking (undersampling)

  Actual Values

0 1

Predicted Values 0 6,315 15,686

1 4 92

As seen in Fig. 4. above, the best trade-off for the recall of the majority and minority classes belongs to
XGBoost and Ensemble Learning for undersampling.

Cost-Sensitive Learning is a method used when there is class imbalance and the cost of misclassifying a
positive case as negative has serious consequences. Here, we assign weights to each of the classes, the
higher the weight, the higher the cost of misclassifying that class[32]. For each of the models, we
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performed a grid search to �nd the best weight for the minority class. We then trained various models like
-

Arti�cial Neural Network (ANN) with 3 dense layers (including 1 input and 1 output layer), the �rst
layer had 50 neurons with Relu activation, the second layer had 15 neurons with Relu activation, and
the output layer had 1 neuron with Sigmoid activation. We used the Adam optimizer and ‘binary
cross entropy loss function. The recall for the majority and minority classes are 0.75 and 0.56
respectively for the test set.

Table 11
Confusion Matrix of ANN (cost-sensitive)
  Actual Values

0 1

Predicted Values 0 16,430 5,571

1 42 54

Cost-Sensitive ANN, here with 4 dense layers (including 1 input and 1 output layer), the �rst layer had
63 neurons with Relu activation, the second layer had 30 neurons with Relu activation, the third layer
had 10 neurons with Relu activation, and the output layer had 1 neuron with Sigmoid activation. We
used the Adam optimizer and ‘binary cross entropy loss function. The weight for the majority class is
‘1’ whereas the weight for the minority class is ‘750’. The recall for the majority and minority classes
are 0.81 and 0.69 respectively for the test set.

 

Table 12
Confusion Matrix of Cost-sensitive ANN
  Actual Values

0 1

Predicted Values 0 17,889 4,112

1 30 66

XGBoost with the parameter scale_pos_weight to implement class weighted XGBoost. After
performing a grid search, we found the optimal value of the parameter to be 1000. The recall for the
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majority and minority classes are 0.76 and 0.79 respectively for the test set.

Table 13. Confusion Matrix of XGBoost (cost-sensitive)

  Actual Values

0 1

Predicted Values 0 16,656 5345

1 20 76

Logistic Regression with the parameter class_weight to assign different class weights, here, we
assigned the class weight for the majority class as ‘1’ and ‘230’ for the minority class. The recall for
the majority and minority classes are 0.74 and 0.74 respectively for the test set.

 Table 14. Confusion Matrix of Logistic Regression (cost-sensitive)

  Actual Values

0 1

Predicted Values 0 16,355 5,646

1 25 71

Ensemble Learning with XGBoost and Logistic Regression, with soft voting. The recall for the
majority and minority classes are 0.79 and 0.76 respectively for the test set.

 

Table 15. Confusion Matrix of Ensemble Learning (cost-sensitive) 

  Actual Values

0 1

Predicted Values 0 17,328 4,673

1 23 73

Stacking model with the base models as cost-sensitive ANN and Logistic Regression with the meta-
model as XGBoost.  The recall for the majority and minority classes are 0.78 and 0.71 respectively
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for the test set.

Table 16. Confusion Matrix of Ensemble Learning (cost-sensitive)

  Actual Values

0 1

Predicted Values 0 17,156 4,845

1 28 68

As seen in Fig. 7. above, the best trade-off for the recall of the majority and minority classes belong to
XGBoost and Ensemble Learning for cost-sensitive learning.

As seen in Fig. 8. above, after comparing the best models of all the methods Oversampling (OS),
Undersampling (US), Cost-Sensitive Learning (CS), the best trade-offs of the majority and minority recall
belong to XGBoost (Cost-sensitive), Ensemble Learning (Cost-sensitive), and XGBoost (Undersampling).

Iv. Conclusion
In conclusion, this research explored the use of machine learning techniques to take a step towards
solving the problem of IUU �shing, by identifying which AIS Disabling Events are suspicious. A unique
dataset was created using feature engineering and manual data collection, which allowed us to train and
test several models, including Logistic Regression, Arti�cial Neural Networks, XGBoost, Ensemble
Learning, and Stacking. We also used advanced techniques like oversampling, undersampling, and cost-
sensitive learning to tackle class imbalance in our dataset. Through the analysis of the results, we
observed that the XGBoost method provided the best results with a recall value of up to 0.79 for the
minority class for cost-sensitive learning, effectively addressing the high-class imbalance in the dataset.
However, it is important to acknowledge the drawbacks of some of the methods - that synthetic data via
oversampling does not fully capture the complexities and nuances of real-world scenarios such as this
one and may lead to biases or inaccuracies in the model, and undersampling deletes examples from the
majority class at random, which can result in the loss of information vital to a model.

V. Future Work
The more data is available, the better the model is going to perform. Getting more labelled disabling
events will lead to better performance in the models. Getting a more comprehensive list of vessels that
have been caught in IUU activities by the authorities can help label our current dataset in a better manner
and might improve the performance signi�cantly. A new attribute that takes in consideration the closest
EEZ of where the disabling event took place and compares the �ag of the vessel with that of the EEZ
would be really helpful as the basis of Illegal �shing is when a vessel of a different �ag/country conducts
�shing activity in the EEZ of another country. Adding more meaningful features that can be derived from
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existing attributes can improve the model's performance. These additions will enable us to make new
breakthroughs in this domain and reduce our dependence on synthetically generated data. In addition, an
interdisciplinary partnership between academics, policymakers, and stakeholders is necessary to assure
the ethical and socially just deployment of machine learning in this �eld.
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Figures

Figure 1

The frequency of AIS disabling events during different times of the day
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Figure 2

ROC_AUC curve of ANN (oversampling)

Figure 3

Recall comparison of various models after oversampling
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Figure 4

ROC_AUC curve of ANN (undersampling)

Figure 5

Fig. 4. Recall comparison of various models after undersampling
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Figure 6

Fig. 5. ROC_AUC curve of ANN (cost-sensitive)

Figure 7

Fig. 6. ROC_AUC curve of Cost-sensitive ANN
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Figure 8

Fig. 7. Recall comparison of various models using cost-sensitive learning

Figure 9
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Fig. 8. Recall comparison of the best models of all the methods


